Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / kvm / mmu.c
blob01d7c2ad05f5760bb656fef17f512c66e5e87dce
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled = false;
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
62 #undef MMU_DEBUG
64 #ifdef MMU_DEBUG
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69 #else
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
74 #endif
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
89 #endif
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 #include <trace/events/kvm.h>
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 shadow_mmio_mask = mmio_mask;
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
208 static bool is_mmio_spte(u64 spte)
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
213 static gfn_t get_mmio_spte_gfn(u64 spte)
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
218 static unsigned get_mmio_spte_access(u64 spte)
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
230 return false;
233 static inline u64 rsvd_bits(int s, int e)
235 return ((1ULL << (e - s + 1)) - 1) << s;
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
249 static int is_cpuid_PSE36(void)
251 return 1;
254 static int is_nx(struct kvm_vcpu *vcpu)
256 return vcpu->arch.efer & EFER_NX;
259 static int is_shadow_present_pte(u64 pte)
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
264 static int is_large_pte(u64 pte)
266 return pte & PT_PAGE_SIZE_MASK;
269 static int is_dirty_gpte(unsigned long pte)
271 return pte & PT_DIRTY_MASK;
274 static int is_rmap_spte(u64 pte)
276 return is_shadow_present_pte(pte);
279 static int is_last_spte(u64 pte, int level)
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
288 static pfn_t spte_to_pfn(u64 pte)
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
293 static gfn_t pse36_gfn_delta(u32 gpte)
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
303 *sptep = spte;
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
308 *sptep = spte;
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
313 return xchg(sptep, spte);
316 static u64 __get_spte_lockless(u64 *sptep)
318 return ACCESS_ONCE(*sptep);
321 static bool __check_direct_spte_mmio_pf(u64 spte)
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
332 u64 spte;
335 static void count_spte_clear(u64 *sptep, u64 spte)
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
339 if (is_shadow_present_pte(spte))
340 return;
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
347 static void __set_spte(u64 *sptep, u64 spte)
349 union split_spte *ssptep, sspte;
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
354 ssptep->spte_high = sspte.spte_high;
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
361 smp_wmb();
363 ssptep->spte_low = sspte.spte_low;
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
368 union split_spte *ssptep, sspte;
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
373 ssptep->spte_low = sspte.spte_low;
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
379 smp_wmb();
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
387 union split_spte *ssptep, sspte, orig;
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
398 return orig.spte;
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
408 static u64 __get_spte_lockless(u64 *sptep)
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
428 return spte.spte;
431 static bool __check_direct_spte_mmio_pf(u64 spte)
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
445 return false;
447 #endif
449 static bool spte_is_locklessly_modifiable(u64 spte)
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
454 static bool spte_has_volatile_bits(u64 spte)
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
465 if (!shadow_accessed_mask)
466 return false;
468 if (!is_shadow_present_pte(spte))
469 return false;
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
475 return true;
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
506 u64 old_spte = *sptep;
507 bool ret = false;
509 WARN_ON(!is_rmap_spte(new_spte));
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
529 if (!shadow_accessed_mask)
530 return ret;
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
537 return ret;
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
545 static int mmu_spte_clear_track_bits(u64 *sptep)
547 pfn_t pfn;
548 u64 old_spte = *sptep;
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
555 if (!is_rmap_spte(old_spte))
556 return 0;
558 pfn = spte_to_pfn(old_spte);
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
579 static void mmu_spte_clear_no_track(u64 *sptep)
581 __update_clear_spte_fast(sptep, 0ull);
584 static u64 mmu_spte_get_lockless(u64 *sptep)
586 return __get_spte_lockless(sptep);
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
601 smp_mb();
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617 struct kmem_cache *base_cache, int min)
619 void *obj;
621 if (cache->nobjs >= min)
622 return 0;
623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625 if (!obj)
626 return -ENOMEM;
627 cache->objects[cache->nobjs++] = obj;
629 return 0;
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634 return cache->nobjs;
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
640 while (mc->nobjs)
641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645 int min)
647 void *page;
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652 page = (void *)__get_free_page(GFP_KERNEL);
653 if (!page)
654 return -ENOMEM;
655 cache->objects[cache->nobjs++] = page;
657 return 0;
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662 while (mc->nobjs)
663 free_page((unsigned long)mc->objects[--mc->nobjs]);
666 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
668 int r;
670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672 if (r)
673 goto out;
674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675 if (r)
676 goto out;
677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678 mmu_page_header_cache, 4);
679 out:
680 return r;
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
694 void *p;
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
698 return p;
701 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
706 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
711 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713 if (!sp->role.direct)
714 return sp->gfns[index];
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
731 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
735 unsigned long idx;
737 idx = gfn_to_index(gfn, slot->base_gfn, level);
738 return &slot->arch.lpage_info[level - 2][idx];
741 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743 struct kvm_memory_slot *slot;
744 struct kvm_lpage_info *linfo;
745 int i;
747 slot = gfn_to_memslot(kvm, gfn);
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
753 kvm->arch.indirect_shadow_pages++;
756 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758 struct kvm_memory_slot *slot;
759 struct kvm_lpage_info *linfo;
760 int i;
762 slot = gfn_to_memslot(kvm, gfn);
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
769 kvm->arch.indirect_shadow_pages--;
772 static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
776 struct kvm_memory_slot *slot;
777 struct kvm_lpage_info *linfo;
779 slot = gfn_to_memslot(kvm, gfn);
780 if (slot) {
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
785 return 1;
788 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
790 unsigned long page_size;
791 int i, ret = 0;
793 page_size = kvm_host_page_size(kvm, gfn);
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
803 return ret;
806 static struct kvm_memory_slot *
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
810 struct kvm_memory_slot *slot;
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
817 return slot;
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
825 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827 int host_level, level, max_level;
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
841 return level - 1;
845 * Pte mapping structures:
847 * If pte_list bit zero is zero, then pte_list point to the spte.
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
859 struct pte_list_desc *desc;
860 int i, count = 0;
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
869 desc->sptes[1] = spte;
870 *pte_list = (unsigned long)desc | 1;
871 ++count;
872 } else {
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876 desc = desc->more;
877 count += PTE_LIST_EXT;
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
881 desc = desc->more;
883 for (i = 0; desc->sptes[i]; ++i)
884 ++count;
885 desc->sptes[i] = spte;
887 return count;
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
894 int j;
896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
903 *pte_list = (unsigned long)desc->sptes[0];
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
916 int i;
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920 BUG();
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
925 BUG();
927 *pte_list = 0;
928 } else {
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 prev_desc = NULL;
932 while (desc) {
933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934 if (desc->sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
936 desc, i,
937 prev_desc);
938 return;
940 prev_desc = desc;
941 desc = desc->more;
943 pr_err("pte_list_remove: %p many->many\n", spte);
944 BUG();
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
951 struct pte_list_desc *desc;
952 int i;
954 if (!*pte_list)
955 return;
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969 struct kvm_memory_slot *slot)
971 unsigned long idx;
973 idx = gfn_to_index(gfn, slot->base_gfn, level);
974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 * Take gfn and return the reverse mapping to it.
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
982 struct kvm_memory_slot *slot;
984 slot = gfn_to_memslot(kvm, gfn);
985 return __gfn_to_rmap(gfn, level, slot);
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
990 struct kvm_mmu_memory_cache *cache;
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1023 struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1034 * Returns sptep if found, NULL otherwise.
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1038 if (!rmap)
1039 return NULL;
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1054 * Returns sptep if found, NULL otherwise.
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1068 iter->desc = iter->desc->more;
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1077 return NULL;
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1097 return false;
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
1118 * Return true if the spte is dropped.
