2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
47 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
48 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
50 STATIC
void xlog_recover_check_summary(xlog_t
*);
52 #define xlog_recover_check_summary(log)
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
59 struct xfs_buf_cancel
{
63 struct list_head bc_list
;
67 * Sector aligned buffer routines for buffer create/read/write/access
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
77 xlog_buf_bbcount_valid(
81 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
94 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
95 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
97 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
102 * We do log I/O in units of log sectors (a power-of-2
103 * multiple of the basic block size), so we round up the
104 * requested size to acommodate the basic blocks required
105 * for complete log sectors.
107 * In addition, the buffer may be used for a non-sector-
108 * aligned block offset, in which case an I/O of the
109 * requested size could extend beyond the end of the
110 * buffer. If the requested size is only 1 basic block it
111 * will never straddle a sector boundary, so this won't be
112 * an issue. Nor will this be a problem if the log I/O is
113 * done in basic blocks (sector size 1). But otherwise we
114 * extend the buffer by one extra log sector to ensure
115 * there's space to accomodate this possiblility.
117 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
118 nbblks
+= log
->l_sectBBsize
;
119 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
121 return xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
,
133 * Return the address of the start of the given block number's data
134 * in a log buffer. The buffer covers a log sector-aligned region.
143 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
145 ASSERT(BBTOB(offset
+ nbblks
) <= XFS_BUF_SIZE(bp
));
146 return XFS_BUF_PTR(bp
) + BBTOB(offset
);
151 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
162 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
163 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
165 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
169 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
170 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
173 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
175 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
178 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
179 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
181 xfsbdstrat(log
->l_mp
, bp
);
182 error
= xfs_buf_iowait(bp
);
184 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
185 bp
, XFS_BUF_ADDR(bp
));
199 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
203 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
208 * Write out the buffer at the given block for the given number of blocks.
209 * The buffer is kept locked across the write and is returned locked.
210 * This can only be used for synchronous log writes.
221 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
222 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
224 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
228 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
229 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
232 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
234 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
235 XFS_BUF_ZEROFLAGS(bp
);
238 XFS_BUF_PSEMA(bp
, PRIBIO
);
239 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
240 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
242 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
243 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
244 bp
, XFS_BUF_ADDR(bp
));
250 * dump debug superblock and log record information
253 xlog_header_check_dump(
255 xlog_rec_header_t
*head
)
257 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d\n",
258 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
259 xfs_debug(mp
, " log : uuid = %pU, fmt = %d\n",
260 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
263 #define xlog_header_check_dump(mp, head)
267 * check log record header for recovery
270 xlog_header_check_recover(
272 xlog_rec_header_t
*head
)
274 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
277 * IRIX doesn't write the h_fmt field and leaves it zeroed
278 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
279 * a dirty log created in IRIX.
281 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
283 "dirty log written in incompatible format - can't recover");
284 xlog_header_check_dump(mp
, head
);
285 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
286 XFS_ERRLEVEL_HIGH
, mp
);
287 return XFS_ERROR(EFSCORRUPTED
);
288 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
290 "dirty log entry has mismatched uuid - can't recover");
291 xlog_header_check_dump(mp
, head
);
292 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
293 XFS_ERRLEVEL_HIGH
, mp
);
294 return XFS_ERROR(EFSCORRUPTED
);
300 * read the head block of the log and check the header
303 xlog_header_check_mount(
305 xlog_rec_header_t
*head
)
307 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
309 if (uuid_is_nil(&head
->h_fs_uuid
)) {
311 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
312 * h_fs_uuid is nil, we assume this log was last mounted
313 * by IRIX and continue.
315 xfs_warn(mp
, "nil uuid in log - IRIX style log");
316 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
317 xfs_warn(mp
, "log has mismatched uuid - can't recover");
318 xlog_header_check_dump(mp
, head
);
319 XFS_ERROR_REPORT("xlog_header_check_mount",
320 XFS_ERRLEVEL_HIGH
, mp
);
321 return XFS_ERROR(EFSCORRUPTED
);
330 if (XFS_BUF_GETERROR(bp
)) {
332 * We're not going to bother about retrying
333 * this during recovery. One strike!
335 xfs_ioerror_alert("xlog_recover_iodone",
336 bp
->b_target
->bt_mount
, bp
,
338 xfs_force_shutdown(bp
->b_target
->bt_mount
,
339 SHUTDOWN_META_IO_ERROR
);
341 XFS_BUF_CLR_IODONE_FUNC(bp
);
342 xfs_buf_ioend(bp
, 0);
346 * This routine finds (to an approximation) the first block in the physical
347 * log which contains the given cycle. It uses a binary search algorithm.
348 * Note that the algorithm can not be perfect because the disk will not
349 * necessarily be perfect.
352 xlog_find_cycle_start(
355 xfs_daddr_t first_blk
,
356 xfs_daddr_t
*last_blk
,
366 mid_blk
= BLK_AVG(first_blk
, end_blk
);
367 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
368 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
371 mid_cycle
= xlog_get_cycle(offset
);
372 if (mid_cycle
== cycle
)
373 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
375 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
376 mid_blk
= BLK_AVG(first_blk
, end_blk
);
378 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
379 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
387 * Check that a range of blocks does not contain stop_on_cycle_no.
388 * Fill in *new_blk with the block offset where such a block is
389 * found, or with -1 (an invalid block number) if there is no such
390 * block in the range. The scan needs to occur from front to back
391 * and the pointer into the region must be updated since a later
392 * routine will need to perform another test.
395 xlog_find_verify_cycle(
397 xfs_daddr_t start_blk
,
399 uint stop_on_cycle_no
,
400 xfs_daddr_t
*new_blk
)
406 xfs_caddr_t buf
= NULL
;
410 * Greedily allocate a buffer big enough to handle the full
411 * range of basic blocks we'll be examining. If that fails,
412 * try a smaller size. We need to be able to read at least
413 * a log sector, or we're out of luck.
415 bufblks
= 1 << ffs(nbblks
);
416 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
418 if (bufblks
< log
->l_sectBBsize
)
422 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
425 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
427 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
431 for (j
= 0; j
< bcount
; j
++) {
432 cycle
= xlog_get_cycle(buf
);
433 if (cycle
== stop_on_cycle_no
) {
450 * Potentially backup over partial log record write.
452 * In the typical case, last_blk is the number of the block directly after
453 * a good log record. Therefore, we subtract one to get the block number
454 * of the last block in the given buffer. extra_bblks contains the number
455 * of blocks we would have read on a previous read. This happens when the
456 * last log record is split over the end of the physical log.
458 * extra_bblks is the number of blocks potentially verified on a previous
459 * call to this routine.
462 xlog_find_verify_log_record(
464 xfs_daddr_t start_blk
,
465 xfs_daddr_t
*last_blk
,
470 xfs_caddr_t offset
= NULL
;
471 xlog_rec_header_t
*head
= NULL
;
474 int num_blks
= *last_blk
- start_blk
;
477 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
479 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
480 if (!(bp
= xlog_get_bp(log
, 1)))
484 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
487 offset
+= ((num_blks
- 1) << BBSHIFT
);
490 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
492 /* valid log record not found */
494 "Log inconsistent (didn't find previous header)");
496 error
= XFS_ERROR(EIO
);
501 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
506 head
= (xlog_rec_header_t
*)offset
;
508 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
516 * We hit the beginning of the physical log & still no header. Return
517 * to caller. If caller can handle a return of -1, then this routine
518 * will be called again for the end of the physical log.
526 * We have the final block of the good log (the first block
527 * of the log record _before_ the head. So we check the uuid.
529 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
533 * We may have found a log record header before we expected one.
534 * last_blk will be the 1st block # with a given cycle #. We may end
535 * up reading an entire log record. In this case, we don't want to
536 * reset last_blk. Only when last_blk points in the middle of a log
537 * record do we update last_blk.
539 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
540 uint h_size
= be32_to_cpu(head
->h_size
);
542 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
543 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
549 if (*last_blk
- i
+ extra_bblks
!=
550 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
559 * Head is defined to be the point of the log where the next log write
560 * write could go. This means that incomplete LR writes at the end are
561 * eliminated when calculating the head. We aren't guaranteed that previous
562 * LR have complete transactions. We only know that a cycle number of
563 * current cycle number -1 won't be present in the log if we start writing
564 * from our current block number.
566 * last_blk contains the block number of the first block with a given
569 * Return: zero if normal, non-zero if error.
574 xfs_daddr_t
*return_head_blk
)
578 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
580 uint first_half_cycle
, last_half_cycle
;
582 int error
, log_bbnum
= log
->l_logBBsize
;
584 /* Is the end of the log device zeroed? */
585 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
586 *return_head_blk
= first_blk
;
588 /* Is the whole lot zeroed? */
590 /* Linux XFS shouldn't generate totally zeroed logs -
591 * mkfs etc write a dummy unmount record to a fresh
592 * log so we can store the uuid in there
594 xfs_warn(log
->l_mp
, "totally zeroed log");
599 xfs_warn(log
->l_mp
, "empty log check failed");
603 first_blk
= 0; /* get cycle # of 1st block */
604 bp
= xlog_get_bp(log
, 1);
608 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
612 first_half_cycle
= xlog_get_cycle(offset
);
614 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
615 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
619 last_half_cycle
= xlog_get_cycle(offset
);
620 ASSERT(last_half_cycle
!= 0);
623 * If the 1st half cycle number is equal to the last half cycle number,
624 * then the entire log is stamped with the same cycle number. In this
625 * case, head_blk can't be set to zero (which makes sense). The below
626 * math doesn't work out properly with head_blk equal to zero. Instead,
627 * we set it to log_bbnum which is an invalid block number, but this
628 * value makes the math correct. If head_blk doesn't changed through
629 * all the tests below, *head_blk is set to zero at the very end rather
630 * than log_bbnum. In a sense, log_bbnum and zero are the same block
631 * in a circular file.
