2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
40 #include <asm/virtext.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
56 static const struct x86_cpu_id vmx_cpu_id
[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
60 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
62 static bool __read_mostly enable_vpid
= 1;
63 module_param_named(vpid
, enable_vpid
, bool, 0444);
65 static bool __read_mostly flexpriority_enabled
= 1;
66 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
68 static bool __read_mostly enable_ept
= 1;
69 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
71 static bool __read_mostly enable_unrestricted_guest
= 1;
72 module_param_named(unrestricted_guest
,
73 enable_unrestricted_guest
, bool, S_IRUGO
);
75 static bool __read_mostly enable_ept_ad_bits
= 1;
76 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
78 static bool __read_mostly emulate_invalid_guest_state
= true;
79 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
81 static bool __read_mostly vmm_exclusive
= 1;
82 module_param(vmm_exclusive
, bool, S_IRUGO
);
84 static bool __read_mostly fasteoi
= 1;
85 module_param(fasteoi
, bool, S_IRUGO
);
88 * If nested=1, nested virtualization is supported, i.e., guests may use
89 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
90 * use VMX instructions.
92 static bool __read_mostly nested
= 0;
93 module_param(nested
, bool, S_IRUGO
);
95 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
96 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
97 #define KVM_GUEST_CR0_MASK \
98 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
99 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
100 (X86_CR0_WP | X86_CR0_NE)
101 #define KVM_VM_CR0_ALWAYS_ON \
102 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
103 #define KVM_CR4_GUEST_OWNED_BITS \
104 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
105 | X86_CR4_OSXMMEXCPT)
107 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
108 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
113 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
114 * ple_gap: upper bound on the amount of time between two successive
115 * executions of PAUSE in a loop. Also indicate if ple enabled.
116 * According to test, this time is usually smaller than 128 cycles.
117 * ple_window: upper bound on the amount of time a guest is allowed to execute
118 * in a PAUSE loop. Tests indicate that most spinlocks are held for
119 * less than 2^12 cycles
120 * Time is measured based on a counter that runs at the same rate as the TSC,
121 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 #define KVM_VMX_DEFAULT_PLE_GAP 128
124 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
125 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
126 module_param(ple_gap
, int, S_IRUGO
);
128 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
129 module_param(ple_window
, int, S_IRUGO
);
131 extern const ulong vmx_return
;
133 #define NR_AUTOLOAD_MSRS 8
134 #define VMCS02_POOL_SIZE 1
143 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
144 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
145 * loaded on this CPU (so we can clear them if the CPU goes down).
151 struct list_head loaded_vmcss_on_cpu_link
;
154 struct shared_msr_entry
{
161 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
162 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
163 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
164 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
165 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
166 * More than one of these structures may exist, if L1 runs multiple L2 guests.
167 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
168 * underlying hardware which will be used to run L2.
169 * This structure is packed to ensure that its layout is identical across
170 * machines (necessary for live migration).
171 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 typedef u64 natural_width
;
174 struct __packed vmcs12
{
175 /* According to the Intel spec, a VMCS region must start with the
176 * following two fields. Then follow implementation-specific data.
181 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
182 u32 padding
[7]; /* room for future expansion */
187 u64 vm_exit_msr_store_addr
;
188 u64 vm_exit_msr_load_addr
;
189 u64 vm_entry_msr_load_addr
;
191 u64 virtual_apic_page_addr
;
192 u64 apic_access_addr
;
194 u64 guest_physical_address
;
195 u64 vmcs_link_pointer
;
196 u64 guest_ia32_debugctl
;
199 u64 guest_ia32_perf_global_ctrl
;
206 u64 host_ia32_perf_global_ctrl
;
207 u64 padding64
[8]; /* room for future expansion */
209 * To allow migration of L1 (complete with its L2 guests) between
210 * machines of different natural widths (32 or 64 bit), we cannot have
211 * unsigned long fields with no explict size. We use u64 (aliased
212 * natural_width) instead. Luckily, x86 is little-endian.
214 natural_width cr0_guest_host_mask
;
215 natural_width cr4_guest_host_mask
;
216 natural_width cr0_read_shadow
;
217 natural_width cr4_read_shadow
;
218 natural_width cr3_target_value0
;
219 natural_width cr3_target_value1
;
220 natural_width cr3_target_value2
;
221 natural_width cr3_target_value3
;
222 natural_width exit_qualification
;
223 natural_width guest_linear_address
;
224 natural_width guest_cr0
;
225 natural_width guest_cr3
;
226 natural_width guest_cr4
;
227 natural_width guest_es_base
;
228 natural_width guest_cs_base
;
229 natural_width guest_ss_base
;
230 natural_width guest_ds_base
;
231 natural_width guest_fs_base
;
232 natural_width guest_gs_base
;
233 natural_width guest_ldtr_base
;
234 natural_width guest_tr_base
;
235 natural_width guest_gdtr_base
;
236 natural_width guest_idtr_base
;
237 natural_width guest_dr7
;
238 natural_width guest_rsp
;
239 natural_width guest_rip
;
240 natural_width guest_rflags
;
241 natural_width guest_pending_dbg_exceptions
;
242 natural_width guest_sysenter_esp
;
243 natural_width guest_sysenter_eip
;
244 natural_width host_cr0
;
245 natural_width host_cr3
;
246 natural_width host_cr4
;
247 natural_width host_fs_base
;
248 natural_width host_gs_base
;
249 natural_width host_tr_base
;
250 natural_width host_gdtr_base
;
251 natural_width host_idtr_base
;
252 natural_width host_ia32_sysenter_esp
;
253 natural_width host_ia32_sysenter_eip
;
254 natural_width host_rsp
;
255 natural_width host_rip
;
256 natural_width paddingl
[8]; /* room for future expansion */
257 u32 pin_based_vm_exec_control
;
258 u32 cpu_based_vm_exec_control
;
259 u32 exception_bitmap
;
260 u32 page_fault_error_code_mask
;
261 u32 page_fault_error_code_match
;
262 u32 cr3_target_count
;
263 u32 vm_exit_controls
;
264 u32 vm_exit_msr_store_count
;
265 u32 vm_exit_msr_load_count
;
266 u32 vm_entry_controls
;
267 u32 vm_entry_msr_load_count
;
268 u32 vm_entry_intr_info_field
;
269 u32 vm_entry_exception_error_code
;
270 u32 vm_entry_instruction_len
;
272 u32 secondary_vm_exec_control
;
273 u32 vm_instruction_error
;
275 u32 vm_exit_intr_info
;
276 u32 vm_exit_intr_error_code
;
277 u32 idt_vectoring_info_field
;
278 u32 idt_vectoring_error_code
;
279 u32 vm_exit_instruction_len
;
280 u32 vmx_instruction_info
;
287 u32 guest_ldtr_limit
;
289 u32 guest_gdtr_limit
;
290 u32 guest_idtr_limit
;
291 u32 guest_es_ar_bytes
;
292 u32 guest_cs_ar_bytes
;
293 u32 guest_ss_ar_bytes
;
294 u32 guest_ds_ar_bytes
;
295 u32 guest_fs_ar_bytes
;
296 u32 guest_gs_ar_bytes
;
297 u32 guest_ldtr_ar_bytes
;
298 u32 guest_tr_ar_bytes
;
299 u32 guest_interruptibility_info
;
300 u32 guest_activity_state
;
301 u32 guest_sysenter_cs
;
302 u32 host_ia32_sysenter_cs
;
303 u32 padding32
[8]; /* room for future expansion */
304 u16 virtual_processor_id
;
305 u16 guest_es_selector
;
306 u16 guest_cs_selector
;
307 u16 guest_ss_selector
;
308 u16 guest_ds_selector
;
309 u16 guest_fs_selector
;
310 u16 guest_gs_selector
;
311 u16 guest_ldtr_selector
;
312 u16 guest_tr_selector
;
313 u16 host_es_selector
;
314 u16 host_cs_selector
;
315 u16 host_ss_selector
;
316 u16 host_ds_selector
;
317 u16 host_fs_selector
;
318 u16 host_gs_selector
;
319 u16 host_tr_selector
;
323 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
324 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
325 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
327 #define VMCS12_REVISION 0x11e57ed0
330 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
331 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
332 * current implementation, 4K are reserved to avoid future complications.
