2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
40 #include <asm/cmpxchg.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled
= false;
55 AUDIT_POST_PAGE_FAULT
,
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
78 module_param(dbg
, bool, 0644);
82 #define ASSERT(x) do { } while (0)
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 #include <trace/events/kvm.h>
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
156 struct pte_list_desc
{
157 u64
*sptes
[PTE_LIST_EXT
];
158 struct pte_list_desc
*more
;
161 struct kvm_shadow_walk_iterator
{
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
180 static struct kmem_cache
*pte_list_desc_cache
;
181 static struct kmem_cache
*mmu_page_header_cache
;
182 static struct percpu_counter kvm_total_used_mmu_pages
;
184 static u64 __read_mostly shadow_nx_mask
;
185 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask
;
187 static u64 __read_mostly shadow_accessed_mask
;
188 static u64 __read_mostly shadow_dirty_mask
;
189 static u64 __read_mostly shadow_mmio_mask
;
191 static void mmu_spte_set(u64
*sptep
, u64 spte
);
192 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
196 shadow_mmio_mask
= mmio_mask
;
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
200 static void mark_mmio_spte(u64
*sptep
, u64 gfn
, unsigned access
)
202 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
204 trace_mark_mmio_spte(sptep
, gfn
, access
);
205 mmu_spte_set(sptep
, shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
);
208 static bool is_mmio_spte(u64 spte
)
210 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
213 static gfn_t
get_mmio_spte_gfn(u64 spte
)
215 return (spte
& ~shadow_mmio_mask
) >> PAGE_SHIFT
;
218 static unsigned get_mmio_spte_access(u64 spte
)
220 return (spte
& ~shadow_mmio_mask
) & ~PAGE_MASK
;
223 static bool set_mmio_spte(u64
*sptep
, gfn_t gfn
, pfn_t pfn
, unsigned access
)
225 if (unlikely(is_noslot_pfn(pfn
))) {
226 mark_mmio_spte(sptep
, gfn
, access
);
233 static inline u64
rsvd_bits(int s
, int e
)
235 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
238 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
239 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
241 shadow_user_mask
= user_mask
;
242 shadow_accessed_mask
= accessed_mask
;
243 shadow_dirty_mask
= dirty_mask
;
244 shadow_nx_mask
= nx_mask
;
245 shadow_x_mask
= x_mask
;
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
249 static int is_cpuid_PSE36(void)
254 static int is_nx(struct kvm_vcpu
*vcpu
)
256 return vcpu
->arch
.efer
& EFER_NX
;
259 static int is_shadow_present_pte(u64 pte
)
261 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
264 static int is_large_pte(u64 pte
)
266 return pte
& PT_PAGE_SIZE_MASK
;
269 static int is_dirty_gpte(unsigned long pte
)
271 return pte
& PT_DIRTY_MASK
;
274 static int is_rmap_spte(u64 pte
)
276 return is_shadow_present_pte(pte
);
279 static int is_last_spte(u64 pte
, int level
)
281 if (level
== PT_PAGE_TABLE_LEVEL
)
283 if (is_large_pte(pte
))
288 static pfn_t
spte_to_pfn(u64 pte
)
290 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
293 static gfn_t
pse36_gfn_delta(u32 gpte
)
295 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
297 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
301 static void __set_spte(u64
*sptep
, u64 spte
)
306 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
311 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
313 return xchg(sptep
, spte
);
316 static u64
__get_spte_lockless(u64
*sptep
)
318 return ACCESS_ONCE(*sptep
);
321 static bool __check_direct_spte_mmio_pf(u64 spte
)
323 /* It is valid if the spte is zapped. */
335 static void count_spte_clear(u64
*sptep
, u64 spte
)
337 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
339 if (is_shadow_present_pte(spte
))
342 /* Ensure the spte is completely set before we increase the count */
344 sp
->clear_spte_count
++;
347 static void __set_spte(u64
*sptep
, u64 spte
)
349 union split_spte
*ssptep
, sspte
;
351 ssptep
= (union split_spte
*)sptep
;
352 sspte
= (union split_spte
)spte
;
354 ssptep
->spte_high
= sspte
.spte_high
;
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
363 ssptep
->spte_low
= sspte
.spte_low
;
366 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
368 union split_spte
*ssptep
, sspte
;
370 ssptep
= (union split_spte
*)sptep
;
371 sspte
= (union split_spte
)spte
;
373 ssptep
->spte_low
= sspte
.spte_low
;
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
381 ssptep
->spte_high
= sspte
.spte_high
;
382 count_spte_clear(sptep
, spte
);
385 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
387 union split_spte
*ssptep
, sspte
, orig
;
389 ssptep
= (union split_spte
*)sptep
;
390 sspte
= (union split_spte
)spte
;
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
394 orig
.spte_high
= ssptep
->spte_high
;
395 ssptep
->spte_high
= sspte
.spte_high
;
396 count_spte_clear(sptep
, spte
);
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
408 static u64
__get_spte_lockless(u64
*sptep
)
410 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
411 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
415 count
= sp
->clear_spte_count
;
418 spte
.spte_low
= orig
->spte_low
;
421 spte
.spte_high
= orig
->spte_high
;
424 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
425 count
!= sp
->clear_spte_count
))
431 static bool __check_direct_spte_mmio_pf(u64 spte
)
433 union split_spte sspte
= (union split_spte
)spte
;
434 u32 high_mmio_mask
= shadow_mmio_mask
>> 32;
436 /* It is valid if the spte is zapped. */
440 /* It is valid if the spte is being zapped. */
441 if (sspte
.spte_low
== 0ull &&
442 (sspte
.spte_high
& high_mmio_mask
) == high_mmio_mask
)
449 static bool spte_is_locklessly_modifiable(u64 spte
)
451 return !(~spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
));
454 static bool spte_has_volatile_bits(u64 spte
)
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
462 if (spte_is_locklessly_modifiable(spte
))
465 if (!shadow_accessed_mask
)
468 if (!is_shadow_present_pte(spte
))
471 if ((spte
& shadow_accessed_mask
) &&
472 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
478 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
480 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
489 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
491 WARN_ON(is_shadow_present_pte(*sptep
));
492 __set_spte(sptep
, new_spte
);
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
504 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
506 u64 old_spte
= *sptep
;
509 WARN_ON(!is_rmap_spte(new_spte
));
511 if (!is_shadow_present_pte(old_spte
)) {
512 mmu_spte_set(sptep
, new_spte
);
516 if (!spte_has_volatile_bits(old_spte
))
517 __update_clear_spte_fast(sptep
, new_spte
);
519 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
526 if (is_writable_pte(old_spte
) && !is_writable_pte(new_spte
))
529 if (!shadow_accessed_mask
)
532 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
534 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
545 static int mmu_spte_clear_track_bits(u64
*sptep
)
548 u64 old_spte
= *sptep
;
550 if (!spte_has_volatile_bits(old_spte
))
551 __update_clear_spte_fast(sptep
, 0ull);
553 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
555 if (!is_rmap_spte(old_spte
))
558 pfn
= spte_to_pfn(old_spte
);
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
565 WARN_ON(!kvm_is_mmio_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
567 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
568 kvm_set_pfn_accessed(pfn
);
569 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
570 kvm_set_pfn_dirty(pfn
);
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
579 static void mmu_spte_clear_no_track(u64
*sptep
)
581 __update_clear_spte_fast(sptep
, 0ull);
584 static u64
mmu_spte_get_lockless(u64
*sptep
)
586 return __get_spte_lockless(sptep
);
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
596 vcpu
->mode
= READING_SHADOW_PAGE_TABLES
;
598 * Make sure a following spte read is not reordered ahead of the write
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
612 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
617 struct kmem_cache
*base_cache
, int min
)
621 if (cache
->nobjs
>= min
)
623 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
624 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
627 cache
->objects
[cache
->nobjs
++] = obj
;
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
638 struct kmem_cache
*cache
)
641 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
649 if (cache
->nobjs
>= min
)
651 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
652 page
= (void *)__get_free_page(GFP_KERNEL
);
655 cache
->objects
[cache
->nobjs
++] = page
;
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
663 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
666 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
670 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
671 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
674 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
677 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
678 mmu_page_header_cache
, 4);
683 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
685 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
686 pte_list_desc_cache
);
687 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
688 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
689 mmu_page_header_cache
);
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
697 p
= mc
->objects
[--mc
->nobjs
];
701 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
703 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
706 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
708 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
711 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
713 if (!sp
->role
.direct
)
714 return sp
->gfns
[index
];
716 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
722 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
724 sp
->gfns
[index
] = gfn
;
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
731 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
732 struct kvm_memory_slot
*slot
,
737 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
738 return &slot
->arch
.lpage_info
[level
- 2][idx
];
741 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
743 struct kvm_memory_slot
*slot
;
744 struct kvm_lpage_info
*linfo
;
747 slot
= gfn_to_memslot(kvm
, gfn
);
748 for (i
= PT_DIRECTORY_LEVEL
;
749 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
750 linfo
= lpage_info_slot(gfn
, slot
, i
);
751 linfo
->write_count
+= 1;
753 kvm
->arch
.indirect_shadow_pages
++;
756 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
758 struct kvm_memory_slot
*slot
;
759 struct kvm_lpage_info
*linfo
;
762 slot
= gfn_to_memslot(kvm
, gfn
);
763 for (i
= PT_DIRECTORY_LEVEL
;
764 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
765 linfo
= lpage_info_slot(gfn
, slot
, i
);
766 linfo
->write_count
-= 1;
767 WARN_ON(linfo
->write_count
< 0);
769 kvm
->arch
.indirect_shadow_pages
--;
772 static int has_wrprotected_page(struct kvm
*kvm
,
776 struct kvm_memory_slot
*slot
;
777 struct kvm_lpage_info
*linfo
;
779 slot
= gfn_to_memslot(kvm
, gfn
);
781 linfo
= lpage_info_slot(gfn
, slot
, level
);
782 return linfo
->write_count
;
788 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
790 unsigned long page_size
;
793 page_size
= kvm_host_page_size(kvm
, gfn
);
795 for (i
= PT_PAGE_TABLE_LEVEL
;
796 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
797 if (page_size
>= KVM_HPAGE_SIZE(i
))
806 static struct kvm_memory_slot
*
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
810 struct kvm_memory_slot
*slot
;
812 slot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
813 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
814 (no_dirty_log
&& slot
->dirty_bitmap
))
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
822 return !gfn_to_memslot_dirty_bitmap(vcpu
, large_gfn
, true);
825 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
827 int host_level
, level
, max_level
;
829 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
831 if (host_level
== PT_PAGE_TABLE_LEVEL
)
834 max_level
= kvm_x86_ops
->get_lpage_level() < host_level
?