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1123 u64 spte = *sptep;
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 return false;
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
1138 spte = spte & ~PT_WRITABLE_MASK;
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 int level, bool pt_protect)
1147 u64 *sptep;
1148 struct rmap_iterator iter;
1149 bool flush = false;
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1158 sptep = rmap_get_next(&iter);
1161 return flush;
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
1178 unsigned long *rmapp;
1180 while (mask) {
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
1183 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1192 struct kvm_memory_slot *slot;
1193 unsigned long *rmapp;
1194 int i;
1195 bool write_protected = false;
1197 slot = gfn_to_memslot(kvm, gfn);
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1205 return write_protected;
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209 struct kvm_memory_slot *slot, unsigned long data)
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 int need_tlb_flush = 0;
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1219 drop_spte(kvm, sptep);
1220 need_tlb_flush = 1;
1223 return need_tlb_flush;
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227 struct kvm_memory_slot *slot, unsigned long data)
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 int need_flush = 0;
1232 u64 new_spte;
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1243 need_flush = 1;
1245 if (pte_write(*ptep)) {
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1248 } else {
1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
1254 new_spte &= ~shadow_accessed_mask;
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1265 return 0;
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
1274 struct kvm_memory_slot *slot,
1275 unsigned long data))
1277 int j;
1278 int ret = 0;
1279 struct kvm_memslots *slots;
1280 struct kvm_memory_slot *memslot;
1282 slots = kvm_memslots(kvm);
1284 kvm_for_each_memslot(memslot, slots) {
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
1319 return ret;
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325 struct kvm_memory_slot *slot,
1326 unsigned long data))
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347 struct kvm_memory_slot *slot, unsigned long data)
1349 u64 *sptep;
1350 struct rmap_iterator uninitialized_var(iter);
1351 int young = 0;
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1370 if (*sptep & shadow_accessed_mask) {
1371 young = 1;
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
1376 out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
1379 return young;
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383 struct kvm_memory_slot *slot, unsigned long data)
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 int young = 0;
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1394 if (!shadow_accessed_mask)
1395 goto out;
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1401 if (*sptep & shadow_accessed_mask) {
1402 young = 1;
1403 break;
1406 out:
1407 return young;
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1414 unsigned long *rmapp;
1415 struct kvm_mmu_page *sp;
1417 sp = page_header(__pa(spte));
1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1438 u64 *pos;
1439 u64 *end;
1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
1444 pos, *pos);
1445 return 0;
1447 return 1;
1449 #endif
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1469 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1471 ASSERT(is_empty_shadow_page(sp->spt));
1472 hlist_del(&sp->hash_link);
1473 if (!sp->role.direct)
1474 free_page((unsigned long)sp->gfns);
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1481 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
1485 kmem_cache_free(mmu_page_header_cache, sp);
1488 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1493 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494 struct kvm_mmu_page *sp, u64 *parent_pte)
1496 if (!parent_pte)
1497 return;
1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1502 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503 u64 *parent_pte)
1505 pte_list_remove(parent_pte, &sp->parent_ptes);
1508 static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1512 mmu_spte_clear_no_track(parent_pte);
1515 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
1518 struct kvm_mmu_page *sp;
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521 if (!direct)
1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1525 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
1532 static void mark_unsync(u64 *spte);
1533 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
1538 static void mark_unsync(u64 *spte)
1540 struct kvm_mmu_page *sp;
1541 unsigned int index;
1543 sp = page_header(__pa(spte));
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1546 return;
1547 if (sp->unsync_children++)
1548 return;
1549 kvm_mmu_mark_parents_unsync(sp);
1552 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1553 struct kvm_mmu_page *sp)
1555 return 1;
1558 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1562 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
1564 const void *pte)
1566 WARN_ON(1);
1569 #define KVM_PAGE_ARRAY_NR 16
1571 struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1579 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
1582 int i;
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1595 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1598 int i, ret, nr_unsync_leaf = 0;
1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1601 struct kvm_mmu_page *child;
1602 u64 ent = sp->spt[i];
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1627 continue;
1629 clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
1636 return nr_unsync_leaf;
1639 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1642 if (!sp->unsync_children)
1643 return 0;
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
1649 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1651 WARN_ON(!sp->unsync);
1652 trace_kvm_mmu_sync_page(sp);
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1657 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1673 /* @sp->gfn should be write-protected at the call site */
1674 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675 struct list_head *invalid_list, bool clear_unsync)
1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1679 return 1;
1682 if (clear_unsync)
1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1687 return 1;
1690 kvm_mmu_flush_tlb(vcpu);
1691 return 0;
1694 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1697 LIST_HEAD(invalid_list);
1698 int ret;
1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1701 if (ret)
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1704 return ret;
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1708 #include "mmu_audit.c"
1709 #else
1710 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711 static void mmu_audit_disable(void) { }
1712 #endif
1714 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1720 /* @gfn should be write-protected at the call site */
1721 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1723 struct kvm_mmu_page *s;
1724 struct hlist_node *node;
1725 LIST_HEAD(invalid_list);
1726 bool flush = false;
1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1729 if (!s->unsync)
1730 continue;
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1733 kvm_unlink_unsync_page(vcpu->kvm, s);
1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1737 continue;
1739 flush = true;
1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1747 struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
1752 #define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1758 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
1762 int n;
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1776 return n;
1779 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1784 do {
1785 unsigned int idx = parents->idx[level];
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1798 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1806 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
1813 LIST_HEAD(invalid_list);
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
1817 bool protected = false;
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1825 for_each_sp(pages, sp, parents, i) {
1826 kvm_sync_page(vcpu, sp, &invalid_list);
1827 mmu_pages_clear_parents(&parents);
1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1835 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1837 int i;
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1843 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1845 sp->write_flooding_count = 0;
1848 static void clear_sp_write_flooding_count(u64 *spte)
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1852 __clear_sp_write_flooding_count(sp);
1855 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
1859 int direct,
1860 unsigned access,
1861 u64 *parent_pte)
1863 union kvm_mmu_page_role role;
1864 unsigned quadrant;
1865 struct kvm_mmu_page *sp;
1866 struct hlist_node *node;
1867 bool need_sync = false;
1869 role = vcpu->arch.mmu.base_role;
1870 role.level = level;
1871 role.direct = direct;
1872 if (role.direct)
1873 role.cr4_pae = 0;
1874 role.access = access;
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
1885 if (sp->role.word != role.word)
1886 continue;
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
1898 __clear_sp_write_flooding_count(sp);
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1902 ++vcpu->kvm->stat.mmu_cache_miss;
1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1904 if (!sp)
1905 return sp;
1906 sp->gfn = gfn;
1907 sp->role = role;
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1910 if (!direct) {
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1916 account_shadowed(vcpu->kvm, gfn);
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp, true);
1920 return sp;
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
1958 if (is_last_spte(spte, iterator->level)) {
1959 iterator->level = 0;
1960 return;
1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964 --iterator->level;
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1974 u64 spte;
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1979 mmu_spte_set(sptep, spte);
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1999 drop_parent_pte(child, sptep);
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005 u64 *spte)
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->role.level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
2018 drop_parent_pte(child, spte);
2020 return true;
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2026 return false;
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030 struct kvm_mmu_page *sp)
2032 unsigned i;
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2045 u64 *sptep;
2046 struct rmap_iterator iter;
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061 return 0;
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2067 for_each_sp(pages, sp, parents, i) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2070 zapped++;
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2075 return zapped;
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
2081 int ret;
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2088 if (!sp->role.invalid && !sp->role.direct)
2089 unaccount_shadowed(kvm, sp->gfn);
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
2092 if (!sp->root_count) {
2093 /* Count self */
2094 ret++;
2095 list_move(&sp->link, invalid_list);
2096 kvm_mod_used_mmu_pages(kvm, -1);
2097 } else {
2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2099 kvm_reload_remote_mmus(kvm);
2102 sp->role.invalid = 1;
2103 return ret;
2106 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2109 struct kvm_mmu_page *sp;
2111 if (list_empty(invalid_list))
2112 return;
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2118 smp_mb();
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2124 kvm_flush_remote_tlbs(kvm);
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
2129 kvm_mmu_isolate_page(sp);
2130 kvm_mmu_free_page(sp);
