2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
54 #error Invalid PTTYPE value
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
61 * The guest_walker structure emulates the behavior of the hardware page
67 gfn_t table_gfn
[PT_MAX_FULL_LEVELS
];
68 pt_element_t ptes
[PT_MAX_FULL_LEVELS
];
69 pt_element_t prefetch_ptes
[PTE_PREFETCH_NUM
];
70 gpa_t pte_gpa
[PT_MAX_FULL_LEVELS
];
71 pt_element_t __user
*ptep_user
[PT_MAX_FULL_LEVELS
];
75 struct x86_exception fault
;
78 static gfn_t
gpte_to_gfn_lvl(pt_element_t gpte
, int lvl
)
80 return (gpte
& PT_LVL_ADDR_MASK(lvl
)) >> PAGE_SHIFT
;
83 static int FNAME(cmpxchg_gpte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
84 pt_element_t __user
*ptep_user
, unsigned index
,
85 pt_element_t orig_pte
, pt_element_t new_pte
)
92 npages
= get_user_pages_fast((unsigned long)ptep_user
, 1, 1, &page
);
93 /* Check if the user is doing something meaningless. */
94 if (unlikely(npages
!= 1))
97 table
= kmap_atomic(page
);
98 ret
= CMPXCHG(&table
[index
], orig_pte
, new_pte
);
101 kvm_release_page_dirty(page
);
103 return (ret
!= orig_pte
);
106 static int FNAME(update_accessed_dirty_bits
)(struct kvm_vcpu
*vcpu
,
108 struct guest_walker
*walker
,
111 unsigned level
, index
;
112 pt_element_t pte
, orig_pte
;
113 pt_element_t __user
*ptep_user
;
117 for (level
= walker
->max_level
; level
>= walker
->level
; --level
) {
118 pte
= orig_pte
= walker
->ptes
[level
- 1];
119 table_gfn
= walker
->table_gfn
[level
- 1];
120 ptep_user
= walker
->ptep_user
[level
- 1];
121 index
= offset_in_page(ptep_user
) / sizeof(pt_element_t
);
122 if (!(pte
& PT_ACCESSED_MASK
)) {
123 trace_kvm_mmu_set_accessed_bit(table_gfn
, index
, sizeof(pte
));
124 pte
|= PT_ACCESSED_MASK
;
126 if (level
== walker
->level
&& write_fault
&& !is_dirty_gpte(pte
)) {
127 trace_kvm_mmu_set_dirty_bit(table_gfn
, index
, sizeof(pte
));
128 pte
|= PT_DIRTY_MASK
;
133 ret
= FNAME(cmpxchg_gpte
)(vcpu
, mmu
, ptep_user
, index
, orig_pte
, pte
);
137 mark_page_dirty(vcpu
->kvm
, table_gfn
);
138 walker
->ptes
[level
] = pte
;
144 * Fetch a guest pte for a guest virtual address
146 static int FNAME(walk_addr_generic
)(struct guest_walker
*walker
,
147 struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
148 gva_t addr
, u32 access
)
152 pt_element_t __user
*uninitialized_var(ptep_user
);
154 unsigned index
, pt_access
, pte_access
, accessed_dirty
, shift
;
157 const int write_fault
= access
& PFERR_WRITE_MASK
;
158 const int user_fault
= access
& PFERR_USER_MASK
;
159 const int fetch_fault
= access
& PFERR_FETCH_MASK
;
164 trace_kvm_mmu_pagetable_walk(addr
, access
);
166 walker
->level
= mmu
->root_level
;
167 pte
= mmu
->get_cr3(vcpu
);
170 if (walker
->level
== PT32E_ROOT_LEVEL
) {
171 pte
= mmu
->get_pdptr(vcpu
, (addr
>> 30) & 3);
172 trace_kvm_mmu_paging_element(pte
, walker
->level
);
173 if (!is_present_gpte(pte
))
178 walker
->max_level
= walker
->level
;
179 ASSERT((!is_long_mode(vcpu
) && is_pae(vcpu
)) ||
180 (mmu
->get_cr3(vcpu
) & CR3_NONPAE_RESERVED_BITS
) == 0);
182 accessed_dirty
= PT_ACCESSED_MASK
;
183 pt_access
= pte_access
= ACC_ALL
;
188 unsigned long host_addr
;
190 pt_access
&= pte_access
;
193 index
= PT_INDEX(addr
, walker
->level
);
195 table_gfn
= gpte_to_gfn(pte
);
196 offset
= index
* sizeof(pt_element_t
);
197 pte_gpa
= gfn_to_gpa(table_gfn
) + offset
;
198 walker
->table_gfn
[walker
->level
- 1] = table_gfn