633 if (first_half_cycle
== last_half_cycle
) {
635 * In this case we believe that the entire log should have
636 * cycle number last_half_cycle. We need to scan backwards
637 * from the end verifying that there are no holes still
638 * containing last_half_cycle - 1. If we find such a hole,
639 * then the start of that hole will be the new head. The
640 * simple case looks like
641 * x | x ... | x - 1 | x
642 * Another case that fits this picture would be
643 * x | x + 1 | x ... | x
644 * In this case the head really is somewhere at the end of the
645 * log, as one of the latest writes at the beginning was
648 * x | x + 1 | x ... | x - 1 | x
649 * This is really the combination of the above two cases, and
650 * the head has to end up at the start of the x-1 hole at the
653 * In the 256k log case, we will read from the beginning to the
654 * end of the log and search for cycle numbers equal to x-1.
655 * We don't worry about the x+1 blocks that we encounter,
656 * because we know that they cannot be the head since the log
659 head_blk
= log_bbnum
;
660 stop_on_cycle
= last_half_cycle
- 1;
663 * In this case we want to find the first block with cycle
664 * number matching last_half_cycle. We expect the log to be
666 * x + 1 ... | x ... | x
667 * The first block with cycle number x (last_half_cycle) will
668 * be where the new head belongs. First we do a binary search
669 * for the first occurrence of last_half_cycle. The binary
670 * search may not be totally accurate, so then we scan back
671 * from there looking for occurrences of last_half_cycle before
672 * us. If that backwards scan wraps around the beginning of
673 * the log, then we look for occurrences of last_half_cycle - 1
674 * at the end of the log. The cases we're looking for look
676 * v binary search stopped here
677 * x + 1 ... | x | x + 1 | x ... | x
678 * ^ but we want to locate this spot
680 * <---------> less than scan distance
681 * x + 1 ... | x ... | x - 1 | x
682 * ^ we want to locate this spot
684 stop_on_cycle
= last_half_cycle
;
685 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
686 &head_blk
, last_half_cycle
)))
691 * Now validate the answer. Scan back some number of maximum possible
692 * blocks and make sure each one has the expected cycle number. The
693 * maximum is determined by the total possible amount of buffering
694 * in the in-core log. The following number can be made tighter if
695 * we actually look at the block size of the filesystem.
697 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
698 if (head_blk
>= num_scan_bblks
) {
700 * We are guaranteed that the entire check can be performed
703 start_blk
= head_blk
- num_scan_bblks
;
704 if ((error
= xlog_find_verify_cycle(log
,
705 start_blk
, num_scan_bblks
,
706 stop_on_cycle
, &new_blk
)))
710 } else { /* need to read 2 parts of log */
712 * We are going to scan backwards in the log in two parts.
713 * First we scan the physical end of the log. In this part
714 * of the log, we are looking for blocks with cycle number
715 * last_half_cycle - 1.
716 * If we find one, then we know that the log starts there, as
717 * we've found a hole that didn't get written in going around
718 * the end of the physical log. The simple case for this is
719 * x + 1 ... | x ... | x - 1 | x
720 * <---------> less than scan distance
721 * If all of the blocks at the end of the log have cycle number
722 * last_half_cycle, then we check the blocks at the start of
723 * the log looking for occurrences of last_half_cycle. If we
724 * find one, then our current estimate for the location of the
725 * first occurrence of last_half_cycle is wrong and we move
726 * back to the hole we've found. This case looks like
727 * x + 1 ... | x | x + 1 | x ...
728 * ^ binary search stopped here
729 * Another case we need to handle that only occurs in 256k
731 * x + 1 ... | x ... | x+1 | x ...
732 * ^ binary search stops here
733 * In a 256k log, the scan at the end of the log will see the
734 * x + 1 blocks. We need to skip past those since that is
735 * certainly not the head of the log. By searching for
736 * last_half_cycle-1 we accomplish that.
738 ASSERT(head_blk
<= INT_MAX
&&
739 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
740 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
741 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
742 num_scan_bblks
- (int)head_blk
,
743 (stop_on_cycle
- 1), &new_blk
)))
751 * Scan beginning of log now. The last part of the physical
752 * log is good. This scan needs to verify that it doesn't find
753 * the last_half_cycle.
756 ASSERT(head_blk
<= INT_MAX
);
757 if ((error
= xlog_find_verify_cycle(log
,
758 start_blk
, (int)head_blk
,
759 stop_on_cycle
, &new_blk
)))
767 * Now we need to make sure head_blk is not pointing to a block in
768 * the middle of a log record.
770 num_scan_bblks
= XLOG_REC_SHIFT(log
);
771 if (head_blk
>= num_scan_bblks
) {
772 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
774 /* start ptr at last block ptr before head_blk */
775 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
776 &head_blk
, 0)) == -1) {
777 error
= XFS_ERROR(EIO
);
783 ASSERT(head_blk
<= INT_MAX
);
784 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
785 &head_blk
, 0)) == -1) {
786 /* We hit the beginning of the log during our search */
787 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
789 ASSERT(start_blk
<= INT_MAX
&&
790 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
791 ASSERT(head_blk
<= INT_MAX
);
792 if ((error
= xlog_find_verify_log_record(log
,
794 (int)head_blk
)) == -1) {
795 error
= XFS_ERROR(EIO
);
799 if (new_blk
!= log_bbnum
)
806 if (head_blk
== log_bbnum
)
807 *return_head_blk
= 0;
809 *return_head_blk
= head_blk
;
811 * When returning here, we have a good block number. Bad block
812 * means that during a previous crash, we didn't have a clean break
813 * from cycle number N to cycle number N-1. In this case, we need
814 * to find the first block with cycle number N-1.
822 xfs_warn(log
->l_mp
, "failed to find log head");
827 * Find the sync block number or the tail of the log.
829 * This will be the block number of the last record to have its
830 * associated buffers synced to disk. Every log record header has
831 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
832 * to get a sync block number. The only concern is to figure out which
833 * log record header to believe.
835 * The following algorithm uses the log record header with the largest
836 * lsn. The entire log record does not need to be valid. We only care
837 * that the header is valid.
839 * We could speed up search by using current head_blk buffer, but it is not
845 xfs_daddr_t
*head_blk
,
846 xfs_daddr_t
*tail_blk
)
848 xlog_rec_header_t
*rhead
;
849 xlog_op_header_t
*op_head
;
850 xfs_caddr_t offset
= NULL
;
853 xfs_daddr_t umount_data_blk
;
854 xfs_daddr_t after_umount_blk
;
861 * Find previous log record
863 if ((error
= xlog_find_head(log
, head_blk
)))
866 bp
= xlog_get_bp(log
, 1);
869 if (*head_blk
== 0) { /* special case */
870 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
874 if (xlog_get_cycle(offset
) == 0) {
876 /* leave all other log inited values alone */
882 * Search backwards looking for log record header block
884 ASSERT(*head_blk
< INT_MAX
);
885 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
886 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
890 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
896 * If we haven't found the log record header block, start looking
897 * again from the end of the physical log. XXXmiken: There should be
898 * a check here to make sure we didn't search more than N blocks in
902 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
903 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
907 if (XLOG_HEADER_MAGIC_NUM
==
908 be32_to_cpu(*(__be32
*)offset
)) {
915 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
917 return XFS_ERROR(EIO
);
920 /* find blk_no of tail of log */
921 rhead
= (xlog_rec_header_t
*)offset
;
922 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
925 * Reset log values according to the state of the log when we
926 * crashed. In the case where head_blk == 0, we bump curr_cycle
927 * one because the next write starts a new cycle rather than
928 * continuing the cycle of the last good log record. At this
929 * point we have guaranteed that all partial log records have been
930 * accounted for. Therefore, we know that the last good log record
931 * written was complete and ended exactly on the end boundary
932 * of the physical log.
934 log
->l_prev_block
= i
;
935 log
->l_curr_block
= (int)*head_blk
;
936 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
939 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
940 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
941 xlog_assign_grant_head(&log
->l_grant_reserve_head
, log
->l_curr_cycle
,
942 BBTOB(log
->l_curr_block
));
943 xlog_assign_grant_head(&log
->l_grant_write_head
, log
->l_curr_cycle
,
944 BBTOB(log
->l_curr_block
));
947 * Look for unmount record. If we find it, then we know there
948 * was a clean unmount. Since 'i' could be the last block in
949 * the physical log, we convert to a log block before comparing
952 * Save the current tail lsn to use to pass to
953 * xlog_clear_stale_blocks() below. We won't want to clear the
954 * unmount record if there is one, so we pass the lsn of the
955 * unmount record rather than the block after it.
957 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
958 int h_size
= be32_to_cpu(rhead
->h_size
);
959 int h_version
= be32_to_cpu(rhead
->h_version
);
961 if ((h_version
& XLOG_VERSION_2
) &&
962 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
963 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
964 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
972 after_umount_blk
= (i
+ hblks
+ (int)
973 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
974 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
975 if (*head_blk
== after_umount_blk
&&
976 be32_to_cpu(rhead
->h_num_logops
) == 1) {
977 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
978 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
982 op_head
= (xlog_op_header_t
*)offset
;
983 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
985 * Set tail and last sync so that newly written
986 * log records will point recovery to after the
987 * current unmount record.
989 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
990 log
->l_curr_cycle
, after_umount_blk
);
991 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
992 log
->l_curr_cycle
, after_umount_blk
);
993 *tail_blk
= after_umount_blk
;
996 * Note that the unmount was clean. If the unmount
997 * was not clean, we need to know this to rebuild the
998 * superblock counters from the perag headers if we
999 * have a filesystem using non-persistent counters.
1001 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1006 * Make sure that there are no blocks in front of the head
1007 * with the same cycle number as the head. This can happen
1008 * because we allow multiple outstanding log writes concurrently,
1009 * and the later writes might make it out before earlier ones.
1011 * We use the lsn from before modifying it so that we'll never
1012 * overwrite the unmount record after a clean unmount.
1014 * Do this only if we are going to recover the filesystem
1016 * NOTE: This used to say "if (!readonly)"
1017 * However on Linux, we can & do recover a read-only filesystem.