835 kvm_x86_ops
->get_lpage_level() : host_level
;
837 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
838 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
845 * Pte mapping structures:
847 * If pte_list bit zero is zero, then pte_list point to the spte.
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
856 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
857 unsigned long *pte_list
)
859 struct pte_list_desc
*desc
;
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
864 *pte_list
= (unsigned long)spte
;
865 } else if (!(*pte_list
& 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
867 desc
= mmu_alloc_pte_list_desc(vcpu
);
868 desc
->sptes
[0] = (u64
*)*pte_list
;
869 desc
->sptes
[1] = spte
;
870 *pte_list
= (unsigned long)desc
| 1;
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
874 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
875 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
877 count
+= PTE_LIST_EXT
;
879 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
880 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
883 for (i
= 0; desc
->sptes
[i
]; ++i
)
885 desc
->sptes
[i
] = spte
;
891 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
892 int i
, struct pte_list_desc
*prev_desc
)
896 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
898 desc
->sptes
[i
] = desc
->sptes
[j
];
899 desc
->sptes
[j
] = NULL
;
902 if (!prev_desc
&& !desc
->more
)
903 *pte_list
= (unsigned long)desc
->sptes
[0];
906 prev_desc
->more
= desc
->more
;
908 *pte_list
= (unsigned long)desc
->more
| 1;
909 mmu_free_pte_list_desc(desc
);
912 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
914 struct pte_list_desc
*desc
;
915 struct pte_list_desc
*prev_desc
;
919 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
921 } else if (!(*pte_list
& 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
923 if ((u64
*)*pte_list
!= spte
) {
924 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
929 rmap_printk("pte_list_remove: %p many->many\n", spte
);
930 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
933 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
934 if (desc
->sptes
[i
] == spte
) {
935 pte_list_desc_remove_entry(pte_list
,
943 pr_err("pte_list_remove: %p many->many\n", spte
);
948 typedef void (*pte_list_walk_fn
) (u64
*spte
);
949 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
951 struct pte_list_desc
*desc
;
957 if (!(*pte_list
& 1))
958 return fn((u64
*)*pte_list
);
960 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
962 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
968 static unsigned long *__gfn_to_rmap(gfn_t gfn
, int level
,
969 struct kvm_memory_slot
*slot
)
973 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
974 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
978 * Take gfn and return the reverse mapping to it.
980 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
982 struct kvm_memory_slot
*slot
;
984 slot
= gfn_to_memslot(kvm
, gfn
);
985 return __gfn_to_rmap(gfn
, level
, slot
);
988 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
990 struct kvm_mmu_memory_cache
*cache
;
992 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
993 return mmu_memory_cache_free_objects(cache
);
996 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
998 struct kvm_mmu_page
*sp
;
999 unsigned long *rmapp
;
1001 sp
= page_header(__pa(spte
));
1002 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1003 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1004 return pte_list_add(vcpu
, spte
, rmapp
);
1007 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1009 struct kvm_mmu_page
*sp
;
1011 unsigned long *rmapp
;
1013 sp
= page_header(__pa(spte
));
1014 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1015 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
->role
.level
);
1016 pte_list_remove(spte
, rmapp
);
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1023 struct rmap_iterator
{
1024 /* private fields */
1025 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1026 int pos
; /* index of the sptep */
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1034 * Returns sptep if found, NULL otherwise.
1036 static u64
*rmap_get_first(unsigned long rmap
, struct rmap_iterator
*iter
)
1046 iter
->desc
= (struct pte_list_desc
*)(rmap
& ~1ul);
1048 return iter
->desc
->sptes
[iter
->pos
];
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1054 * Returns sptep if found, NULL otherwise.
1056 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1059 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1063 sptep
= iter
->desc
->sptes
[iter
->pos
];
1068 iter
->desc
= iter
->desc
->more
;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter
->desc
->sptes
[iter
->pos
];
1080 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1082 if (mmu_spte_clear_track_bits(sptep
))
1083 rmap_remove(kvm
, sptep
);
1087 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1089 if (is_large_pte(*sptep
)) {
1090 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1091 PT_PAGE_TABLE_LEVEL
);
1092 drop_spte(kvm
, sptep
);
1100 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1102 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1103 kvm_flush_remote_tlbs(vcpu
->kvm
);
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1111 * Note: write protection is difference between drity logging and spte
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1118 * Return true if the spte is dropped.
1121 spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool *flush
, bool pt_protect
)
1125 if (!is_writable_pte(spte
) &&
1126 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1131 if (__drop_large_spte(kvm
, sptep
)) {
1137 spte
&= ~SPTE_MMU_WRITEABLE
;
1138 spte
= spte
& ~PT_WRITABLE_MASK
;
1140 *flush
|= mmu_spte_update(sptep
, spte
);
1144 static bool __rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
,
1145 int level
, bool pt_protect
)
1148 struct rmap_iterator iter
;
1151 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1152 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1153 if (spte_write_protect(kvm
, sptep
, &flush
, pt_protect
)) {
1154 sptep
= rmap_get_first(*rmapp
, &iter
);
1158 sptep
= rmap_get_next(&iter
);
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1174 void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1175 struct kvm_memory_slot
*slot
,
1176 gfn_t gfn_offset
, unsigned long mask
)
1178 unsigned long *rmapp
;
1181 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1182 PT_PAGE_TABLE_LEVEL
, slot
);
1183 __rmap_write_protect(kvm
, rmapp
, PT_PAGE_TABLE_LEVEL
, false);
1185 /* clear the first set bit */
1190 static bool rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
1192 struct kvm_memory_slot
*slot
;
1193 unsigned long *rmapp
;
1195 bool write_protected
= false;
1197 slot
= gfn_to_memslot(kvm
, gfn
);
1199 for (i
= PT_PAGE_TABLE_LEVEL
;
1200 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
1201 rmapp
= __gfn_to_rmap(gfn
, i
, slot
);
1202 write_protected
|= __rmap_write_protect(kvm
, rmapp
, i
, true);
1205 return write_protected
;
1208 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1209 struct kvm_memory_slot
*slot
, unsigned long data
)
1212 struct rmap_iterator iter
;
1213 int need_tlb_flush
= 0;
1215 while ((sptep
= rmap_get_first(*rmapp
, &iter
))) {
1216 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep
, *sptep
);
1219 drop_spte(kvm
, sptep
);
1223 return need_tlb_flush
;
1226 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1227 struct kvm_memory_slot
*slot
, unsigned long data
)
1230 struct rmap_iterator iter
;
1233 pte_t
*ptep
= (pte_t
*)data
;
1236 WARN_ON(pte_huge(*ptep
));
1237 new_pfn
= pte_pfn(*ptep
);
1239 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep
));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep
, *sptep
);
1245 if (pte_write(*ptep
)) {
1246 drop_spte(kvm
, sptep
);
1247 sptep
= rmap_get_first(*rmapp
, &iter
);
1249 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1250 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1252 new_spte
&= ~PT_WRITABLE_MASK
;
1253 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1254 new_spte
&= ~shadow_accessed_mask
;
1256 mmu_spte_clear_track_bits(sptep
);
1257 mmu_spte_set(sptep
, new_spte
);
1258 sptep
= rmap_get_next(&iter
);
1263 kvm_flush_remote_tlbs(kvm
);
1268 static int kvm_handle_hva_range(struct kvm
*kvm
,
1269 unsigned long start
,
1272 int (*handler
)(struct kvm
*kvm
,
1273 unsigned long *rmapp
,
1274 struct kvm_memory_slot
*slot
,
1275 unsigned long data
))
1279 struct kvm_memslots
*slots
;
1280 struct kvm_memory_slot
*memslot
;
1282 slots
= kvm_memslots(kvm
);
1284 kvm_for_each_memslot(memslot
, slots
) {
1285 unsigned long hva_start
, hva_end
;
1286 gfn_t gfn_start
, gfn_end
;
1288 hva_start
= max(start
, memslot
->userspace_addr
);
1289 hva_end
= min(end
, memslot
->userspace_addr
+
1290 (memslot
->npages
<< PAGE_SHIFT
));
1291 if (hva_start
>= hva_end
)
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1297 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1298 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1300 for (j
= PT_PAGE_TABLE_LEVEL
;
1301 j
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++j
) {
1302 unsigned long idx
, idx_end
;
1303 unsigned long *rmapp
;
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1309 idx
= gfn_to_index(gfn_start
, memslot
->base_gfn
, j
);
1310 idx_end
= gfn_to_index(gfn_end
- 1, memslot
->base_gfn
, j
);
1312 rmapp
= __gfn_to_rmap(gfn_start
, j
, memslot
);
1314 for (; idx
<= idx_end
; ++idx
)
1315 ret
|= handler(kvm
, rmapp
++, memslot
, data
);
1322 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1324 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1325 struct kvm_memory_slot
*slot
,
1326 unsigned long data
))
1328 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1331 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1333 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1336 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1338 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1341 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1343 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1346 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1347 struct kvm_memory_slot
*slot
, unsigned long data
)
1350 struct rmap_iterator
uninitialized_var(iter
);
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1361 if (!shadow_accessed_mask
) {
1362 young
= kvm_unmap_rmapp(kvm
, rmapp
, slot
, data
);
1366 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1367 sptep
= rmap_get_next(&iter
)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep
));
1370 if (*sptep
& shadow_accessed_mask
) {
1372 clear_bit((ffs(shadow_accessed_mask
) - 1),
1373 (unsigned long *)sptep
);
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data
, slot
, young
);
1382 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1383 struct kvm_memory_slot
*slot
, unsigned long data
)
1386 struct rmap_iterator iter
;
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1394 if (!shadow_accessed_mask
)
1397 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1398 sptep
= rmap_get_next(&iter
)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep
));
1401 if (*sptep
& shadow_accessed_mask
) {
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1412 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1414 unsigned long *rmapp
;
1415 struct kvm_mmu_page
*sp
;
1417 sp
= page_header(__pa(spte
));