334 #define VMCS12_SIZE 0x1000
336 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
338 struct list_head list
;
340 struct loaded_vmcs vmcs02
;
344 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
345 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 /* Has the level1 guest done vmxon? */
351 /* The guest-physical address of the current VMCS L1 keeps for L2 */
353 /* The host-usable pointer to the above */
354 struct page
*current_vmcs12_page
;
355 struct vmcs12
*current_vmcs12
;
357 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
358 struct list_head vmcs02_pool
;
360 u64 vmcs01_tsc_offset
;
361 /* L2 must run next, and mustn't decide to exit to L1. */
362 bool nested_run_pending
;
364 * Guest pages referred to in vmcs02 with host-physical pointers, so
365 * we must keep them pinned while L2 runs.
367 struct page
*apic_access_page
;
371 struct kvm_vcpu vcpu
;
372 unsigned long host_rsp
;
375 bool nmi_known_unmasked
;
377 u32 idt_vectoring_info
;
379 struct shared_msr_entry
*guest_msrs
;
383 u64 msr_host_kernel_gs_base
;
384 u64 msr_guest_kernel_gs_base
;
387 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
388 * non-nested (L1) guest, it always points to vmcs01. For a nested
389 * guest (L2), it points to a different VMCS.
391 struct loaded_vmcs vmcs01
;
392 struct loaded_vmcs
*loaded_vmcs
;
393 bool __launched
; /* temporary, used in vmx_vcpu_run */
394 struct msr_autoload
{
396 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
397 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
401 u16 fs_sel
, gs_sel
, ldt_sel
;
405 int gs_ldt_reload_needed
;
406 int fs_reload_needed
;
411 struct kvm_segment segs
[8];
414 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
415 struct kvm_save_segment
{
423 bool emulation_required
;
425 /* Support for vnmi-less CPUs */
426 int soft_vnmi_blocked
;
428 s64 vnmi_blocked_time
;
433 /* Support for a guest hypervisor (nested VMX) */
434 struct nested_vmx nested
;
437 enum segment_cache_field
{
446 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
448 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
451 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
452 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
453 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
454 [number##_HIGH] = VMCS12_OFFSET(name)+4
456 static const unsigned short vmcs_field_to_offset_table
[] = {
457 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
458 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
459 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
460 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
461 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
462 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
463 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
464 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
465 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
466 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
467 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
468 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
469 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
470 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
471 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
472 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
473 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
474 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
475 FIELD64(MSR_BITMAP
, msr_bitmap
),
476 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
477 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
478 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
479 FIELD64(TSC_OFFSET
, tsc_offset
),
480 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
481 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
482 FIELD64(EPT_POINTER
, ept_pointer
),
483 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
484 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
485 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
486 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
487 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
488 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
489 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
490 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
491 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
492 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
493 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
494 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
495 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
496 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
497 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
498 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
499 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
500 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
501 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
502 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
503 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
504 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
505 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
506 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
507 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
508 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
509 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
510 FIELD(TPR_THRESHOLD
, tpr_threshold
),
511 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
512 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
513 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
514 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
515 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
516 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
517 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
518 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
519 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
520 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
521 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
522 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
523 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
524 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
525 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
526 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
527 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
528 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
529 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
530 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
531 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
532 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
533 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
534 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
535 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
536 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
537 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
538 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
539 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
540 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
541 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
542 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
543 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
544 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
545 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
546 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
547 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
548 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
549 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
550 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
551 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
552 FIELD(GUEST_CR0
, guest_cr0
),
553 FIELD(GUEST_CR3
, guest_cr3
),
554 FIELD(GUEST_CR4
, guest_cr4
),
555 FIELD(GUEST_ES_BASE
, guest_es_base
),
556 FIELD(GUEST_CS_BASE
, guest_cs_base
),
557 FIELD(GUEST_SS_BASE
, guest_ss_base
),
558 FIELD(GUEST_DS_BASE
, guest_ds_base
),
559 FIELD(GUEST_FS_BASE
, guest_fs_base
),
560 FIELD(GUEST_GS_BASE
, guest_gs_base
),
561 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
562 FIELD(GUEST_TR_BASE
, guest_tr_base
),
563 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
564 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
565 FIELD(GUEST_DR7
, guest_dr7
),
566 FIELD(GUEST_RSP
, guest_rsp
),
567 FIELD(GUEST_RIP
, guest_rip
),
568 FIELD(GUEST_RFLAGS
, guest_rflags
),
569 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
570 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
571 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
572 FIELD(HOST_CR0
, host_cr0
),
573 FIELD(HOST_CR3
, host_cr3
),
574 FIELD(HOST_CR4
, host_cr4
),
575 FIELD(HOST_FS_BASE
, host_fs_base
),
576 FIELD(HOST_GS_BASE
, host_gs_base
),
577 FIELD(HOST_TR_BASE
, host_tr_base
),
578 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
579 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
580 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
581 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
582 FIELD(HOST_RSP
, host_rsp
),
583 FIELD(HOST_RIP
, host_rip
),
585 static const int max_vmcs_field
= ARRAY_SIZE(vmcs_field_to_offset_table
);
587 static inline short vmcs_field_to_offset(unsigned long field
)
589 if (field
>= max_vmcs_field
|| vmcs_field_to_offset_table
[field
] == 0)
591 return vmcs_field_to_offset_table
[field
];
594 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
596 return to_vmx(vcpu
)->nested
.current_vmcs12
;
599 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
601 struct page
*page
= gfn_to_page(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
602 if (is_error_page(page
))
608 static void nested_release_page(struct page
*page
)
610 kvm_release_page_dirty(page
);
613 static void nested_release_page_clean(struct page
*page
)
615 kvm_release_page_clean(page
);
618 static u64
construct_eptp(unsigned long root_hpa
);
619 static void kvm_cpu_vmxon(u64 addr
);
620 static void kvm_cpu_vmxoff(void);
621 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
);
622 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
623 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
624 struct kvm_segment
*var
, int seg
);
625 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
626 struct kvm_segment
*var
, int seg
);
628 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
629 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
631 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
632 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
634 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
635 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
637 static unsigned long *vmx_io_bitmap_a
;
638 static unsigned long *vmx_io_bitmap_b
;
639 static unsigned long *vmx_msr_bitmap_legacy
;
640 static unsigned long *vmx_msr_bitmap_longmode
;
642 static bool cpu_has_load_ia32_efer
;
643 static bool cpu_has_load_perf_global_ctrl
;
645 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
646 static DEFINE_SPINLOCK(vmx_vpid_lock
);
648 static struct vmcs_config
{
652 u32 pin_based_exec_ctrl
;
653 u32 cpu_based_exec_ctrl
;
654 u32 cpu_based_2nd_exec_ctrl
;
659 static struct vmx_capability
{
664 #define VMX_SEGMENT_FIELD(seg) \
665 [VCPU_SREG_##seg] = { \
666 .selector = GUEST_##seg##_SELECTOR, \
667 .base = GUEST_##seg##_BASE, \
668 .limit = GUEST_##seg##_LIMIT, \
669 .ar_bytes = GUEST_##seg##_AR_BYTES, \
672 static const struct kvm_vmx_segment_field
{
677 } kvm_vmx_segment_fields
[] = {
678 VMX_SEGMENT_FIELD(CS
),
679 VMX_SEGMENT_FIELD(DS
),
680 VMX_SEGMENT_FIELD(ES
),
681 VMX_SEGMENT_FIELD(FS
),
682 VMX_SEGMENT_FIELD(GS
),
683 VMX_SEGMENT_FIELD(SS
),
684 VMX_SEGMENT_FIELD(TR
),
685 VMX_SEGMENT_FIELD(LDTR
),
688 static u64 host_efer
;
690 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
693 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
694 * away by decrementing the array size.