1018 * We only skip recovery if NORECOVERY is specified on mount,
1019 * in which case we would not be here.
1021 * But... if the -device- itself is readonly, just skip this.
1022 * We can't recover this device anyway, so it won't matter.
1024 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1025 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1031 xfs_warn(log
->l_mp
, "failed to locate log tail");
1036 * Is the log zeroed at all?
1038 * The last binary search should be changed to perform an X block read
1039 * once X becomes small enough. You can then search linearly through
1040 * the X blocks. This will cut down on the number of reads we need to do.
1042 * If the log is partially zeroed, this routine will pass back the blkno
1043 * of the first block with cycle number 0. It won't have a complete LR
1047 * 0 => the log is completely written to
1048 * -1 => use *blk_no as the first block of the log
1049 * >0 => error has occurred
1054 xfs_daddr_t
*blk_no
)
1058 uint first_cycle
, last_cycle
;
1059 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1060 xfs_daddr_t num_scan_bblks
;
1061 int error
, log_bbnum
= log
->l_logBBsize
;
1065 /* check totally zeroed log */
1066 bp
= xlog_get_bp(log
, 1);
1069 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1073 first_cycle
= xlog_get_cycle(offset
);
1074 if (first_cycle
== 0) { /* completely zeroed log */
1080 /* check partially zeroed log */
1081 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1085 last_cycle
= xlog_get_cycle(offset
);
1086 if (last_cycle
!= 0) { /* log completely written to */
1089 } else if (first_cycle
!= 1) {
1091 * If the cycle of the last block is zero, the cycle of
1092 * the first block must be 1. If it's not, maybe we're
1093 * not looking at a log... Bail out.
1096 "Log inconsistent or not a log (last==0, first!=1)");
1097 return XFS_ERROR(EINVAL
);
1100 /* we have a partially zeroed log */
1101 last_blk
= log_bbnum
-1;
1102 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1106 * Validate the answer. Because there is no way to guarantee that
1107 * the entire log is made up of log records which are the same size,
1108 * we scan over the defined maximum blocks. At this point, the maximum
1109 * is not chosen to mean anything special. XXXmiken
1111 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1112 ASSERT(num_scan_bblks
<= INT_MAX
);
1114 if (last_blk
< num_scan_bblks
)
1115 num_scan_bblks
= last_blk
;
1116 start_blk
= last_blk
- num_scan_bblks
;
1119 * We search for any instances of cycle number 0 that occur before
1120 * our current estimate of the head. What we're trying to detect is
1121 * 1 ... | 0 | 1 | 0...
1122 * ^ binary search ends here
1124 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1125 (int)num_scan_bblks
, 0, &new_blk
)))
1131 * Potentially backup over partial log record write. We don't need
1132 * to search the end of the log because we know it is zero.
1134 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1135 &last_blk
, 0)) == -1) {
1136 error
= XFS_ERROR(EIO
);
1150 * These are simple subroutines used by xlog_clear_stale_blocks() below
1151 * to initialize a buffer full of empty log record headers and write
1152 * them into the log.
1163 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1165 memset(buf
, 0, BBSIZE
);
1166 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1167 recp
->h_cycle
= cpu_to_be32(cycle
);
1168 recp
->h_version
= cpu_to_be32(
1169 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1170 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1171 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1172 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1173 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1177 xlog_write_log_records(
1188 int sectbb
= log
->l_sectBBsize
;
1189 int end_block
= start_block
+ blocks
;
1195 * Greedily allocate a buffer big enough to handle the full
1196 * range of basic blocks to be written. If that fails, try
1197 * a smaller size. We need to be able to write at least a
1198 * log sector, or we're out of luck.
1200 bufblks
= 1 << ffs(blocks
);
1201 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1203 if (bufblks
< sectbb
)
1207 /* We may need to do a read at the start to fill in part of
1208 * the buffer in the starting sector not covered by the first
1211 balign
= round_down(start_block
, sectbb
);
1212 if (balign
!= start_block
) {
1213 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1217 j
= start_block
- balign
;
1220 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1221 int bcount
, endcount
;
1223 bcount
= min(bufblks
, end_block
- start_block
);
1224 endcount
= bcount
- j
;
1226 /* We may need to do a read at the end to fill in part of
1227 * the buffer in the final sector not covered by the write.
1228 * If this is the same sector as the above read, skip it.
1230 ealign
= round_down(end_block
, sectbb
);
1231 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1232 offset
= XFS_BUF_PTR(bp
);
1233 balign
= BBTOB(ealign
- start_block
);
1234 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1239 error
= xlog_bread_noalign(log
, ealign
, sectbb
, bp
);
1243 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1248 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1249 for (; j
< endcount
; j
++) {
1250 xlog_add_record(log
, offset
, cycle
, i
+j
,
1251 tail_cycle
, tail_block
);
1254 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1257 start_block
+= endcount
;
1267 * This routine is called to blow away any incomplete log writes out
1268 * in front of the log head. We do this so that we won't become confused
1269 * if we come up, write only a little bit more, and then crash again.
1270 * If we leave the partial log records out there, this situation could
1271 * cause us to think those partial writes are valid blocks since they
1272 * have the current cycle number. We get rid of them by overwriting them
1273 * with empty log records with the old cycle number rather than the
1276 * The tail lsn is passed in rather than taken from
1277 * the log so that we will not write over the unmount record after a
1278 * clean unmount in a 512 block log. Doing so would leave the log without
1279 * any valid log records in it until a new one was written. If we crashed
1280 * during that time we would not be able to recover.
1283 xlog_clear_stale_blocks(
1287 int tail_cycle
, head_cycle
;
1288 int tail_block
, head_block
;
1289 int tail_distance
, max_distance
;
1293 tail_cycle
= CYCLE_LSN(tail_lsn
);
1294 tail_block
= BLOCK_LSN(tail_lsn
);
1295 head_cycle
= log
->l_curr_cycle
;
1296 head_block
= log
->l_curr_block
;
1299 * Figure out the distance between the new head of the log
1300 * and the tail. We want to write over any blocks beyond the
1301 * head that we may have written just before the crash, but
1302 * we don't want to overwrite the tail of the log.
1304 if (head_cycle
== tail_cycle
) {
1306 * The tail is behind the head in the physical log,
1307 * so the distance from the head to the tail is the
1308 * distance from the head to the end of the log plus
1309 * the distance from the beginning of the log to the
1312 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1313 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1314 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1315 return XFS_ERROR(EFSCORRUPTED
);
1317 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1320 * The head is behind the tail in the physical log,
1321 * so the distance from the head to the tail is just
1322 * the tail block minus the head block.
1324 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1325 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1326 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1327 return XFS_ERROR(EFSCORRUPTED
);
1329 tail_distance
= tail_block
- head_block
;
1333 * If the head is right up against the tail, we can't clear
1336 if (tail_distance
<= 0) {
1337 ASSERT(tail_distance
== 0);
1341 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1343 * Take the smaller of the maximum amount of outstanding I/O
1344 * we could have and the distance to the tail to clear out.
1345 * We take the smaller so that we don't overwrite the tail and
1346 * we don't waste all day writing from the head to the tail
1349 max_distance
= MIN(max_distance
, tail_distance
);
1351 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1353 * We can stomp all the blocks we need to without
1354 * wrapping around the end of the log. Just do it
1355 * in a single write. Use the cycle number of the
1356 * current cycle minus one so that the log will look like:
1359 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1360 head_block
, max_distance
, tail_cycle
,
1366 * We need to wrap around the end of the physical log in
1367 * order to clear all the blocks. Do it in two separate
1368 * I/Os. The first write should be from the head to the
1369 * end of the physical log, and it should use the current
1370 * cycle number minus one just like above.
1372 distance
= log
->l_logBBsize
- head_block
;
1373 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1374 head_block
, distance
, tail_cycle
,
1381 * Now write the blocks at the start of the physical log.
1382 * This writes the remainder of the blocks we want to clear.
1383 * It uses the current cycle number since we're now on the
1384 * same cycle as the head so that we get:
1385 * n ... n ... | n - 1 ...
1386 * ^^^^^ blocks we're writing
1388 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1389 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1390 tail_cycle
, tail_block
);
1398 /******************************************************************************
1400 * Log recover routines
1402 ******************************************************************************
1405 STATIC xlog_recover_t
*
1406 xlog_recover_find_tid(
1407 struct hlist_head
*head
,
1410 xlog_recover_t
*trans
;
1411 struct hlist_node
*n
;
1413 hlist_for_each_entry(trans
, n
, head
, r_list
) {
1414 if (trans
->r_log_tid
== tid
)
1421 xlog_recover_new_tid(
1422 struct hlist_head
*head
,
1426 xlog_recover_t
*trans
;
1428 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1429 trans
->r_log_tid
= tid
;
1431 INIT_LIST_HEAD(&trans
->r_itemq
);
1433 INIT_HLIST_NODE(&trans
->r_list
);
1434 hlist_add_head(&trans
->r_list
, head
);
1438 xlog_recover_add_item(
1439 struct list_head
*head
)
1441 xlog_recover_item_t
*item
;
1443 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1444 INIT_LIST_HEAD(&item
->ri_list
);
1445 list_add_tail(&item
->ri_list
, head
);
1449 xlog_recover_add_to_cont_trans(
1451 xlog_recover_t
*trans
,
1455 xlog_recover_item_t
*item
;
1456 xfs_caddr_t ptr
, old_ptr
;
1459 if (list_empty(&trans
->r_itemq
)) {
1460 /* finish copying rest of trans header */
1461 xlog_recover_add_item(&trans
->r_itemq
);
1462 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1463 sizeof(xfs_trans_header_t
) - len
;
1464 memcpy(ptr
, dp
, len
); /* d, s, l */
1467 /* take the tail entry */
1468 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1470 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1471 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1473 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1474 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1475 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1476 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1477 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
1482 * The next region to add is the start of a new region. It could be
1483 * a whole region or it could be the first part of a new region. Because
1484 * of this, the assumption here is that the type and size fields of all
1485 * format structures fit into the first 32 bits of the structure.