1419 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1421 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, NULL
, 0);
1422 kvm_flush_remote_tlbs(vcpu
->kvm
);
1425 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
1427 return kvm_handle_hva(kvm
, hva
, hva
, kvm_age_rmapp
);
1430 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1432 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1436 static int is_empty_shadow_page(u64
*spt
)
1441 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1442 if (is_shadow_present_pte(*pos
)) {
1443 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1457 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1459 kvm
->arch
.n_used_mmu_pages
+= nr
;
1460 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1469 static void kvm_mmu_isolate_page(struct kvm_mmu_page
*sp
)
1471 ASSERT(is_empty_shadow_page(sp
->spt
));
1472 hlist_del(&sp
->hash_link
);
1473 if (!sp
->role
.direct
)
1474 free_page((unsigned long)sp
->gfns
);
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1481 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1483 list_del(&sp
->link
);
1484 free_page((unsigned long)sp
->spt
);
1485 kmem_cache_free(mmu_page_header_cache
, sp
);
1488 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1490 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1493 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1494 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1499 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1502 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1505 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1508 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1511 mmu_page_remove_parent_pte(sp
, parent_pte
);
1512 mmu_spte_clear_no_track(parent_pte
);
1515 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1516 u64
*parent_pte
, int direct
)
1518 struct kvm_mmu_page
*sp
;
1519 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1520 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1522 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1523 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1524 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1525 bitmap_zero(sp
->slot_bitmap
, KVM_MEM_SLOTS_NUM
);
1526 sp
->parent_ptes
= 0;
1527 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1528 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1532 static void mark_unsync(u64
*spte
);
1533 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1535 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1538 static void mark_unsync(u64
*spte
)
1540 struct kvm_mmu_page
*sp
;
1543 sp
= page_header(__pa(spte
));
1544 index
= spte
- sp
->spt
;
1545 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1547 if (sp
->unsync_children
++)
1549 kvm_mmu_mark_parents_unsync(sp
);
1552 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1553 struct kvm_mmu_page
*sp
)
1558 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1562 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1563 struct kvm_mmu_page
*sp
, u64
*spte
,
1569 #define KVM_PAGE_ARRAY_NR 16
1571 struct kvm_mmu_pages
{
1572 struct mmu_page_and_offset
{
1573 struct kvm_mmu_page
*sp
;
1575 } page
[KVM_PAGE_ARRAY_NR
];
1579 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1585 for (i
=0; i
< pvec
->nr
; i
++)
1586 if (pvec
->page
[i
].sp
== sp
)
1589 pvec
->page
[pvec
->nr
].sp
= sp
;
1590 pvec
->page
[pvec
->nr
].idx
= idx
;
1592 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1595 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1596 struct kvm_mmu_pages
*pvec
)
1598 int i
, ret
, nr_unsync_leaf
= 0;
1600 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1601 struct kvm_mmu_page
*child
;
1602 u64 ent
= sp
->spt
[i
];
1604 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1605 goto clear_child_bitmap
;
1607 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1609 if (child
->unsync_children
) {
1610 if (mmu_pages_add(pvec
, child
, i
))
1613 ret
= __mmu_unsync_walk(child
, pvec
);
1615 goto clear_child_bitmap
;
1617 nr_unsync_leaf
+= ret
;
1620 } else if (child
->unsync
) {
1622 if (mmu_pages_add(pvec
, child
, i
))
1625 goto clear_child_bitmap
;
1630 __clear_bit(i
, sp
->unsync_child_bitmap
);
1631 sp
->unsync_children
--;
1632 WARN_ON((int)sp
->unsync_children
< 0);
1636 return nr_unsync_leaf
;
1639 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1640 struct kvm_mmu_pages
*pvec
)
1642 if (!sp
->unsync_children
)
1645 mmu_pages_add(pvec
, sp
, 0);
1646 return __mmu_unsync_walk(sp
, pvec
);
1649 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1651 WARN_ON(!sp
->unsync
);
1652 trace_kvm_mmu_sync_page(sp
);
1654 --kvm
->stat
.mmu_unsync
;
1657 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1658 struct list_head
*invalid_list
);
1659 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1660 struct list_head
*invalid_list
);
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1673 /* @sp->gfn should be write-protected at the call site */
1674 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1675 struct list_head
*invalid_list
, bool clear_unsync
)
1677 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1678 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1683 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1685 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1686 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1690 kvm_mmu_flush_tlb(vcpu
);
1694 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1695 struct kvm_mmu_page
*sp
)
1697 LIST_HEAD(invalid_list
);
1700 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1702 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1708 #include "mmu_audit.c"
1710 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1711 static void mmu_audit_disable(void) { }
1714 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1715 struct list_head
*invalid_list
)
1717 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1720 /* @gfn should be write-protected at the call site */
1721 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1723 struct kvm_mmu_page
*s
;
1724 struct hlist_node
*node
;
1725 LIST_HEAD(invalid_list
);
1728 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
1732 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1733 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1734 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1735 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1736 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1742 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1744 kvm_mmu_flush_tlb(vcpu
);
1747 struct mmu_page_path
{
1748 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1749 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1752 #define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1758 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1759 struct mmu_page_path
*parents
,
1764 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1765 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1767 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1768 parents
->idx
[0] = pvec
->page
[n
].idx
;
1772 parents
->parent
[sp
->role
.level
-2] = sp
;
1773 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1779 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1781 struct kvm_mmu_page
*sp
;
1782 unsigned int level
= 0;
1785 unsigned int idx
= parents
->idx
[level
];
1787 sp
= parents
->parent
[level
];
1791 --sp
->unsync_children
;
1792 WARN_ON((int)sp
->unsync_children
< 0);
1793 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1795 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1798 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1799 struct mmu_page_path
*parents
,
1800 struct kvm_mmu_pages
*pvec
)
1802 parents
->parent
[parent
->role
.level
-1] = NULL
;
1806 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1807 struct kvm_mmu_page
*parent
)
1810 struct kvm_mmu_page
*sp
;
1811 struct mmu_page_path parents
;
1812 struct kvm_mmu_pages pages
;
1813 LIST_HEAD(invalid_list
);
1815 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1816 while (mmu_unsync_walk(parent
, &pages
)) {
1817 bool protected = false;
1819 for_each_sp(pages
, sp
, parents
, i
)
1820 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1823 kvm_flush_remote_tlbs(vcpu
->kvm
);
1825 for_each_sp(pages
, sp
, parents
, i
) {
1826 kvm_sync_page(vcpu
, sp
, &invalid_list
);
1827 mmu_pages_clear_parents(&parents
);
1829 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1830 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1831 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1835 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
1839 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1843 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
1845 sp
->write_flooding_count
= 0;
1848 static void clear_sp_write_flooding_count(u64
*spte
)
1850 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1852 __clear_sp_write_flooding_count(sp
);
1855 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1863 union kvm_mmu_page_role role
;
1865 struct kvm_mmu_page
*sp
;
1866 struct hlist_node
*node
;
1867 bool need_sync
= false;
1869 role
= vcpu
->arch
.mmu
.base_role
;
1871 role
.direct
= direct
;
1874 role
.access
= access
;
1875 if (!vcpu
->arch
.mmu
.direct_map
1876 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1877 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1878 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1879 role
.quadrant
= quadrant
;
1881 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
, node
) {
1882 if (!need_sync
&& sp
->unsync
)
1885 if (sp
->role
.word
!= role
.word
)
1888 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
1891 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1892 if (sp
->unsync_children
) {
1893 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1894 kvm_mmu_mark_parents_unsync(sp
);
1895 } else if (sp
->unsync
)
1896 kvm_mmu_mark_parents_unsync(sp
);
1898 __clear_sp_write_flooding_count(sp
);
1899 trace_kvm_mmu_get_page(sp
, false);
1902 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1903 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
1908 hlist_add_head(&sp
->hash_link
,
1909 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
1911 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1912 kvm_flush_remote_tlbs(vcpu
->kvm
);
1913 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
1914 kvm_sync_pages(vcpu
, gfn
);
1916 account_shadowed(vcpu
->kvm
, gfn
);
1918 init_shadow_page_table(sp
);
1919 trace_kvm_mmu_get_page(sp
, true);
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1924 struct kvm_vcpu
*vcpu
, u64 addr
)
1926 iterator
->addr
= addr
;
1927 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1928 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1930 if (iterator
->level
== PT64_ROOT_LEVEL
&&
1931 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
1932 !vcpu
->arch
.mmu
.direct_map
)
1935 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1936 iterator
->shadow_addr
1937 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1938 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1940 if (!iterator
->shadow_addr
)
1941 iterator
->level
= 0;
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
1947 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
1950 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
1951 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
1958 if (is_last_spte(spte
, iterator
->level
)) {
1959 iterator