696 static const u32 vmx_msr_index
[] = {
698 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
700 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
702 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
704 static inline bool is_page_fault(u32 intr_info
)
706 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
707 INTR_INFO_VALID_MASK
)) ==
708 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
711 static inline bool is_no_device(u32 intr_info
)
713 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
714 INTR_INFO_VALID_MASK
)) ==
715 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
718 static inline bool is_invalid_opcode(u32 intr_info
)
720 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
721 INTR_INFO_VALID_MASK
)) ==
722 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
725 static inline bool is_external_interrupt(u32 intr_info
)
727 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
728 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
731 static inline bool is_machine_check(u32 intr_info
)
733 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
734 INTR_INFO_VALID_MASK
)) ==
735 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
738 static inline bool cpu_has_vmx_msr_bitmap(void)
740 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
743 static inline bool cpu_has_vmx_tpr_shadow(void)
745 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
748 static inline bool vm_need_tpr_shadow(struct kvm
*kvm
)
750 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
753 static inline bool cpu_has_secondary_exec_ctrls(void)
755 return vmcs_config
.cpu_based_exec_ctrl
&
756 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
759 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
761 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
762 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
765 static inline bool cpu_has_vmx_flexpriority(void)
767 return cpu_has_vmx_tpr_shadow() &&
768 cpu_has_vmx_virtualize_apic_accesses();
771 static inline bool cpu_has_vmx_ept_execute_only(void)
773 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
776 static inline bool cpu_has_vmx_eptp_uncacheable(void)
778 return vmx_capability
.ept
& VMX_EPTP_UC_BIT
;
781 static inline bool cpu_has_vmx_eptp_writeback(void)
783 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
786 static inline bool cpu_has_vmx_ept_2m_page(void)
788 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
791 static inline bool cpu_has_vmx_ept_1g_page(void)
793 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
796 static inline bool cpu_has_vmx_ept_4levels(void)
798 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
801 static inline bool cpu_has_vmx_ept_ad_bits(void)
803 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
806 static inline bool cpu_has_vmx_invept_context(void)
808 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
811 static inline bool cpu_has_vmx_invept_global(void)
813 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
816 static inline bool cpu_has_vmx_invvpid_single(void)
818 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
821 static inline bool cpu_has_vmx_invvpid_global(void)
823 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
826 static inline bool cpu_has_vmx_ept(void)
828 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
829 SECONDARY_EXEC_ENABLE_EPT
;
832 static inline bool cpu_has_vmx_unrestricted_guest(void)
834 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
835 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
838 static inline bool cpu_has_vmx_ple(void)
840 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
841 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
844 static inline bool vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
846 return flexpriority_enabled
&& irqchip_in_kernel(kvm
);
849 static inline bool cpu_has_vmx_vpid(void)
851 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
852 SECONDARY_EXEC_ENABLE_VPID
;
855 static inline bool cpu_has_vmx_rdtscp(void)
857 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
858 SECONDARY_EXEC_RDTSCP
;
861 static inline bool cpu_has_vmx_invpcid(void)
863 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
864 SECONDARY_EXEC_ENABLE_INVPCID
;
867 static inline bool cpu_has_virtual_nmis(void)
869 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
872 static inline bool cpu_has_vmx_wbinvd_exit(void)
874 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
875 SECONDARY_EXEC_WBINVD_EXITING
;
878 static inline bool report_flexpriority(void)
880 return flexpriority_enabled
;
883 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
885 return vmcs12
->cpu_based_vm_exec_control
& bit
;
888 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
890 return (vmcs12
->cpu_based_vm_exec_control
&
891 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
892 (vmcs12
->secondary_vm_exec_control
& bit
);
895 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
,
896 struct kvm_vcpu
*vcpu
)
898 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
901 static inline bool is_exception(u32 intr_info
)
903 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
904 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
907 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
);
908 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
909 struct vmcs12
*vmcs12
,
910 u32 reason
, unsigned long qualification
);
912 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
916 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
917 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
922 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
928 } operand
= { vpid
, 0, gva
};
930 asm volatile (__ex(ASM_VMX_INVVPID
)
931 /* CF==1 or ZF==1 --> rc = -1 */
933 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
936 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
940 } operand
= {eptp
, gpa
};
942 asm volatile (__ex(ASM_VMX_INVEPT
)
943 /* CF==1 or ZF==1 --> rc = -1 */
944 "; ja 1f ; ud2 ; 1:\n"
945 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
948 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
952 i
= __find_msr_index(vmx
, msr
);
954 return &vmx
->guest_msrs
[i
];
958 static void vmcs_clear(struct vmcs
*vmcs
)
960 u64 phys_addr
= __pa(vmcs
);
963 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
964 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
967 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
971 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
973 vmcs_clear(loaded_vmcs
->vmcs
);
974 loaded_vmcs
->cpu
= -1;
975 loaded_vmcs
->launched
= 0;
978 static void vmcs_load(struct vmcs
*vmcs
)
980 u64 phys_addr
= __pa(vmcs
);
983 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
984 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
987 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
993 * This bitmap is used to indicate whether the vmclear
994 * operation is enabled on all cpus. All disabled by
997 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
999 static inline void crash_enable_local_vmclear(int cpu
)
1001 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1004 static inline void crash_disable_local_vmclear(int cpu
)
1006 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1009 static inline int crash_local_vmclear_enabled(int cpu
)
1011 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1014 static void crash_vmclear_local_loaded_vmcss(void)
1016 int cpu
= raw_smp_processor_id();
1017 struct loaded_vmcs
*v
;
1019 if (!crash_local_vmclear_enabled(cpu
))
1022 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1023 loaded_vmcss_on_cpu_link
)
1024 vmcs_clear(v
->vmcs
);
1027 static inline void crash_enable_local_vmclear(int cpu
) { }
1028 static inline void crash_disable_local_vmclear(int cpu
) { }
1029 #endif /* CONFIG_KEXEC */
1031 static void __loaded_vmcs_clear(void *arg
)
1033 struct loaded_vmcs
*loaded_vmcs
= arg
;
1034 int cpu
= raw_smp_processor_id();
1036 if (loaded_vmcs
->cpu
!= cpu
)
1037 return; /* vcpu migration can race with cpu offline */
1038 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1039 per_cpu(current_vmcs
, cpu
) = NULL
;
1040 crash_disable_local_vmclear(cpu
);
1041 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1044 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1045 * is before setting loaded_vmcs->vcpu to -1 which is done in
1046 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1047 * then adds the vmcs into percpu list before it is deleted.
1051 loaded_vmcs_init(loaded_vmcs
);
1052 crash_enable_local_vmclear(cpu
);
1055 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1057 int cpu
= loaded_vmcs
->cpu
;
1060 smp_call_function_single(cpu
,
1061 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1064 static inline void vpid_sync_vcpu_single(struct vcpu_vmx
*vmx
)
1069 if (cpu_has_vmx_invvpid_single())
1070 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
1073 static inline void vpid_sync_vcpu_global(void)
1075 if (cpu_has_vmx_invvpid_global())
1076 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1079 static inline void vpid_sync_context(struct vcpu_vmx
*vmx
)
1081 if (cpu_has_vmx_invvpid_single())
1082 vpid_sync_vcpu_single(vmx
);
1084 vpid_sync_vcpu_global();
1087 static inline void ept_sync_global(void)
1089 if (cpu_has_vmx_invept_global())
1090 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1093 static inline void ept_sync_context(u64 eptp
)
1096 if (cpu_has_vmx_invept_context())
1097 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1103 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1105 unsigned long value
;
1107 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1108 : "=a"(value
) : "d"(field
) : "cc");
1112 static __always_inline u16
vmcs_read16(unsigned long field
)
1114 return vmcs_readl(field
);
1117 static __always_inline u32
vmcs_read32(unsigned long field
)
1119 return vmcs_readl(field
);
1122 static __always_inline u64
vmcs_read64(unsigned long field
)
1124 #ifdef CONFIG_X86_64
1125 return vmcs_readl(field
);
1127 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
1131 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1133 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1134 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1138 static void vmcs_writel(unsigned long field
, unsigned long value
)
1142 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1143 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1144 if (unlikely(error
))
1145 vmwrite_error(field
, value
);
1148 static void vmcs_write16(unsigned long field
, u16 value
)
1150 vmcs_writel(field
, value
);
1153 static void vmcs_write32(unsigned long field
, u32 value
)
1155 vmcs_writel(field
, value
);
1158 static void vmcs_write64(unsigned long field
, u64 value
)
1160 vmcs_writel(field
, value
);
1161 #ifndef CONFIG_X86_64
1163 vmcs_writel(field
+1, value
>> 32);
1167 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
1169 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
1172 static void vmcs_set_bits(unsigned long field
, u32 mask
)
1174 vmcs_writel(field
, vmcs_readl(field
) | mask
);
1177 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1179 vmx
->segment_cache
.bitmask
= 0;
1182 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1186 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1188 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1189 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1190 vmx
->segment_cache
.bitmask
= 0;
1192 ret
= vmx
->segment_cache
.bitmask
& mask
;
1193 vmx
->segment_cache
.bitmask
|= mask
;
1197 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1199 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1201 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1202 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1206 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1208 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1210 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1211 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1215 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1217 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1219 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1220 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1224 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1226 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1228 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1229 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1233 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1237 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1238 (1u << NM_VECTOR
) | (1u << DB_VECTOR
);
1239 if ((vcpu
->guest_debug
&
1240 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1241 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1242 eb
|= 1u << BP_VECTOR
;
1243 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1246 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1247 if (vcpu
->fpu_active
)
1248 eb
&= ~(1u << NM_VECTOR
);
1250 /* When we are running a nested L2 guest and L1 specified for it a
1251 * certain exception bitmap, we must trap the same exceptions and pass
1252 * them to L1. When running L2, we will only handle the exceptions
1253 * specified above if L1 did not want them.