1487 * This works because all regions must be 32 bit aligned. Therefore, we
1488 * either have both fields or we have neither field. In the case we have
1489 * neither field, the data part of the region is zero length. We only have
1490 * a log_op_header and can throw away the header since a new one will appear
1491 * later. If we have at least 4 bytes, then we can determine how many regions
1492 * will appear in the current log item.
1495 xlog_recover_add_to_trans(
1497 xlog_recover_t
*trans
,
1501 xfs_inode_log_format_t
*in_f
; /* any will do */
1502 xlog_recover_item_t
*item
;
1507 if (list_empty(&trans
->r_itemq
)) {
1508 /* we need to catch log corruptions here */
1509 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1510 xfs_warn(log
->l_mp
, "%s: bad header magic number",
1513 return XFS_ERROR(EIO
);
1515 if (len
== sizeof(xfs_trans_header_t
))
1516 xlog_recover_add_item(&trans
->r_itemq
);
1517 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1521 ptr
= kmem_alloc(len
, KM_SLEEP
);
1522 memcpy(ptr
, dp
, len
);
1523 in_f
= (xfs_inode_log_format_t
*)ptr
;
1525 /* take the tail entry */
1526 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1527 if (item
->ri_total
!= 0 &&
1528 item
->ri_total
== item
->ri_cnt
) {
1529 /* tail item is in use, get a new one */
1530 xlog_recover_add_item(&trans
->r_itemq
);
1531 item
= list_entry(trans
->r_itemq
.prev
,
1532 xlog_recover_item_t
, ri_list
);
1535 if (item
->ri_total
== 0) { /* first region to be added */
1536 if (in_f
->ilf_size
== 0 ||
1537 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1539 "bad number of regions (%d) in inode log format",
1542 return XFS_ERROR(EIO
);
1545 item
->ri_total
= in_f
->ilf_size
;
1547 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1550 ASSERT(item
->ri_total
> item
->ri_cnt
);
1551 /* Description region is ri_buf[0] */
1552 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1553 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1555 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
1560 * Sort the log items in the transaction. Cancelled buffers need
1561 * to be put first so they are processed before any items that might
1562 * modify the buffers. If they are cancelled, then the modifications
1563 * don't need to be replayed.
1566 xlog_recover_reorder_trans(
1568 xlog_recover_t
*trans
,
1571 xlog_recover_item_t
*item
, *n
;
1572 LIST_HEAD(sort_list
);
1574 list_splice_init(&trans
->r_itemq
, &sort_list
);
1575 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1576 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1578 switch (ITEM_TYPE(item
)) {
1580 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1581 trace_xfs_log_recover_item_reorder_head(log
,
1583 list_move(&item
->ri_list
, &trans
->r_itemq
);
1588 case XFS_LI_QUOTAOFF
:
1591 trace_xfs_log_recover_item_reorder_tail(log
,
1593 list_move_tail(&item
->ri_list
, &trans
->r_itemq
);
1597 "%s: unrecognized type of log operation",
1600 return XFS_ERROR(EIO
);
1603 ASSERT(list_empty(&sort_list
));
1608 * Build up the table of buf cancel records so that we don't replay
1609 * cancelled data in the second pass. For buffer records that are
1610 * not cancel records, there is nothing to do here so we just return.
1612 * If we get a cancel record which is already in the table, this indicates
1613 * that the buffer was cancelled multiple times. In order to ensure
1614 * that during pass 2 we keep the record in the table until we reach its
1615 * last occurrence in the log, we keep a reference count in the cancel
1616 * record in the table to tell us how many times we expect to see this
1617 * record during the second pass.
1620 xlog_recover_buffer_pass1(
1622 xlog_recover_item_t
*item
)
1624 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1625 struct list_head
*bucket
;
1626 struct xfs_buf_cancel
*bcp
;
1629 * If this isn't a cancel buffer item, then just return.
1631 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1632 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1637 * Insert an xfs_buf_cancel record into the hash table of them.
1638 * If there is already an identical record, bump its reference count.
1640 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1641 list_for_each_entry(bcp
, bucket
, bc_list
) {
1642 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1643 bcp
->bc_len
== buf_f
->blf_len
) {
1645 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1650 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1651 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1652 bcp
->bc_len
= buf_f
->blf_len
;
1653 bcp
->bc_refcount
= 1;
1654 list_add_tail(&bcp
->bc_list
, bucket
);
1656 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1661 * Check to see whether the buffer being recovered has a corresponding
1662 * entry in the buffer cancel record table. If it does then return 1
1663 * so that it will be cancelled, otherwise return 0. If the buffer is
1664 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1665 * the refcount on the entry in the table and remove it from the table
1666 * if this is the last reference.
1668 * We remove the cancel record from the table when we encounter its
1669 * last occurrence in the log so that if the same buffer is re-used
1670 * again after its last cancellation we actually replay the changes
1671 * made at that point.
1674 xlog_check_buffer_cancelled(
1680 struct list_head
*bucket
;
1681 struct xfs_buf_cancel
*bcp
;
1683 if (log
->l_buf_cancel_table
== NULL
) {
1685 * There is nothing in the table built in pass one,
1686 * so this buffer must not be cancelled.
1688 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1693 * Search for an entry in the cancel table that matches our buffer.
1695 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1696 list_for_each_entry(bcp
, bucket
, bc_list
) {
1697 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1702 * We didn't find a corresponding entry in the table, so return 0 so
1703 * that the buffer is NOT cancelled.
1705 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1710 * We've go a match, so return 1 so that the recovery of this buffer
1711 * is cancelled. If this buffer is actually a buffer cancel log
1712 * item, then decrement the refcount on the one in the table and
1713 * remove it if this is the last reference.
1715 if (flags
& XFS_BLF_CANCEL
) {
1716 if (--bcp
->bc_refcount
== 0) {
1717 list_del(&bcp
->bc_list
);
1725 * Perform recovery for a buffer full of inodes. In these buffers, the only
1726 * data which should be recovered is that which corresponds to the
1727 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1728 * data for the inodes is always logged through the inodes themselves rather
1729 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1731 * The only time when buffers full of inodes are fully recovered is when the
1732 * buffer is full of newly allocated inodes. In this case the buffer will
1733 * not be marked as an inode buffer and so will be sent to
1734 * xlog_recover_do_reg_buffer() below during recovery.
1737 xlog_recover_do_inode_buffer(
1738 struct xfs_mount
*mp
,
1739 xlog_recover_item_t
*item
,
1741 xfs_buf_log_format_t
*buf_f
)
1747 int reg_buf_offset
= 0;
1748 int reg_buf_bytes
= 0;
1749 int next_unlinked_offset
;
1751 xfs_agino_t
*logged_nextp
;
1752 xfs_agino_t
*buffer_nextp
;
1754 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1756 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1757 for (i
= 0; i
< inodes_per_buf
; i
++) {
1758 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1759 offsetof(xfs_dinode_t
, di_next_unlinked
);
1761 while (next_unlinked_offset
>=
1762 (reg_buf_offset
+ reg_buf_bytes
)) {
1764 * The next di_next_unlinked field is beyond
1765 * the current logged region. Find the next
1766 * logged region that contains or is beyond
1767 * the current di_next_unlinked field.
1770 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1771 buf_f
->blf_map_size
, bit
);
1774 * If there are no more logged regions in the
1775 * buffer, then we're done.
1780 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1781 buf_f
->blf_map_size
, bit
);
1783 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1784 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1789 * If the current logged region starts after the current
1790 * di_next_unlinked field, then move on to the next
1791 * di_next_unlinked field.
1793 if (next_unlinked_offset
< reg_buf_offset
)
1796 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1797 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1798 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1801 * The current logged region contains a copy of the
1802 * current di_next_unlinked field. Extract its value
1803 * and copy it to the buffer copy.
1805 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1806 next_unlinked_offset
- reg_buf_offset
;
1807 if (unlikely(*logged_nextp
== 0)) {
1809 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1810 "Trying to replay bad (0) inode di_next_unlinked field.",
1812 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1813 XFS_ERRLEVEL_LOW
, mp
);
1814 return XFS_ERROR(EFSCORRUPTED
);
1817 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1818 next_unlinked_offset
);
1819 *buffer_nextp
= *logged_nextp
;
1826 * Perform a 'normal' buffer recovery. Each logged region of the
1827 * buffer should be copied over the corresponding region in the
1828 * given buffer. The bitmap in the buf log format structure indicates
1829 * where to place the logged data.
1832 xlog_recover_do_reg_buffer(
1833 struct xfs_mount
*mp
,
1834 xlog_recover_item_t
*item
,
1836 xfs_buf_log_format_t
*buf_f
)
1843 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
1846 i
= 1; /* 0 is the buf format structure */
1848 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1849 buf_f
->blf_map_size
, bit
);
1852 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1853 buf_f
->blf_map_size
, bit
);
1855 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1856 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
1857 ASSERT(XFS_BUF_COUNT(bp
) >=
1858 ((uint
)bit
<< XFS_BLF_SHIFT
)+(nbits
<<XFS_BLF_SHIFT
));
1861 * Do a sanity check if this is a dquot buffer. Just checking
1862 * the first dquot in the buffer should do. XXXThis is
1863 * probably a good thing to do for other buf types also.
1866 if (buf_f
->blf_flags
&
1867 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
1868 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1870 "XFS: NULL dquot in %s.", __func__
);
1873 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
1875 "XFS: dquot too small (%d) in %s.",
1876 item
->ri_buf
[i
].i_len
, __func__
);
1879 error
= xfs_qm_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
1880 -1, 0, XFS_QMOPT_DOWARN
,
1881 "dquot_buf_recover");
1886 memcpy(xfs_buf_offset(bp
,
1887 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
1888 item
->ri_buf
[i
].i_addr
, /* source */
1889 nbits
<<XFS_BLF_SHIFT
); /* length */
1895 /* Shouldn't be any more regions */
1896 ASSERT(i
== item
->ri_total
);
1900 * Do some primitive error checking on ondisk dquot data structures.