2131 } while (!list_empty(invalid_list));
2135 * Changing the number of mmu pages allocated to the vm
2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2138 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2140 LIST_HEAD(invalid_list);
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2147 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2149 !list_empty(&kvm->arch.active_mmu_pages)) {
2150 struct kvm_mmu_page *page;
2152 page = container_of(kvm->arch.active_mmu_pages.prev,
2153 struct kvm_mmu_page, link);
2154 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2160 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2163 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2165 struct kvm_mmu_page *sp;
2166 struct hlist_node *node;
2167 LIST_HEAD(invalid_list);
2168 int r;
2170 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2171 r = 0;
2172 spin_lock(&kvm->mmu_lock);
2173 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2174 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2175 sp->role.word);
2176 r = 1;
2177 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2179 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2180 spin_unlock(&kvm->mmu_lock);
2182 return r;
2184 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2186 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2188 int slot = memslot_id(kvm, gfn);
2189 struct kvm_mmu_page *sp = page_header(__pa(pte));
2191 __set_bit(slot, sp->slot_bitmap);
2195 * The function is based on mtrr_type_lookup() in
2196 * arch/x86/kernel/cpu/mtrr/generic.c
2198 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2199 u64 start, u64 end)
2201 int i;
2202 u64 base, mask;
2203 u8 prev_match, curr_match;
2204 int num_var_ranges = KVM_NR_VAR_MTRR;
2206 if (!mtrr_state->enabled)
2207 return 0xFF;
2209 /* Make end inclusive end, instead of exclusive */
2210 end--;
2212 /* Look in fixed ranges. Just return the type as per start */
2213 if (mtrr_state->have_fixed && (start < 0x100000)) {
2214 int idx;
2216 if (start < 0x80000) {
2217 idx = 0;
2218 idx += (start >> 16);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0xC0000) {
2221 idx = 1 * 8;
2222 idx += ((start - 0x80000) >> 14);
2223 return mtrr_state->fixed_ranges[idx];
2224 } else if (start < 0x1000000) {
2225 idx = 3 * 8;
2226 idx += ((start - 0xC0000) >> 12);
2227 return mtrr_state->fixed_ranges[idx];
2232 * Look in variable ranges
2233 * Look of multiple ranges matching this address and pick type
2234 * as per MTRR precedence
2236 if (!(mtrr_state->enabled & 2))
2237 return mtrr_state->def_type;
2239 prev_match = 0xFF;
2240 for (i = 0; i < num_var_ranges; ++i) {
2241 unsigned short start_state, end_state;
2243 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2244 continue;
2246 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2247 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2248 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2249 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2251 start_state = ((start & mask) == (base & mask));
2252 end_state = ((end & mask) == (base & mask));
2253 if (start_state != end_state)
2254 return 0xFE;
2256 if ((start & mask) != (base & mask))
2257 continue;
2259 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2260 if (prev_match == 0xFF) {
2261 prev_match = curr_match;
2262 continue;
2265 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2266 curr_match == MTRR_TYPE_UNCACHABLE)
2267 return MTRR_TYPE_UNCACHABLE;
2269 if ((prev_match == MTRR_TYPE_WRBACK &&
2270 curr_match == MTRR_TYPE_WRTHROUGH) ||
2271 (prev_match == MTRR_TYPE_WRTHROUGH &&
2272 curr_match == MTRR_TYPE_WRBACK)) {
2273 prev_match = MTRR_TYPE_WRTHROUGH;
2274 curr_match = MTRR_TYPE_WRTHROUGH;
2277 if (prev_match != curr_match)
2278 return MTRR_TYPE_UNCACHABLE;
2281 if (prev_match != 0xFF)
2282 return prev_match;
2284 return mtrr_state->def_type;
2287 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2289 u8 mtrr;
2291 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2292 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2293 if (mtrr == 0xfe || mtrr == 0xff)
2294 mtrr = MTRR_TYPE_WRBACK;
2295 return mtrr;
2297 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2299 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2301 trace_kvm_mmu_unsync_page(sp);
2302 ++vcpu->kvm->stat.mmu_unsync;
2303 sp->unsync = 1;
2305 kvm_mmu_mark_parents_unsync(sp);
2308 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2310 struct kvm_mmu_page *s;
2311 struct hlist_node *node;
2313 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2314 if (s->unsync)
2315 continue;
2316 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2317 __kvm_unsync_page(vcpu, s);
2321 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2322 bool can_unsync)
2324 struct kvm_mmu_page *s;
2325 struct hlist_node *node;
2326 bool need_unsync = false;
2328 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2329 if (!can_unsync)
2330 return 1;
2332 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333 return 1;
2335 if (!need_unsync && !s->unsync) {
2336 need_unsync = true;
2339 if (need_unsync)
2340 kvm_unsync_pages(vcpu, gfn);
2341 return 0;
2344 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2345 unsigned pte_access, int user_fault,
2346 int write_fault, int level,
2347 gfn_t gfn, pfn_t pfn, bool speculative,
2348 bool can_unsync, bool host_writable)
2350 u64 spte;
2351 int ret = 0;
2353 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2354 return 0;
2356 spte = PT_PRESENT_MASK;
2357 if (!speculative)
2358 spte |= shadow_accessed_mask;
2360 if (pte_access & ACC_EXEC_MASK)
2361 spte |= shadow_x_mask;
2362 else
2363 spte |= shadow_nx_mask;
2365 if (pte_access & ACC_USER_MASK)
2366 spte |= shadow_user_mask;
2368 if (level > PT_PAGE_TABLE_LEVEL)
2369 spte |= PT_PAGE_SIZE_MASK;
2370 if (tdp_enabled)
2371 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2372 kvm_is_mmio_pfn(pfn));
2374 if (host_writable)
2375 spte |= SPTE_HOST_WRITEABLE;
2376 else
2377 pte_access &= ~ACC_WRITE_MASK;
2379 spte |= (u64)pfn << PAGE_SHIFT;
2381 if ((pte_access & ACC_WRITE_MASK)
2382 || (!vcpu->arch.mmu.direct_map && write_fault
2383 && !is_write_protection(vcpu) && !user_fault)) {
2386 * There are two cases:
2387 * - the one is other vcpu creates new sp in the window
2388 * between mapping_level() and acquiring mmu-lock.
2389 * - the another case is the new sp is created by itself
2390 * (page-fault path) when guest uses the target gfn as
2391 * its page table.
2392 * Both of these cases can be fixed by allowing guest to
2393 * retry the access, it will refault, then we can establish
2394 * the mapping by using small page.
2396 if (level > PT_PAGE_TABLE_LEVEL &&
2397 has_wrprotected_page(vcpu->kvm, gfn, level))
2398 goto done;
2400 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2402 if (!vcpu->arch.mmu.direct_map
2403 && !(pte_access & ACC_WRITE_MASK)) {
2404 spte &= ~PT_USER_MASK;
2406 * If we converted a user page to a kernel page,
2407 * so that the kernel can write to it when cr0.wp=0,
2408 * then we should prevent the kernel from executing it
2409 * if SMEP is enabled.
2411 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2412 spte |= PT64_NX_MASK;
2416 * Optimization: for pte sync, if spte was writable the hash
2417 * lookup is unnecessary (and expensive). Write protection
2418 * is responsibility of mmu_get_page / kvm_sync_page.
2419 * Same reasoning can be applied to dirty page accounting.
2421 if (!can_unsync && is_writable_pte(*sptep))
2422 goto set_pte;
2424 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2425 pgprintk("%s: found shadow page for %llx, marking ro\n",
2426 __func__, gfn);
2427 ret = 1;
2428 pte_access &= ~ACC_WRITE_MASK;
2429 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2433 if (pte_access & ACC_WRITE_MASK)
2434 mark_page_dirty(vcpu->kvm, gfn);
2436 set_pte:
2437 if (mmu_spte_update(sptep, spte))
2438 kvm_flush_remote_tlbs(vcpu->kvm);
2439 done:
2440 return ret;
2443 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2444 unsigned pt_access, unsigned pte_access,
2445 int user_fault, int write_fault,
2446 int *emulate, int level, gfn_t gfn,
2447 pfn_t pfn, bool speculative,
2448 bool host_writable)
2450 int was_rmapped = 0;
2451 int rmap_count;
2453 pgprintk("%s: spte %llx access %x write_fault %d"
2454 " user_fault %d gfn %llx\n",
2455 __func__, *sptep, pt_access,
2456 write_fault, user_fault, gfn);
2458 if (is_rmap_spte(*sptep)) {
2460 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2461 * the parent of the now unreachable PTE.
2463 if (level > PT_PAGE_TABLE_LEVEL &&
2464 !is_large_pte(*sptep)) {
2465 struct kvm_mmu_page *child;
2466 u64 pte = *sptep;
2468 child = page_header(pte & PT64_BASE_ADDR_MASK);
2469 drop_parent_pte(child, sptep);
2470 kvm_flush_remote_tlbs(vcpu->kvm);
2471 } else if (pfn != spte_to_pfn(*sptep)) {
2472 pgprintk("hfn old %llx new %llx\n",
2473 spte_to_pfn(*sptep), pfn);
2474 drop_spte(vcpu->kvm, sptep);
2475 kvm_flush_remote_tlbs(vcpu->kvm);
2476 } else
2477 was_rmapped = 1;
2480 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2481 level, gfn, pfn, speculative, true,
2482 host_writable)) {
2483 if (write_fault)
2484 *emulate = 1;
2485 kvm_mmu_flush_tlb(vcpu);
2488 if (unlikely(is_mmio_spte(*sptep) && emulate))
2489 *emulate = 1;
2491 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2492 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2493 is_large_pte(*sptep)? "2MB" : "4kB",
2494 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2495 *sptep, sptep);
2496 if (!was_rmapped && is_large_pte(*sptep))
2497 ++vcpu->kvm->stat.lpages;
2499 if (is_shadow_present_pte(*sptep)) {
2500 page_header_update_slot(vcpu->kvm, sptep, gfn);
2501 if (!was_rmapped) {
2502 rmap_count = rmap_add(vcpu, sptep, gfn);
2503 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2504 rmap_recycle(vcpu, sptep, gfn);
2508 kvm_release_pfn_clean(pfn);
2511 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2513 mmu_free_roots(vcpu);
2516 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2518 int bit7;
2520 bit7 = (gpte >> 7) & 1;
2521 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2524 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2525 bool no_dirty_log)
2527 struct kvm_memory_slot *slot;
2529 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2530 if (!slot)
2531 return KVM_PFN_ERR_FAULT;
2533 return gfn_to_pfn_memslot_atomic(slot, gfn);
2536 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2537 struct kvm_mmu_page *sp, u64 *spte,
2538 u64 gpte)
2540 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2541 goto no_present;
2543 if (!is_present_gpte(gpte))
2544 goto no_present;
2546 if (!(gpte & PT_ACCESSED_MASK))
2547 goto no_present;
2549 return false;
2551 no_present:
2552 drop_spte(vcpu->kvm, spte);
2553 return true;
2556 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2557 struct kvm_mmu_page *sp,
2558 u64 *start, u64 *end)
2560 struct page *pages[PTE_PREFETCH_NUM];
2561 unsigned access = sp->role.access;
2562 int i, ret;
2563 gfn_t gfn;
2565 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2566 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2567 return -1;
2569 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2570 if (ret <= 0)
2571 return -1;
2573 for (i = 0; i < ret; i++, gfn++, start++)
2574 mmu_set_spte(vcpu, start, ACC_ALL,
2575 access, 0, 0, NULL,
2576 sp->role.level, gfn,
2577 page_to_pfn(pages[i]), true, true);
2579 return 0;
2582 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2583 struct kvm_mmu_page *sp, u64 *sptep)
2585 u64 *spte, *start = NULL;
2586 int i;
2588 WARN_ON(!sp->role.direct);
2590 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2591 spte = sp->spt + i;
2593 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2594 if (is_shadow_present_pte(*spte) || spte == sptep) {
2595 if (!start)
2596 continue;
2597 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2598 break;
2599 start = NULL;
2600 } else if (!start)
2601 start = spte;
2605 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2607 struct kvm_mmu_page *sp;
2610 * Since it's no accessed bit on EPT, it's no way to
2611 * distinguish between actually accessed translations
2612 * and prefetched, so disable pte prefetch if EPT is
2613 * enabled.