->level
= 0;
1963 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
1969 return __shadow_walk_next(iterator
, *iterator
->sptep
);
1972 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
)
1976 spte
= __pa(sp
->spt
)
1977 | PT_PRESENT_MASK
| PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK
| PT_USER_MASK
;
1979 mmu_spte_set(sptep
, spte
);
1982 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1983 unsigned direct_access
)
1985 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
1986 struct kvm_mmu_page
*child
;
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1995 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
1996 if (child
->role
.access
== direct_access
)
1999 drop_parent_pte(child
, sptep
);
2000 kvm_flush_remote_tlbs(vcpu
->kvm
);
2004 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2008 struct kvm_mmu_page
*child
;
2011 if (is_shadow_present_pte(pte
)) {
2012 if (is_last_spte(pte
, sp
->role
.level
)) {
2013 drop_spte(kvm
, spte
);
2014 if (is_large_pte(pte
))
2017 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2018 drop_parent_pte(child
, spte
);
2023 if (is_mmio_spte(pte
))
2024 mmu_spte_clear_no_track(spte
);
2029 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2030 struct kvm_mmu_page
*sp
)
2034 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2035 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2038 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
2040 mmu_page_remove_parent_pte(sp
, parent_pte
);
2043 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2046 struct rmap_iterator iter
;
2048 while ((sptep
= rmap_get_first(sp
->parent_ptes
, &iter
)))
2049 drop_parent_pte(sp
, sptep
);
2052 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2053 struct kvm_mmu_page
*parent
,
2054 struct list_head
*invalid_list
)
2057 struct mmu_page_path parents
;
2058 struct kvm_mmu_pages pages
;
2060 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2063 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2064 while (mmu_unsync_walk(parent
, &pages
)) {
2065 struct kvm_mmu_page
*sp
;
2067 for_each_sp(pages
, sp
, parents
, i
) {
2068 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2069 mmu_pages_clear_parents(&parents
);
2072 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2078 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2079 struct list_head
*invalid_list
)
2083 trace_kvm_mmu_prepare_zap_page(sp
);
2084 ++kvm
->stat
.mmu_shadow_zapped
;
2085 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2086 kvm_mmu_page_unlink_children(kvm
, sp
);
2087 kvm_mmu_unlink_parents(kvm
, sp
);
2088 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2089 unaccount_shadowed(kvm
, sp
->gfn
);
2091 kvm_unlink_unsync_page(kvm
, sp
);
2092 if (!sp
->root_count
) {
2095 list_move(&sp
->link
, invalid_list
);
2096 kvm_mod_used_mmu_pages(kvm
, -1);
2098 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2099 kvm_reload_remote_mmus(kvm
);
2102 sp
->role
.invalid
= 1;
2106 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2107 struct list_head
*invalid_list
)
2109 struct kvm_mmu_page
*sp
;
2111 if (list_empty(invalid_list
))
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2124 kvm_flush_remote_tlbs(kvm
);
2127 sp
= list_first_entry(invalid_list
, struct kvm_mmu_page
, link
);
2128 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2129 kvm_mmu_isolate_page(sp
);
2130 kvm_mmu_free_page(sp
);
2131 } while (!list_empty(invalid_list
));
2135 * Changing the number of mmu pages allocated to the vm
2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2138 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2140 LIST_HEAD(invalid_list
);
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2147 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2148 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
&&
2149 !list_empty(&kvm
->arch
.active_mmu_pages
)) {
2150 struct kvm_mmu_page
*page
;
2152 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
2153 struct kvm_mmu_page
, link
);
2154 kvm_mmu_prepare_zap_page(kvm
, page
, &invalid_list
);
2156 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2157 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2160 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2163 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2165 struct kvm_mmu_page
*sp
;
2166 struct hlist_node
*node
;
2167 LIST_HEAD(invalid_list
);
2170 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2172 spin_lock(&kvm
->mmu_lock
);
2173 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
, node
) {
2174 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2177 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2179 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2180 spin_unlock(&kvm
->mmu_lock
);
2184 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2186 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
2188 int slot
= memslot_id(kvm
, gfn
);
2189 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
2191 __set_bit(slot
, sp
->slot_bitmap
);
2195 * The function is based on mtrr_type_lookup() in
2196 * arch/x86/kernel/cpu/mtrr/generic.c
2198 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
2203 u8 prev_match
, curr_match
;
2204 int num_var_ranges
= KVM_NR_VAR_MTRR
;
2206 if (!mtrr_state
->enabled
)
2209 /* Make end inclusive end, instead of exclusive */
2212 /* Look in fixed ranges. Just return the type as per start */
2213 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
2216 if (start
< 0x80000) {
2218 idx
+= (start
>> 16);
2219 return mtrr_state
->fixed_ranges
[idx
];
2220 } else if (start
< 0xC0000) {
2222 idx
+= ((start
- 0x80000) >> 14);
2223 return mtrr_state
->fixed_ranges
[idx
];
2224 } else if (start
< 0x1000000) {
2226 idx
+= ((start
- 0xC0000) >> 12);
2227 return mtrr_state
->fixed_ranges
[idx
];
2232 * Look in variable ranges
2233 * Look of multiple ranges matching this address and pick type
2234 * as per MTRR precedence
2236 if (!(mtrr_state
->enabled
& 2))
2237 return mtrr_state
->def_type
;
2240 for (i
= 0; i
< num_var_ranges
; ++i
) {
2241 unsigned short start_state
, end_state
;
2243 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
2246 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
2247 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
2248 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
2249 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
2251 start_state
= ((start
& mask
) == (base
& mask
));
2252 end_state
= ((end
& mask
) == (base
& mask
));
2253 if (start_state
!= end_state
)
2256 if ((start
& mask
) != (base
& mask
))
2259 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
2260 if (prev_match
== 0xFF) {
2261 prev_match
= curr_match
;
2265 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
2266 curr_match
== MTRR_TYPE_UNCACHABLE
)
2267 return MTRR_TYPE_UNCACHABLE
;
2269 if ((prev_match
== MTRR_TYPE_WRBACK
&&
2270 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
2271 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
2272 curr_match
== MTRR_TYPE_WRBACK
)) {
2273 prev_match
= MTRR_TYPE_WRTHROUGH
;
2274 curr_match
= MTRR_TYPE_WRTHROUGH
;
2277 if (prev_match
!= curr_match
)
2278 return MTRR_TYPE_UNCACHABLE
;
2281 if (prev_match
!= 0xFF)
2284 return mtrr_state
->def_type
;
2287 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2291 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
2292 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
2293 if (mtrr
== 0xfe || mtrr
== 0xff)
2294 mtrr
= MTRR_TYPE_WRBACK
;
2297 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
2299 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2301 trace_kvm_mmu_unsync_page(sp
);
2302 ++vcpu
->kvm
->stat
.mmu_unsync
;
2305 kvm_mmu_mark_parents_unsync(sp
);
2308 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2310 struct kvm_mmu_page
*s
;
2311 struct hlist_node
*node
;
2313 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
2316 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2317 __kvm_unsync_page(vcpu
, s
);
2321 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2324 struct kvm_mmu_page
*s
;
2325 struct hlist_node
*node
;
2326 bool need_unsync
= false;
2328 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
2332 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2335 if (!need_unsync
&& !s
->unsync
) {
2340 kvm_unsync_pages(vcpu
, gfn
);
2344 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2345 unsigned pte_access
, int user_fault
,
2346 int write_fault
, int level
,
2347 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2348 bool can_unsync
, bool host_writable
)
2353 if (set_mmio_spte(sptep
, gfn
, pfn
, pte_access
))
2356 spte
= PT_PRESENT_MASK
;
2358 spte
|= shadow_accessed_mask
;
2360 if (pte_access
& ACC_EXEC_MASK
)
2361 spte
|= shadow_x_mask
;
2363 spte
|= shadow_nx_mask
;
2365 if (pte_access
& ACC_USER_MASK
)
2366 spte
|= shadow_user_mask
;
2368 if (level
> PT_PAGE_TABLE_LEVEL
)
2369 spte
|= PT_PAGE_SIZE_MASK
;
2371 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2372 kvm_is_mmio_pfn(pfn
));
2375 spte
|= SPTE_HOST_WRITEABLE
;
2377 pte_access
&= ~ACC_WRITE_MASK
;
2379 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2381 if ((pte_access
& ACC_WRITE_MASK
)
2382 || (!vcpu
->arch
.mmu
.direct_map
&& write_fault
2383 && !is_write_protection(vcpu
) && !user_fault
)) {
2386 * There are two cases:
2387 * - the one is other vcpu creates new sp in the window
2388 * between mapping_level() and acquiring mmu-lock.
2389 * - the another case is the new sp is created by itself
2390 * (page-fault path) when guest uses the target gfn as
2392 * Both of these cases can be fixed by allowing guest to
2393 * retry the access, it will refault, then we can establish
2394 * the mapping by using small page.
2396 if (level
> PT_PAGE_TABLE_LEVEL
&&
2397 has_wrprotected_page(vcpu
->kvm
, gfn
, level
))
2400 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2402 if (!vcpu
->arch
.mmu
.direct_map
2403 && !(pte_access
& ACC_WRITE_MASK
)) {
2404 spte
&= ~PT_USER_MASK
;
2406 * If we converted a user page to a kernel page,
2407 * so that the kernel can write to it when cr0.wp=0,
2408 * then we should prevent the kernel from executing it
2409 * if SMEP is enabled.
2411 if (kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
))
2412 spte
|= PT64_NX_MASK
;
2416 * Optimization: for pte sync, if spte was writable the hash
2417 * lookup is unnecessary (and expensive). Write protection
2418 * is responsibility of mmu_get_page / kvm_sync_page.
2419 * Same reasoning can be applied to dirty page accounting.
2421 if (!can_unsync
&& is_writable_pte(*sptep
))
2424 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2425 pgprintk("%s: found shadow page for %llx, marking ro\n",
2428 pte_access
&= ~ACC_WRITE_MASK
;
2429 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2433 if (pte_access
& ACC_WRITE_MASK
)
2434 mark_page_dirty(vcpu
->kvm
, gfn
);
2437 if (mmu_spte_update(sptep
, spte
))
2438 kvm_flush_remote_tlbs(vcpu
->kvm
);
2443 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2444 unsigned pt_access
, unsigned pte_access
,
2445 int user_fault
, int write_fault
,
2446 int *emulate
, int level
, gfn_t gfn
,
2447 pfn_t pfn
, bool speculative
,
2450 int was_rmapped
= 0;
2453 pgprintk("%s: spte %llx access %x write_fault %d"
2454 " user_fault %d gfn %llx\n",
2455 __func__
, *sptep
, pt_access
,
2456 write_fault
, user_fault
, gfn
);
2458 if (is_rmap_spte(*sptep
)) {
2460 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2461 * the parent of the now unreachable PTE.