1904 struct xfs_mount
*mp
,
1905 xfs_disk_dquot_t
*ddq
,
1907 uint type
, /* used only when IO_dorepair is true */
1911 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1915 * We can encounter an uninitialized dquot buffer for 2 reasons:
1916 * 1. If we crash while deleting the quotainode(s), and those blks got
1917 * used for user data. This is because we take the path of regular
1918 * file deletion; however, the size field of quotainodes is never
1919 * updated, so all the tricks that we play in itruncate_finish
1920 * don't quite matter.
1922 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1923 * But the allocation will be replayed so we'll end up with an
1924 * uninitialized quota block.
1926 * This is all fine; things are still consistent, and we haven't lost
1927 * any quota information. Just don't complain about bad dquot blks.
1929 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
1930 if (flags
& XFS_QMOPT_DOWARN
)
1932 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1933 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1936 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1937 if (flags
& XFS_QMOPT_DOWARN
)
1939 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1940 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1944 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1945 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1946 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1947 if (flags
& XFS_QMOPT_DOWARN
)
1949 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1950 str
, id
, ddq
->d_flags
);
1954 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
1955 if (flags
& XFS_QMOPT_DOWARN
)
1957 "%s : ondisk-dquot 0x%p, ID mismatch: "
1958 "0x%x expected, found id 0x%x",
1959 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
1963 if (!errs
&& ddq
->d_id
) {
1964 if (ddq
->d_blk_softlimit
&&
1965 be64_to_cpu(ddq
->d_bcount
) >=
1966 be64_to_cpu(ddq
->d_blk_softlimit
)) {
1967 if (!ddq
->d_btimer
) {
1968 if (flags
& XFS_QMOPT_DOWARN
)
1970 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1971 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
1975 if (ddq
->d_ino_softlimit
&&
1976 be64_to_cpu(ddq
->d_icount
) >=
1977 be64_to_cpu(ddq
->d_ino_softlimit
)) {
1978 if (!ddq
->d_itimer
) {
1979 if (flags
& XFS_QMOPT_DOWARN
)
1981 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1982 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
1986 if (ddq
->d_rtb_softlimit
&&
1987 be64_to_cpu(ddq
->d_rtbcount
) >=
1988 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
1989 if (!ddq
->d_rtbtimer
) {
1990 if (flags
& XFS_QMOPT_DOWARN
)
1992 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1993 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
1999 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2002 if (flags
& XFS_QMOPT_DOWARN
)
2003 xfs_notice(mp
, "Re-initializing dquot ID 0x%x", id
);
2006 * Typically, a repair is only requested by quotacheck.
2009 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2010 memset(d
, 0, sizeof(xfs_dqblk_t
));
2012 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2013 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2014 d
->dd_diskdq
.d_flags
= type
;
2015 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2021 * Perform a dquot buffer recovery.
2022 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2023 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2024 * Else, treat it as a regular buffer and do recovery.
2027 xlog_recover_do_dquot_buffer(
2030 xlog_recover_item_t
*item
,
2032 xfs_buf_log_format_t
*buf_f
)
2036 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2039 * Filesystems are required to send in quota flags at mount time.
2041 if (mp
->m_qflags
== 0) {
2046 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2047 type
|= XFS_DQ_USER
;
2048 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2049 type
|= XFS_DQ_PROJ
;
2050 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2051 type
|= XFS_DQ_GROUP
;
2053 * This type of quotas was turned off, so ignore this buffer
2055 if (log
->l_quotaoffs_flag
& type
)
2058 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2062 * This routine replays a modification made to a buffer at runtime.
2063 * There are actually two types of buffer, regular and inode, which
2064 * are handled differently. Inode buffers are handled differently
2065 * in that we only recover a specific set of data from them, namely
2066 * the inode di_next_unlinked fields. This is because all other inode
2067 * data is actually logged via inode records and any data we replay
2068 * here which overlaps that may be stale.
2070 * When meta-data buffers are freed at run time we log a buffer item
2071 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2072 * of the buffer in the log should not be replayed at recovery time.
2073 * This is so that if the blocks covered by the buffer are reused for
2074 * file data before we crash we don't end up replaying old, freed
2075 * meta-data into a user's file.
2077 * To handle the cancellation of buffer log items, we make two passes
2078 * over the log during recovery. During the first we build a table of
2079 * those buffers which have been cancelled, and during the second we
2080 * only replay those buffers which do not have corresponding cancel
2081 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2082 * for more details on the implementation of the table of cancel records.
2085 xlog_recover_buffer_pass2(
2087 xlog_recover_item_t
*item
)
2089 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2090 xfs_mount_t
*mp
= log
->l_mp
;
2096 * In this pass we only want to recover all the buffers which have
2097 * not been cancelled and are not cancellation buffers themselves.
2099 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2100 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2101 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2105 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2107 buf_flags
= XBF_LOCK
;
2108 if (!(buf_f
->blf_flags
& XFS_BLF_INODE_BUF
))
2109 buf_flags
|= XBF_MAPPED
;
2111 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2113 if (XFS_BUF_ISERROR(bp
)) {
2114 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp
,
2115 bp
, buf_f
->blf_blkno
);
2116 error
= XFS_BUF_GETERROR(bp
);
2122 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2123 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2124 } else if (buf_f
->blf_flags
&
2125 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2126 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2128 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2131 return XFS_ERROR(error
);
2134 * Perform delayed write on the buffer. Asynchronous writes will be
2135 * slower when taking into account all the buffers to be flushed.
2137 * Also make sure that only inode buffers with good sizes stay in
2138 * the buffer cache. The kernel moves inodes in buffers of 1 block
2139 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2140 * buffers in the log can be a different size if the log was generated
2141 * by an older kernel using unclustered inode buffers or a newer kernel
2142 * running with a different inode cluster size. Regardless, if the
2143 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2144 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2145 * the buffer out of the buffer cache so that the buffer won't
2146 * overlap with future reads of those inodes.
2148 if (XFS_DINODE_MAGIC
==
2149 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2150 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2151 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2153 error
= xfs_bwrite(mp
, bp
);
2155 ASSERT(bp
->b_target
->bt_mount
== mp
);
2156 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2157 xfs_bdwrite(mp
, bp
);
2164 xlog_recover_inode_pass2(
2166 xlog_recover_item_t
*item
)
2168 xfs_inode_log_format_t
*in_f
;
2169 xfs_mount_t
*mp
= log
->l_mp
;
2178 xfs_icdinode_t
*dicp
;
2181 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2182 in_f
= item
->ri_buf
[0].i_addr
;
2184 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2186 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2192 * Inode buffers can be freed, look out for it,
2193 * and do not replay the inode.
2195 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2196 in_f
->ilf_len
, 0)) {
2198 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2201 trace_xfs_log_recover_inode_recover(log
, in_f
);
2203 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
,
2205 if (XFS_BUF_ISERROR(bp
)) {
2206 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2207 bp
, in_f
->ilf_blkno
);
2208 error
= XFS_BUF_GETERROR(bp
);
2213 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2214 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2217 * Make sure the place we're flushing out to really looks
2220 if (unlikely(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
)) {
2223 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2224 __func__
, dip
, bp
, in_f
->ilf_ino
);
2225 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2226 XFS_ERRLEVEL_LOW
, mp
);
2227 error
= EFSCORRUPTED
;
2230 dicp
= item
->ri_buf
[1].i_addr
;
2231 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2234 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2235 __func__
, item
, in_f
->ilf_ino
);
2236 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2237 XFS_ERRLEVEL_LOW
, mp
);
2238 error
= EFSCORRUPTED
;
2242 /* Skip replay when the on disk inode is newer than the log one */
2243 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2245 * Deal with the wrap case, DI_MAX_FLUSH is less
2246 * than smaller numbers
2248 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2249 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2253 trace_xfs_log_recover_inode_skip(log
, in_f
);
2258 /* Take the opportunity to reset the flush iteration count */
2259 dicp
->di_flushiter
= 0;
2261 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2262 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2263 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2264 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2265 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2268 "%s: Bad regular inode log record, rec ptr 0x%p, "
2269 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2270 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2271 error
= EFSCORRUPTED
;
2274 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2275 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2276 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2277 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2278 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2279 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2282 "%s: Bad dir inode log record, rec ptr 0x%p, "
2283 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2284 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2285 error
= EFSCORRUPTED
;
2289 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2290 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2291 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2294 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2295 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2296 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2297 dicp
->di_nextents
+ dicp
->di_anextents
,
2299 error
= EFSCORRUPTED
;
2302 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2304 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2307 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2308 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2309 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2310 error
= EFSCORRUPTED
;
2313 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2314 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2315 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2318 "%s: Bad inode log record length %d, rec ptr 0x%p",
2319 __func__
, item
->ri_buf
[1].i_len
, item
);
2320 error
= EFSCORRUPTED
;
2324 /* The core is in in-core format */
2325 xfs_dinode_to_disk(dip
, item
->ri_buf
[1].i_addr
);
2327 /* the rest is in on-disk format */
2328 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2329 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2330 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2331 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2334 fields
= in_f
->ilf_fields
;
2335 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2337 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2340 memcpy(XFS_DFORK_DPTR(dip
),
2341 &in_f
->ilf_u
.ilfu_uuid
,
2346 if (in_f
->ilf_size
== 2)
2347 goto write_inode_buffer
;
2348 len
= item
->ri_buf
[2].i_len
;
2349 src
= item
->ri_buf
[2].i_addr
;
2350 ASSERT(in_f
->ilf_size
<= 4);
2351 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2352 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2353 (len
== in_f
->ilf_dsize
));
2355 switch (fields
& XFS_ILOG_DFORK
) {
2356 case XFS_ILOG_DDATA
:
2358 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2361 case XFS_ILOG_DBROOT
:
2362 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2363 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2364 XFS_DFORK_DSIZE(dip
, mp
));
2369 * There are no data fork flags set.