2615 if (!shadow_accessed_mask)
2616 return;
2618 sp = page_header(__pa(sptep));
2619 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2620 return;
2622 __direct_pte_prefetch(vcpu, sp, sptep);
2625 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2626 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2627 bool prefault)
2629 struct kvm_shadow_walk_iterator iterator;
2630 struct kvm_mmu_page *sp;
2631 int emulate = 0;
2632 gfn_t pseudo_gfn;
2634 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2635 if (iterator.level == level) {
2636 unsigned pte_access = ACC_ALL;
2638 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2639 0, write, &emulate,
2640 level, gfn, pfn, prefault, map_writable);
2641 direct_pte_prefetch(vcpu, iterator.sptep);
2642 ++vcpu->stat.pf_fixed;
2643 break;
2646 if (!is_shadow_present_pte(*iterator.sptep)) {
2647 u64 base_addr = iterator.addr;
2649 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2650 pseudo_gfn = base_addr >> PAGE_SHIFT;
2651 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2652 iterator.level - 1,
2653 1, ACC_ALL, iterator.sptep);
2655 mmu_spte_set(iterator.sptep,
2656 __pa(sp->spt)
2657 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2658 | shadow_user_mask | shadow_x_mask
2659 | shadow_accessed_mask);
2662 return emulate;
2665 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2667 siginfo_t info;
2669 info.si_signo = SIGBUS;
2670 info.si_errno = 0;
2671 info.si_code = BUS_MCEERR_AR;
2672 info.si_addr = (void __user *)address;
2673 info.si_addr_lsb = PAGE_SHIFT;
2675 send_sig_info(SIGBUS, &info, tsk);
2678 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2681 * Do not cache the mmio info caused by writing the readonly gfn
2682 * into the spte otherwise read access on readonly gfn also can
2683 * caused mmio page fault and treat it as mmio access.
2684 * Return 1 to tell kvm to emulate it.
2686 if (pfn == KVM_PFN_ERR_RO_FAULT)
2687 return 1;
2689 if (pfn == KVM_PFN_ERR_HWPOISON) {
2690 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2691 return 0;
2694 return -EFAULT;
2697 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2698 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2700 pfn_t pfn = *pfnp;
2701 gfn_t gfn = *gfnp;
2702 int level = *levelp;
2705 * Check if it's a transparent hugepage. If this would be an
2706 * hugetlbfs page, level wouldn't be set to
2707 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2708 * here.
2710 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2711 level == PT_PAGE_TABLE_LEVEL &&
2712 PageTransCompound(pfn_to_page(pfn)) &&
2713 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2714 unsigned long mask;
2716 * mmu_notifier_retry was successful and we hold the
2717 * mmu_lock here, so the pmd can't become splitting
2718 * from under us, and in turn
2719 * __split_huge_page_refcount() can't run from under
2720 * us and we can safely transfer the refcount from
2721 * PG_tail to PG_head as we switch the pfn to tail to
2722 * head.
2724 *levelp = level = PT_DIRECTORY_LEVEL;
2725 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2726 VM_BUG_ON((gfn & mask) != (pfn & mask));
2727 if (pfn & mask) {
2728 gfn &= ~mask;
2729 *gfnp = gfn;
2730 kvm_release_pfn_clean(pfn);
2731 pfn &= ~mask;
2732 kvm_get_pfn(pfn);
2733 *pfnp = pfn;
2738 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2739 pfn_t pfn, unsigned access, int *ret_val)
2741 bool ret = true;
2743 /* The pfn is invalid, report the error! */
2744 if (unlikely(is_error_pfn(pfn))) {
2745 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2746 goto exit;
2749 if (unlikely(is_noslot_pfn(pfn)))
2750 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2752 ret = false;
2753 exit:
2754 return ret;
2757 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2760 * #PF can be fast only if the shadow page table is present and it
2761 * is caused by write-protect, that means we just need change the
2762 * W bit of the spte which can be done out of mmu-lock.
2764 if (!(error_code & PFERR_PRESENT_MASK) ||
2765 !(error_code & PFERR_WRITE_MASK))
2766 return false;
2768 return true;
2771 static bool
2772 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2774 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2775 gfn_t gfn;
2777 WARN_ON(!sp->role.direct);
2780 * The gfn of direct spte is stable since it is calculated
2781 * by sp->gfn.
2783 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2785 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2786 mark_page_dirty(vcpu->kvm, gfn);
2788 return true;
2792 * Return value:
2793 * - true: let the vcpu to access on the same address again.
2794 * - false: let the real page fault path to fix it.
2796 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2797 u32 error_code)
2799 struct kvm_shadow_walk_iterator iterator;
2800 bool ret = false;
2801 u64 spte = 0ull;
2803 if (!page_fault_can_be_fast(vcpu, error_code))
2804 return false;
2806 walk_shadow_page_lockless_begin(vcpu);
2807 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2808 if (!is_shadow_present_pte(spte) || iterator.level < level)
2809 break;
2812 * If the mapping has been changed, let the vcpu fault on the
2813 * same address again.
2815 if (!is_rmap_spte(spte)) {
2816 ret = true;
2817 goto exit;
2820 if (!is_last_spte(spte, level))
2821 goto exit;
2824 * Check if it is a spurious fault caused by TLB lazily flushed.
2826 * Need not check the access of upper level table entries since
2827 * they are always ACC_ALL.
2829 if (is_writable_pte(spte)) {
2830 ret = true;
2831 goto exit;
2835 * Currently, to simplify the code, only the spte write-protected
2836 * by dirty-log can be fast fixed.
2838 if (!spte_is_locklessly_modifiable(spte))
2839 goto exit;
2842 * Currently, fast page fault only works for direct mapping since
2843 * the gfn is not stable for indirect shadow page.
2844 * See Documentation/virtual/kvm/locking.txt to get more detail.
2846 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2847 exit:
2848 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2849 spte, ret);
2850 walk_shadow_page_lockless_end(vcpu);
2852 return ret;
2855 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2856 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2858 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2859 gfn_t gfn, bool prefault)
2861 int r;
2862 int level;
2863 int force_pt_level;
2864 pfn_t pfn;
2865 unsigned long mmu_seq;
2866 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2868 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2869 if (likely(!force_pt_level)) {
2870 level = mapping_level(vcpu, gfn);
2872 * This path builds a PAE pagetable - so we can map
2873 * 2mb pages at maximum. Therefore check if the level
2874 * is larger than that.
