Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / kernel / process.c
blob2ed787f15bf0cf397d6515c429d50544e04e9e34
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
45 void idle_notifier_register(struct notifier_block *n)
47 atomic_notifier_chain_register(&idle_notifier, n);
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
51 void idle_notifier_unregister(struct notifier_block *n)
53 atomic_notifier_chain_unregister(&idle_notifier, n);
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
67 int ret;
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
77 return 0;
80 void free_thread_xstate(struct task_struct *tsk)
82 fpu_free(&tsk->thread.fpu);
85 void arch_release_task_struct(struct task_struct *tsk)
87 free_thread_xstate(tsk);
90 void arch_task_cache_init(void)
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
99 * Free current thread data structures etc..
101 void exit_thread(void)
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
113 * Careful, clear this in the TSS too:
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
121 drop_fpu(me);
124 void show_regs_common(void)
126 const char *vendor, *product, *board;
128 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 if (!vendor)
130 vendor = "";
131 product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 if (!product)
133 product = "";
135 /* Board Name is optional */
136 board = dmi_get_system_info(DMI_BOARD_NAME);
138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 current->pid, current->comm, print_tainted(),
140 init_utsname()->release,
141 (int)strcspn(init_utsname()->version, " "),
142 init_utsname()->version,
143 vendor, product,
144 board ? "/" : "",
145 board ? board : "");
148 void flush_thread(void)
150 struct task_struct *tsk = current;
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
159 if (!use_eager_fpu())
160 free_thread_xstate(tsk);
163 static void hard_disable_TSC(void)
165 write_cr4(read_cr4() | X86_CR4_TSD);
168 void disable_TSC(void)
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
176 hard_disable_TSC();
177 preempt_enable();
180 static void hard_enable_TSC(void)
182 write_cr4(read_cr4() & ~X86_CR4_TSD);
185 static void enable_TSC(void)
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
193 hard_enable_TSC();
194 preempt_enable();
197 int get_tsc_mode(unsigned long adr)
199 unsigned int val;
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
206 return put_user(val, (unsigned int __user *)adr);
209 int set_tsc_mode(unsigned int val)
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
218 return 0;
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
224 struct thread_struct *prev, *next;
226 prev = &prev_p->thread;
227 next = &next_p->thread;
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
237 update_debugctlmsr(debugctl);
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
258 * Clear any possible leftover bits:
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
262 propagate_user_return_notify(prev_p, next_p);
266 * Idle related variables and functions
268 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
269 EXPORT_SYMBOL(boot_option_idle_override);
272 * Powermanagement idle function, if any..
274 void (*pm_idle)(void);
275 #ifdef CONFIG_APM_MODULE
276 EXPORT_SYMBOL(pm_idle);
277 #endif
279 #ifndef CONFIG_SMP
280 static inline void play_dead(void)
282 BUG();
284 #endif
286 #ifdef CONFIG_X86_64
287 void enter_idle(void)
289 this_cpu_write(is_idle, 1);
290 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
293 static void __exit_idle(void)
295 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
296 return;
297 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
300 /* Called from interrupts to signify idle end */
301 void exit_idle(void)
303 /* idle loop has pid 0 */
304 if (current->pid)
305 return;
306 __exit_idle();
308 #endif
311 * The idle thread. There's no useful work to be
312 * done, so just try to conserve power and have a
313 * low exit latency (ie sit in a loop waiting for
314 * somebody to say that they'd like to reschedule)
316 void cpu_idle(void)
319 * If we're the non-boot CPU, nothing set the stack canary up
320 * for us. CPU0 already has it initialized but no harm in
321 * doing it again. This is a good place for updating it, as
322 * we wont ever return from this function (so the invalid
323 * canaries already on the stack wont ever trigger).
325 boot_init_stack_canary();
326 current_thread_info()->status |= TS_POLLING;
328 while (1) {
329 tick_nohz_idle_enter();
331 while (!need_resched()) {
332 rmb();
334 if (cpu_is_offline(smp_processor_id()))
335 play_dead();
338 * Idle routines should keep interrupts disabled
339 * from here on, until they go to idle.
340 * Otherwise, idle callbacks can misfire.
342 local_touch_nmi();
343 local_irq_disable();
345 enter_idle();
347 /* Don't trace irqs off for idle */
348 stop_critical_timings();
350 /* enter_idle() needs rcu for notifiers */
351 rcu_idle_enter();
353 if (cpuidle_idle_call())
354 pm_idle();
356 rcu_idle_exit();
357 start_critical_timings();
359 /* In many cases the interrupt that ended idle
360 has already called exit_idle. But some idle
361 loops can be woken up without interrupt. */
362 __exit_idle();
365 tick_nohz_idle_exit();
366 preempt_enable_no_resched();
367 schedule();
368 preempt_disable();
373 * We use this if we don't have any better
374 * idle routine..
376 void default_idle(void)
378 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
379 trace_cpu_idle_rcuidle(1, smp_processor_id());
380 current_thread_info()->status &= ~TS_POLLING;
382 * TS_POLLING-cleared state must be visible before we
383 * test NEED_RESCHED:
385 smp_mb();
387 if (!need_resched())
388 safe_halt(); /* enables interrupts racelessly */
389 else
390 local_irq_enable();
391 current_thread_info()->status |= TS_POLLING;
392 trace_power_end_rcuidle(smp_processor_id());
393 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
395 #ifdef CONFIG_APM_MODULE
396 EXPORT_SYMBOL(default_idle);
397 #endif
399 bool set_pm_idle_to_default(void)
401 bool ret = !!pm_idle;
403 pm_idle = default_idle;
405 return ret;
407 void stop_this_cpu(void *dummy)
409 local_irq_disable();
411 * Remove this CPU:
413 set_cpu_online(smp_processor_id(), false);
414 disable_local_APIC();
416 for (;;) {
417 if (hlt_works(smp_processor_id()))
418 halt();
422 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
423 static void mwait_idle(void)
425 if (!need_resched()) {
426 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
427 trace_cpu_idle_rcuidle(1, smp_processor_id());
428 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
429 clflush((void *)&current_thread_info()->flags);
431 __monitor((void *)&current_thread_info()->flags, 0, 0);
432 smp_mb();
433 if (!need_resched())
434 __sti_mwait(0, 0);
435 else
436 local_irq_enable();
437 trace_power_end_rcuidle(smp_processor_id());
438 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
439 } else
440 local_irq_enable();
444 * On SMP it's slightly faster (but much more power-consuming!)