2371 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2376 * If we logged any attribute data, recover it. There may or
2377 * may not have been any other non-core data logged in this
2380 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2381 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2386 len
= item
->ri_buf
[attr_index
].i_len
;
2387 src
= item
->ri_buf
[attr_index
].i_addr
;
2388 ASSERT(len
== in_f
->ilf_asize
);
2390 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2391 case XFS_ILOG_ADATA
:
2393 dest
= XFS_DFORK_APTR(dip
);
2394 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2395 memcpy(dest
, src
, len
);
2398 case XFS_ILOG_ABROOT
:
2399 dest
= XFS_DFORK_APTR(dip
);
2400 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2401 len
, (xfs_bmdr_block_t
*)dest
,
2402 XFS_DFORK_ASIZE(dip
, mp
));
2406 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2415 ASSERT(bp
->b_target
->bt_mount
== mp
);
2416 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2417 xfs_bdwrite(mp
, bp
);
2421 return XFS_ERROR(error
);
2425 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2426 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2430 xlog_recover_quotaoff_pass1(
2432 xlog_recover_item_t
*item
)
2434 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2438 * The logitem format's flag tells us if this was user quotaoff,
2439 * group/project quotaoff or both.
2441 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2442 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2443 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2444 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2445 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2446 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2452 * Recover a dquot record
2455 xlog_recover_dquot_pass2(
2457 xlog_recover_item_t
*item
)
2459 xfs_mount_t
*mp
= log
->l_mp
;
2461 struct xfs_disk_dquot
*ddq
, *recddq
;
2463 xfs_dq_logformat_t
*dq_f
;
2468 * Filesystems are required to send in quota flags at mount time.
2470 if (mp
->m_qflags
== 0)
2473 recddq
= item
->ri_buf
[1].i_addr
;
2474 if (recddq
== NULL
) {
2475 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2476 return XFS_ERROR(EIO
);
2478 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2479 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2480 item
->ri_buf
[1].i_len
, __func__
);
2481 return XFS_ERROR(EIO
);
2485 * This type of quotas was turned off, so ignore this record.
2487 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2489 if (log
->l_quotaoffs_flag
& type
)
2493 * At this point we know that quota was _not_ turned off.
2494 * Since the mount flags are not indicating to us otherwise, this
2495 * must mean that quota is on, and the dquot needs to be replayed.
2496 * Remember that we may not have fully recovered the superblock yet,
2497 * so we can't do the usual trick of looking at the SB quota bits.
2499 * The other possibility, of course, is that the quota subsystem was
2500 * removed since the last mount - ENOSYS.
2502 dq_f
= item
->ri_buf
[0].i_addr
;
2504 error
= xfs_qm_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2505 "xlog_recover_dquot_pass2 (log copy)");
2507 return XFS_ERROR(EIO
);
2508 ASSERT(dq_f
->qlf_len
== 1);
2510 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2512 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2515 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2516 bp
, dq_f
->qlf_blkno
);
2520 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2523 * At least the magic num portion should be on disk because this
2524 * was among a chunk of dquots created earlier, and we did some
2525 * minimal initialization then.
2527 error
= xfs_qm_dqcheck(mp
, ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2528 "xlog_recover_dquot_pass2");
2531 return XFS_ERROR(EIO
);
2534 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2536 ASSERT(dq_f
->qlf_size
== 2);
2537 ASSERT(bp
->b_target
->bt_mount
== mp
);
2538 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2539 xfs_bdwrite(mp
, bp
);
2545 * This routine is called to create an in-core extent free intent
2546 * item from the efi format structure which was logged on disk.
2547 * It allocates an in-core efi, copies the extents from the format
2548 * structure into it, and adds the efi to the AIL with the given
2552 xlog_recover_efi_pass2(
2554 xlog_recover_item_t
*item
,
2558 xfs_mount_t
*mp
= log
->l_mp
;
2559 xfs_efi_log_item_t
*efip
;
2560 xfs_efi_log_format_t
*efi_formatp
;
2562 efi_formatp
= item
->ri_buf
[0].i_addr
;
2564 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2565 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2566 &(efip
->efi_format
)))) {
2567 xfs_efi_item_free(efip
);
2570 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2572 spin_lock(&log
->l_ailp
->xa_lock
);
2574 * xfs_trans_ail_update() drops the AIL lock.
2576 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2582 * This routine is called when an efd format structure is found in
2583 * a committed transaction in the log. It's purpose is to cancel
2584 * the corresponding efi if it was still in the log. To do this
2585 * it searches the AIL for the efi with an id equal to that in the
2586 * efd format structure. If we find it, we remove the efi from the
2590 xlog_recover_efd_pass2(
2592 xlog_recover_item_t
*item
)
2594 xfs_efd_log_format_t
*efd_formatp
;
2595 xfs_efi_log_item_t
*efip
= NULL
;
2596 xfs_log_item_t
*lip
;
2598 struct xfs_ail_cursor cur
;
2599 struct xfs_ail
*ailp
= log
->l_ailp
;
2601 efd_formatp
= item
->ri_buf
[0].i_addr
;
2602 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2603 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2604 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2605 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2606 efi_id
= efd_formatp
->efd_efi_id
;
2609 * Search for the efi with the id in the efd format structure
2612 spin_lock(&ailp
->xa_lock
);
2613 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2614 while (lip
!= NULL
) {
2615 if (lip
->li_type
== XFS_LI_EFI
) {
2616 efip
= (xfs_efi_log_item_t
*)lip
;
2617 if (efip
->efi_format
.efi_id
== efi_id
) {
2619 * xfs_trans_ail_delete() drops the
2622 xfs_trans_ail_delete(ailp
, lip
);
2623 xfs_efi_item_free(efip
);
2624 spin_lock(&ailp
->xa_lock
);
2628 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2630 xfs_trans_ail_cursor_done(ailp
, &cur
);
2631 spin_unlock(&ailp
->xa_lock
);
2637 * Free up any resources allocated by the transaction
2639 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2642 xlog_recover_free_trans(
2643 struct xlog_recover
*trans
)
2645 xlog_recover_item_t
*item
, *n
;
2648 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
2649 /* Free the regions in the item. */
2650 list_del(&item
->ri_list
);
2651 for (i
= 0; i
< item
->ri_cnt
; i
++)
2652 kmem_free(item
->ri_buf
[i
].i_addr
);
2653 /* Free the item itself */
2654 kmem_free(item
->ri_buf
);
2657 /* Free the transaction recover structure */
2662 xlog_recover_commit_pass1(
2664 struct xlog_recover
*trans
,
2665 xlog_recover_item_t
*item
)
2667 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
2669 switch (ITEM_TYPE(item
)) {
2671 return xlog_recover_buffer_pass1(log
, item
);
2672 case XFS_LI_QUOTAOFF
:
2673 return xlog_recover_quotaoff_pass1(log
, item
);
2678 /* nothing to do in pass 1 */
2681 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2682 __func__
, ITEM_TYPE(item
));
2684 return XFS_ERROR(EIO
);
2689 xlog_recover_commit_pass2(
2691 struct xlog_recover
*trans
,
2692 xlog_recover_item_t
*item
)
2694 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
2696 switch (ITEM_TYPE(item
)) {
2698 return xlog_recover_buffer_pass2(log
, item
);
2700 return xlog_recover_inode_pass2(log
, item
);
2702 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
2704 return xlog_recover_efd_pass2(log
, item
);
2706 return xlog_recover_dquot_pass2(log
, item
);
2707 case XFS_LI_QUOTAOFF
:
2708 /* nothing to do in pass2 */
2711 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2712 __func__
, ITEM_TYPE(item
));
2714 return XFS_ERROR(EIO
);
2719 * Perform the transaction.
2721 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2722 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2725 xlog_recover_commit_trans(
2727 struct xlog_recover
*trans
,
2731 xlog_recover_item_t
*item
;
2733 hlist_del(&trans
->r_list
);
2735 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
2739 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
2740 if (pass
== XLOG_RECOVER_PASS1
)
2741 error
= xlog_recover_commit_pass1(log
, trans
, item
);
2743 error
= xlog_recover_commit_pass2(log
, trans
, item
);
2748 xlog_recover_free_trans(trans
);
2753 xlog_recover_unmount_trans(
2755 xlog_recover_t
*trans
)
2757 /* Do nothing now */
2758 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
2763 * There are two valid states of the r_state field. 0 indicates that the
2764 * transaction structure is in a normal state. We have either seen the
2765 * start of the transaction or the last operation we added was not a partial
2766 * operation. If the last operation we added to the transaction was a
2767 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2769 * NOTE: skip LRs with 0 data length.
2772 xlog_recover_process_data(
2774 struct hlist_head rhash
[],
2775 xlog_rec_header_t
*rhead
,
2781 xlog_op_header_t
*ohead
;
2782 xlog_recover_t
*trans
;
2788 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2789 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2791 /* check the log format matches our own - else we can't recover */
2792 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2793 return (XFS_ERROR(EIO
));
2795 while ((dp
< lp
) && num_logops
) {
2796 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2797 ohead
= (xlog_op_header_t
*)dp
;
2798 dp
+= sizeof(xlog_op_header_t
);
2799 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2800 ohead
->oh_clientid
!= XFS_LOG
) {
2801 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
2802 __func__
, ohead
->oh_clientid
);
2804 return (XFS_ERROR(EIO
));
2806 tid
= be32_to_cpu(ohead
->oh_tid
);
2807 hash
= XLOG_RHASH(tid
);
2808 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
2809 if (trans
== NULL
) { /* not found; add new tid */
2810 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2811 xlog_recover_new_tid(&rhash
[hash
], tid
,
2812 be64_to_cpu(rhead
->h_lsn
));
2814 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2815 xfs_warn(log
->l_mp
, "%s: bad length 0x%x",
2816 __func__
, be32_to_cpu(ohead
->oh_len
));
2818 return (XFS_ERROR(EIO
));
2820 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2821 if (flags
& XLOG_WAS_CONT_TRANS
)
2822 flags
&= ~XLOG_CONTINUE_TRANS
;
2824 case XLOG_COMMIT_TRANS
:
2825 error
= xlog_recover_commit_trans(log
,
2828 case XLOG_UNMOUNT_TRANS
:
2829 error
= xlog_recover_unmount_trans(log
, trans
);
2831 case XLOG_WAS_CONT_TRANS
:
2832 error
= xlog_recover_add_to_cont_trans(log
,
2834 be32_to_cpu(ohead
->oh_len
));
2836 case XLOG_START_TRANS
:
2837 xfs_warn(log
->l_mp
, "%s: bad transaction",
2840 error
= XFS_ERROR(EIO
);
2843 case XLOG_CONTINUE_TRANS
:
2844 error
= xlog_recover_add_to_trans(log
, trans
,
2845 dp
, be32_to_cpu(ohead
->oh_len
));
2848 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x",
2851 error
= XFS_ERROR(EIO
);
2857 dp
+= be32_to_cpu(ohead
->oh_len
);
2864 * Process an extent free intent item that was recovered from
2865 * the log. We need to free the extents that it describes.