;
199 walker
->pte_gpa
[walker
->level
- 1] = pte_gpa
;
201 real_gfn
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(table_gfn
),
202 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
203 if (unlikely(real_gfn
== UNMAPPED_GVA
))
205 real_gfn
= gpa_to_gfn(real_gfn
);
207 host_addr
= gfn_to_hva(vcpu
->kvm
, real_gfn
);
208 if (unlikely(kvm_is_error_hva(host_addr
)))
211 ptep_user
= (pt_element_t __user
*)((void *)host_addr
+ offset
);
212 if (unlikely(__copy_from_user(&pte
, ptep_user
, sizeof(pte
))))
214 walker
->ptep_user
[walker
->level
- 1] = ptep_user
;
216 trace_kvm_mmu_paging_element(pte
, walker
->level
);
218 if (unlikely(!is_present_gpte(pte
)))
221 if (unlikely(is_rsvd_bits_set(&vcpu
->arch
.mmu
, pte
,
223 errcode
|= PFERR_RSVD_MASK
| PFERR_PRESENT_MASK
;
227 accessed_dirty
&= pte
;
228 pte_access
= pt_access
& gpte_access(vcpu
, pte
);
230 walker
->ptes
[walker
->level
- 1] = pte
;
231 } while (!is_last_gpte(mmu
, walker
->level
, pte
));
233 if (unlikely(permission_fault(mmu
, pte_access
, access
))) {
234 errcode
|= PFERR_PRESENT_MASK
;
238 gfn
= gpte_to_gfn_lvl(pte
, walker
->level
);
239 gfn
+= (addr
& PT_LVL_OFFSET_MASK(walker
->level
)) >> PAGE_SHIFT
;
241 if (PTTYPE
== 32 && walker
->level
== PT_DIRECTORY_LEVEL
&& is_cpuid_PSE36())
242 gfn
+= pse36_gfn_delta(pte
);
244 real_gpa
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(gfn
), access
);
245 if (real_gpa
== UNMAPPED_GVA
)
248 walker
->gfn
= real_gpa
>> PAGE_SHIFT
;
251 protect_clean_gpte(&pte_access
, pte
);
254 * On a write fault, fold the dirty bit into accessed_dirty by shifting it one
257 * On a read fault, do nothing.
259 shift
= write_fault
>> ilog2(PFERR_WRITE_MASK
);
260 shift
*= PT_DIRTY_SHIFT
- PT_ACCESSED_SHIFT
;
261 accessed_dirty
&= pte
>> shift
;
263 if (unlikely(!accessed_dirty
)) {
264 ret
= FNAME(update_accessed_dirty_bits
)(vcpu
, mmu
, walker
, write_fault
);
265 if (unlikely(ret
< 0))
271 walker
->pt_access
= pt_access
;
272 walker
->pte_access
= pte_access
;
273 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
274 __func__
, (u64
)pte
, pte_access
, pt_access
);
278 errcode
|= write_fault
| user_fault
;
279 if (fetch_fault
&& (mmu
->nx
||
280 kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
)))
281 errcode
|= PFERR_FETCH_MASK
;
283 walker
->fault
.vector
= PF_VECTOR
;
284 walker
->fault
.error_code_valid
= true;
285 walker
->fault
.error_code
= errcode
;
286 walker
->fault
.address
= addr
;
287 walker
->fault
.nested_page_fault
= mmu
!= vcpu
->arch
.walk_mmu
;
289 trace_kvm_mmu_walker_error(walker
->fault
.error_code
);
293 static int FNAME(walk_addr
)(struct guest_walker
*walker
,
294 struct kvm_vcpu
*vcpu
, gva_t addr
, u32 access
)
296 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.mmu
, addr
,
300 static int FNAME(walk_addr_nested
)(struct guest_walker
*walker
,
301 struct kvm_vcpu
*vcpu
, gva_t addr
,
304 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.nested_mmu
,
309 FNAME(prefetch_gpte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
310 u64
*spte
, pt_element_t gpte
, bool no_dirty_log
)
316 if (prefetch_invalid_gpte(vcpu
, sp
, spte
, gpte
))
319 pgprintk("%s: gpte %llx spte %p\n", __func__
, (u64
)gpte
, spte
);
321 gfn
= gpte_to_gfn(gpte
);
322 pte_access
= sp
->role
.access
& gpte_access(vcpu
, gpte
);
323 protect_clean_gpte(&pte_access
, gpte
);
324 pfn
= pte_prefetch_gfn_to_pfn(vcpu
, gfn