2876 if (level > PT_DIRECTORY_LEVEL)
2877 level = PT_DIRECTORY_LEVEL;
2879 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2880 } else
2881 level = PT_PAGE_TABLE_LEVEL;
2883 if (fast_page_fault(vcpu, v, level, error_code))
2884 return 0;
2886 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2887 smp_rmb();
2889 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2890 return 0;
2892 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2893 return r;
2895 spin_lock(&vcpu->kvm->mmu_lock);
2896 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2897 goto out_unlock;
2898 kvm_mmu_free_some_pages(vcpu);
2899 if (likely(!force_pt_level))
2900 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2901 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2902 prefault);
2903 spin_unlock(&vcpu->kvm->mmu_lock);
2906 return r;
2908 out_unlock:
2909 spin_unlock(&vcpu->kvm->mmu_lock);
2910 kvm_release_pfn_clean(pfn);
2911 return 0;
2915 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2917 int i;
2918 struct kvm_mmu_page *sp;
2919 LIST_HEAD(invalid_list);
2921 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2922 return;
2923 spin_lock(&vcpu->kvm->mmu_lock);
2924 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2925 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2926 vcpu->arch.mmu.direct_map)) {
2927 hpa_t root = vcpu->arch.mmu.root_hpa;
2929 sp = page_header(root);
2930 --sp->root_count;
2931 if (!sp->root_count && sp->role.invalid) {
2932 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2933 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2935 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2936 spin_unlock(&vcpu->kvm->mmu_lock);
2937 return;
2939 for (i = 0; i < 4; ++i) {
2940 hpa_t root = vcpu->arch.mmu.pae_root[i];
2942 if (root) {
2943 root &= PT64_BASE_ADDR_MASK;
2944 sp = page_header(root);
2945 --sp->root_count;
2946 if (!sp->root_count && sp->role.invalid)
2947 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2948 &invalid_list);
2950 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2952 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2953 spin_unlock(&vcpu->kvm->mmu_lock);
2954 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2957 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2959 int ret = 0;
2961 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2962 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2963 ret = 1;
2966 return ret;
2969 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2971 struct kvm_mmu_page *sp;
2972 unsigned i;
2974 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2975 spin_lock(&vcpu->kvm->mmu_lock);
2976 kvm_mmu_free_some_pages(vcpu);
2977 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2978 1, ACC_ALL, NULL);
2979 ++sp->root_count;
2980 spin_unlock(&vcpu->kvm->mmu_lock);
2981 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2982 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2983 for (i = 0; i < 4; ++i) {
2984 hpa_t root = vcpu->arch.mmu.pae_root[i];
2986 ASSERT(!VALID_PAGE(root));
2987 spin_lock(&vcpu->kvm->mmu_lock);
2988 kvm_mmu_free_some_pages(vcpu);
2989 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2990 i << 30,
2991 PT32_ROOT_LEVEL, 1, ACC_ALL,
2992 NULL);
2993 root = __pa(sp->spt);
2994 ++sp->root_count;
2995 spin_unlock(&vcpu->kvm->mmu_lock);
2996 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2998 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2999 } else
3000 BUG();
3002 return 0;
3005 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3007 struct kvm_mmu_page *sp;
3008 u64 pdptr, pm_mask;
3009 gfn_t root_gfn;
3010 int i;
3012 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3014 if (mmu_check_root(vcpu, root_gfn))
3015 return 1;
3018 * Do we shadow a long mode page table? If so we need to
3019 * write-protect the guests page table root.
3021 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3022 hpa_t root = vcpu->arch.mmu.root_hpa;
3024 ASSERT(!VALID_PAGE(root));
3026 spin_lock(&vcpu->kvm->mmu_lock);
3027 kvm_mmu_free_some_pages(vcpu);
3028 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3029 0, ACC_ALL, NULL);
3030 root = __pa(sp->spt);
3031 ++sp->root_count;
3032 spin_unlock(&vcpu->kvm->mmu_lock);
3033 vcpu->arch.mmu.root_hpa = root;
3034 return 0;
3038 * We shadow a 32 bit page table. This may be a legacy 2-level
3039 * or a PAE 3-level page table. In either case we need to be aware that
3040 * the shadow page table may be a PAE or a long mode page table.
3042 pm_mask = PT_PRESENT_MASK;
3043 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3044 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3046 for (i = 0; i < 4; ++i) {
3047 hpa_t root = vcpu->arch.mmu.pae_root[i];
3049 ASSERT(!VALID_PAGE(root));
3050 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3051 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3052 if (!is_present_gpte(pdptr)) {
3053 vcpu->arch.mmu.pae_root[i] = 0;
3054 continue;
3056 root_gfn = pdptr >> PAGE_SHIFT;
3057 if (mmu_check_root(vcpu, root_gfn))
3058 return 1;
3060 spin_lock(&vcpu->kvm->mmu_lock);
3061 kvm_mmu_free_some_pages(vcpu);
3062 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3063 PT32_ROOT_LEVEL, 0,
3064 ACC_ALL, NULL);
3065 root = __pa(sp->spt);
3066 ++sp->root_count;
3067 spin_unlock(&vcpu->kvm->mmu_lock);
3069 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3071 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3074 * If we shadow a 32 bit page table with a long mode page
3075 * table we enter this path.
3077 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3078 if (vcpu->arch.mmu.lm_root == NULL) {
3080 * The additional page necessary for this is only
3081 * allocated on demand.
3084 u64 *lm_root;
3086 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3087 if (lm_root == NULL)
3088 return 1;
3090 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3092 vcpu->arch.mmu.lm_root = lm_root;
3095 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3098 return 0;
3101 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3103 if (vcpu->arch.mmu.direct_map)
3104 return mmu_alloc_direct_roots(vcpu);
3105 else
3106 return mmu_alloc_shadow_roots(vcpu);
3109 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3111 int i;
3112 struct kvm_mmu_page *sp;
3114 if (vcpu->arch.mmu.direct_map)
3115 return;
3117 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3118 return;
3120 vcpu_clear_mmio_info(vcpu, ~0ul);
3121 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3122 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3123 hpa_t root = vcpu->arch.mmu.root_hpa;
3124 sp = page_header(root);
3125 mmu_sync_children(vcpu, sp);
3126 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3127 return;
3129 for (i = 0; i < 4; ++i) {
3130 hpa_t root = vcpu->arch.mmu.pae_root[i];
3132 if (root && VALID_PAGE(root)) {
3133 root &= PT64_BASE_ADDR_MASK;
3134 sp = page_header(root);
3135 mmu_sync_children(vcpu, sp);
3138 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3141 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3143 spin_lock(&vcpu->kvm->mmu_lock);
3144 mmu_sync_roots(vcpu);
3145 spin_unlock(&vcpu->kvm->mmu_lock);
3148 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3149 u32 access, struct x86_exception *exception)
3151 if (exception)
3152 exception->error_code = 0;
3153 return vaddr;
3156 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3157 u32 access,
3158 struct x86_exception *exception)
3160 if (exception)
3161 exception->error_code = 0;
3162 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3165 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3167 if (direct)
3168 return vcpu_match_mmio_gpa(vcpu, addr);
3170 return vcpu_match_mmio_gva(vcpu, addr);
3175 * On direct hosts, the last spte is only allows two states
3176 * for mmio page fault:
3177 * - It is the mmio spte
3178 * - It is zapped or it is being zapped.
3180 * This function completely checks the spte when the last spte
3181 * is not the mmio spte.
3183 static bool check_direct_spte_mmio_pf(u64 spte)
3185 return __check_direct_spte_mmio_pf(spte);
3188 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3190 struct kvm_shadow_walk_iterator iterator;
3191 u64 spte = 0ull;
3193 walk_shadow_page_lockless_begin(vcpu);
3194 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3195 if (!is_shadow_present_pte(spte))
3196 break;
3197 walk_shadow_page_lockless_end(vcpu);
3199 return spte;
3203 * If it is a real mmio page fault, return 1 and emulat the instruction
3204 * directly, return 0 to let CPU fault again on the address, -1 is
3205 * returned if bug is detected.
3207 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3209 u64 spte;
3211 if (quickly_check_mmio_pf(vcpu, addr, direct))
3212 return 1;
3214 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3216 if (is_mmio_spte(spte)) {
3217 gfn_t gfn = get_mmio_spte_gfn(spte);
3218 unsigned access = get_mmio_spte_access(spte);
3220 if (direct)
3221 addr = 0;
3223 trace_handle_mmio_page_fault(addr, gfn, access);
3224 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3225 return 1;
3229 * It's ok if the gva is remapped by other cpus on shadow guest,
3230 * it's a BUG if the gfn is not a mmio page.
3232 if (direct && !check_direct_spte_mmio_pf(spte))
3233 return -1;
3236 * If the page table is zapped by other cpus, let CPU fault again on
3237 * the address.