1255 if (is_guest_mode(vcpu
))
1256 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1258 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1261 static void clear_atomic_switch_msr_special(unsigned long entry
,
1264 vmcs_clear_bits(VM_ENTRY_CONTROLS
, entry
);
1265 vmcs_clear_bits(VM_EXIT_CONTROLS
, exit
);
1268 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1271 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1275 if (cpu_has_load_ia32_efer
) {
1276 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER
,
1277 VM_EXIT_LOAD_IA32_EFER
);
1281 case MSR_CORE_PERF_GLOBAL_CTRL
:
1282 if (cpu_has_load_perf_global_ctrl
) {
1283 clear_atomic_switch_msr_special(
1284 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1285 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1291 for (i
= 0; i
< m
->nr
; ++i
)
1292 if (m
->guest
[i
].index
== msr
)
1298 m
->guest
[i
] = m
->guest
[m
->nr
];
1299 m
->host
[i
] = m
->host
[m
->nr
];
1300 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1301 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1304 static void add_atomic_switch_msr_special(unsigned long entry
,
1305 unsigned long exit
, unsigned long guest_val_vmcs
,
1306 unsigned long host_val_vmcs
, u64 guest_val
, u64 host_val
)
1308 vmcs_write64(guest_val_vmcs
, guest_val
);
1309 vmcs_write64(host_val_vmcs
, host_val
);
1310 vmcs_set_bits(VM_ENTRY_CONTROLS
, entry
);
1311 vmcs_set_bits(VM_EXIT_CONTROLS
, exit
);
1314 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1315 u64 guest_val
, u64 host_val
)
1318 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1322 if (cpu_has_load_ia32_efer
) {
1323 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER
,
1324 VM_EXIT_LOAD_IA32_EFER
,
1327 guest_val
, host_val
);
1331 case MSR_CORE_PERF_GLOBAL_CTRL
:
1332 if (cpu_has_load_perf_global_ctrl
) {
1333 add_atomic_switch_msr_special(
1334 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1335 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1336 GUEST_IA32_PERF_GLOBAL_CTRL
,
1337 HOST_IA32_PERF_GLOBAL_CTRL
,
1338 guest_val
, host_val
);
1344 for (i
= 0; i
< m
->nr
; ++i
)
1345 if (m
->guest
[i
].index
== msr
)
1348 if (i
== NR_AUTOLOAD_MSRS
) {
1349 printk_once(KERN_WARNING
"Not enough mst switch entries. "
1350 "Can't add msr %x\n", msr
);
1352 } else if (i
== m
->nr
) {
1354 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1355 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1358 m
->guest
[i
].index
= msr
;
1359 m
->guest
[i
].value
= guest_val
;
1360 m
->host
[i
].index
= msr
;
1361 m
->host
[i
].value
= host_val
;
1364 static void reload_tss(void)
1367 * VT restores TR but not its size. Useless.
1369 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1370 struct desc_struct
*descs
;
1372 descs
= (void *)gdt
->address
;
1373 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1377 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1382 guest_efer
= vmx
->vcpu
.arch
.efer
;
1385 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1388 ignore_bits
= EFER_NX
| EFER_SCE
;
1389 #ifdef CONFIG_X86_64
1390 ignore_bits
|= EFER_LMA
| EFER_LME
;
1391 /* SCE is meaningful only in long mode on Intel */
1392 if (guest_efer
& EFER_LMA
)
1393 ignore_bits
&= ~(u64
)EFER_SCE
;
1395 guest_efer
&= ~ignore_bits
;
1396 guest_efer
|= host_efer
& ignore_bits
;
1397 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
1398 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
1400 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1401 /* On ept, can't emulate nx, and must switch nx atomically */
1402 if (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
)) {
1403 guest_efer
= vmx
->vcpu
.arch
.efer
;
1404 if (!(guest_efer
& EFER_LMA
))
1405 guest_efer
&= ~EFER_LME
;
1406 add_atomic_switch_msr(vmx
, MSR_EFER
, guest_efer
, host_efer
);
1413 static unsigned long segment_base(u16 selector
)
1415 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1416 struct desc_struct
*d
;
1417 unsigned long table_base
;
1420 if (!(selector
& ~3))
1423 table_base
= gdt
->address
;
1425 if (selector
& 4) { /* from ldt */
1426 u16 ldt_selector
= kvm_read_ldt();
1428 if (!(ldt_selector
& ~3))
1431 table_base
= segment_base(ldt_selector
);
1433 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
1434 v
= get_desc_base(d
);
1435 #ifdef CONFIG_X86_64
1436 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
1437 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
1442 static inline unsigned long kvm_read_tr_base(void)
1445 asm("str %0" : "=g"(tr
));
1446 return segment_base(tr
);
1449 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
1451 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1454 if (vmx
->host_state
.loaded
)
1457 vmx
->host_state
.loaded
= 1;
1459 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1460 * allow segment selectors with cpl > 0 or ti == 1.
1462 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
1463 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
1464 savesegment(fs
, vmx
->host_state
.fs_sel
);
1465 if (!(vmx
->host_state
.fs_sel
& 7)) {
1466 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
1467 vmx
->host_state
.fs_reload_needed
= 0;
1469 vmcs_write16(HOST_FS_SELECTOR
, 0);
1470 vmx
->host_state
.fs_reload_needed
= 1;
1472 savesegment(gs
, vmx
->host_state
.gs_sel
);
1473 if (!(vmx
->host_state
.gs_sel
& 7))
1474 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
1476 vmcs_write16(HOST_GS_SELECTOR
, 0);
1477 vmx
->host_state
.gs_ldt_reload_needed
= 1;
1480 #ifdef CONFIG_X86_64
1481 savesegment(ds
, vmx
->host_state
.ds_sel
);
1482 savesegment(es
, vmx
->host_state
.es_sel
);
1485 #ifdef CONFIG_X86_64
1486 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
1487 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
1489 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
1490 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
1493 #ifdef CONFIG_X86_64
1494 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1495 if (is_long_mode(&vmx
->vcpu
))
1496 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1498 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
1499 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
1500 vmx
->guest_msrs
[i
].data
,
1501 vmx
->guest_msrs
[i
].mask
);
1504 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
1506 if (!vmx
->host_state
.loaded
)
1509 ++vmx
->vcpu
.stat
.host_state_reload
;
1510 vmx
->host_state
.loaded
= 0;
1511 #ifdef CONFIG_X86_64
1512 if (is_long_mode(&vmx
->vcpu
))
1513 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1515 if (vmx
->host_state
.gs_ldt_reload_needed
) {
1516 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
1517 #ifdef CONFIG_X86_64
1518 load_gs_index(vmx
->host_state
.gs_sel
);
1520 loadsegment(gs
, vmx
->host_state
.gs_sel
);
1523 if (vmx
->host_state
.fs_reload_needed
)
1524 loadsegment(fs
, vmx
->host_state
.fs_sel
);
1525 #ifdef CONFIG_X86_64
1526 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
1527 loadsegment(ds
, vmx
->host_state
.ds_sel
);
1528 loadsegment(es
, vmx
->host_state
.es_sel
);
1532 #ifdef CONFIG_X86_64
1533 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1536 * If the FPU is not active (through the host task or
1537 * the guest vcpu), then restore the cr0.TS bit.
1539 if (!user_has_fpu() && !vmx
->vcpu
.guest_fpu_loaded
)
1541 load_gdt(&__get_cpu_var(host_gdt
));
1544 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
1547 __vmx_load_host_state(vmx
);
1552 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1553 * vcpu mutex is already taken.
1555 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1557 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1558 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1561 kvm_cpu_vmxon(phys_addr
);
1562 else if (vmx
->loaded_vmcs
->cpu
!= cpu
)
1563 loaded_vmcs_clear(vmx
->loaded_vmcs
);
1565 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
1566 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
1567 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1570 if (vmx
->loaded_vmcs
->cpu
!= cpu
) {
1571 struct desc_ptr
*gdt
= &__get_cpu_var(host_gdt
);
1572 unsigned long sysenter_esp
;
1574 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1575 local_irq_disable();
1576 crash_disable_local_vmclear(cpu
);
1579 * Read loaded_vmcs->cpu should be before fetching
1580 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1581 * See the comments in __loaded_vmcs_clear().