2463 if (level
> PT_PAGE_TABLE_LEVEL
&&
2464 !is_large_pte(*sptep
)) {
2465 struct kvm_mmu_page
*child
;
2468 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2469 drop_parent_pte(child
, sptep
);
2470 kvm_flush_remote_tlbs(vcpu
->kvm
);
2471 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2472 pgprintk("hfn old %llx new %llx\n",
2473 spte_to_pfn(*sptep
), pfn
);
2474 drop_spte(vcpu
->kvm
, sptep
);
2475 kvm_flush_remote_tlbs(vcpu
->kvm
);
2480 if (set_spte(vcpu
, sptep
, pte_access
, user_fault
, write_fault
,
2481 level
, gfn
, pfn
, speculative
, true,
2485 kvm_mmu_flush_tlb(vcpu
);
2488 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2491 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2492 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2493 is_large_pte(*sptep
)? "2MB" : "4kB",
2494 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2496 if (!was_rmapped
&& is_large_pte(*sptep
))
2497 ++vcpu
->kvm
->stat
.lpages
;
2499 if (is_shadow_present_pte(*sptep
)) {
2500 page_header_update_slot(vcpu
->kvm
, sptep
, gfn
);
2502 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2503 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2504 rmap_recycle(vcpu
, sptep
, gfn
);
2508 kvm_release_pfn_clean(pfn
);
2511 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
2513 mmu_free_roots(vcpu
);
2516 static bool is_rsvd_bits_set(struct kvm_mmu
*mmu
, u64 gpte
, int level
)
2520 bit7
= (gpte
>> 7) & 1;
2521 return (gpte
& mmu
->rsvd_bits_mask
[bit7
][level
-1]) != 0;
2524 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2527 struct kvm_memory_slot
*slot
;
2529 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2531 return KVM_PFN_ERR_FAULT
;
2533 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2536 static bool prefetch_invalid_gpte(struct kvm_vcpu
*vcpu
,
2537 struct kvm_mmu_page
*sp
, u64
*spte
,
2540 if (is_rsvd_bits_set(&vcpu
->arch
.mmu
, gpte
, PT_PAGE_TABLE_LEVEL
))
2543 if (!is_present_gpte(gpte
))
2546 if (!(gpte
& PT_ACCESSED_MASK
))
2552 drop_spte(vcpu
->kvm
, spte
);
2556 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2557 struct kvm_mmu_page
*sp
,
2558 u64
*start
, u64
*end
)
2560 struct page
*pages
[PTE_PREFETCH_NUM
];
2561 unsigned access
= sp
->role
.access
;
2565 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2566 if (!gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
))
2569 ret
= gfn_to_page_many_atomic(vcpu
->kvm
, gfn
, pages
, end
- start
);
2573 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2574 mmu_set_spte(vcpu
, start
, ACC_ALL
,
2576 sp
->role
.level
, gfn
,
2577 page_to_pfn(pages
[i
]), true, true);
2582 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2583 struct kvm_mmu_page
*sp
, u64
*sptep
)
2585 u64
*spte
, *start
= NULL
;
2588 WARN_ON(!sp
->role
.direct
);
2590 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2593 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2594 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2597 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2605 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2607 struct kvm_mmu_page
*sp
;
2610 * Since it's no accessed bit on EPT, it's no way to
2611 * distinguish between actually accessed translations
2612 * and prefetched, so disable pte prefetch if EPT is
2615 if (!shadow_accessed_mask
)
2618 sp
= page_header(__pa(sptep
));
2619 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2622 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2625 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2626 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2629 struct kvm_shadow_walk_iterator iterator
;
2630 struct kvm_mmu_page
*sp
;
2634 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2635 if (iterator
.level
== level
) {
2636 unsigned pte_access
= ACC_ALL
;
2638 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
, pte_access
,
2640 level
, gfn
, pfn
, prefault
, map_writable
);
2641 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2642 ++vcpu
->stat
.pf_fixed
;
2646 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2647 u64 base_addr
= iterator
.addr
;
2649 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2650 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2651 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2653 1, ACC_ALL
, iterator
.sptep
);
2655 mmu_spte_set(iterator
.sptep
,
2657 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
2658 | shadow_user_mask
| shadow_x_mask
2659 | shadow_accessed_mask
);
2665 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2669 info
.si_signo
= SIGBUS
;
2671 info
.si_code
= BUS_MCEERR_AR
;
2672 info
.si_addr
= (void __user
*)address
;
2673 info
.si_addr_lsb
= PAGE_SHIFT
;
2675 send_sig_info(SIGBUS
, &info
, tsk
);
2678 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2681 * Do not cache the mmio info caused by writing the readonly gfn
2682 * into the spte otherwise read access on readonly gfn also can
2683 * caused mmio page fault and treat it as mmio access.
2684 * Return 1 to tell kvm to emulate it.
2686 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2689 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2690 kvm_send_hwpoison_signal(gfn_to_hva(vcpu
->kvm
, gfn
), current
);
2697 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2698 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2702 int level
= *levelp
;
2705 * Check if it's a transparent hugepage. If this would be an
2706 * hugetlbfs page, level wouldn't be set to
2707 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2710 if (!is_error_noslot_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
) &&
2711 level
== PT_PAGE_TABLE_LEVEL
&&
2712 PageTransCompound(pfn_to_page(pfn
)) &&
2713 !has_wrprotected_page(vcpu
->kvm
, gfn
, PT_DIRECTORY_LEVEL
)) {
2716 * mmu_notifier_retry was successful and we hold the
2717 * mmu_lock here, so the pmd can't become splitting
2718 * from under us, and in turn
2719 * __split_huge_page_refcount() can't run from under
2720 * us and we can safely transfer the refcount from
2721 * PG_tail to PG_head as we switch the pfn to tail to
2724 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2725 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2726 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2730 kvm_release_pfn_clean(pfn
);
2738 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2739 pfn_t pfn
, unsigned access
, int *ret_val
)
2743 /* The pfn is invalid, report the error! */
2744 if (unlikely(is_error_pfn(pfn
))) {
2745 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2749 if (unlikely(is_noslot_pfn(pfn
)))
2750 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2757 static bool page_fault_can_be_fast(struct kvm_vcpu
*vcpu
, u32 error_code
)
2760 * #PF can be fast only if the shadow page table is present and it
2761 * is caused by write-protect, that means we just need change the
2762 * W bit of the spte which can be done out of mmu-lock.
2764 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2765 !(error_code
& PFERR_WRITE_MASK
))
2772 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, u64 spte
)
2774 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
2777 WARN_ON(!sp
->role
.direct
);
2780 * The gfn of direct spte is stable since it is calculated
2783 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2785 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2786 mark_page_dirty(vcpu
->kvm
, gfn
);
2793 * - true: let the vcpu to access on the same address again.
2794 * - false: let the real page fault path to fix it.
2796 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2799 struct kvm_shadow_walk_iterator iterator
;
2803 if (!page_fault_can_be_fast(vcpu
, error_code
))
2806 walk_shadow_page_lockless_begin(vcpu
);
2807 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2808 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2812 * If the mapping has been changed, let the vcpu fault on the
2813 * same address again.
2815 if (!is_rmap_spte(spte
)) {
2820 if (!is_last_spte(spte
, level
))
2824 * Check if it is a spurious fault caused by TLB lazily flushed.
2826 * Need not check the access of upper level table entries since
2827 * they are always ACC_ALL.
2829 if (is_writable_pte(spte
)) {
2835 * Currently, to simplify the code, only the spte write-protected
2836 * by dirty-log can be fast fixed.
2838 if (!spte_is_locklessly_modifiable(spte
))
2842 * Currently, fast page fault only works for direct mapping since
2843 * the gfn is not stable for indirect shadow page.
2844 * See Documentation/virtual/kvm/locking.txt to get more detail.
2846 ret
= fast_pf_fix_direct_spte(vcpu
, iterator
.sptep
, spte
);
2848 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2850 walk_shadow_page_lockless_end(vcpu
);
2855 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2856 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2858 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
2859 gfn_t gfn
, bool prefault
)
2865 unsigned long mmu_seq
;
2866 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
2868 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2869 if (likely(!force_pt_level
)) {
2870 level
= mapping_level(vcpu
, gfn
);
2872 * This path builds a PAE pagetable - so we can map
2873 * 2mb pages at maximum. Therefore check if the level
2874 * is larger than that.
2876 if (level
> PT_DIRECTORY_LEVEL
)
2877 level
= PT_DIRECTORY_LEVEL
;
2879 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2881 level
= PT_PAGE_TABLE_LEVEL
;
2883 if (fast_page_fault(vcpu
, v
, level
, error_code
))
2886 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2889 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2892 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
2895 spin_lock(&vcpu
->kvm
->mmu_lock
);
2896 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
2898 kvm_mmu_free_some_pages(vcpu
);
2899 if (likely(!force_pt_level
))
2900 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2901 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
2903 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2909 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2910 kvm_release_pfn_clean(pfn
);
2915 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2918 struct kvm_mmu_page
*sp
;
2919 LIST_HEAD(invalid_list
);
2921 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2923 spin_lock(&vcpu
->kvm
->mmu_lock
);
2924 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
2925 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
2926 vcpu
->arch
.mmu
.direct_map
)) {
2927 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2929 sp
= page_header(root
);
2931 if (!sp
->root_count
&& sp
->role
.invalid
) {
2932 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
2933 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2935 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2936 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2939 for (i
= 0; i
< 4; ++i
) {
2940 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2943 root
&= PT64_BASE_ADDR_MASK
;
2944 sp
= page_header(root
);
2946 if (!sp
->root_count
&& sp
->role
.invalid
)
2947 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
2950 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2952 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2953 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2954 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2957 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2961 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2962 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2969 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
2971 struct kvm_mmu_page
*sp
;
2974 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2975 spin_lock(&vcpu
->kvm
->mmu_lock
);
2976 kvm_mmu_free_some_pages(vcpu
);
2977 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
2980 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2981 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
2982 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
2983 for (i
= 0; i
< 4; ++i
) {
2984 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2986 ASSERT(!VALID_PAGE(root
));
2987 spin_lock(&vcpu
->kvm
->mmu_lock
);
2988 kvm_mmu_free_some_pages(vcpu
);
2989 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
2991 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
2993 root
= __pa(sp
->spt
);
2995 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2996 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
2998 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3005 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3007 struct kvm_mmu_page
*sp
;
3012 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3014 if (mmu_check_root(vcpu
, root_gfn
))
3018 * Do we shadow a long mode page table? If so we need to
3019 * write-protect the guests page table root.