2868 xlog_recover_process_efi(
2870 xfs_efi_log_item_t
*efip
)
2872 xfs_efd_log_item_t
*efdp
;
2877 xfs_fsblock_t startblock_fsb
;
2879 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
2882 * First check the validity of the extents described by the
2883 * EFI. If any are bad, then assume that all are bad and
2884 * just toss the EFI.
2886 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2887 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2888 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2889 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2890 if ((startblock_fsb
== 0) ||
2891 (extp
->ext_len
== 0) ||
2892 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
2893 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
2895 * This will pull the EFI from the AIL and
2896 * free the memory associated with it.
2898 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
2899 return XFS_ERROR(EIO
);
2903 tp
= xfs_trans_alloc(mp
, 0);
2904 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
2907 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
2909 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2910 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2911 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
2914 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
2918 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
2919 error
= xfs_trans_commit(tp
, 0);
2923 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
2928 * When this is called, all of the EFIs which did not have
2929 * corresponding EFDs should be in the AIL. What we do now
2930 * is free the extents associated with each one.
2932 * Since we process the EFIs in normal transactions, they
2933 * will be removed at some point after the commit. This prevents
2934 * us from just walking down the list processing each one.
2935 * We'll use a flag in the EFI to skip those that we've already
2936 * processed and use the AIL iteration mechanism's generation
2937 * count to try to speed this up at least a bit.
2939 * When we start, we know that the EFIs are the only things in
2940 * the AIL. As we process them, however, other items are added
2941 * to the AIL. Since everything added to the AIL must come after
2942 * everything already in the AIL, we stop processing as soon as
2943 * we see something other than an EFI in the AIL.
2946 xlog_recover_process_efis(
2949 xfs_log_item_t
*lip
;
2950 xfs_efi_log_item_t
*efip
;
2952 struct xfs_ail_cursor cur
;
2953 struct xfs_ail
*ailp
;
2956 spin_lock(&ailp
->xa_lock
);
2957 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2958 while (lip
!= NULL
) {
2960 * We're done when we see something other than an EFI.
2961 * There should be no EFIs left in the AIL now.
2963 if (lip
->li_type
!= XFS_LI_EFI
) {
2965 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
2966 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
2972 * Skip EFIs that we've already processed.
2974 efip
= (xfs_efi_log_item_t
*)lip
;
2975 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
2976 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2980 spin_unlock(&ailp
->xa_lock
);
2981 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
2982 spin_lock(&ailp
->xa_lock
);
2985 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2988 xfs_trans_ail_cursor_done(ailp
, &cur
);
2989 spin_unlock(&ailp
->xa_lock
);
2994 * This routine performs a transaction to null out a bad inode pointer
2995 * in an agi unlinked inode hash bucket.
2998 xlog_recover_clear_agi_bucket(
3000 xfs_agnumber_t agno
,
3009 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3010 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3015 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3019 agi
= XFS_BUF_TO_AGI(agibp
);
3020 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3021 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3022 (sizeof(xfs_agino_t
) * bucket
);
3023 xfs_trans_log_buf(tp
, agibp
, offset
,
3024 (offset
+ sizeof(xfs_agino_t
) - 1));
3026 error
= xfs_trans_commit(tp
, 0);
3032 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3034 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3039 xlog_recover_process_one_iunlink(
3040 struct xfs_mount
*mp
,
3041 xfs_agnumber_t agno
,
3045 struct xfs_buf
*ibp
;
3046 struct xfs_dinode
*dip
;
3047 struct xfs_inode
*ip
;
3051 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3052 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3057 * Get the on disk inode to find the next inode in the bucket.
3059 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XBF_LOCK
);
3063 ASSERT(ip
->i_d
.di_nlink
== 0);
3064 ASSERT(ip
->i_d
.di_mode
!= 0);
3066 /* setup for the next pass */
3067 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3071 * Prevent any DMAPI event from being sent when the reference on
3072 * the inode is dropped.
3074 ip
->i_d
.di_dmevmask
= 0;
3083 * We can't read in the inode this bucket points to, or this inode
3084 * is messed up. Just ditch this bucket of inodes. We will lose
3085 * some inodes and space, but at least we won't hang.
3087 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3088 * clear the inode pointer in the bucket.
3090 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3095 * xlog_iunlink_recover
3097 * This is called during recovery to process any inodes which
3098 * we unlinked but not freed when the system crashed. These
3099 * inodes will be on the lists in the AGI blocks. What we do
3100 * here is scan all the AGIs and fully truncate and free any
3101 * inodes found on the lists. Each inode is removed from the
3102 * lists when it has been fully truncated and is freed. The
3103 * freeing of the inode and its removal from the list must be
3107 xlog_recover_process_iunlinks(
3111 xfs_agnumber_t agno
;
3122 * Prevent any DMAPI event from being sent while in this function.
3124 mp_dmevmask
= mp
->m_dmevmask
;
3127 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3129 * Find the agi for this ag.
3131 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3134 * AGI is b0rked. Don't process it.
3136 * We should probably mark the filesystem as corrupt
3137 * after we've recovered all the ag's we can....
3141 agi
= XFS_BUF_TO_AGI(agibp
);
3143 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3144 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3145 while (agino
!= NULLAGINO
) {
3147 * Release the agi buffer so that it can
3148 * be acquired in the normal course of the
3149 * transaction to truncate and free the inode.
3151 xfs_buf_relse(agibp
);
3153 agino
= xlog_recover_process_one_iunlink(mp
,
3154 agno
, agino
, bucket
);
3157 * Reacquire the agibuffer and continue around
3158 * the loop. This should never fail as we know
3159 * the buffer was good earlier on.
3161 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3163 agi
= XFS_BUF_TO_AGI(agibp
);
3168 * Release the buffer for the current agi so we can
3169 * go on to the next one.
3171 xfs_buf_relse(agibp
);
3174 mp
->m_dmevmask
= mp_dmevmask
;
3180 xlog_pack_data_checksum(
3182 xlog_in_core_t
*iclog
,
3189 up
= (__be32
*)iclog
->ic_datap
;
3190 /* divide length by 4 to get # words */
3191 for (i
= 0; i
< (size
>> 2); i
++) {
3192 chksum
^= be32_to_cpu(*up
);
3195 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3198 #define xlog_pack_data_checksum(log, iclog, size)
3202 * Stamp cycle number in every block
3207 xlog_in_core_t
*iclog
,
3211 int size
= iclog
->ic_offset
+ roundoff
;
3215 xlog_pack_data_checksum(log
, iclog
, size
);
3217 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3219 dp
= iclog
->ic_datap
;
3220 for (i
= 0; i
< BTOBB(size
) &&
3221 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3222 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3223 *(__be32
*)dp
= cycle_lsn
;
3227 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3228 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3230 for ( ; i
< BTOBB(size
); i
++) {
3231 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3232 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3233 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3234 *(__be32
*)dp
= cycle_lsn
;
3238 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3239 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3246 xlog_rec_header_t
*rhead
,
3252 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3253 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3254 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3258 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3259 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3260 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3261 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3262 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3263 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3270 xlog_valid_rec_header(
3272 xlog_rec_header_t
*rhead
,
3277 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3278 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3279 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3280 return XFS_ERROR(EFSCORRUPTED
);
3283 (!rhead
->h_version
||
3284 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3285 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
3286 __func__
, be32_to_cpu(rhead
->h_version
));
3287 return XFS_ERROR(EIO
);
3290 /* LR body must have data or it wouldn't have been written */
3291 hlen
= be32_to_cpu(rhead
->h_len
);
3292 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3293 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3294 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3295 return XFS_ERROR(EFSCORRUPTED
);
3297 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3298 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3299 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3300 return XFS_ERROR(EFSCORRUPTED
);
3306 * Read the log from tail to head and process the log records found.
3307 * Handle the two cases where the tail and head are in the same cycle
3308 * and where the active portion of the log wraps around the end of
3309 * the physical log separately. The pass parameter is passed through
3310 * to the routines called to process the data and is not looked at
3314 xlog_do_recovery_pass(
3316 xfs_daddr_t head_blk
,
3317 xfs_daddr_t tail_blk
,
3320 xlog_rec_header_t
*rhead
;
3323 xfs_buf_t
*hbp
, *dbp
;
3324 int error
= 0, h_size
;
3325 int bblks
, split_bblks
;
3326 int hblks
, split_hblks
, wrapped_hblks
;
3327 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3329 ASSERT(head_blk
!= tail_blk
);
3332 * Read the header of the tail block and get the iclog buffer size from
3333 * h_size. Use this to tell how many sectors make up the log header.
3335 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3337 * When using variable length iclogs, read first sector of
3338 * iclog header and extract the header size from it. Get a
3339 * new hbp that is the correct size.