,
325 no_dirty_log
&& (pte_access
& ACC_WRITE_MASK
));
326 if (is_error_pfn(pfn
))
330 * we call mmu_set_spte() with host_writable = true because
331 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
333 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
334 NULL
, PT_PAGE_TABLE_LEVEL
, gfn
, pfn
, true, true);
339 static void FNAME(update_pte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
340 u64
*spte
, const void *pte
)
342 pt_element_t gpte
= *(const pt_element_t
*)pte
;
344 FNAME(prefetch_gpte
)(vcpu
, sp
, spte
, gpte
, false);
347 static bool FNAME(gpte_changed
)(struct kvm_vcpu
*vcpu
,
348 struct guest_walker
*gw
, int level
)
350 pt_element_t curr_pte
;
351 gpa_t base_gpa
, pte_gpa
= gw
->pte_gpa
[level
- 1];
355 if (level
== PT_PAGE_TABLE_LEVEL
) {
356 mask
= PTE_PREFETCH_NUM
* sizeof(pt_element_t
) - 1;
357 base_gpa
= pte_gpa
& ~mask
;
358 index
= (pte_gpa
- base_gpa
) / sizeof(pt_element_t
);
360 r
= kvm_read_guest_atomic(vcpu
->kvm
, base_gpa
,
361 gw
->prefetch_ptes
, sizeof(gw
->prefetch_ptes
));
362 curr_pte
= gw
->prefetch_ptes
[index
];
364 r
= kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
,
365 &curr_pte
, sizeof(curr_pte
));
367 return r
|| curr_pte
!= gw
->ptes
[level
- 1];
370 static void FNAME(pte_prefetch
)(struct kvm_vcpu
*vcpu
, struct guest_walker
*gw
,
373 struct kvm_mmu_page
*sp
;
374 pt_element_t
*gptep
= gw
->prefetch_ptes
;
378 sp
= page_header(__pa(sptep
));
380 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
384 return __direct_pte_prefetch(vcpu
, sp
, sptep
);
386 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
389 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
393 if (is_shadow_present_pte(*spte
))
396 if (!FNAME(prefetch_gpte
)(vcpu
, sp
, spte
, gptep
[i
], true))
402 * Fetch a shadow pte for a specific level in the paging hierarchy.
403 * If the guest tries to write a write-protected page, we need to
404 * emulate this operation, return 1 to indicate this case.
406 static int FNAME(fetch
)(struct kvm_vcpu
*vcpu
, gva_t addr
,
407 struct guest_walker
*gw
,
408 int user_fault
, int write_fault
, int hlevel
,
409 pfn_t pfn
, bool map_writable
, bool prefault
)
411 struct kvm_mmu_page
*sp
= NULL
;
412 struct kvm_shadow_walk_iterator it
;
413 unsigned direct_access
, access
= gw
->pt_access
;
414 int top_level
, emulate
= 0;
416 if (!is_present_gpte(gw
->ptes
[gw
->level
- 1]))
419 direct_access
= gw
->pte_access
;
421 top_level
= vcpu
->arch
.mmu
.root_level
;
422 if (top_level
== PT32E_ROOT_LEVEL
)
423 top_level
= PT32_ROOT_LEVEL
;
425 * Verify that the top-level gpte is still there. Since the page
426 * is a root page, it is either write protected (and cannot be
427 * changed from now on) or it is invalid (in which case, we don't
428 * really care if it changes underneath us after this point).
430 if (FNAME(gpte_changed
)(vcpu
, gw
, top_level
))
431 goto out_gpte_changed
;
433 for (shadow_walk_init(&it
, vcpu
, addr
);
434 shadow_walk_okay(&it
) && it
.level
> gw
->level
;
435 shadow_walk_next(&it
)) {
438 clear_sp_write_flooding_count(it
.sptep
);
439 drop_large_spte(vcpu
, it
.sptep
);
442 if (!is_shadow_present_pte(*it
.sptep
)) {
443 table_gfn
= gw
->table_gfn
[it
.level
- 2];
444 sp
= kvm_mmu_get_page(vcpu
, table_gfn
, addr
, it
.level
-1,
445 false, access
, it
.sptep
);
449 * Verify that the gpte in the page we've just write
450 * protected is still there.