3239 return 0;
3241 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3243 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3244 u32 error_code, bool direct)
3246 int ret;
3248 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3249 WARN_ON(ret < 0);
3250 return ret;
3253 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3254 u32 error_code, bool prefault)
3256 gfn_t gfn;
3257 int r;
3259 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3261 if (unlikely(error_code & PFERR_RSVD_MASK))
3262 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3264 r = mmu_topup_memory_caches(vcpu);
3265 if (r)
3266 return r;
3268 ASSERT(vcpu);
3269 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3271 gfn = gva >> PAGE_SHIFT;
3273 return nonpaging_map(vcpu, gva & PAGE_MASK,
3274 error_code, gfn, prefault);
3277 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3279 struct kvm_arch_async_pf arch;
3281 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3282 arch.gfn = gfn;
3283 arch.direct_map = vcpu->arch.mmu.direct_map;
3284 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3286 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3289 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3291 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3292 kvm_event_needs_reinjection(vcpu)))
3293 return false;
3295 return kvm_x86_ops->interrupt_allowed(vcpu);
3298 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3299 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3301 bool async;
3303 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3305 if (!async)
3306 return false; /* *pfn has correct page already */
3308 if (!prefault && can_do_async_pf(vcpu)) {
3309 trace_kvm_try_async_get_page(gva, gfn);
3310 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3311 trace_kvm_async_pf_doublefault(gva, gfn);
3312 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3313 return true;
3314 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3315 return true;
3318 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3320 return false;
3323 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3324 bool prefault)
3326 pfn_t pfn;
3327 int r;
3328 int level;
3329 int force_pt_level;
3330 gfn_t gfn = gpa >> PAGE_SHIFT;
3331 unsigned long mmu_seq;
3332 int write = error_code & PFERR_WRITE_MASK;
3333 bool map_writable;
3335 ASSERT(vcpu);
3336 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3338 if (unlikely(error_code & PFERR_RSVD_MASK))
3339 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3341 r = mmu_topup_memory_caches(vcpu);
3342 if (r)
3343 return r;
3345 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3346 if (likely(!force_pt_level)) {
3347 level = mapping_level(vcpu, gfn);
3348 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3349 } else
3350 level = PT_PAGE_TABLE_LEVEL;
3352 if (fast_page_fault(vcpu, gpa, level, error_code))
3353 return 0;
3355 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3356 smp_rmb();
3358 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3359 return 0;
3361 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3362 return r;
3364 spin_lock(&vcpu->kvm->mmu_lock);
3365 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3366 goto out_unlock;
3367 kvm_mmu_free_some_pages(vcpu);
3368 if (likely(!force_pt_level))
3369 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3370 r = __direct_map(vcpu, gpa, write, map_writable,
3371 level, gfn, pfn, prefault);
3372 spin_unlock(&vcpu->kvm->mmu_lock);
3374 return r;
3376 out_unlock:
3377 spin_unlock(&vcpu->kvm->mmu_lock);
3378 kvm_release_pfn_clean(pfn);
3379 return 0;
3382 static void nonpaging_free(struct kvm_vcpu *vcpu)
3384 mmu_free_roots(vcpu);
3387 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3388 struct kvm_mmu *context)
3390 context->new_cr3 = nonpaging_new_cr3;
3391 context->page_fault = nonpaging_page_fault;
3392 context->gva_to_gpa = nonpaging_gva_to_gpa;
3393 context->free = nonpaging_free;
3394 context->sync_page = nonpaging_sync_page;
3395 context->invlpg = nonpaging_invlpg;
3396 context->update_pte = nonpaging_update_pte;
3397 context->root_level = 0;
3398 context->shadow_root_level = PT32E_ROOT_LEVEL;
3399 context->root_hpa = INVALID_PAGE;
3400 context->direct_map = true;
3401 context->nx = false;
3402 return 0;
3405 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3407 ++vcpu->stat.tlb_flush;
3408 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3411 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3413 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3414 mmu_free_roots(vcpu);
3417 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3419 return kvm_read_cr3(vcpu);
3422 static void inject_page_fault(struct kvm_vcpu *vcpu,
3423 struct x86_exception *fault)
3425 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3428 static void paging_free(struct kvm_vcpu *vcpu)
3430 nonpaging_free(vcpu);
3433 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3435 unsigned mask;
3437 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3439 mask = (unsigned)~ACC_WRITE_MASK;
3440 /* Allow write access to dirty gptes */
3441 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3442 *access &= mask;
3445 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3446 int *nr_present)
3448 if (unlikely(is_mmio_spte(*sptep))) {
3449 if (gfn != get_mmio_spte_gfn(*sptep)) {
3450 mmu_spte_clear_no_track(sptep);
3451 return true;
3454 (*nr_present)++;
3455 mark_mmio_spte(sptep, gfn, access);
3456 return true;
3459 return false;
3462 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3464 unsigned access;
3466 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3467 access &= ~(gpte >> PT64_NX_SHIFT);
3469 return access;
3472 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3474 unsigned index;
3476 index = level - 1;
3477 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3478 return mmu->last_pte_bitmap & (1 << index);
3481 #define PTTYPE 64
3482 #include "paging_tmpl.h"
3483 #undef PTTYPE
3485 #define PTTYPE 32
3486 #include "paging_tmpl.h"
3487 #undef PTTYPE
3489 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3490 struct kvm_mmu *context)
3492 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3493 u64 exb_bit_rsvd = 0;
3495 if (!context->nx)
3496 exb_bit_rsvd = rsvd_bits(63, 63);
3497 switch (context->root_level) {
3498 case PT32_ROOT_LEVEL:
3499 /* no rsvd bits for 2 level 4K page table entries */
3500 context->rsvd_bits_mask[0][1] = 0;
3501 context->rsvd_bits_mask[0][0] = 0;
3502 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3504 if (!is_pse(vcpu)) {
3505 context->rsvd_bits_mask[1][1] = 0;
3506 break;
3509 if (is_cpuid_PSE36())
3510 /* 36bits PSE 4MB page */
3511 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3512 else
3513 /* 32 bits PSE 4MB page */
3514 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3515 break;
3516 case PT32E_ROOT_LEVEL:
3517 context->rsvd_bits_mask[0][2] =
3518 rsvd_bits(maxphyaddr, 63) |
3519 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3520 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3521 rsvd_bits(maxphyaddr, 62); /* PDE */
3522 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3523 rsvd_bits(maxphyaddr, 62); /* PTE */
3524 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3525 rsvd_bits(maxphyaddr, 62) |
3526 rsvd_bits(13, 20); /* large page */
3527 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3528 break;
3529 case PT64_ROOT_LEVEL:
3530 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3531 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3532 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3533 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3534 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3535 rsvd_bits(maxphyaddr, 51);
3536 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3537 rsvd_bits(maxphyaddr, 51);
3538 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3539 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3540 rsvd_bits(maxphyaddr, 51) |
3541 rsvd_bits(13, 29);
3542 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3543 rsvd_bits(maxphyaddr, 51) |
3544 rsvd_bits(13, 20); /* large page */
3545 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3546 break;
3550 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3552 unsigned bit, byte, pfec;
3553 u8 map;
3554 bool fault, x, w, u, wf, uf, ff, smep;
3556 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3557 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3558 pfec = byte << 1;
3559 map = 0;
3560 wf = pfec & PFERR_WRITE_MASK;
3561 uf = pfec & PFERR_USER_MASK;
3562 ff = pfec & PFERR_FETCH_MASK;
3563 for (bit = 0; bit < 8; ++bit) {
3564 x = bit & ACC_EXEC_MASK;
3565 w = bit & ACC_WRITE_MASK;
3566 u = bit & ACC_USER_MASK;
3568 /* Not really needed: !nx will cause pte.nx to fault */
3569 x |= !mmu->nx;
3570 /* Allow supervisor writes if !cr0.wp */
3571 w |= !is_write_protection(vcpu) && !uf;
3572 /* Disallow supervisor fetches of user code if cr4.smep */
3573 x &= !(smep && u && !uf);
3575 fault = (ff && !x) || (uf && !u) || (wf && !w);
3576 map |= fault << bit;
3578 mmu->permissions[byte] = map;
3582 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3584 u8 map;
3585 unsigned level, root_level = mmu->root_level;
3586 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3588 if (root_level == PT32E_ROOT_LEVEL)
3589 --root_level;
3590 /* PT_PAGE_TABLE_LEVEL always terminates */
3591 map = 1 | (1 << ps_set_index);
3592 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3593 if (level <= PT_PDPE_LEVEL
3594 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3595 map |= 1 << (ps_set_index | (level - 1));
3597 mmu->last_pte_bitmap = map;
3600 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3601 struct kvm_mmu *context,
3602 int level)
3604 context->nx = is_nx(vcpu);
3605 context->root_level = level;
3607 reset_rsvds_bits_mask(vcpu, context);
3608 update_permission_bitmask(vcpu, context);
3609 update_last_pte_bitmap(vcpu, context);
3611 ASSERT(is_pae(vcpu));
3612 context->new_cr3 = paging_new_cr3;
3613 context->page_fault = paging64_page_fault;
3614 context->gva_to_gpa = paging64_gva_to_gpa;
3615 context->sync_page = paging64_sync_page;
3616 context->invlpg = paging64_invlpg;
3617 context->update_pte = paging64_update_pte;
3618 context->free = paging_free;
3619 context->shadow_root_level = level;
3620 context->root_hpa = INVALID_PAGE;
3621 context->direct_map = false;
3622 return 0;