1585 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
1586 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
1587 crash_enable_local_vmclear(cpu
);
1591 * Linux uses per-cpu TSS and GDT, so set these when switching
1594 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
1595 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
1597 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
1598 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
1599 vmx
->loaded_vmcs
->cpu
= cpu
;
1603 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
1605 __vmx_load_host_state(to_vmx(vcpu
));
1606 if (!vmm_exclusive
) {
1607 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
1613 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
1617 if (vcpu
->fpu_active
)
1619 vcpu
->fpu_active
= 1;
1620 cr0
= vmcs_readl(GUEST_CR0
);
1621 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
1622 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
1623 vmcs_writel(GUEST_CR0
, cr0
);
1624 update_exception_bitmap(vcpu
);
1625 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
1626 if (is_guest_mode(vcpu
))
1627 vcpu
->arch
.cr0_guest_owned_bits
&=
1628 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
1629 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1632 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
1635 * Return the cr0 value that a nested guest would read. This is a combination
1636 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1637 * its hypervisor (cr0_read_shadow).
1639 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
1641 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
1642 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
1644 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
1646 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
1647 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
1650 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
1652 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1653 * set this *before* calling this function.
1655 vmx_decache_cr0_guest_bits(vcpu
);
1656 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
1657 update_exception_bitmap(vcpu
);
1658 vcpu
->arch
.cr0_guest_owned_bits
= 0;
1659 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
1660 if (is_guest_mode(vcpu
)) {
1662 * L1's specified read shadow might not contain the TS bit,
1663 * so now that we turned on shadowing of this bit, we need to
1664 * set this bit of the shadow. Like in nested_vmx_run we need
1665 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1666 * up-to-date here because we just decached cr0.TS (and we'll
1667 * only update vmcs12->guest_cr0 on nested exit).
1669 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1670 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
1671 (vcpu
->arch
.cr0
& X86_CR0_TS
);
1672 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
1674 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
1677 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
1679 unsigned long rflags
, save_rflags
;
1681 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
1682 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1683 rflags
= vmcs_readl(GUEST_RFLAGS
);
1684 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1685 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1686 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
1687 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1689 to_vmx(vcpu
)->rflags
= rflags
;
1691 return to_vmx(vcpu
)->rflags
;
1694 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1696 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
1697 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
1698 to_vmx(vcpu
)->rflags
= rflags
;
1699 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
1700 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
1701 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1703 vmcs_writel(GUEST_RFLAGS
, rflags
);
1706 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1708 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1711 if (interruptibility
& GUEST_INTR_STATE_STI
)
1712 ret
|= KVM_X86_SHADOW_INT_STI
;
1713 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
1714 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
1719 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1721 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1722 u32 interruptibility
= interruptibility_old
;
1724 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
1726 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
1727 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
1728 else if (mask
& KVM_X86_SHADOW_INT_STI
)
1729 interruptibility
|= GUEST_INTR_STATE_STI
;
1731 if ((interruptibility
!= interruptibility_old
))
1732 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1735 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1739 rip
= kvm_rip_read(vcpu
);
1740 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1741 kvm_rip_write(vcpu
, rip
);
1743 /* skipping an emulated instruction also counts */
1744 vmx_set_interrupt_shadow(vcpu
, 0);
1748 * KVM wants to inject page-faults which it got to the guest. This function
1749 * checks whether in a nested guest, we need to inject them to L1 or L2.
1750 * This function assumes it is called with the exit reason in vmcs02 being
1751 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1754 static int nested_pf_handled(struct kvm_vcpu
*vcpu
)
1756 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1758 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1759 if (!(vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)))
1762 nested_vmx_vmexit(vcpu
);
1766 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
1767 bool has_error_code
, u32 error_code
,
1770 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1771 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
1773 if (nr
== PF_VECTOR
&& is_guest_mode(vcpu
) &&
1774 nested_pf_handled(vcpu
))
1777 if (has_error_code
) {
1778 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
1779 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
1782 if (vmx
->rmode
.vm86_active
) {
1784 if (kvm_exception_is_soft(nr
))
1785 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
1786 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
1787 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
1791 if (kvm_exception_is_soft(nr
)) {
1792 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
1793 vmx
->vcpu
.arch
.event_exit_inst_len
);
1794 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
1796 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
1798 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
1801 static bool vmx_rdtscp_supported(void)
1803 return cpu_has_vmx_rdtscp();
1806 static bool vmx_invpcid_supported(void)
1808 return cpu_has_vmx_invpcid() && enable_ept
;
1812 * Swap MSR entry in host/guest MSR entry array.
1814 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
1816 struct shared_msr_entry tmp
;
1818 tmp
= vmx
->guest_msrs
[to
];
1819 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
1820 vmx
->guest_msrs
[from
] = tmp
;
1824 * Set up the vmcs to automatically save and restore system
1825 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1826 * mode, as fiddling with msrs is very expensive.
1828 static void setup_msrs(struct vcpu_vmx
*vmx
)
1830 int save_nmsrs
, index
;
1831 unsigned long *msr_bitmap
;
1834 #ifdef CONFIG_X86_64
1835 if (is_long_mode(&vmx
->vcpu
)) {
1836 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
1838 move_msr_up(vmx
, index
, save_nmsrs
++);
1839 index
= __find_msr_index(vmx
, MSR_LSTAR
);
1841 move_msr_up(vmx
, index
, save_nmsrs
++);
1842 index
= __find_msr_index(vmx
, MSR_CSTAR
);
1844 move_msr_up(vmx
, index
, save_nmsrs
++);
1845 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
1846 if (index
>= 0 && vmx
->rdtscp_enabled
)
1847 move_msr_up(vmx
, index
, save_nmsrs
++);
1849 * MSR_STAR is only needed on long mode guests, and only
1850 * if efer.sce is enabled.
1852 index
= __find_msr_index(vmx
, MSR_STAR
);
1853 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
1854 move_msr_up(vmx
, index
, save_nmsrs
++);
1857 index
= __find_msr_index(vmx
, MSR_EFER
);
1858 if (index
>= 0 && update_transition_efer(vmx
, index
))
1859 move_msr_up(vmx
, index
, save_nmsrs
++);
1861 vmx
->save_nmsrs
= save_nmsrs
;
1863 if (cpu_has_vmx_msr_bitmap()) {
1864 if (is_long_mode(&vmx
->vcpu
))
1865 msr_bitmap
= vmx_msr_bitmap_longmode
;
1867 msr_bitmap
= vmx_msr_bitmap_legacy
;
1869 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
1874 * reads and returns guest's timestamp counter "register"
1875 * guest_tsc = host_tsc + tsc_offset -- 21.3
1877 static u64
guest_read_tsc(void)
1879 u64 host_tsc
, tsc_offset
;
1882 tsc_offset
= vmcs_read64(TSC_OFFSET
);
1883 return host_tsc
+ tsc_offset
;
1887 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1888 * counter, even if a nested guest (L2) is currently running.
1890 u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1894 tsc_offset
= is_guest_mode(vcpu
) ?
1895 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
1896 vmcs_read64(TSC_OFFSET
);
1897 return host_tsc
+ tsc_offset
;
1901 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1902 * software catchup for faster rates on slower CPUs.
1904 static void vmx_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1909 if (user_tsc_khz
> tsc_khz
) {
1910 vcpu
->arch
.tsc_catchup
= 1;
1911 vcpu
->arch
.tsc_always_catchup
= 1;
1913 WARN(1, "user requested TSC rate below hardware speed\n");
1916 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
1918 return vmcs_read64(TSC_OFFSET
);
1922 * writes 'offset' into guest's timestamp counter offset register
1924 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1926 if (is_guest_mode(vcpu
)) {
1928 * We're here if L1 chose not to trap WRMSR to TSC. According
1929 * to the spec, this should set L1's TSC; The offset that L1
1930 * set for L2 remains unchanged, and still needs to be added
1931 * to the newly set TSC to get L2's TSC.
1933 struct vmcs12
*vmcs12
;
1934 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
1935 /* recalculate vmcs02.TSC_OFFSET: */
1936 vmcs12
= get_vmcs12(vcpu
);
1937 vmcs_write64(TSC_OFFSET
, offset
+
1938 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
1939 vmcs12
->tsc_offset
: 0));
1941 vmcs_write64(TSC_OFFSET
, offset
);
1945 static void vmx_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
1947 u64 offset
= vmcs_read64(TSC_OFFSET
);
1948 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
1949 if (is_guest_mode(vcpu
)) {
1950 /* Even when running L2, the adjustment needs to apply to L1 */
1951 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
1955 static u64
vmx_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1957 return target_tsc
- native_read_tsc();
1960 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
1962 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
1963 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
1967 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1968 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1969 * all guests if the "nested" module option is off, and can also be disabled
1970 * for a single guest by disabling its VMX cpuid bit.
1972 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
1974 return nested
&& guest_cpuid_has_vmx(vcpu
);
1978 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1979 * returned for the various VMX controls MSRs when nested VMX is enabled.