452 if (FNAME(gpte_changed
)(vcpu
, gw
, it
.level
- 1))
453 goto out_gpte_changed
;
456 link_shadow_page(it
.sptep
, sp
);
460 shadow_walk_okay(&it
) && it
.level
> hlevel
;
461 shadow_walk_next(&it
)) {
464 clear_sp_write_flooding_count(it
.sptep
);
465 validate_direct_spte(vcpu
, it
.sptep
, direct_access
);
467 drop_large_spte(vcpu
, it
.sptep
);
469 if (is_shadow_present_pte(*it
.sptep
))
472 direct_gfn
= gw
->gfn
& ~(KVM_PAGES_PER_HPAGE(it
.level
) - 1);
474 sp
= kvm_mmu_get_page(vcpu
, direct_gfn
, addr
, it
.level
-1,
475 true, direct_access
, it
.sptep
);
476 link_shadow_page(it
.sptep
, sp
);
479 clear_sp_write_flooding_count(it
.sptep
);
480 mmu_set_spte(vcpu
, it
.sptep
, access
, gw
->pte_access
,
481 user_fault
, write_fault
, &emulate
, it
.level
,
482 gw
->gfn
, pfn
, prefault
, map_writable
);
483 FNAME(pte_prefetch
)(vcpu
, gw
, it
.sptep
);
489 kvm_mmu_put_page(sp
, it
.sptep
);
490 kvm_release_pfn_clean(pfn
);
495 * Page fault handler. There are several causes for a page fault:
496 * - there is no shadow pte for the guest pte
497 * - write access through a shadow pte marked read only so that we can set
499 * - write access to a shadow pte marked read only so we can update the page
500 * dirty bitmap, when userspace requests it
501 * - mmio access; in this case we will never install a present shadow pte
502 * - normal guest page fault due to the guest pte marked not present, not
503 * writable, or not executable
505 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
506 * a negative value on error.
508 static int FNAME(page_fault
)(struct kvm_vcpu
*vcpu
, gva_t addr
, u32 error_code
,
511 int write_fault
= error_code
& PFERR_WRITE_MASK
;
512 int user_fault
= error_code
& PFERR_USER_MASK
;
513 struct guest_walker walker
;
516 int level
= PT_PAGE_TABLE_LEVEL
;
518 unsigned long mmu_seq
;
521 pgprintk("%s: addr %lx err %x\n", __func__
, addr
, error_code
);
523 if (unlikely(error_code
& PFERR_RSVD_MASK
))
524 return handle_mmio_page_fault(vcpu
, addr
, error_code
,
525 mmu_is_nested(vcpu
));
527 r
= mmu_topup_memory_caches(vcpu
);
532 * Look up the guest pte for the faulting address.
534 r
= FNAME(walk_addr
)(&walker
, vcpu
, addr
, error_code
);
537 * The page is not mapped by the guest. Let the guest handle it.
540 pgprintk("%s: guest page fault\n", __func__
);
542 inject_page_fault(vcpu
, &walker
.fault
);
547 if (walker
.level
>= PT_DIRECTORY_LEVEL
)
548 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, walker
.gfn
);
551 if (!force_pt_level
) {
552 level
= min(walker
.level
, mapping_level(vcpu
, walker
.gfn
));
553 walker
.gfn
= walker
.gfn
& ~(KVM_PAGES_PER_HPAGE(level
) - 1);
556 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
559 if (try_async_pf(vcpu
, prefault
, walker
.gfn
, addr
, &pfn
, write_fault
,
563 if (handle_abnormal_pfn(vcpu
, mmu_is_nested(vcpu
) ? 0 : addr
,
564 walker
.gfn
, pfn
, walker
.pte_access
, &r
))
567 spin_lock(&vcpu
->kvm
->mmu_lock
);
568 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
571 kvm_mmu_audit(vcpu
, AUDIT_PRE_PAGE_FAULT
);
572 kvm_mmu_free_some_pages(vcpu
);
574 transparent_hugepage_adjust(vcpu
, &walker
.gfn
, &pfn
, &level
);
575 r
= FNAME(fetch
)(vcpu
, addr
, &walker
, user_fault
, write_fault
,
576 level
, pfn
, map_writable
, prefault
);
577 ++vcpu
->stat
.pf_fixed
;
578 kvm_mmu_audit(vcpu
, AUDIT_POST_PAGE_FAULT
);
579 spin_unlock(&vcpu
->kvm
->mmu_lock
);
584 spin_unlock(&vcpu
->kvm
->mmu_lock
);
585 kvm_release_pfn_clean(pfn
);
589 static gpa_t
FNAME(get_level1_sp_gpa
)(struct kvm_mmu_page
*sp
)
593 WARN_ON(sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
596 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
598 return gfn_to_gpa(sp
->gfn
) + offset
* sizeof(pt_element_t
);
601 static void FNAME(invlpg
)(struct kvm_vcpu
*vcpu
, gva_t gva
)
603 struct kvm_shadow_walk_iterator iterator
;
604 struct kvm_mmu_page
*sp
;
608 vcpu_clear_mmio_info(vcpu
, gva
);
611 * No need to check return value here, rmap_can_add() can
612 * help us to skip pte prefetch later.