3021 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3022 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3024 ASSERT(!VALID_PAGE(root
));
3026 spin_lock(&vcpu
->kvm
->mmu_lock
);
3027 kvm_mmu_free_some_pages(vcpu
);
3028 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3030 root
= __pa(sp
->spt
);
3032 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3033 vcpu
->arch
.mmu
.root_hpa
= root
;
3038 * We shadow a 32 bit page table. This may be a legacy 2-level
3039 * or a PAE 3-level page table. In either case we need to be aware that
3040 * the shadow page table may be a PAE or a long mode page table.
3042 pm_mask
= PT_PRESENT_MASK
;
3043 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3044 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3046 for (i
= 0; i
< 4; ++i
) {
3047 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3049 ASSERT(!VALID_PAGE(root
));
3050 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3051 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3052 if (!is_present_gpte(pdptr
)) {
3053 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3056 root_gfn
= pdptr
>> PAGE_SHIFT
;
3057 if (mmu_check_root(vcpu
, root_gfn
))
3060 spin_lock(&vcpu
->kvm
->mmu_lock
);
3061 kvm_mmu_free_some_pages(vcpu
);
3062 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
3065 root
= __pa(sp
->spt
);
3067 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3069 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3071 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3074 * If we shadow a 32 bit page table with a long mode page
3075 * table we enter this path.
3077 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3078 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3080 * The additional page necessary for this is only
3081 * allocated on demand.
3086 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3087 if (lm_root
== NULL
)
3090 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3092 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3095 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3101 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3103 if (vcpu
->arch
.mmu
.direct_map
)
3104 return mmu_alloc_direct_roots(vcpu
);
3106 return mmu_alloc_shadow_roots(vcpu
);
3109 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3112 struct kvm_mmu_page
*sp
;
3114 if (vcpu
->arch
.mmu
.direct_map
)
3117 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3120 vcpu_clear_mmio_info(vcpu
, ~0ul);
3121 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3122 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3123 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3124 sp
= page_header(root
);
3125 mmu_sync_children(vcpu
, sp
);
3126 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3129 for (i
= 0; i
< 4; ++i
) {
3130 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3132 if (root
&& VALID_PAGE(root
)) {
3133 root
&= PT64_BASE_ADDR_MASK
;
3134 sp
= page_header(root
);
3135 mmu_sync_children(vcpu
, sp
);
3138 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3141 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3143 spin_lock(&vcpu
->kvm
->mmu_lock
);
3144 mmu_sync_roots(vcpu
);
3145 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3148 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3149 u32 access
, struct x86_exception
*exception
)
3152 exception
->error_code
= 0;
3156 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3158 struct x86_exception
*exception
)
3161 exception
->error_code
= 0;
3162 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
);
3165 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3168 return vcpu_match_mmio_gpa(vcpu
, addr
);
3170 return vcpu_match_mmio_gva(vcpu
, addr
);
3175 * On direct hosts, the last spte is only allows two states
3176 * for mmio page fault:
3177 * - It is the mmio spte
3178 * - It is zapped or it is being zapped.
3180 * This function completely checks the spte when the last spte
3181 * is not the mmio spte.
3183 static bool check_direct_spte_mmio_pf(u64 spte
)
3185 return __check_direct_spte_mmio_pf(spte
);
3188 static u64
walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
)
3190 struct kvm_shadow_walk_iterator iterator
;
3193 walk_shadow_page_lockless_begin(vcpu
);
3194 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
)
3195 if (!is_shadow_present_pte(spte
))
3197 walk_shadow_page_lockless_end(vcpu
);
3203 * If it is a real mmio page fault, return 1 and emulat the instruction
3204 * directly, return 0 to let CPU fault again on the address, -1 is
3205 * returned if bug is detected.
3207 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3211 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
3214 spte
= walk_shadow_page_get_mmio_spte(vcpu
, addr
);
3216 if (is_mmio_spte(spte
)) {
3217 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3218 unsigned access
= get_mmio_spte_access(spte
);
3223 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3224 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3229 * It's ok if the gva is remapped by other cpus on shadow guest,
3230 * it's a BUG if the gfn is not a mmio page.
3232 if (direct
&& !check_direct_spte_mmio_pf(spte
))
3236 * If the page table is zapped by other cpus, let CPU fault again on
3241 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common
);
3243 static int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
,
3244 u32 error_code
, bool direct
)
3248 ret
= handle_mmio_page_fault_common(vcpu
, addr
, direct
);
3253 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3254 u32 error_code
, bool prefault
)
3259 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3261 if (unlikely(error_code
& PFERR_RSVD_MASK
))
3262 return handle_mmio_page_fault(vcpu
, gva
, error_code
, true);
3264 r
= mmu_topup_memory_caches(vcpu
);
3269 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3271 gfn
= gva
>> PAGE_SHIFT
;
3273 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3274 error_code
, gfn
, prefault
);
3277 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3279 struct kvm_arch_async_pf arch
;
3281 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3283 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3284 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3286 return kvm_setup_async_pf(vcpu
, gva
, gfn
, &arch
);
3289 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3291 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
3292 kvm_event_needs_reinjection(vcpu
)))
3295 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3298 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3299 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3303 *pfn
= gfn_to_pfn_async(vcpu
->kvm
, gfn
, &async
, write
, writable
);
3306 return false; /* *pfn has correct page already */
3308 if (!prefault
&& can_do_async_pf(vcpu
)) {
3309 trace_kvm_try_async_get_page(gva
, gfn
);
3310 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3311 trace_kvm_async_pf_doublefault(gva
, gfn
);
3312 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3314 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3318 *pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write
, writable
);
3323 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3330 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3331 unsigned long mmu_seq
;
3332 int write
= error_code
& PFERR_WRITE_MASK
;
3336 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3338 if (unlikely(error_code
& PFERR_RSVD_MASK
))
3339 return handle_mmio_page_fault(vcpu
, gpa
, error_code
, true);
3341 r
= mmu_topup_memory_caches(vcpu
);
3345 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
3346 if (likely(!force_pt_level
)) {
3347 level
= mapping_level(vcpu
, gfn
);
3348 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3350 level
= PT_PAGE_TABLE_LEVEL
;
3352 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3355 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3358 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3361 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3364 spin_lock(&vcpu
->kvm
->mmu_lock
);
3365 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3367 kvm_mmu_free_some_pages(vcpu
);
3368 if (likely(!force_pt_level
))
3369 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3370 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3371 level
, gfn
, pfn
, prefault
);
3372 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3377 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3378 kvm_release_pfn_clean(pfn
);
3382 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
3384 mmu_free_roots(vcpu
);
3387 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3388 struct kvm_mmu
*context
)
3390 context
->new_cr3
= nonpaging_new_cr3
;
3391 context
->page_fault
= nonpaging_page_fault
;
3392 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3393 context
->free
= nonpaging_free
;
3394 context
->sync_page
= nonpaging_sync_page
;
3395 context
->invlpg
= nonpaging_invlpg
;
3396 context
->update_pte
= nonpaging_update_pte
;
3397 context
->root_level
= 0;
3398 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3399 context
->root_hpa
= INVALID_PAGE
;
3400 context
->direct_map
= true;
3401 context
->nx
= false;
3405 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3407 ++vcpu
->stat
.tlb_flush
;
3408 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
3411 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
3413 pgprintk("%s: cr3 %lx\n", __func__
, kvm_read_cr3(vcpu
));
3414 mmu_free_roots(vcpu
);
3417 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3419 return kvm_read_cr3(vcpu
);
3422 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3423 struct x86_exception
*fault
)
3425 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3428 static void paging_free(struct kvm_vcpu
*vcpu
)
3430 nonpaging_free(vcpu
);
3433 static inline void protect_clean_gpte(unsigned *access
, unsigned gpte
)
3437 BUILD_BUG_ON(PT_WRITABLE_MASK
!= ACC_WRITE_MASK
);
3439 mask
= (unsigned)~ACC_WRITE_MASK
;
3440 /* Allow write access to dirty gptes */
3441 mask
|= (gpte
>> (PT_DIRTY_SHIFT
- PT_WRITABLE_SHIFT
)) & PT_WRITABLE_MASK
;
3445 static bool sync_mmio_spte(u64
*sptep
, gfn_t gfn
, unsigned access
,
3448 if (unlikely(is_mmio_spte(*sptep
))) {
3449 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3450 mmu_spte_clear_no_track(sptep
);
3455 mark_mmio_spte(sptep
, gfn
, access
);
3462 static inline unsigned gpte_access(struct kvm_vcpu
*vcpu
, u64 gpte
)
3466 access
= (gpte
& (PT_WRITABLE_MASK
| PT_USER_MASK
)) | ACC_EXEC_MASK
;
3467 access
&= ~(gpte
>> PT64_NX_SHIFT
);
3472 static inline bool is_last_gpte(struct kvm_mmu
*mmu
, unsigned level
, unsigned gpte
)
3477 index
|= (gpte
& PT_PAGE_SIZE_MASK
) >> (PT_PAGE_SIZE_SHIFT
- 2);
3478 return mmu
->last_pte_bitmap
& (1 << index
);
3482 #include "paging_tmpl.h"
3486 #include "paging_tmpl.h"
3489 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3490 struct kvm_mmu
*context
)
3492 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3493 u64 exb_bit_rsvd
= 0;
3496 exb_bit_rsvd
= rsvd_bits(63, 63);
3497 switch (context
->root_level
) {
3498 case PT32_ROOT_LEVEL
:
3499 /* no rsvd bits for 2 level 4K page table entries */
3500 context
->rsvd_bits_mask
[0][1] = 0;
3501 context
->rsvd_bits_mask
[0][0] = 0;
3502 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3504 if (!is_pse(vcpu