1980 * The same values should also be used to verify that vmcs12 control fields are
1981 * valid during nested entry from L1 to L2.
1982 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1983 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1984 * bit in the high half is on if the corresponding bit in the control field
1985 * may be on. See also vmx_control_verify().
1986 * TODO: allow these variables to be modified (downgraded) by module options
1989 static u32 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
;
1990 static u32 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
;
1991 static u32 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
;
1992 static u32 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
;
1993 static u32 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
;
1994 static __init
void nested_vmx_setup_ctls_msrs(void)
1997 * Note that as a general rule, the high half of the MSRs (bits in
1998 * the control fields which may be 1) should be initialized by the
1999 * intersection of the underlying hardware's MSR (i.e., features which
2000 * can be supported) and the list of features we want to expose -
2001 * because they are known to be properly supported in our code.
2002 * Also, usually, the low half of the MSRs (bits which must be 1) can
2003 * be set to 0, meaning that L1 may turn off any of these bits. The
2004 * reason is that if one of these bits is necessary, it will appear
2005 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2006 * fields of vmcs01 and vmcs02, will turn these bits off - and
2007 * nested_vmx_exit_handled() will not pass related exits to L1.
2008 * These rules have exceptions below.
2011 /* pin-based controls */
2013 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2014 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2016 nested_vmx_pinbased_ctls_low
= 0x16 ;
2017 nested_vmx_pinbased_ctls_high
= 0x16 |
2018 PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
|
2019 PIN_BASED_VIRTUAL_NMIS
;
2022 nested_vmx_exit_ctls_low
= 0;
2023 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2024 #ifdef CONFIG_X86_64
2025 nested_vmx_exit_ctls_high
= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
2027 nested_vmx_exit_ctls_high
= 0;
2030 /* entry controls */
2031 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2032 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
);
2033 nested_vmx_entry_ctls_low
= 0;
2034 nested_vmx_entry_ctls_high
&=
2035 VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_IA32E_MODE
;
2037 /* cpu-based controls */
2038 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2039 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
);
2040 nested_vmx_procbased_ctls_low
= 0;
2041 nested_vmx_procbased_ctls_high
&=
2042 CPU_BASED_VIRTUAL_INTR_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2043 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2044 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2045 CPU_BASED_CR3_STORE_EXITING
|
2046 #ifdef CONFIG_X86_64
2047 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2049 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2050 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_EXITING
|
2051 CPU_BASED_RDPMC_EXITING
| CPU_BASED_RDTSC_EXITING
|
2052 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2054 * We can allow some features even when not supported by the
2055 * hardware. For example, L1 can specify an MSR bitmap - and we
2056 * can use it to avoid exits to L1 - even when L0 runs L2
2057 * without MSR bitmaps.
2059 nested_vmx_procbased_ctls_high
|= CPU_BASED_USE_MSR_BITMAPS
;
2061 /* secondary cpu-based controls */
2062 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2063 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
);
2064 nested_vmx_secondary_ctls_low
= 0;
2065 nested_vmx_secondary_ctls_high
&=
2066 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2069 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2072 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2074 return ((control
& high
) | low
) == control
;
2077 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2079 return low
| ((u64
)high
<< 32);
2083 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2084 * also let it use VMX-specific MSRs.
2085 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2086 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2087 * like all other MSRs).
2089 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2091 if (!nested_vmx_allowed(vcpu
) && msr_index
>= MSR_IA32_VMX_BASIC
&&
2092 msr_index
<= MSR_IA32_VMX_TRUE_ENTRY_CTLS
) {
2094 * According to the spec, processors which do not support VMX
2095 * should throw a #GP(0) when VMX capability MSRs are read.
2097 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
2101 switch (msr_index
) {
2102 case MSR_IA32_FEATURE_CONTROL
:
2105 case MSR_IA32_VMX_BASIC
:
2107 * This MSR reports some information about VMX support. We
2108 * should return information about the VMX we emulate for the
2109 * guest, and the VMCS structure we give it - not about the
2110 * VMX support of the underlying hardware.
2112 *pdata
= VMCS12_REVISION
|
2113 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2114 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2116 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2117 case MSR_IA32_VMX_PINBASED_CTLS
:
2118 *pdata
= vmx_control_msr(nested_vmx_pinbased_ctls_low
,
2119 nested_vmx_pinbased_ctls_high
);
2121 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2122 case MSR_IA32_VMX_PROCBASED_CTLS
:
2123 *pdata
= vmx_control_msr(nested_vmx_procbased_ctls_low
,
2124 nested_vmx_procbased_ctls_high
);
2126 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2127 case MSR_IA32_VMX_EXIT_CTLS
:
2128 *pdata
= vmx_control_msr(nested_vmx_exit_ctls_low
,
2129 nested_vmx_exit_ctls_high
);
2131 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2132 case MSR_IA32_VMX_ENTRY_CTLS
:
2133 *pdata
= vmx_control_msr(nested_vmx_entry_ctls_low
,
2134 nested_vmx_entry_ctls_high
);
2136 case MSR_IA32_VMX_MISC
:
2140 * These MSRs specify bits which the guest must keep fixed (on or off)
2141 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2142 * We picked the standard core2 setting.
2144 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2145 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2146 case MSR_IA32_VMX_CR0_FIXED0
:
2147 *pdata
= VMXON_CR0_ALWAYSON
;
2149 case MSR_IA32_VMX_CR0_FIXED1
:
2152 case MSR_IA32_VMX_CR4_FIXED0
:
2153 *pdata
= VMXON_CR4_ALWAYSON
;
2155 case MSR_IA32_VMX_CR4_FIXED1
:
2158 case MSR_IA32_VMX_VMCS_ENUM
:
2161 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2162 *pdata
= vmx_control_msr(nested_vmx_secondary_ctls_low
,
2163 nested_vmx_secondary_ctls_high
);
2165 case MSR_IA32_VMX_EPT_VPID_CAP
:
2166 /* Currently, no nested ept or nested vpid */
2176 static int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
2178 if (!nested_vmx_allowed(vcpu
))
2181 if (msr_index
== MSR_IA32_FEATURE_CONTROL
)
2182 /* TODO: the right thing. */
2185 * No need to treat VMX capability MSRs specially: If we don't handle
2186 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2192 * Reads an msr value (of 'msr_index') into 'pdata'.
2193 * Returns 0 on success, non-0 otherwise.
2194 * Assumes vcpu_load() was already called.
2196 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2199 struct shared_msr_entry
*msr
;
2202 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
2206 switch (msr_index
) {
2207 #ifdef CONFIG_X86_64
2209 data
= vmcs_readl(GUEST_FS_BASE
);
2212 data
= vmcs_readl(GUEST_GS_BASE
);
2214 case MSR_KERNEL_GS_BASE
:
2215 vmx_load_host_state(to_vmx(vcpu
));
2216 data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2220 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2222 data
= guest_read_tsc();
2224 case MSR_IA32_SYSENTER_CS
:
2225 data
= vmcs_read32(GUEST_SYSENTER_CS
);
2227 case MSR_IA32_SYSENTER_EIP
:
2228 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2230 case MSR_IA32_SYSENTER_ESP
:
2231 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2234 if (!to_vmx(vcpu
)->rdtscp_enabled
)
2236 /* Otherwise falls through */
2238 if (vmx_get_vmx_msr(vcpu
, msr_index
, pdata
))
2240 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
2245 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
2253 * Writes msr value into into the appropriate "register".
2254 * Returns 0 on success, non-0 otherwise.
2255 * Assumes vcpu_load() was already called.
