Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / kernel / cpu / intel.c
blobfcaabd0432c5dda0fa5e3c8f8b37473ee177c1d8
1 #include <linux/init.h>
2 #include <linux/kernel.h>
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/thread_info.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
12 #include <asm/processor.h>
13 #include <asm/pgtable.h>
14 #include <asm/msr.h>
15 #include <asm/bugs.h>
16 #include <asm/cpu.h>
18 #ifdef CONFIG_X86_64
19 #include <linux/topology.h>
20 #include <asm/numa_64.h>
21 #endif
23 #include "cpu.h"
25 #ifdef CONFIG_X86_LOCAL_APIC
26 #include <asm/mpspec.h>
27 #include <asm/apic.h>
28 #endif
30 static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
32 u64 misc_enable;
34 /* Unmask CPUID levels if masked: */
35 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
36 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
38 if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
39 misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
40 wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
41 c->cpuid_level = cpuid_eax(0);
42 get_cpu_cap(c);
46 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
47 (c->x86 == 0x6 && c->x86_model >= 0x0e))
48 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
50 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
51 unsigned lower_word;
53 wrmsr(MSR_IA32_UCODE_REV, 0, 0);
54 /* Required by the SDM */
55 sync_core();
56 rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
60 * Atom erratum AAE44/AAF40/AAG38/AAH41:
62 * A race condition between speculative fetches and invalidating
63 * a large page. This is worked around in microcode, but we
64 * need the microcode to have already been loaded... so if it is
65 * not, recommend a BIOS update and disable large pages.
67 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
68 c->microcode < 0x20e) {
69 printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
70 clear_cpu_cap(c, X86_FEATURE_PSE);
73 #ifdef CONFIG_X86_64
74 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
75 #else
76 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
77 if (c->x86 == 15 && c->x86_cache_alignment == 64)
78 c->x86_cache_alignment = 128;
79 #endif
81 /* CPUID workaround for 0F33/0F34 CPU */
82 if (c->x86 == 0xF && c->x86_model == 0x3
83 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
84 c->x86_phys_bits = 36;
87 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
88 * with P/T states and does not stop in deep C-states.
90 * It is also reliable across cores and sockets. (but not across
91 * cabinets - we turn it off in that case explicitly.)
93 if (c->x86_power & (1 << 8)) {
94 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
95 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
96 if (!check_tsc_unstable())
97 sched_clock_stable = 1;
101 * There is a known erratum on Pentium III and Core Solo
102 * and Core Duo CPUs.
103 * " Page with PAT set to WC while associated MTRR is UC
104 * may consolidate to UC "
105 * Because of this erratum, it is better to stick with
106 * setting WC in MTRR rather than using PAT on these CPUs.
108 * Enable PAT WC only on P4, Core 2 or later CPUs.
110 if (c->x86 == 6 && c->x86_model < 15)
111 clear_cpu_cap(c, X86_FEATURE_PAT);
113 #ifdef CONFIG_KMEMCHECK
115 * P4s have a "fast strings" feature which causes single-
116 * stepping REP instructions to only generate a #DB on
117 * cache-line boundaries.
119 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
120 * (model 2) with the same problem.
122 if (c->x86 == 15) {
123 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
125 if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
126 printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
128 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
129 wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
132 #endif
135 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
136 * clear the fast string and enhanced fast string CPU capabilities.
138 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
139 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
140 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
141 printk(KERN_INFO "Disabled fast string operations\n");
142 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
143 setup_clear_cpu_cap(X86_FEATURE_ERMS);
148 #ifdef CONFIG_X86_32
150 * Early probe support logic for ppro memory erratum #50
152 * This is called before we do cpu ident work
155 int __cpuinit ppro_with_ram_bug(void)
157 /* Uses data from early_cpu_detect now */
158 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
159 boot_cpu_data.x86 == 6 &&
160 boot_cpu_data.x86_model == 1 &&
161 boot_cpu_data.x86_mask < 8) {
162 printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
163 return 1;
165 return 0;
168 #ifdef CONFIG_X86_F00F_BUG
169 static void __cpuinit trap_init_f00f_bug(void)
171 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
174 * Update the IDT descriptor and reload the IDT so that
175 * it uses the read-only mapped virtual address.