3341 hbp
= xlog_get_bp(log
, 1);
3345 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3349 rhead
= (xlog_rec_header_t
*)offset
;
3350 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3353 h_size
= be32_to_cpu(rhead
->h_size
);
3354 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3355 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3356 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3357 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3360 hbp
= xlog_get_bp(log
, hblks
);
3365 ASSERT(log
->l_sectBBsize
== 1);
3367 hbp
= xlog_get_bp(log
, 1);
3368 h_size
= XLOG_BIG_RECORD_BSIZE
;
3373 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3379 memset(rhash
, 0, sizeof(rhash
));
3380 if (tail_blk
<= head_blk
) {
3381 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3382 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3386 rhead
= (xlog_rec_header_t
*)offset
;
3387 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3391 /* blocks in data section */
3392 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3393 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3398 xlog_unpack_data(rhead
, offset
, log
);
3399 if ((error
= xlog_recover_process_data(log
,
3400 rhash
, rhead
, offset
, pass
)))
3402 blk_no
+= bblks
+ hblks
;
3406 * Perform recovery around the end of the physical log.
3407 * When the head is not on the same cycle number as the tail,
3408 * we can't do a sequential recovery as above.
3411 while (blk_no
< log
->l_logBBsize
) {
3413 * Check for header wrapping around physical end-of-log
3415 offset
= XFS_BUF_PTR(hbp
);
3418 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3419 /* Read header in one read */
3420 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3425 /* This LR is split across physical log end */
3426 if (blk_no
!= log
->l_logBBsize
) {
3427 /* some data before physical log end */
3428 ASSERT(blk_no
<= INT_MAX
);
3429 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3430 ASSERT(split_hblks
> 0);
3431 error
= xlog_bread(log
, blk_no
,
3439 * Note: this black magic still works with
3440 * large sector sizes (non-512) only because:
3441 * - we increased the buffer size originally
3442 * by 1 sector giving us enough extra space
3443 * for the second read;
3444 * - the log start is guaranteed to be sector
3446 * - we read the log end (LR header start)
3447 * _first_, then the log start (LR header end)
3448 * - order is important.
3450 wrapped_hblks
= hblks
- split_hblks
;
3451 error
= XFS_BUF_SET_PTR(hbp
,
3452 offset
+ BBTOB(split_hblks
),
3453 BBTOB(hblks
- split_hblks
));
3457 error
= xlog_bread_noalign(log
, 0,
3458 wrapped_hblks
, hbp
);
3462 error
= XFS_BUF_SET_PTR(hbp
, offset
,
3467 rhead
= (xlog_rec_header_t
*)offset
;
3468 error
= xlog_valid_rec_header(log
, rhead
,
3469 split_hblks
? blk_no
: 0);
3473 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3476 /* Read in data for log record */
3477 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3478 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3483 /* This log record is split across the
3484 * physical end of log */
3485 offset
= XFS_BUF_PTR(dbp
);
3487 if (blk_no
!= log
->l_logBBsize
) {
3488 /* some data is before the physical
3490 ASSERT(!wrapped_hblks
);
3491 ASSERT(blk_no
<= INT_MAX
);
3493 log
->l_logBBsize
- (int)blk_no
;
3494 ASSERT(split_bblks
> 0);
3495 error
= xlog_bread(log
, blk_no
,
3503 * Note: this black magic still works with
3504 * large sector sizes (non-512) only because:
3505 * - we increased the buffer size originally
3506 * by 1 sector giving us enough extra space
3507 * for the second read;
3508 * - the log start is guaranteed to be sector
3510 * - we read the log end (LR header start)
3511 * _first_, then the log start (LR header end)
3512 * - order is important.
3514 error
= XFS_BUF_SET_PTR(dbp
,
3515 offset
+ BBTOB(split_bblks
),
3516 BBTOB(bblks
- split_bblks
));
3520 error
= xlog_bread_noalign(log
, wrapped_hblks
,
3521 bblks
- split_bblks
,
3526 error
= XFS_BUF_SET_PTR(dbp
, offset
, h_size
);
3530 xlog_unpack_data(rhead
, offset
, log
);
3531 if ((error
= xlog_recover_process_data(log
, rhash
,
3532 rhead
, offset
, pass
)))
3537 ASSERT(blk_no
>= log
->l_logBBsize
);
3538 blk_no
-= log
->l_logBBsize
;
3540 /* read first part of physical log */
3541 while (blk_no
< head_blk
) {
3542 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3546 rhead
= (xlog_rec_header_t
*)offset
;
3547 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3551 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3552 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3557 xlog_unpack_data(rhead
, offset
, log
);
3558 if ((error
= xlog_recover_process_data(log
, rhash
,
3559 rhead
, offset
, pass
)))
3561 blk_no
+= bblks
+ hblks
;
3573 * Do the recovery of the log. We actually do this in two phases.
3574 * The two passes are necessary in order to implement the function
3575 * of cancelling a record written into the log. The first pass
3576 * determines those things which have been cancelled, and the
3577 * second pass replays log items normally except for those which
3578 * have been cancelled. The handling of the replay and cancellations
3579 * takes place in the log item type specific routines.
3581 * The table of items which have cancel records in the log is allocated
3582 * and freed at this level, since only here do we know when all of
3583 * the log recovery has been completed.
3586 xlog_do_log_recovery(
3588 xfs_daddr_t head_blk
,
3589 xfs_daddr_t tail_blk
)
3593 ASSERT(head_blk
!= tail_blk
);
3596 * First do a pass to find all of the cancelled buf log items.
3597 * Store them in the buf_cancel_table for use in the second pass.
3599 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3600 sizeof(struct list_head
),
3602 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3603 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
3605 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3606 XLOG_RECOVER_PASS1
);
3608 kmem_free(log
->l_buf_cancel_table
);
3609 log
->l_buf_cancel_table
= NULL
;
3613 * Then do a second pass to actually recover the items in the log.
3614 * When it is complete free the table of buf cancel items.
3616 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3617 XLOG_RECOVER_PASS2
);
3622 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3623 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
3627 kmem_free(log
->l_buf_cancel_table
);
3628 log
->l_buf_cancel_table
= NULL
;
3634 * Do the actual recovery
3639 xfs_daddr_t head_blk
,
3640 xfs_daddr_t tail_blk
)
3647 * First replay the images in the log.
3649 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3654 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3657 * If IO errors happened during recovery, bail out.
3659 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3664 * We now update the tail_lsn since much of the recovery has completed
3665 * and there may be space available to use. If there were no extent
3666 * or iunlinks, we can free up the entire log and set the tail_lsn to
3667 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3668 * lsn of the last known good LR on disk. If there are extent frees
3669 * or iunlinks they will have some entries in the AIL; so we look at
3670 * the AIL to determine how to set the tail_lsn.
3672 xlog_assign_tail_lsn(log
->l_mp
);
3675 * Now that we've finished replaying all buffer and inode
3676 * updates, re-read in the superblock.
3678 bp
= xfs_getsb(log
->l_mp
, 0);
3680 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3681 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3683 XFS_BUF_UNASYNC(bp
);
3684 xfsbdstrat(log
->l_mp
, bp
);
3685 error
= xfs_buf_iowait(bp
);
3687 xfs_ioerror_alert("xlog_do_recover",
3688 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3694 /* Convert superblock from on-disk format */
3695 sbp
= &log
->l_mp
->m_sb
;
3696 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3697 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3698 ASSERT(xfs_sb_good_version(sbp
));
3701 /* We've re-read the superblock so re-initialize per-cpu counters */
3702 xfs_icsb_reinit_counters(log
->l_mp
);
3704 xlog_recover_check_summary(log
);
3706 /* Normal transactions can now occur */
3707 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3712 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3714 * Return error or zero.
3720 xfs_daddr_t head_blk
, tail_blk
;
3723 /* find the tail of the log */
3724 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3727 if (tail_blk
!= head_blk
) {
3728 /* There used to be a comment here:
3730 * disallow recovery on read-only mounts. note -- mount
3731 * checks for ENOSPC and turns it into an intelligent
3733 * ...but this is no longer true. Now, unless you specify
3734 * NORECOVERY (in which case this function would never be
3735 * called), we just go ahead and recover. We do this all
3736 * under the vfs layer, so we can get away with it unless
3737 * the device itself is read-only, in which case we fail.
3739 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3743 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
3744 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3747 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3748 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3754 * In the first part of recovery we replay inodes and buffers and build
3755 * up the list of extent free items which need to be processed. Here
3756 * we process the extent free items and clean up the on disk unlinked
3757 * inode lists. This is separated from the first part of recovery so
3758 * that the root and real-time bitmap inodes can be read in from disk in
3759 * between the two stages. This is necessary so that we can free space
3760 * in the real-time portion of the file system.
3763 xlog_recover_finish(
3767 * Now we're ready to do the transactions needed for the
3768 * rest of recovery. Start with completing all the extent
3769 * free intent records and then process the unlinked inode
3770 * lists. At this point, we essentially run in normal mode
3771 * except that we're still performing recovery actions
3772 * rather than accepting new requests.
3774 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3776 error
= xlog_recover_process_efis(log
);
3778 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
3782 * Sync the log to get all the EFIs out of the AIL.
3783 * This isn't absolutely necessary, but it helps in
3784 * case the unlink transactions would have problems
3785 * pushing the EFIs out of the way.
3787 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3789 xlog_recover_process_iunlinks(log
);
3791 xlog_recover_check_summary(log
);
3793 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
3794 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3796 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3798 xfs_info(log
->l_mp
, "Ending clean mount");
3806 * Read all of the agf and agi counters and check that they
3807 * are consistent with the superblock counters.
3810 xlog_recover_check_summary(
3817 xfs_agnumber_t agno
;
3818 __uint64_t freeblks
;
3828 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3829 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3831 xfs_alert(mp
, "%s agf read failed agno %d error %d",
3832 __func__
, agno
, error
);
3834 agfp
= XFS_BUF_TO_AGF(agfbp
);
3835 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3836 be32_to_cpu(agfp
->agf_flcount
);
3837 xfs_buf_relse(agfbp
);
3840 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3842 xfs_alert(mp
, "%s agi read failed agno %d error %d",
3843 __func__
, agno
, error
);
3845 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3847 itotal
+= be32_to_cpu(agi
->agi_count
);
3848 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3849 xfs_buf_relse(agibp
);