Linux 3.8-rc7
[cris-mirror.git] / arch / unicore32 / kernel / process.c
blob62bad9fed03e08ad494266664a805d73f467aaea
1 /*
2 * linux/arch/unicore32/kernel/process.c
4 * Code specific to PKUnity SoC and UniCore ISA
6 * Copyright (C) 2001-2010 GUAN Xue-tao
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <stdarg.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/gpio.h>
33 #include <linux/stacktrace.h>
35 #include <asm/cacheflush.h>
36 #include <asm/processor.h>
37 #include <asm/stacktrace.h>
39 #include "setup.h"
41 static const char * const processor_modes[] = {
42 "UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07",
43 "UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F",
44 "USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT",
45 "UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR"
49 * The idle thread, has rather strange semantics for calling pm_idle,
50 * but this is what x86 does and we need to do the same, so that
51 * things like cpuidle get called in the same way.
53 void cpu_idle(void)
55 /* endless idle loop with no priority at all */
56 while (1) {
57 tick_nohz_idle_enter();
58 rcu_idle_enter();
59 while (!need_resched()) {
60 local_irq_disable();
61 stop_critical_timings();
62 cpu_do_idle();
63 local_irq_enable();
64 start_critical_timings();
66 rcu_idle_exit();
67 tick_nohz_idle_exit();
68 preempt_enable_no_resched();
69 schedule();
70 preempt_disable();
74 static char reboot_mode = 'h';
76 int __init reboot_setup(char *str)
78 reboot_mode = str[0];
79 return 1;
82 __setup("reboot=", reboot_setup);
84 void machine_halt(void)
86 gpio_set_value(GPO_SOFT_OFF, 0);
90 * Function pointers to optional machine specific functions
92 void (*pm_power_off)(void) = NULL;
94 void machine_power_off(void)
96 if (pm_power_off)
97 pm_power_off();
98 machine_halt();
101 void machine_restart(char *cmd)
103 /* Disable interrupts first */
104 local_irq_disable();
107 * Tell the mm system that we are going to reboot -
108 * we may need it to insert some 1:1 mappings so that
109 * soft boot works.
111 setup_mm_for_reboot(reboot_mode);
113 /* Clean and invalidate caches */
114 flush_cache_all();
116 /* Turn off caching */
117 cpu_proc_fin();
119 /* Push out any further dirty data, and ensure cache is empty */
120 flush_cache_all();
123 * Now handle reboot code.
125 if (reboot_mode == 's') {
126 /* Jump into ROM at address 0xffff0000 */
127 cpu_reset(VECTORS_BASE);
128 } else {
129 writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */
130 writel(0x00100800, PM_PLLDDRCFG); /* ddr clk = 44M */
131 writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */
133 /* Use on-chip reset capability */
134 /* following instructions must be in one icache line */
135 __asm__ __volatile__(
136 " .align 5\n\t"
137 " stw %1, [%0]\n\t"
138 "201: ldw r0, [%0]\n\t"
139 " cmpsub.a r0, #0\n\t"
140 " bne 201b\n\t"
141 " stw %3, [%2]\n\t"
142 " nop; nop; nop\n\t"
143 /* prefetch 3 instructions at most */
145 : "r" (PM_PMCR),
146 "r" (PM_PMCR_CFBSYS | PM_PMCR_CFBDDR
147 | PM_PMCR_CFBVGA),
148 "r" (RESETC_SWRR),
149 "r" (RESETC_SWRR_SRB)
150 : "r0", "memory");
154 * Whoops - the architecture was unable to reboot.
155 * Tell the user!
157 mdelay(1000);
158 printk(KERN_EMERG "Reboot failed -- System halted\n");
159 do { } while (1);
162 void __show_regs(struct pt_regs *regs)
164 unsigned long flags;
165 char buf[64];
167 printk(KERN_DEFAULT "CPU: %d %s (%s %.*s)\n",
168 raw_smp_processor_id(), print_tainted(),
169 init_utsname()->release,
170 (int)strcspn(init_utsname()->version, " "),
171 init_utsname()->version);
172 print_symbol("PC is at %s\n", instruction_pointer(regs));
173 print_symbol("LR is at %s\n", regs->UCreg_lr);
174 printk(KERN_DEFAULT "pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
175 "sp : %08lx ip : %08lx fp : %08lx\n",
176 regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr,
177 regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp);
178 printk(KERN_DEFAULT "r26: %08lx r25: %08lx r24: %08lx\n",
179 regs->UCreg_26, regs->UCreg_25,
180 regs->UCreg_24);
181 printk(KERN_DEFAULT "r23: %08lx r22: %08lx r21: %08lx r20: %08lx\n",
182 regs->UCreg_23, regs->UCreg_22,
183 regs->UCreg_21, regs->UCreg_20);
184 printk(KERN_DEFAULT "r19: %08lx r18: %08lx r17: %08lx r16: %08lx\n",
185 regs->UCreg_19, regs->UCreg_18,
186 regs->UCreg_17, regs->UCreg_16);
187 printk(KERN_DEFAULT "r15: %08lx r14: %08lx r13: %08lx r12: %08lx\n",
188 regs->UCreg_15, regs->UCreg_14,
189 regs->UCreg_13, regs->UCreg_12);
190 printk(KERN_DEFAULT "r11: %08lx r10: %08lx r9 : %08lx r8 : %08lx\n",
191 regs->UCreg_11, regs->UCreg_10,
192 regs->UCreg_09, regs->UCreg_08);