177 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
178 load_idt(&idt_descr);
180 #endif
182 static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
184 /* calling is from identify_secondary_cpu() ? */
185 if (!c->cpu_index)
186 return;
189 * Mask B, Pentium, but not Pentium MMX
191 if (c->x86 == 5 &&
192 c->x86_mask >= 1 && c->x86_mask <= 4 &&
193 c->x86_model <= 3) {
195 * Remember we have B step Pentia with bugs
197 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
198 "with B stepping processors.\n");
202 static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
204 unsigned long lo, hi;
206 #ifdef CONFIG_X86_F00F_BUG
208 * All current models of Pentium and Pentium with MMX technology CPUs
209 * have the F0 0F bug, which lets nonprivileged users lock up the
210 * system.
211 * Note that the workaround only should be initialized once...
213 c->f00f_bug = 0;
214 if (!paravirt_enabled() && c->x86 == 5) {
215 static int f00f_workaround_enabled;
217 c->f00f_bug = 1;
218 if (!f00f_workaround_enabled) {
219 trap_init_f00f_bug();
220 printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
221 f00f_workaround_enabled = 1;
224 #endif
227 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
228 * model 3 mask 3
230 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
231 clear_cpu_cap(c, X86_FEATURE_SEP);
234 * P4 Xeon errata 037 workaround.
235 * Hardware prefetcher may cause stale data to be loaded into the cache.
237 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
238 rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
239 if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
240 printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
241 printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
242 lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
243 wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
248 * See if we have a good local APIC by checking for buggy Pentia,
249 * i.e. all B steppings and the C2 stepping of P54C when using their
250 * integrated APIC (see 11AP erratum in "Pentium Processor
251 * Specification Update").
253 if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
254 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
255 set_cpu_cap(c, X86_FEATURE_11AP);
258 #ifdef CONFIG_X86_INTEL_USERCOPY
260 * Set up the preferred alignment for movsl bulk memory moves
262 switch (c->x86) {
263 case 4: /* 486: untested */
264 break;
265 case 5: /* Old Pentia: untested */
266 break;
267 case 6: /* PII/PIII only like movsl with 8-byte alignment */
268 movsl_mask.mask = 7;
269 break;
270 case 15: /* P4 is OK down to 8-byte alignment */
271 movsl_mask.mask = 7;
272 break;
274 #endif
276 #ifdef CONFIG_X86_NUMAQ
277 numaq_tsc_disable();
278 #endif
280 intel_smp_check(c);
282 #else
283 static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
286 #endif
288 static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
290 #ifdef CONFIG_NUMA
291 unsigned node;
292 int cpu = smp_processor_id();
294 /* Don't do the funky fallback heuristics the AMD version employs
295 for now. */
296 node = numa_cpu_node(cpu);
297 if (node == NUMA_NO_NODE || !node_online(node)) {
298 /* reuse the value from init_cpu_to_node() */
299 node = cpu_to_node(cpu);
301 numa_set_node(cpu, node);
302 #endif
306 * find out the number of processor cores on the die
308 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
310 unsigned int eax, ebx, ecx, edx;
312 if (c->cpuid_level < 4)
313 return 1;
315 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
316 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
317 if (eax & 0x1f)
318 return (eax >> 26) + 1;
319 else
320 return 1;
323 static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
325 /* Intel VMX MSR indicated features */
326 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
327 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
328 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
329 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
330 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
331 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
333 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
335 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
336 clear_cpu_cap(c, X86_FEATURE_VNMI);
337 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
338 clear_cpu_cap(c, X86_FEATURE_EPT);
339 clear_cpu_cap(c, X86_FEATURE_VPID);
341 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
342 msr_ctl = vmx_msr_high | vmx_msr_low;
343 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
344 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
345 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
346 set_cpu_cap(c, X86_FEATURE_VNMI);
347 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
348 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
349 vmx_msr_low, vmx_msr_high);
350 msr_ctl2 = vmx_msr_high | vmx_msr_low;
351 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
352 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
353 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
354 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
355 set_cpu_cap(c, X86_FEATURE_EPT);
356 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
357 set_cpu_cap(c, X86_FEATURE_VPID);
361 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
363 unsigned int l2 = 0;
365 early_init_intel(c);
367 intel_workarounds(c);
370 * Detect the extended topology information if available. This
371 * will reinitialise the initial_apicid which will be used
372 * in init_intel_cacheinfo()
374 detect_extended_topology(c);
376 l2 = init_intel_cacheinfo(c);
377 if (c->cpuid_level > 9) {
378 unsigned eax = cpuid_eax(10);
379 /* Check for version and the number of counters */
380 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
381 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
384 if (cpu_has_xmm2)
385 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
386 if (cpu_has_ds) {
387 unsigned int l1;
388 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
389 if (!(l1 & (1<<11)))
390 set_cpu_cap(c, X86_FEATURE_BTS);
391 if (!(l1 & (1<<12)))
392 set_cpu_cap(c, X86_FEATURE_PEBS);
395 if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
396 set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
398 #ifdef CONFIG_X86_64
399 if (c->x86 == 15)
400 c->x86_cache_alignment = c->x86_clflush_size * 2;
401 if (c->x86 == 6)
402 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
403 #else
405 * Names for the Pentium II/Celeron processors
406 * detectable only by also checking the cache size.