2257 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2259 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2260 struct shared_msr_entry
*msr
;
2262 u32 msr_index
= msr_info
->index
;
2263 u64 data
= msr_info
->data
;
2265 switch (msr_index
) {
2267 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2269 #ifdef CONFIG_X86_64
2271 vmx_segment_cache_clear(vmx
);
2272 vmcs_writel(GUEST_FS_BASE
, data
);
2275 vmx_segment_cache_clear(vmx
);
2276 vmcs_writel(GUEST_GS_BASE
, data
);
2278 case MSR_KERNEL_GS_BASE
:
2279 vmx_load_host_state(vmx
);
2280 vmx
->msr_guest_kernel_gs_base
= data
;
2283 case MSR_IA32_SYSENTER_CS
:
2284 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2286 case MSR_IA32_SYSENTER_EIP
:
2287 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2289 case MSR_IA32_SYSENTER_ESP
:
2290 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2293 kvm_write_tsc(vcpu
, msr_info
);
2295 case MSR_IA32_CR_PAT
:
2296 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2297 vmcs_write64(GUEST_IA32_PAT
, data
);
2298 vcpu
->arch
.pat
= data
;
2301 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2303 case MSR_IA32_TSC_ADJUST
:
2304 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2307 if (!vmx
->rdtscp_enabled
)
2309 /* Check reserved bit, higher 32 bits should be zero */
2310 if ((data
>> 32) != 0)
2312 /* Otherwise falls through */
2314 if (vmx_set_vmx_msr(vcpu
, msr_index
, data
))
2316 msr
= find_msr_entry(vmx
, msr_index
);
2319 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
2321 kvm_set_shared_msr(msr
->index
, msr
->data
,
2327 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2333 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2335 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
2338 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2341 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2343 case VCPU_EXREG_PDPTR
:
2345 ept_save_pdptrs(vcpu
);
2352 static __init
int cpu_has_kvm_support(void)
2354 return cpu_has_vmx();
2357 static __init
int vmx_disabled_by_bios(void)
2361 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
2362 if (msr
& FEATURE_CONTROL_LOCKED
) {
2363 /* launched w/ TXT and VMX disabled */
2364 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2367 /* launched w/o TXT and VMX only enabled w/ TXT */
2368 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2369 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
2370 && !tboot_enabled()) {
2371 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
2372 "activate TXT before enabling KVM\n");
2375 /* launched w/o TXT and VMX disabled */
2376 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
2377 && !tboot_enabled())
2384 static void kvm_cpu_vmxon(u64 addr
)
2386 asm volatile (ASM_VMX_VMXON_RAX
2387 : : "a"(&addr
), "m"(addr
)
2391 static int hardware_enable(void *garbage
)
2393 int cpu
= raw_smp_processor_id();
2394 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2397 if (read_cr4() & X86_CR4_VMXE
)
2400 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
2403 * Now we can enable the vmclear operation in kdump
2404 * since the loaded_vmcss_on_cpu list on this cpu
2405 * has been initialized.
2407 * Though the cpu is not in VMX operation now, there
2408 * is no problem to enable the vmclear operation
2409 * for the loaded_vmcss_on_cpu list is empty!
2411 crash_enable_local_vmclear(cpu
);
2413 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
2415 test_bits
= FEATURE_CONTROL_LOCKED
;
2416 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
2417 if (tboot_enabled())
2418 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
2420 if ((old
& test_bits
) != test_bits
) {
2421 /* enable and lock */
2422 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
2424 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
2426 if (vmm_exclusive
) {
2427 kvm_cpu_vmxon(phys_addr
);
2431 store_gdt(&__get_cpu_var(host_gdt
));
2436 static void vmclear_local_loaded_vmcss(void)
2438 int cpu
= raw_smp_processor_id();
2439 struct loaded_vmcs
*v
, *n
;
2441 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2442 loaded_vmcss_on_cpu_link
)
2443 __loaded_vmcs_clear(v
);
2447 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2450 static void kvm_cpu_vmxoff(void)
2452 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
2455 static void hardware_disable(void *garbage
)
2457 if (vmm_exclusive
) {
2458 vmclear_local_loaded_vmcss();
2461 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
2464 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
2465 u32 msr
, u32
*result
)
2467 u32 vmx_msr_low
, vmx_msr_high
;
2468 u32 ctl
= ctl_min
| ctl_opt
;
2470 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2472 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
2473 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
2475 /* Ensure minimum (required) set of control bits are supported. */
2483 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
2485 u32 vmx_msr_low
, vmx_msr_high
;
2487 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2488 return vmx_msr_high
& ctl
;
2491 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
2493 u32 vmx_msr_low
, vmx_msr_high
;
2494 u32 min
, opt
, min2
, opt2
;
2495 u32 _pin_based_exec_control
= 0;
2496 u32 _cpu_based_exec_control
= 0;
2497 u32 _cpu_based_2nd_exec_control
= 0;
2498 u32 _vmexit_control
= 0;
2499 u32 _vmentry_control
= 0;
2501 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
2502 opt
= PIN_BASED_VIRTUAL_NMIS
;
2503 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
2504 &_pin_based_exec_control
) < 0)
2507 min
= CPU_BASED_HLT_EXITING
|
2508 #ifdef CONFIG_X86_64
2509 CPU_BASED_CR8_LOAD_EXITING
|
2510 CPU_BASED_CR8_STORE_EXITING
|
2512 CPU_BASED_CR3_LOAD_EXITING
|
2513 CPU_BASED_CR3_STORE_EXITING
|
2514 CPU_BASED_USE_IO_BITMAPS
|
2515 CPU_BASED_MOV_DR_EXITING
|
2516 CPU_BASED_USE_TSC_OFFSETING
|
2517 CPU_BASED_MWAIT_EXITING
|
2518 CPU_BASED_MONITOR_EXITING
|
2519 CPU_BASED_INVLPG_EXITING
|
2520 CPU_BASED_RDPMC_EXITING
;
2522 opt
= CPU_BASED_TPR_SHADOW
|
2523 CPU_BASED_USE_MSR_BITMAPS
|
2524 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2525 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
2526 &_cpu_based_exec_control
) < 0)
2528 #ifdef CONFIG_X86_64
2529 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2530 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
2531 ~CPU_BASED_CR8_STORE_EXITING
;
2533 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
2535 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2536 SECONDARY_EXEC_WBINVD_EXITING
|
2537 SECONDARY_EXEC_ENABLE_VPID
|
2538 SECONDARY_EXEC_ENABLE_EPT
|
2539 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
2540 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
2541 SECONDARY_EXEC_RDTSCP
|
2542 SECONDARY_EXEC_ENABLE_INVPCID
;
2543 if (adjust_vmx_controls(min2
, opt2
,
2544 MSR_IA32_VMX_PROCBASED_CTLS2
,
2545 &_cpu_based_2nd_exec_control
) < 0)
2548 #ifndef CONFIG_X86_64
2549 if (!(_cpu_based_2nd_exec_control
&
2550 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
2551 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2553 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
2554 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2556 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
2557 CPU_BASED_CR3_STORE_EXITING
|
2558 CPU_BASED_INVLPG_EXITING
);
2559 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
2560 vmx_capability
.ept
, vmx_capability
.vpid
);
2564 #ifdef CONFIG_X86_64
2565 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
2567 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
2568 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
2569 &_vmexit_control
) < 0)
2573 opt
= VM_ENTRY_LOAD_IA32_PAT
;
2574 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
2575 &_vmentry_control
) < 0)
2578 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
2580 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
2584 #ifdef CONFIG_X86_64
2585 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586 if (vmx_msr_high
& (1u<<16))
2590 /* Require Write-Back (WB) memory type for VMCS accesses. */
2591 if (((vmx_msr_high
>> 18) & 15) != 6)
2594 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
2595 vmcs_conf
->order
= get_order(vmcs_config
.size
);
2596 vmcs_conf
->revision_id
= vmx_msr_low
;
2598 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
2599 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
2600 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
2601 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
2602 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
2604 cpu_has_load_ia32_efer
=
2605 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2606 VM_ENTRY_LOAD_IA32_EFER
)
2607 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2608 VM_EXIT_LOAD_IA32_EFER
);
2610 cpu_has_load_perf_global_ctrl
=
2611 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
2612 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
2613 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
2614 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
2617 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2618 * but due to arrata below it can't be used. Workaround is to use
2619 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2621 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2626 * BC86,AAY89,BD102 (model 44)
2630 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
2631 switch (boot_cpu_data
.x86_model
) {
2637 cpu_has_load_perf_global_ctrl
= false;
2638 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2639 "does not work properly. Using workaround\n");
2649 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
2651 int node
= cpu_to_node(cpu
);