193 printk(KERN_DEFAULT "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
194 regs->UCreg_07, regs->UCreg_06,
195 regs->UCreg_05, regs->UCreg_04);
196 printk(KERN_DEFAULT "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
197 regs->UCreg_03, regs->UCreg_02,
198 regs->UCreg_01, regs->UCreg_00);
200 flags = regs->UCreg_asr;
201 buf[0] = flags & PSR_S_BIT ? 'S' : 's';
202 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
203 buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
204 buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
205 buf[4] = '\0';
207 printk(KERN_DEFAULT "Flags: %s INTR o%s REAL o%s Mode %s Segment %s\n",
208 buf, interrupts_enabled(regs) ? "n" : "ff",
209 fast_interrupts_enabled(regs) ? "n" : "ff",
210 processor_modes[processor_mode(regs)],
211 segment_eq(get_fs(), get_ds()) ? "kernel" : "user");
213 unsigned int ctrl;
215 buf[0] = '\0';
217 unsigned int transbase;
218 asm("movc %0, p0.c2, #0\n"
219 : "=r" (transbase));
220 snprintf(buf, sizeof(buf), " Table: %08x", transbase);
222 asm("movc %0, p0.c1, #0\n" : "=r" (ctrl));
224 printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf);
228 void show_regs(struct pt_regs *regs)
230 printk(KERN_DEFAULT "\n");
231 printk(KERN_DEFAULT "Pid: %d, comm: %20s\n",
232 task_pid_nr(current), current->comm);
233 __show_regs(regs);
234 __backtrace();
238 * Free current thread data structures etc..
240 void exit_thread(void)
244 void flush_thread(void)
246 struct thread_info *thread = current_thread_info();
247 struct task_struct *tsk = current;
249 memset(thread->used_cp, 0, sizeof(thread->used_cp));
250 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
251 #ifdef CONFIG_UNICORE_FPU_F64
252 memset(&thread->fpstate, 0, sizeof(struct fp_state));
253 #endif
256 void release_thread(struct task_struct *dead_task)
260 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
261 asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
264 copy_thread(unsigned long clone_flags, unsigned long stack_start,
265 unsigned long stk_sz, struct task_struct *p)
267 struct thread_info *thread = task_thread_info(p);
268 struct pt_regs *childregs = task_pt_regs(p);
270 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
271 thread->cpu_context.sp = (unsigned long)childregs;
272 if (unlikely(p->flags & PF_KTHREAD)) {
273 thread->cpu_context.pc = (unsigned long)ret_from_kernel_thread;
274 thread->cpu_context.r4 = stack_start;
275 thread->cpu_context.r5 = stk_sz;
276 memset(childregs, 0, sizeof(struct pt_regs));
277 } else {
278 thread->cpu_context.pc = (unsigned long)ret_from_fork;
279 *childregs = *current_pt_regs();
280 childregs->UCreg_00 = 0;
281 if (stack_start)
282 childregs->UCreg_sp = stack_start;
284 if (clone_flags & CLONE_SETTLS)
285 childregs->UCreg_16 = childregs->UCreg_03;
287 return 0;
291 * Fill in the task's elfregs structure for a core dump.
293 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
295 elf_core_copy_regs(elfregs, task_pt_regs(t));
296 return 1;
300 * fill in the fpe structure for a core dump...
302 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fp)
304 struct thread_info *thread = current_thread_info();
305 int used_math = thread->used_cp[1] | thread->used_cp[2];
307 #ifdef CONFIG_UNICORE_FPU_F64
308 if (used_math)
309 memcpy(fp, &thread->fpstate, sizeof(*fp));
310 #endif
311 return used_math != 0;
313 EXPORT_SYMBOL(dump_fpu);
315 unsigned long get_wchan(struct task_struct *p)
317 struct stackframe frame;
318 int count = 0;
319 if (!p || p == current || p->state == TASK_RUNNING)
320 return 0;
322 frame.fp = thread_saved_fp(p);
323 frame.sp = thread_saved_sp(p);
324 frame.lr = 0; /* recovered from the stack */
325 frame.pc = thread_saved_pc(p);
326 do {
327 int ret = unwind_frame(&frame);
328 if (ret < 0)
329 return 0;
330 if (!in_sched_functions(frame.pc))
331 return frame.pc;
332 } while ((count++) < 16);
333 return 0;
336 unsigned long arch_randomize_brk(struct mm_struct *mm)
338 unsigned long range_end = mm->brk + 0x02000000;
339 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
343 * The vectors page is always readable from user space for the
344 * atomic helpers and the signal restart code. Let's declare a mapping
345 * for it so it is visible through ptrace and /proc/<pid>/mem.
348 int vectors_user_mapping(void)
350 struct mm_struct *mm = current->mm;
351 return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
352 VM_READ | VM_EXEC |
353 VM_MAYREAD | VM_MAYEXEC |
354 VM_DONTEXPAND | VM_DONTDUMP,
355 NULL);
358 const char *arch_vma_name(struct vm_area_struct *vma)
360 return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;