407 * Dixon is NOT a Celeron.
409 if (c->x86 == 6) {
410 char *p = NULL;
412 switch (c->x86_model) {
413 case 5:
414 if (l2 == 0)
415 p = "Celeron (Covington)";
416 else if (l2 == 256)
417 p = "Mobile Pentium II (Dixon)";
418 break;
420 case 6:
421 if (l2 == 128)
422 p = "Celeron (Mendocino)";
423 else if (c->x86_mask == 0 || c->x86_mask == 5)
424 p = "Celeron-A";
425 break;
427 case 8:
428 if (l2 == 128)
429 p = "Celeron (Coppermine)";
430 break;
433 if (p)
434 strcpy(c->x86_model_id, p);
437 if (c->x86 == 15)
438 set_cpu_cap(c, X86_FEATURE_P4);
439 if (c->x86 == 6)
440 set_cpu_cap(c, X86_FEATURE_P3);
441 #endif
443 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
445 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
446 * detection.
448 c->x86_max_cores = intel_num_cpu_cores(c);
449 #ifdef CONFIG_X86_32
450 detect_ht(c);
451 #endif
454 /* Work around errata */
455 srat_detect_node(c);
457 if (cpu_has(c, X86_FEATURE_VMX))
458 detect_vmx_virtcap(c);
461 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
462 * x86_energy_perf_policy(8) is available to change it at run-time
464 if (cpu_has(c, X86_FEATURE_EPB)) {
465 u64 epb;
467 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
468 if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
469 printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
470 " Set to 'normal', was 'performance'\n"
471 "ENERGY_PERF_BIAS: View and update with"
472 " x86_energy_perf_policy(8)\n");
473 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
474 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
479 #ifdef CONFIG_X86_32
480 static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
483 * Intel PIII Tualatin. This comes in two flavours.
484 * One has 256kb of cache, the other 512. We have no way
485 * to determine which, so we use a boottime override
486 * for the 512kb model, and assume 256 otherwise.
488 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
489 size = 256;
490 return size;
492 #endif
494 #define TLB_INST_4K 0x01
495 #define TLB_INST_4M 0x02
496 #define TLB_INST_2M_4M 0x03
498 #define TLB_INST_ALL 0x05
499 #define TLB_INST_1G 0x06
501 #define TLB_DATA_4K 0x11
502 #define TLB_DATA_4M 0x12
503 #define TLB_DATA_2M_4M 0x13
504 #define TLB_DATA_4K_4M 0x14
506 #define TLB_DATA_1G 0x16
508 #define TLB_DATA0_4K 0x21
509 #define TLB_DATA0_4M 0x22
510 #define TLB_DATA0_2M_4M 0x23
512 #define STLB_4K 0x41
514 static const struct _tlb_table intel_tlb_table[] __cpuinitconst = {
515 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
516 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
517 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
518 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
519 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
520 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
521 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
522 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
523 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
524 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
525 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
526 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
527 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
528 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
529 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
530 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
531 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
532 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
533 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
534 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
535 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
536 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
537 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
538 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
539 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
540 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
541 { 0x00, 0, 0 }
544 static void __cpuinit intel_tlb_lookup(const unsigned char desc)
546 unsigned char k;
547 if (desc == 0)
548 return;
550 /* look up this descriptor in the table */
551 for (k = 0; intel_tlb_table[k].descriptor != desc && \
552 intel_tlb_table[k].descriptor != 0; k++)
555 if (intel_tlb_table[k].tlb_type == 0)
556 return;
558 switch (intel_tlb_table[k].tlb_type) {
559 case STLB_4K:
560 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
561 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
562 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
563 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
564 break;
565 case TLB_INST_ALL:
566 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
567 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
568 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