3625 static int paging64_init_context(struct kvm_vcpu *vcpu,
3626 struct kvm_mmu *context)
3628 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3631 static int paging32_init_context(struct kvm_vcpu *vcpu,
3632 struct kvm_mmu *context)
3634 context->nx = false;
3635 context->root_level = PT32_ROOT_LEVEL;
3637 reset_rsvds_bits_mask(vcpu, context);
3638 update_permission_bitmask(vcpu, context);
3639 update_last_pte_bitmap(vcpu, context);
3641 context->new_cr3 = paging_new_cr3;
3642 context->page_fault = paging32_page_fault;
3643 context->gva_to_gpa = paging32_gva_to_gpa;
3644 context->free = paging_free;
3645 context->sync_page = paging32_sync_page;
3646 context->invlpg = paging32_invlpg;
3647 context->update_pte = paging32_update_pte;
3648 context->shadow_root_level = PT32E_ROOT_LEVEL;
3649 context->root_hpa = INVALID_PAGE;
3650 context->direct_map = false;
3651 return 0;
3654 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3655 struct kvm_mmu *context)
3657 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3660 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3662 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3664 context->base_role.word = 0;
3665 context->new_cr3 = nonpaging_new_cr3;
3666 context->page_fault = tdp_page_fault;
3667 context->free = nonpaging_free;
3668 context->sync_page = nonpaging_sync_page;
3669 context->invlpg = nonpaging_invlpg;
3670 context->update_pte = nonpaging_update_pte;
3671 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3672 context->root_hpa = INVALID_PAGE;
3673 context->direct_map = true;
3674 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3675 context->get_cr3 = get_cr3;
3676 context->get_pdptr = kvm_pdptr_read;
3677 context->inject_page_fault = kvm_inject_page_fault;
3679 if (!is_paging(vcpu)) {
3680 context->nx = false;
3681 context->gva_to_gpa = nonpaging_gva_to_gpa;
3682 context->root_level = 0;
3683 } else if (is_long_mode(vcpu)) {
3684 context->nx = is_nx(vcpu);
3685 context->root_level = PT64_ROOT_LEVEL;
3686 reset_rsvds_bits_mask(vcpu, context);
3687 context->gva_to_gpa = paging64_gva_to_gpa;
3688 } else if (is_pae(vcpu)) {
3689 context->nx = is_nx(vcpu);
3690 context->root_level = PT32E_ROOT_LEVEL;
3691 reset_rsvds_bits_mask(vcpu, context);
3692 context->gva_to_gpa = paging64_gva_to_gpa;
3693 } else {
3694 context->nx = false;
3695 context->root_level = PT32_ROOT_LEVEL;
3696 reset_rsvds_bits_mask(vcpu, context);
3697 context->gva_to_gpa = paging32_gva_to_gpa;
3700 update_permission_bitmask(vcpu, context);
3701 update_last_pte_bitmap(vcpu, context);
3703 return 0;
3706 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3708 int r;
3709 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3710 ASSERT(vcpu);
3711 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3713 if (!is_paging(vcpu))
3714 r = nonpaging_init_context(vcpu, context);
3715 else if (is_long_mode(vcpu))
3716 r = paging64_init_context(vcpu, context);
3717 else if (is_pae(vcpu))
3718 r = paging32E_init_context(vcpu, context);
3719 else
3720 r = paging32_init_context(vcpu, context);
3722 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3723 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3724 vcpu->arch.mmu.base_role.smep_andnot_wp
3725 = smep && !is_write_protection(vcpu);
3727 return r;
3729 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3731 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3733 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3735 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3736 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3737 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3738 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3740 return r;
3743 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3745 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3747 g_context->get_cr3 = get_cr3;
3748 g_context->get_pdptr = kvm_pdptr_read;
3749 g_context->inject_page_fault = kvm_inject_page_fault;
3752 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3753 * translation of l2_gpa to l1_gpa addresses is done using the
3754 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3755 * functions between mmu and nested_mmu are swapped.
3757 if (!is_paging(vcpu)) {
3758 g_context->nx = false;
3759 g_context->root_level = 0;
3760 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3761 } else if (is_long_mode(vcpu)) {
3762 g_context->nx = is_nx(vcpu);
3763 g_context->root_level = PT64_ROOT_LEVEL;
3764 reset_rsvds_bits_mask(vcpu, g_context);
3765 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3766 } else if (is_pae(vcpu)) {
3767 g_context->nx = is_nx(vcpu);
3768 g_context->root_level = PT32E_ROOT_LEVEL;
3769 reset_rsvds_bits_mask(vcpu, g_context);
3770 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3771 } else {
3772 g_context->nx = false;
3773 g_context->root_level = PT32_ROOT_LEVEL;
3774 reset_rsvds_bits_mask(vcpu, g_context);
3775 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3778 update_permission_bitmask(vcpu, g_context);
3779 update_last_pte_bitmap(vcpu, g_context);
3781 return 0;
3784 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3786 if (mmu_is_nested(vcpu))
3787 return init_kvm_nested_mmu(vcpu);
3788 else if (tdp_enabled)
3789 return init_kvm_tdp_mmu(vcpu);
3790 else
3791 return init_kvm_softmmu(vcpu);
3794 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3796 ASSERT(vcpu);
3797 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3798 /* mmu.free() should set root_hpa = INVALID_PAGE */
3799 vcpu->arch.mmu.free(vcpu);
3802 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3804 destroy_kvm_mmu(vcpu);
3805 return init_kvm_mmu(vcpu);
3807 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3809 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3811 int r;
3813 r = mmu_topup_memory_caches(vcpu);
3814 if (r)
3815 goto out;
3816 r = mmu_alloc_roots(vcpu);
3817 spin_lock(&vcpu->kvm->mmu_lock);
3818 mmu_sync_roots(vcpu);
3819 spin_unlock(&vcpu->kvm->mmu_lock);
3820 if (r)
3821 goto out;
3822 /* set_cr3() should ensure TLB has been flushed */
3823 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3824 out:
3825 return r;
3827 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3829 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3831 mmu_free_roots(vcpu);
3833 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3835 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3836 struct kvm_mmu_page *sp, u64 *spte,
3837 const void *new)
3839 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3840 ++vcpu->kvm->stat.mmu_pde_zapped;
3841 return;
3844 ++vcpu->kvm->stat.mmu_pte_updated;
3845 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3848 static bool need_remote_flush(u64 old, u64 new)
3850 if (!is_shadow_present_pte(old))
3851 return false;
3852 if (!is_shadow_present_pte(new))
3853 return true;
3854 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3855 return true;
3856 old ^= PT64_NX_MASK;
3857 new ^= PT64_NX_MASK;
3858 return (old & ~new & PT64_PERM_MASK) != 0;
3861 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3862 bool remote_flush, bool local_flush)
3864 if (zap_page)
3865 return;
3867 if (remote_flush)
3868 kvm_flush_remote_tlbs(vcpu->kvm);
3869 else if (local_flush)
3870 kvm_mmu_flush_tlb(vcpu);
3873 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3874 const u8 *new, int *bytes)
3876 u64 gentry;
3877 int r;
3880 * Assume that the pte write on a page table of the same type
3881 * as the current vcpu paging mode since we update the sptes only
3882 * when they have the same mode.
3884 if (is_pae(vcpu) && *bytes == 4) {
3885 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3886 *gpa &= ~(gpa_t)7;
3887 *bytes = 8;
3888 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3889 if (r)
3890 gentry = 0;
3891 new = (const u8 *)&gentry;
3894 switch (*bytes) {
3895 case 4:
3896 gentry = *(const u32 *)new;
3897 break;
3898 case 8:
3899 gentry = *(const u64 *)new;
3900 break;
3901 default:
3902 gentry = 0;
3903 break;
3906 return gentry;
3910 * If we're seeing too many writes to a page, it may no longer be a page table,
3911 * or we may be forking, in which case it is better to unmap the page.
3913 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3916 * Skip write-flooding detected for the sp whose level is 1, because
3917 * it can become unsync, then the guest page is not write-protected.
3919 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3920 return false;
3922 return ++sp->write_flooding_count >= 3;
3926 * Misaligned accesses are too much trouble to fix up; also, they usually
3927 * indicate a page is not used as a page table.
3929 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3930 int bytes)
3932 unsigned offset, pte_size, misaligned;
3934 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3935 gpa, bytes, sp->role.word);
3937 offset = offset_in_page(gpa);
3938 pte_size = sp->role.cr4_pae ? 8 : 4;
3941 * Sometimes, the OS only writes the last one bytes to update status
3942 * bits, for example, in linux, andb instruction is used in clear_bit().
3944 if (!(offset & (pte_size - 1)) && bytes == 1)
3945 return false;
3947 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3948 misaligned |= bytes < 4;
3950 return misaligned;
3953 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3955 unsigned page_offset, quadrant;
3956 u64 *spte;
3957 int level;
3959 page_offset = offset_in_page(gpa);
3960 level = sp->role.level;
3961 *nspte = 1;
3962 if (!sp->role.cr4_pae) {
3963 page_offset <<= 1; /* 32->64 */
3965 * A 32-bit pde maps 4MB while the shadow pdes map
3966 * only 2MB. So we need to double the offset again
3967 * and zap two pdes instead of one.
3969 if (level == PT32_ROOT_LEVEL) {
3970 page_offset &= ~7; /* kill rounding error */
3971 page_offset <<= 1;
3972 *nspte = 2;
3974 quadrant = page_offset >> PAGE_SHIFT;
3975 page_offset &= ~PAGE_MASK;
3976 if (quadrant != sp->role.quadrant)
3977 return NULL;
3980 spte = &sp->spt[page_offset / sizeof(*spte)];
3981 return spte;
3984 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3985 const u8 *new, int bytes)
3987 gfn_t gfn = gpa >> PAGE_SHIFT;
3988 union kvm_mmu_page_role mask = { .word = 0 };
3989 struct kvm_mmu_page *sp;
3990 struct hlist_node *node;
3991 LIST_HEAD(invalid_list);
3992 u64 entry, gentry, *spte;
3993 int npte;
3994 bool remote_flush, local_flush, zap_page;
3997 * If we don't have indirect shadow pages, it means no page is
3998 * write-protected, so we can exit simply.