)) {
3505 context
->rsvd_bits_mask
[1][1] = 0;
3509 if (is_cpuid_PSE36())
3510 /* 36bits PSE 4MB page */
3511 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3513 /* 32 bits PSE 4MB page */
3514 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3516 case PT32E_ROOT_LEVEL
:
3517 context
->rsvd_bits_mask
[0][2] =
3518 rsvd_bits(maxphyaddr
, 63) |
3519 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3520 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3521 rsvd_bits(maxphyaddr
, 62); /* PDE */
3522 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3523 rsvd_bits(maxphyaddr
, 62); /* PTE */
3524 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3525 rsvd_bits(maxphyaddr
, 62) |
3526 rsvd_bits(13, 20); /* large page */
3527 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3529 case PT64_ROOT_LEVEL
:
3530 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3531 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
3532 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3533 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
3534 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3535 rsvd_bits(maxphyaddr
, 51);
3536 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3537 rsvd_bits(maxphyaddr
, 51);
3538 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3539 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3540 rsvd_bits(maxphyaddr
, 51) |
3542 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3543 rsvd_bits(maxphyaddr
, 51) |
3544 rsvd_bits(13, 20); /* large page */
3545 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3550 static void update_permission_bitmask(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3552 unsigned bit
, byte
, pfec
;
3554 bool fault
, x
, w
, u
, wf
, uf
, ff
, smep
;
3556 smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3557 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3560 wf
= pfec
& PFERR_WRITE_MASK
;
3561 uf
= pfec
& PFERR_USER_MASK
;
3562 ff
= pfec
& PFERR_FETCH_MASK
;
3563 for (bit
= 0; bit
< 8; ++bit
) {
3564 x
= bit
& ACC_EXEC_MASK
;
3565 w
= bit
& ACC_WRITE_MASK
;
3566 u
= bit
& ACC_USER_MASK
;
3568 /* Not really needed: !nx will cause pte.nx to fault */
3570 /* Allow supervisor writes if !cr0.wp */
3571 w
|= !is_write_protection(vcpu
) && !uf
;
3572 /* Disallow supervisor fetches of user code if cr4.smep */
3573 x
&= !(smep
&& u
&& !uf
);
3575 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
);
3576 map
|= fault
<< bit
;
3578 mmu
->permissions
[byte
] = map
;
3582 static void update_last_pte_bitmap(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3585 unsigned level
, root_level
= mmu
->root_level
;
3586 const unsigned ps_set_index
= 1 << 2; /* bit 2 of index: ps */
3588 if (root_level
== PT32E_ROOT_LEVEL
)
3590 /* PT_PAGE_TABLE_LEVEL always terminates */
3591 map
= 1 | (1 << ps_set_index
);
3592 for (level
= PT_DIRECTORY_LEVEL
; level
<= root_level
; ++level
) {
3593 if (level
<= PT_PDPE_LEVEL
3594 && (mmu
->root_level
>= PT32E_ROOT_LEVEL
|| is_pse(vcpu
)))
3595 map
|= 1 << (ps_set_index
| (level
- 1));
3597 mmu
->last_pte_bitmap
= map
;
3600 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3601 struct kvm_mmu
*context
,
3604 context
->nx
= is_nx(vcpu
);
3605 context
->root_level
= level
;
3607 reset_rsvds_bits_mask(vcpu
, context
);
3608 update_permission_bitmask(vcpu
, context
);
3609 update_last_pte_bitmap(vcpu
, context
);
3611 ASSERT(is_pae(vcpu
));
3612 context
->new_cr3
= paging_new_cr3
;
3613 context
->page_fault
= paging64_page_fault
;
3614 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3615 context
->sync_page
= paging64_sync_page
;
3616 context
->invlpg
= paging64_invlpg
;
3617 context
->update_pte
= paging64_update_pte
;
3618 context
->free
= paging_free
;
3619 context
->shadow_root_level
= level
;
3620 context
->root_hpa
= INVALID_PAGE
;
3621 context
->direct_map
= false;
3625 static int paging64_init_context(struct kvm_vcpu
*vcpu
,
3626 struct kvm_mmu
*context
)
3628 return paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3631 static int paging32_init_context(struct kvm_vcpu
*vcpu
,
3632 struct kvm_mmu
*context
)
3634 context
->nx
= false;
3635 context
->root_level
= PT32_ROOT_LEVEL
;
3637 reset_rsvds_bits_mask(vcpu
, context
);
3638 update_permission_bitmask(vcpu
, context
);
3639 update_last_pte_bitmap(vcpu
, context
);
3641 context
->new_cr3
= paging_new_cr3
;
3642 context
->page_fault
= paging32_page_fault
;
3643 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3644 context
->free
= paging_free
;
3645 context
->sync_page
= paging32_sync_page
;
3646 context
->invlpg
= paging32_invlpg
;
3647 context
->update_pte
= paging32_update_pte
;
3648 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3649 context
->root_hpa
= INVALID_PAGE
;
3650 context
->direct_map
= false;
3654 static int paging32E_init_context(struct kvm_vcpu
*vcpu
,
3655 struct kvm_mmu
*context
)
3657 return paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3660 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3662 struct kvm_mmu
*context
= vcpu
->arch
.walk_mmu
;
3664 context
->base_role
.word
= 0;
3665 context
->new_cr3
= nonpaging_new_cr3
;
3666 context
->page_fault
= tdp_page_fault
;
3667 context
->free
= nonpaging_free
;
3668 context
->sync_page
= nonpaging_sync_page
;
3669 context
->invlpg
= nonpaging_invlpg
;
3670 context
->update_pte
= nonpaging_update_pte
;
3671 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3672 context
->root_hpa
= INVALID_PAGE
;
3673 context
->direct_map
= true;
3674 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3675 context
->get_cr3
= get_cr3
;
3676 context
->get_pdptr
= kvm_pdptr_read
;
3677 context
->inject_page_fault
= kvm_inject_page_fault
;
3679 if (!is_paging(vcpu
)) {
3680 context
->nx
= false;
3681 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3682 context
->root_level
= 0;
3683 } else if (is_long_mode(vcpu
)) {
3684 context
->nx
= is_nx(vcpu
);
3685 context
->root_level
= PT64_ROOT_LEVEL
;
3686 reset_rsvds_bits_mask(vcpu
, context
);
3687 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3688 } else if (is_pae(vcpu
)) {
3689 context
->nx
= is_nx(vcpu
);
3690 context
->root_level
= PT32E_ROOT_LEVEL
;
3691 reset_rsvds_bits_mask(vcpu
, context
);
3692 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3694 context
->nx
= false;
3695 context
->root_level
= PT32_ROOT_LEVEL
;
3696 reset_rsvds_bits_mask(vcpu
, context
);
3697 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3700 update_permission_bitmask(vcpu
, context
);
3701 update_last_pte_bitmap(vcpu
, context
);
3706 int kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3709 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3711 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3713 if (!is_paging(vcpu
))
3714 r
= nonpaging_init_context(vcpu
, context
);
3715 else if (is_long_mode(vcpu
))
3716 r
= paging64_init_context(vcpu
, context
);
3717 else if (is_pae(vcpu
))
3718 r
= paging32E_init_context(vcpu
, context
);
3720 r
= paging32_init_context(vcpu
, context
);
3722 vcpu
->arch
.mmu
.base_role
.cr4_pae
= !!is_pae(vcpu
);
3723 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
3724 vcpu
->arch
.mmu
.base_role
.smep_andnot_wp
3725 = smep
&& !is_write_protection(vcpu
);
3729 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3731 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3733 int r
= kvm_init_shadow_mmu(vcpu
, vcpu
->arch
.walk_mmu
);
3735 vcpu
->arch
.walk_mmu
->set_cr3
= kvm_x86_ops
->set_cr3
;
3736 vcpu
->arch
.walk_mmu
->get_cr3
= get_cr3
;
3737 vcpu
->arch
.walk_mmu
->get_pdptr
= kvm_pdptr_read
;
3738 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
3743 static int init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3745 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3747 g_context
->get_cr3
= get_cr3
;
3748 g_context
->get_pdptr
= kvm_pdptr_read
;
3749 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3752 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3753 * translation of l2_gpa to l1_gpa addresses is done using the
3754 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3755 * functions between mmu and nested_mmu are swapped.
3757 if (!is_paging(vcpu
)) {
3758 g_context
->nx
= false;
3759 g_context
->root_level
= 0;
3760 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3761 } else if (is_long_mode(vcpu
)) {
3762 g_context
->nx
= is_nx(vcpu
);
3763 g_context
->root_level
= PT64_ROOT_LEVEL
;
3764 reset_rsvds_bits_mask(vcpu
, g_context
);
3765 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3766 } else if (is_pae(vcpu
)) {
3767 g_context
->nx
= is_nx(vcpu
);
3768 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3769 reset_rsvds_bits_mask(vcpu
, g_context
);
3770 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3772 g_context
->nx
= false;
3773 g_context
->root_level
= PT32_ROOT_LEVEL
;
3774 reset_rsvds_bits_mask(vcpu
, g_context
);
3775 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3778 update_permission_bitmask(vcpu
, g_context
);
3779 update_last_pte_bitmap(vcpu
, g_context
);
3784 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3786 if (mmu_is_nested(vcpu
))
3787 return init_kvm_nested_mmu(vcpu
);
3788 else if (tdp_enabled
)
3789 return init_kvm_tdp_mmu(vcpu
);
3791 return init_kvm_softmmu(vcpu
);
3794 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
3797 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3798 /* mmu.free() should set root_hpa = INVALID_PAGE */
3799 vcpu
->arch
.mmu
.free(vcpu
);
3802 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3804 destroy_kvm_mmu(vcpu
);
3805 return init_kvm_mmu(vcpu
);
3807 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3809 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3813 r
= mmu_topup_memory_caches(vcpu
);
3816 r
= mmu_alloc_roots(vcpu
);
3817 spin_lock(&vcpu
->kvm
->mmu_lock
);
3818 mmu_sync_roots(vcpu
);
3819 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3822 /* set_cr3() should ensure TLB has been flushed */
3823 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3827 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3829 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3831 mmu_free_roots(vcpu
);
3833 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3835 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3836 struct kvm_mmu_page
*sp
, u64
*spte
,
3839 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3840 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
3844 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
3845 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
3848 static bool need_remote_flush(u64 old
, u64
new)
3850 if (!is_shadow_present_pte(old
))
3852 if (!is_shadow_present_pte(new))
3854 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
3856 old
^= PT64_NX_MASK
;
3857 new ^= PT64_NX_MASK
;
3858 return (old
& ~new & PT64_PERM_MASK
) != 0;
3861 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
3862 bool remote_flush
, bool local_flush
)
3868 kvm_flush_remote_tlbs(vcpu
->kvm
);
3869 else if (local_flush
)
3870 kvm_mmu_flush_tlb(vcpu
);
3873 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
3874 const u8
*new, int *bytes
)
3880 * Assume that the pte write on a page table of the same type
3881 * as the current vcpu paging mode since we update the sptes only
3882 * when they have the same mode.