569 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
570 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
571 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
572 break;
573 case TLB_INST_4K:
574 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
575 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
576 break;
577 case TLB_INST_4M:
578 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
579 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
580 break;
581 case TLB_INST_2M_4M:
582 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
583 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
584 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
585 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
586 break;
587 case TLB_DATA_4K:
588 case TLB_DATA0_4K:
589 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
590 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
591 break;
592 case TLB_DATA_4M:
593 case TLB_DATA0_4M:
594 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
595 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
596 break;
597 case TLB_DATA_2M_4M:
598 case TLB_DATA0_2M_4M:
599 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
600 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
601 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
602 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
603 break;
604 case TLB_DATA_4K_4M:
605 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
606 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
607 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
608 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
609 break;
613 static void __cpuinit intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
615 switch ((c->x86 << 8) + c->x86_model) {
616 case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
617 case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
618 case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
619 case 0x61d: /* six-core 45 nm xeon "Dunnington" */
620 tlb_flushall_shift = -1;
621 break;
622 case 0x61a: /* 45 nm nehalem, "Bloomfield" */
623 case 0x61e: /* 45 nm nehalem, "Lynnfield" */
624 case 0x625: /* 32 nm nehalem, "Clarkdale" */
625 case 0x62c: /* 32 nm nehalem, "Gulftown" */
626 case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
627 case 0x62f: /* 32 nm Xeon E7 */
628 tlb_flushall_shift = 6;
629 break;
630 case 0x62a: /* SandyBridge */
631 case 0x62d: /* SandyBridge, "Romely-EP" */
632 tlb_flushall_shift = 5;
633 break;
634 case 0x63a: /* Ivybridge */
635 tlb_flushall_shift = 1;
636 break;
637 default:
638 tlb_flushall_shift = 6;
642 static void __cpuinit intel_detect_tlb(struct cpuinfo_x86 *c)
644 int i, j, n;
645 unsigned int regs[4];
646 unsigned char *desc = (unsigned char *)regs;
648 if (c->cpuid_level < 2)
649 return;
651 /* Number of times to iterate */
652 n = cpuid_eax(2) & 0xFF;
654 for (i = 0 ; i < n ; i++) {
655 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
657 /* If bit 31 is set, this is an unknown format */
658 for (j = 0 ; j < 3 ; j++)
659 if (regs[j] & (1 << 31))
660 regs[j] = 0;
662 /* Byte 0 is level count, not a descriptor */
663 for (j = 1 ; j < 16 ; j++)
664 intel_tlb_lookup(desc[j]);
666 intel_tlb_flushall_shift_set(c);
669 static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
670 .c_vendor = "Intel",
671 .c_ident = { "GenuineIntel" },
672 #ifdef CONFIG_X86_32
673 .c_models = {
674 { .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
676 [0] = "486 DX-25/33",
677 [1] = "486 DX-50",
678 [2] = "486 SX",
679 [3] = "486 DX/2",
680 [4] = "486 SL",
681 [5] = "486 SX/2",
682 [7] = "486 DX/2-WB",
683 [8] = "486 DX/4",
684 [9] = "486 DX/4-WB"
687 { .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
689 [0] = "Pentium 60/66 A-step",
690 [1] = "Pentium 60/66",
691 [2] = "Pentium 75 - 200",
692 [3] = "OverDrive PODP5V83",
693 [4] = "Pentium MMX",
694 [7] = "Mobile Pentium 75 - 200",
695 [8] = "Mobile Pentium MMX"
698 { .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
700 [0] = "Pentium Pro A-step",
701 [1] = "Pentium Pro",
702 [3] = "Pentium II (Klamath)",
703 [4] = "Pentium II (Deschutes)",
704 [5] = "Pentium II (Deschutes)",
705 [6] = "Mobile Pentium II",
706 [7] = "Pentium III (Katmai)",
707 [8] = "Pentium III (Coppermine)",
708 [10] = "Pentium III (Cascades)",
709 [11] = "Pentium III (Tualatin)",
712 { .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
714 [0] = "Pentium 4 (Unknown)",
715 [1] = "Pentium 4 (Willamette)",
716 [2] = "Pentium 4 (Northwood)",
717 [4] = "Pentium 4 (Foster)",
718 [5] = "Pentium 4 (Foster)",
722 .c_size_cache = intel_size_cache,
723 #endif
724 .c_detect_tlb = intel_detect_tlb,
725 .c_early_init = early_init_intel,
726 .c_init = init_intel,
727 .c_x86_vendor = X86_VENDOR_INTEL,
730 cpu_dev_register(intel_cpu_dev);