445 * to poll the ->work.need_resched flag instead of waiting for the
446 * cross-CPU IPI to arrive. Use this option with caution.
448 static void poll_idle(void)
450 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
451 trace_cpu_idle_rcuidle(0, smp_processor_id());
452 local_irq_enable();
453 while (!need_resched())
454 cpu_relax();
455 trace_power_end_rcuidle(smp_processor_id());
456 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
460 * mwait selection logic:
462 * It depends on the CPU. For AMD CPUs that support MWAIT this is
463 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
464 * then depend on a clock divisor and current Pstate of the core. If
465 * all cores of a processor are in halt state (C1) the processor can
466 * enter the C1E (C1 enhanced) state. If mwait is used this will never
467 * happen.
469 * idle=mwait overrides this decision and forces the usage of mwait.
472 #define MWAIT_INFO 0x05
473 #define MWAIT_ECX_EXTENDED_INFO 0x01
474 #define MWAIT_EDX_C1 0xf0
476 int mwait_usable(const struct cpuinfo_x86 *c)
478 u32 eax, ebx, ecx, edx;
480 /* Use mwait if idle=mwait boot option is given */
481 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
482 return 1;
485 * Any idle= boot option other than idle=mwait means that we must not
486 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
488 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
489 return 0;
491 if (c->cpuid_level < MWAIT_INFO)
492 return 0;
494 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
495 /* Check, whether EDX has extended info about MWAIT */
496 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
497 return 1;
500 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
501 * C1 supports MWAIT
503 return (edx & MWAIT_EDX_C1);
506 bool amd_e400_c1e_detected;
507 EXPORT_SYMBOL(amd_e400_c1e_detected);
509 static cpumask_var_t amd_e400_c1e_mask;
511 void amd_e400_remove_cpu(int cpu)
513 if (amd_e400_c1e_mask != NULL)
514 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
518 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
519 * pending message MSR. If we detect C1E, then we handle it the same
520 * way as C3 power states (local apic timer and TSC stop)
522 static void amd_e400_idle(void)
524 if (need_resched())
525 return;
527 if (!amd_e400_c1e_detected) {
528 u32 lo, hi;
530 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
532 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
533 amd_e400_c1e_detected = true;
534 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
535 mark_tsc_unstable("TSC halt in AMD C1E");
536 pr_info("System has AMD C1E enabled\n");
540 if (amd_e400_c1e_detected) {
541 int cpu = smp_processor_id();
543 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
544 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
546 * Force broadcast so ACPI can not interfere.
548 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
549 &cpu);
550 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
552 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
554 default_idle();
557 * The switch back from broadcast mode needs to be
558 * called with interrupts disabled.
560 local_irq_disable();
561 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
562 local_irq_enable();
563 } else
564 default_idle();
567 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
569 #ifdef CONFIG_SMP
570 if (pm_idle == poll_idle && smp_num_siblings > 1) {
571 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
573 #endif
574 if (pm_idle)
575 return;
577 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
579 * One CPU supports mwait => All CPUs supports mwait
581 pr_info("using mwait in idle threads\n");
582 pm_idle = mwait_idle;
583 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
584 /* E400: APIC timer interrupt does not wake up CPU from C1e */
585 pr_info("using AMD E400 aware idle routine\n");
586 pm_idle = amd_e400_idle;
587 } else
588 pm_idle = default_idle;
591 void __init init_amd_e400_c1e_mask(void)
593 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
594 if (pm_idle == amd_e400_idle)
595 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
598 static int __init idle_setup(char *str)
600 if (!str)
601 return -EINVAL;
603 if (!strcmp(str, "poll")) {
604 pr_info("using polling idle threads\n");
605 pm_idle = poll_idle;
606 boot_option_idle_override = IDLE_POLL;
607 } else if (!strcmp(str, "mwait")) {
608 boot_option_idle_override = IDLE_FORCE_MWAIT;
609 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
610 } else if (!strcmp(str, "halt")) {
612 * When the boot option of idle=halt is added, halt is
613 * forced to be used for CPU idle. In such case CPU C2/C3
614 * won't be used again.
615 * To continue to load the CPU idle driver, don't touch
616 * the boot_option_idle_override.
618 pm_idle = default_idle;
619 boot_option_idle_override = IDLE_HALT;
620 } else if (!strcmp(str, "nomwait")) {
622 * If the boot option of "idle=nomwait" is added,
623 * it means that mwait will be disabled for CPU C2/C3
624 * states. In such case it won't touch the variable
625 * of boot_option_idle_override.
627 boot_option_idle_override = IDLE_NOMWAIT;
628 } else
629 return -1;
631 return 0;
633 early_param("idle", idle_setup);
635 unsigned long arch_align_stack(unsigned long sp)
637 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
638 sp -= get_random_int() % 8192;
639 return sp & ~0xf;
642 unsigned long arch_randomize_brk(struct mm_struct *mm)
644 unsigned long range_end = mm->brk + 0x02000000;
645 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;