3884 if (is_pae(vcpu
) && *bytes
== 4) {
3885 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3888 r
= kvm_read_guest(vcpu
->kvm
, *gpa
, &gentry
, min(*bytes
, 8));
3891 new = (const u8
*)&gentry
;
3896 gentry
= *(const u32
*)new;
3899 gentry
= *(const u64
*)new;
3910 * If we're seeing too many writes to a page, it may no longer be a page table,
3911 * or we may be forking, in which case it is better to unmap the page.
3913 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
3916 * Skip write-flooding detected for the sp whose level is 1, because
3917 * it can become unsync, then the guest page is not write-protected.
3919 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
3922 return ++sp
->write_flooding_count
>= 3;
3926 * Misaligned accesses are too much trouble to fix up; also, they usually
3927 * indicate a page is not used as a page table.
3929 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
3932 unsigned offset
, pte_size
, misaligned
;
3934 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3935 gpa
, bytes
, sp
->role
.word
);
3937 offset
= offset_in_page(gpa
);
3938 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
3941 * Sometimes, the OS only writes the last one bytes to update status
3942 * bits, for example, in linux, andb instruction is used in clear_bit().
3944 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
3947 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
3948 misaligned
|= bytes
< 4;
3953 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
3955 unsigned page_offset
, quadrant
;
3959 page_offset
= offset_in_page(gpa
);
3960 level
= sp
->role
.level
;
3962 if (!sp
->role
.cr4_pae
) {
3963 page_offset
<<= 1; /* 32->64 */
3965 * A 32-bit pde maps 4MB while the shadow pdes map
3966 * only 2MB. So we need to double the offset again
3967 * and zap two pdes instead of one.
3969 if (level
== PT32_ROOT_LEVEL
) {
3970 page_offset
&= ~7; /* kill rounding error */
3974 quadrant
= page_offset
>> PAGE_SHIFT
;
3975 page_offset
&= ~PAGE_MASK
;
3976 if (quadrant
!= sp
->role
.quadrant
)
3980 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
3984 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3985 const u8
*new, int bytes
)
3987 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3988 union kvm_mmu_page_role mask
= { .word
= 0 };
3989 struct kvm_mmu_page
*sp
;
3990 struct hlist_node
*node
;
3991 LIST_HEAD(invalid_list
);
3992 u64 entry
, gentry
, *spte
;
3994 bool remote_flush
, local_flush
, zap_page
;
3997 * If we don't have indirect shadow pages, it means no page is
3998 * write-protected, so we can exit simply.
4000 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4003 zap_page
= remote_flush
= local_flush
= false;
4005 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4007 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4010 * No need to care whether allocation memory is successful
4011 * or not since pte prefetch is skiped if it does not have
4012 * enough objects in the cache.
4014 mmu_topup_memory_caches(vcpu
);
4016 spin_lock(&vcpu
->kvm
->mmu_lock
);
4017 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4018 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4020 mask
.cr0_wp
= mask
.cr4_pae
= mask
.nxe
= 1;
4021 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
, node
) {
4022 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4023 detect_write_flooding(sp
)) {
4024 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
4026 ++vcpu
->kvm
->stat
.mmu_flooded
;
4030 spte
= get_written_sptes(sp
, gpa
, &npte
);
4037 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4039 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4040 & mask
.word
) && rmap_can_add(vcpu
))
4041 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4042 if (!remote_flush
&& need_remote_flush(entry
, *spte
))
4043 remote_flush
= true;
4047 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
4048 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4049 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4050 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4053 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4058 if (vcpu
->arch
.mmu
.direct_map
)
4061 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4063 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4067 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4069 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
4071 LIST_HEAD(invalid_list
);
4073 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
&&
4074 !list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
4075 struct kvm_mmu_page
*sp
;
4077 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
4078 struct kvm_mmu_page
, link
);
4079 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
4080 ++vcpu
->kvm
->stat
.mmu_recycled
;
4082 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4085 static bool is_mmio_page_fault(struct kvm_vcpu
*vcpu
, gva_t addr
)
4087 if (vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
))
4088 return vcpu_match_mmio_gpa(vcpu
, addr
);
4090 return vcpu_match_mmio_gva(vcpu
, addr
);
4093 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4094 void *insn
, int insn_len
)
4096 int r
, emulation_type
= EMULTYPE_RETRY
;
4097 enum emulation_result er
;
4099 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4108 if (is_mmio_page_fault(vcpu
, cr2
))
4111 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4116 case EMULATE_DO_MMIO
:
4117 ++vcpu
->stat
.mmio_exits
;
4127 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4129 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4131 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4132 kvm_mmu_flush_tlb(vcpu
);
4133 ++vcpu
->stat
.invlpg
;
4135 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4137 void kvm_enable_tdp(void)
4141 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4143 void kvm_disable_tdp(void)
4145 tdp_enabled
= false;
4147 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4149 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4151 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4152 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4153 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4156 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4164 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4165 * Therefore we need to allocate shadow page tables in the first
4166 * 4GB of memory, which happens to fit the DMA32 zone.
4168 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4172 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4173 for (i
= 0; i
< 4; ++i
)
4174 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4179 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4183 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4184 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4185 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4186 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4188 return alloc_mmu_pages(vcpu
);
4191 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4194 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4196 return init_kvm_mmu(vcpu
);
4199 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
4201 struct kvm_mmu_page
*sp
;
4204 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
4208 if (!test_bit(slot
, sp
->slot_bitmap
))
4212 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
4213 if (!is_shadow_present_pte(pt
[i
]) ||
4214 !is_last_spte(pt
[i
], sp
->role
.level
))
4217 spte_write_protect(kvm
, &pt
[i
], &flush
, false);
4220 kvm_flush_remote_tlbs(kvm
);
4223 void kvm_mmu_zap_all(struct kvm
*kvm
)
4225 struct kvm_mmu_page
*sp
, *node
;
4226 LIST_HEAD(invalid_list
);
4228 spin_lock(&kvm
->mmu_lock
);
4230 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
4231 if (kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
))
4234 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4235 spin_unlock(&kvm
->mmu_lock
);
4238 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm
*kvm
,
4239 struct list_head
*invalid_list
)
4241 struct kvm_mmu_page
*page
;
4243 if (list_empty(&kvm
->arch
.active_mmu_pages
))
4246 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
4247 struct kvm_mmu_page
, link
);
4248 kvm_mmu_prepare_zap_page(kvm
, page
, invalid_list
);
4251 static int mmu_shrink(struct shrinker
*shrink
, struct shrink_control
*sc
)
4254 int nr_to_scan
= sc
->nr_to_scan
;
4256 if (nr_to_scan
== 0)
4259 raw_spin_lock(&kvm_lock
);
4261 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4263 LIST_HEAD(invalid_list
);
4266 * Never scan more than sc->nr_to_scan VM instances.
4267 * Will not hit this condition practically since we do not try
4268 * to shrink more than one VM and it is very unlikely to see
4269 * !n_used_mmu_pages so many times.
4274 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4275 * here. We may skip a VM instance errorneosly, but we do not
4276 * want to shrink a VM that only started to populate its MMU
4279 if (!kvm
->arch
.n_used_mmu_pages
)
4282 idx
= srcu_read_lock(&kvm
->srcu
);
4283 spin_lock(&kvm
->mmu_lock
);
4285 kvm_mmu_remove_some_alloc_mmu_pages(kvm
, &invalid_list
);
4286 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4288 spin_unlock(&kvm
->mmu_lock
);
4289 srcu_read_unlock(&kvm
->srcu
, idx
);
4291 list_move_tail(&kvm
->vm_list
, &vm_list
);
4295 raw_spin_unlock(&kvm_lock
);
4298 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
4301 static struct shrinker mmu_shrinker
= {
4302 .shrink
= mmu_shrink
,
4303 .seeks
= DEFAULT_SEEKS
* 10,
4306 static void mmu_destroy_caches(void)
4308 if (pte_list_desc_cache
)
4309 kmem_cache_destroy(pte_list_desc_cache
);
4310 if (mmu_page_header_cache
)
4311 kmem_cache_destroy(mmu_page_header_cache
);
4314 int kvm_mmu_module_init(void)
4316 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
4317 sizeof(struct pte_list_desc
),
4319 if (!pte_list_desc_cache
)
4322 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
4323 sizeof(struct kvm_mmu_page
),
4325 if (!mmu_page_header_cache
)
4328 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0))
4331 register_shrinker(&mmu_shrinker
);
4336 mmu_destroy_caches();
4341 * Caculate mmu pages needed for kvm.
4343 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
4345 unsigned int nr_mmu_pages
;
4346 unsigned int nr_pages
= 0;
4347 struct kvm_memslots
*slots
;
4348 struct kvm_memory_slot
*memslot
;
4350 slots
= kvm_memslots(kvm
);
4352 kvm_for_each_memslot(memslot
, slots
)
4353 nr_pages
+= memslot
->npages
;
4355 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
4356 nr_mmu_pages
= max(nr_mmu_pages
,
4357 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
4359 return nr_mmu_pages
;
4362 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
4364 struct kvm_shadow_walk_iterator iterator
;
4368 walk_shadow_page_lockless_begin(vcpu
);
4369 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
4370 sptes
[iterator
.level
-1] = spte
;
4372 if (!is_shadow_present_pte(spte
))
4375 walk_shadow_page_lockless_end(vcpu
);
4379 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
4381 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4385 destroy_kvm_mmu(vcpu
);
4386 free_mmu_pages(vcpu
);
4387 mmu_free_memory_caches(vcpu
);
4390 void kvm_mmu_module_exit(void)
4392 mmu_destroy_caches();
4393 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4394 unregister_shrinker(&mmu_shrinker
);
4395 mmu_audit_disable();