614 mmu_topup_memory_caches(vcpu
);
616 spin_lock(&vcpu
->kvm
->mmu_lock
);
617 for_each_shadow_entry(vcpu
, gva
, iterator
) {
618 level
= iterator
.level
;
619 sptep
= iterator
.sptep
;
621 sp
= page_header(__pa(sptep
));
622 if (is_last_spte(*sptep
, level
)) {
629 pte_gpa
= FNAME(get_level1_sp_gpa
)(sp
);
630 pte_gpa
+= (sptep
- sp
->spt
) * sizeof(pt_element_t
);
632 if (mmu_page_zap_pte(vcpu
->kvm
, sp
, sptep
))
633 kvm_flush_remote_tlbs(vcpu
->kvm
);
635 if (!rmap_can_add(vcpu
))
638 if (kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, &gpte
,
639 sizeof(pt_element_t
)))
642 FNAME(update_pte
)(vcpu
, sp
, sptep
, &gpte
);
645 if (!is_shadow_present_pte(*sptep
) || !sp
->unsync_children
)
648 spin_unlock(&vcpu
->kvm
->mmu_lock
);
651 static gpa_t
FNAME(gva_to_gpa
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
, u32 access
,
652 struct x86_exception
*exception
)
654 struct guest_walker walker
;
655 gpa_t gpa
= UNMAPPED_GVA
;
658 r
= FNAME(walk_addr
)(&walker
, vcpu
, vaddr
, access
);
661 gpa
= gfn_to_gpa(walker
.gfn
);
662 gpa
|= vaddr
& ~PAGE_MASK
;
663 } else if (exception
)
664 *exception
= walker
.fault
;
669 static gpa_t
FNAME(gva_to_gpa_nested
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
671 struct x86_exception
*exception
)
673 struct guest_walker walker
;
674 gpa_t gpa
= UNMAPPED_GVA
;
677 r
= FNAME(walk_addr_nested
)(&walker
, vcpu
, vaddr
, access
);
680 gpa
= gfn_to_gpa(walker
.gfn
);
681 gpa
|= vaddr
& ~PAGE_MASK
;
682 } else if (exception
)
683 *exception
= walker
.fault
;
689 * Using the cached information from sp->gfns is safe because:
690 * - The spte has a reference to the struct page, so the pfn for a given gfn
691 * can't change unless all sptes pointing to it are nuked first.
694 * We should flush all tlbs if spte is dropped even though guest is
695 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
696 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
697 * used by guest then tlbs are not flushed, so guest is allowed to access the
699 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
701 static int FNAME(sync_page
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
703 int i
, nr_present
= 0;
707 /* direct kvm_mmu_page can not be unsync. */
708 BUG_ON(sp
->role
.direct
);
710 first_pte_gpa
= FNAME(get_level1_sp_gpa
)(sp
);
712 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
++) {
721 pte_gpa
= first_pte_gpa
+ i
* sizeof(pt_element_t
);
723 if (kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, &gpte
,
724 sizeof(pt_element_t
)))
727 if (prefetch_invalid_gpte(vcpu
, sp
, &sp
->spt
[i
], gpte
)) {
728 vcpu
->kvm
->tlbs_dirty
++;
732 gfn
= gpte_to_gfn(gpte
);
733 pte_access
= sp
->role
.access
;
734 pte_access
&= gpte_access(vcpu
, gpte
);
735 protect_clean_gpte(&pte_access
, gpte
);
737 if (sync_mmio_spte(&sp
->spt
[i
], gfn
, pte_access
, &nr_present
))
740 if (gfn
!= sp
->gfns
[i
]) {
741 drop_spte(vcpu
->kvm
, &sp
->spt
[i
]);
742 vcpu
->kvm
->tlbs_dirty
++;
748 host_writable
= sp
->spt
[i
] & SPTE_HOST_WRITEABLE
;
750 set_spte(vcpu
, &sp
->spt
[i
], pte_access
, 0, 0,
751 PT_PAGE_TABLE_LEVEL
, gfn
,
752 spte_to_pfn(sp
->spt
[i
]), true, false,
762 #undef PT_BASE_ADDR_MASK
764 #undef PT_LVL_ADDR_MASK
765 #undef PT_LVL_OFFSET_MASK
767 #undef PT_MAX_FULL_LEVELS
769 #undef gpte_to_gfn_lvl