4000 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4001 return;
4003 zap_page = remote_flush = local_flush = false;
4005 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4007 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4010 * No need to care whether allocation memory is successful
4011 * or not since pte prefetch is skiped if it does not have
4012 * enough objects in the cache.
4014 mmu_topup_memory_caches(vcpu);
4016 spin_lock(&vcpu->kvm->mmu_lock);
4017 ++vcpu->kvm->stat.mmu_pte_write;
4018 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4020 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4021 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
4022 if (detect_write_misaligned(sp, gpa, bytes) ||
4023 detect_write_flooding(sp)) {
4024 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4025 &invalid_list);
4026 ++vcpu->kvm->stat.mmu_flooded;
4027 continue;
4030 spte = get_written_sptes(sp, gpa, &npte);
4031 if (!spte)
4032 continue;
4034 local_flush = true;
4035 while (npte--) {
4036 entry = *spte;
4037 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4038 if (gentry &&
4039 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4040 & mask.word) && rmap_can_add(vcpu))
4041 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4042 if (!remote_flush && need_remote_flush(entry, *spte))
4043 remote_flush = true;
4044 ++spte;
4047 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4048 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4049 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4050 spin_unlock(&vcpu->kvm->mmu_lock);
4053 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4055 gpa_t gpa;
4056 int r;
4058 if (vcpu->arch.mmu.direct_map)
4059 return 0;
4061 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4063 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4065 return r;
4067 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4069 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4071 LIST_HEAD(invalid_list);
4073 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4074 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4075 struct kvm_mmu_page *sp;
4077 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4078 struct kvm_mmu_page, link);
4079 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4080 ++vcpu->kvm->stat.mmu_recycled;
4082 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4085 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4087 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4088 return vcpu_match_mmio_gpa(vcpu, addr);
4090 return vcpu_match_mmio_gva(vcpu, addr);
4093 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4094 void *insn, int insn_len)
4096 int r, emulation_type = EMULTYPE_RETRY;
4097 enum emulation_result er;
4099 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4100 if (r < 0)
4101 goto out;
4103 if (!r) {
4104 r = 1;
4105 goto out;
4108 if (is_mmio_page_fault(vcpu, cr2))
4109 emulation_type = 0;
4111 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4113 switch (er) {
4114 case EMULATE_DONE:
4115 return 1;
4116 case EMULATE_DO_MMIO:
4117 ++vcpu->stat.mmio_exits;
4118 /* fall through */
4119 case EMULATE_FAIL:
4120 return 0;
4121 default:
4122 BUG();
4124 out:
4125 return r;
4127 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4129 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4131 vcpu->arch.mmu.invlpg(vcpu, gva);
4132 kvm_mmu_flush_tlb(vcpu);
4133 ++vcpu->stat.invlpg;
4135 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4137 void kvm_enable_tdp(void)
4139 tdp_enabled = true;
4141 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4143 void kvm_disable_tdp(void)
4145 tdp_enabled = false;
4147 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4149 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4151 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4152 if (vcpu->arch.mmu.lm_root != NULL)
4153 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4156 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4158 struct page *page;
4159 int i;
4161 ASSERT(vcpu);
4164 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4165 * Therefore we need to allocate shadow page tables in the first
4166 * 4GB of memory, which happens to fit the DMA32 zone.
4168 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4169 if (!page)
4170 return -ENOMEM;
4172 vcpu->arch.mmu.pae_root = page_address(page);
4173 for (i = 0; i < 4; ++i)
4174 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4176 return 0;
4179 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4181 ASSERT(vcpu);
4183 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4184 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4185 vcpu->arch.mmu.translate_gpa = translate_gpa;
4186 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4188 return alloc_mmu_pages(vcpu);
4191 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4193 ASSERT(vcpu);
4194 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4196 return init_kvm_mmu(vcpu);
4199 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4201 struct kvm_mmu_page *sp;
4202 bool flush = false;
4204 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4205 int i;
4206 u64 *pt;
4208 if (!test_bit(slot, sp->slot_bitmap))
4209 continue;
4211 pt = sp->spt;
4212 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4213 if (!is_shadow_present_pte(pt[i]) ||
4214 !is_last_spte(pt[i], sp->role.level))
4215 continue;
4217 spte_write_protect(kvm, &pt[i], &flush, false);
4220 kvm_flush_remote_tlbs(kvm);
4223 void kvm_mmu_zap_all(struct kvm *kvm)
4225 struct kvm_mmu_page *sp, *node;
4226 LIST_HEAD(invalid_list);
4228 spin_lock(&kvm->mmu_lock);
4229 restart:
4230 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4231 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4232 goto restart;
4234 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4235 spin_unlock(&kvm->mmu_lock);
4238 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4239 struct list_head *invalid_list)
4241 struct kvm_mmu_page *page;
4243 if (list_empty(&kvm->arch.active_mmu_pages))
4244 return;
4246 page = container_of(kvm->arch.active_mmu_pages.prev,
4247 struct kvm_mmu_page, link);
4248 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4251 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4253 struct kvm *kvm;
4254 int nr_to_scan = sc->nr_to_scan;
4256 if (nr_to_scan == 0)
4257 goto out;
4259 raw_spin_lock(&kvm_lock);
4261 list_for_each_entry(kvm, &vm_list, vm_list) {
4262 int idx;
4263 LIST_HEAD(invalid_list);
4266 * Never scan more than sc->nr_to_scan VM instances.
4267 * Will not hit this condition practically since we do not try
4268 * to shrink more than one VM and it is very unlikely to see
4269 * !n_used_mmu_pages so many times.
4271 if (!nr_to_scan--)
4272 break;
4274 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4275 * here. We may skip a VM instance errorneosly, but we do not
4276 * want to shrink a VM that only started to populate its MMU
4277 * anyway.
4279 if (!kvm->arch.n_used_mmu_pages)
4280 continue;
4282 idx = srcu_read_lock(&kvm->srcu);
4283 spin_lock(&kvm->mmu_lock);
4285 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4286 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4288 spin_unlock(&kvm->mmu_lock);
4289 srcu_read_unlock(&kvm->srcu, idx);
4291 list_move_tail(&kvm->vm_list, &vm_list);
4292 break;
4295 raw_spin_unlock(&kvm_lock);
4297 out:
4298 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4301 static struct shrinker mmu_shrinker = {
4302 .shrink = mmu_shrink,
4303 .seeks = DEFAULT_SEEKS * 10,
4306 static void mmu_destroy_caches(void)
4308 if (pte_list_desc_cache)
4309 kmem_cache_destroy(pte_list_desc_cache);
4310 if (mmu_page_header_cache)
4311 kmem_cache_destroy(mmu_page_header_cache);
4314 int kvm_mmu_module_init(void)
4316 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4317 sizeof(struct pte_list_desc),
4318 0, 0, NULL);
4319 if (!pte_list_desc_cache)
4320 goto nomem;
4322 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4323 sizeof(struct kvm_mmu_page),
4324 0, 0, NULL);
4325 if (!mmu_page_header_cache)
4326 goto nomem;
4328 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4329 goto nomem;
4331 register_shrinker(&mmu_shrinker);
4333 return 0;
4335 nomem:
4336 mmu_destroy_caches();
4337 return -ENOMEM;
4341 * Caculate mmu pages needed for kvm.
4343 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4345 unsigned int nr_mmu_pages;
4346 unsigned int nr_pages = 0;
4347 struct kvm_memslots *slots;
4348 struct kvm_memory_slot *memslot;
4350 slots = kvm_memslots(kvm);
4352 kvm_for_each_memslot(memslot, slots)
4353 nr_pages += memslot->npages;
4355 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4356 nr_mmu_pages = max(nr_mmu_pages,
4357 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4359 return nr_mmu_pages;
4362 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4364 struct kvm_shadow_walk_iterator iterator;
4365 u64 spte;
4366 int nr_sptes = 0;
4368 walk_shadow_page_lockless_begin(vcpu);
4369 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4370 sptes[iterator.level-1] = spte;
4371 nr_sptes++;
4372 if (!is_shadow_present_pte(spte))
4373 break;
4375 walk_shadow_page_lockless_end(vcpu);
4377 return nr_sptes;
4379 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4381 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4383 ASSERT(vcpu);
4385 destroy_kvm_mmu(vcpu);
4386 free_mmu_pages(vcpu);
4387 mmu_free_memory_caches(vcpu);
4390 void kvm_mmu_module_exit(void)
4392 mmu_destroy_caches();
4393 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4394 unregister_shrinker(&mmu_shrinker);
4395 mmu_audit_disable();