2655 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
2658 vmcs
= page_address(pages
);
2659 memset(vmcs
, 0, vmcs_config
.size
);
2660 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
2664 static struct vmcs
*alloc_vmcs(void)
2666 return alloc_vmcs_cpu(raw_smp_processor_id());
2669 static void free_vmcs(struct vmcs
*vmcs
)
2671 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
2675 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2677 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
2679 if (!loaded_vmcs
->vmcs
)
2681 loaded_vmcs_clear(loaded_vmcs
);
2682 free_vmcs(loaded_vmcs
->vmcs
);
2683 loaded_vmcs
->vmcs
= NULL
;
2686 static void free_kvm_area(void)
2690 for_each_possible_cpu(cpu
) {
2691 free_vmcs(per_cpu(vmxarea
, cpu
));
2692 per_cpu(vmxarea
, cpu
) = NULL
;
2696 static __init
int alloc_kvm_area(void)
2700 for_each_possible_cpu(cpu
) {
2703 vmcs
= alloc_vmcs_cpu(cpu
);
2709 per_cpu(vmxarea
, cpu
) = vmcs
;
2714 static __init
int hardware_setup(void)
2716 if (setup_vmcs_config(&vmcs_config
) < 0)
2719 if (boot_cpu_has(X86_FEATURE_NX
))
2720 kvm_enable_efer_bits(EFER_NX
);
2722 if (!cpu_has_vmx_vpid())
2725 if (!cpu_has_vmx_ept() ||
2726 !cpu_has_vmx_ept_4levels()) {
2728 enable_unrestricted_guest
= 0;
2729 enable_ept_ad_bits
= 0;
2732 if (!cpu_has_vmx_ept_ad_bits())
2733 enable_ept_ad_bits
= 0;
2735 if (!cpu_has_vmx_unrestricted_guest())
2736 enable_unrestricted_guest
= 0;
2738 if (!cpu_has_vmx_flexpriority())
2739 flexpriority_enabled
= 0;
2741 if (!cpu_has_vmx_tpr_shadow())
2742 kvm_x86_ops
->update_cr8_intercept
= NULL
;
2744 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
2745 kvm_disable_largepages();
2747 if (!cpu_has_vmx_ple())
2751 nested_vmx_setup_ctls_msrs();
2753 return alloc_kvm_area();
2756 static __exit
void hardware_unsetup(void)
2761 static void fix_pmode_dataseg(struct kvm_vcpu
*vcpu
, int seg
, struct kvm_segment
*save
)
2763 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2764 struct kvm_segment tmp
= *save
;
2766 if (!(vmcs_readl(sf
->base
) == tmp
.base
&& tmp
.s
)) {
2767 tmp
.base
= vmcs_readl(sf
->base
);
2768 tmp
.selector
= vmcs_read16(sf
->selector
);
2769 tmp
.dpl
= tmp
.selector
& SELECTOR_RPL_MASK
;
2772 vmx_set_segment(vcpu
, &tmp
, seg
);
2775 static void enter_pmode(struct kvm_vcpu
*vcpu
)
2777 unsigned long flags
;
2778 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2780 vmx
->emulation_required
= 1;
2781 vmx
->rmode
.vm86_active
= 0;
2783 vmx_segment_cache_clear(vmx
);
2785 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
2787 flags
= vmcs_readl(GUEST_RFLAGS
);
2788 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2789 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2790 vmcs_writel(GUEST_RFLAGS
, flags
);
2792 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
2793 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
2795 update_exception_bitmap(vcpu
);
2797 if (emulate_invalid_guest_state
)
2800 fix_pmode_dataseg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
2801 fix_pmode_dataseg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
2802 fix_pmode_dataseg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
2803 fix_pmode_dataseg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
2805 vmx_segment_cache_clear(vmx
);
2807 vmcs_write16(GUEST_SS_SELECTOR
, 0);
2808 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
2810 vmcs_write16(GUEST_CS_SELECTOR
,
2811 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
2812 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
2815 static gva_t
rmode_tss_base(struct kvm
*kvm
)
2817 if (!kvm
->arch
.tss_addr
) {
2818 struct kvm_memslots
*slots
;
2819 struct kvm_memory_slot
*slot
;
2822 slots
= kvm_memslots(kvm
);
2823 slot
= id_to_memslot(slots
, 0);
2824 base_gfn
= slot
->base_gfn
+ slot
->npages
- 3;
2826 return base_gfn
<< PAGE_SHIFT
;
2828 return kvm
->arch
.tss_addr
;
2831 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
2833 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2835 vmcs_write16(sf
->selector
, save
->base
>> 4);
2836 vmcs_write32(sf
->base
, save
->base
& 0xffff0);
2837 vmcs_write32(sf
->limit
, 0xffff);
2838 vmcs_write32(sf
->ar_bytes
, 0xf3);
2839 if (save
->base
& 0xf)
2840 printk_once(KERN_WARNING
"kvm: segment base is not paragraph"
2841 " aligned when entering protected mode (seg=%d)",
2845 static void enter_rmode(struct kvm_vcpu
*vcpu
)
2847 unsigned long flags
;
2848 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2849 struct kvm_segment var
;
2851 if (enable_unrestricted_guest
)
2854 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
2855 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
2856 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
2857 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
2858 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
2860 vmx
->emulation_required
= 1;
2861 vmx
->rmode
.vm86_active
= 1;
2865 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2866 * vcpu. Call it here with phys address pointing 16M below 4G.
2868 if (!vcpu
->kvm
->arch
.tss_addr
) {
2869 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
2870 "called before entering vcpu\n");
2871 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
2872 vmx_set_tss_addr(vcpu
->kvm
, 0xfeffd000);
2873 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2876 vmx_segment_cache_clear(vmx
);
2878 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
2879 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
2880 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2882 flags
= vmcs_readl(GUEST_RFLAGS
);
2883 vmx
->rmode
.save_rflags
= flags
;
2885 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2887 vmcs_writel(GUEST_RFLAGS
, flags
);
2888 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
2889 update_exception_bitmap(vcpu
);
2891 if (emulate_invalid_guest_state
)
2892 goto continue_rmode
;
2894 vmx_get_segment(vcpu
, &var
, VCPU_SREG_SS
);
2895 vmx_set_segment(vcpu
, &var
, VCPU_SREG_SS
);
2897 vmx_get_segment(vcpu
, &var
, VCPU_SREG_CS
);
2898 vmx_set_segment(vcpu
, &var
, VCPU_SREG_CS
);
2900 vmx_get_segment(vcpu
, &var
, VCPU_SREG_ES
);
2901 vmx_set_segment(vcpu
, &var
, VCPU_SREG_ES
);
2903 vmx_get_segment(vcpu
, &var
, VCPU_SREG_DS
);
2904 vmx_set_segment(vcpu
, &var
, VCPU_SREG_DS
);
2906 vmx_get_segment(vcpu
, &var
, VCPU_SREG_GS
);
2907 vmx_set_segment(vcpu
, &var
, VCPU_SREG_GS
);
2909 vmx_get_segment(vcpu
, &var
, VCPU_SREG_FS
);
2910 vmx_set_segment(vcpu
, &var
, VCPU_SREG_FS
);
2913 kvm_mmu_reset_context(vcpu
);
2916 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
2918 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2919 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
2925 * Force kernel_gs_base reloading before EFER changes, as control
2926 * of this msr depends on is_long_mode().
2928 vmx_load_host_state(to_vmx(vcpu
));
2929 vcpu
->arch
.efer
= efer
;
2930 if (efer
& EFER_LMA
) {
2931 vmcs_write32(VM_ENTRY_CONTROLS
,
2932 vmcs_read32(VM_ENTRY_CONTROLS
) |
2933 VM_ENTRY_IA32E_MODE
);
2936 vmcs_write32(VM_ENTRY_CONTROLS
,
2937 vmcs_read32(VM_ENTRY_CONTROLS
) &
2938 ~VM_ENTRY_IA32E_MODE
);
2940 msr
->data
= efer
& ~EFER_LME
;
2945 #ifdef CONFIG_X86_64
2947 static void enter_lmode(struct kvm_vcpu
*vcpu
)
2951 vmx_segment_cache_clear(to_vmx(vcpu
));
2953 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
2954 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
2955 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2957 vmcs_write32(GUEST_TR_AR_BYTES
,
2958 (guest_tr_ar
& ~AR_TYPE_MASK
)
2959 | AR_TYPE_BUSY_64_TSS
);
2961 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
2964 static void exit_lmode(struct kvm_vcpu
*vcpu
)
2966 vmcs_write32(VM_ENTRY_CONTROLS
,
2967 vmcs_read32(VM_ENTRY_CONTROLS
)
2968 & ~VM_ENTRY_IA32E_MODE
);
2969 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
2974 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
2976 vpid_sync_context(to_vmx(vcpu
));
2978 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2980 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
2984 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
2986 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
2988 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
2989 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
2992 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
2994 if (enable_ept
&& is_paging(vcpu
))
2995 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
2996 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
2999 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3001 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3003 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3004 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3007 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3009 if (!test_bit(VCPU_EXREG_PDPTR
,
3010 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3013 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3014 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.mmu
.pdptrs
[0]);
3015 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.mmu
.pdptrs
[1]);
3016 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.mmu
.pdptrs
[2]);
3017 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.mmu
.pdptrs
[3]);
3021 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3023 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3024 vcpu
->arch
.mmu
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3025 vcpu
->arch
.mmu
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3026 vcpu
->arch
.mmu
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3027 vcpu
->arch
.mmu
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3030 __set_bit(VCPU_EXREG_PDPTR
,
3031 (unsigned long *)&vcpu
->arch
.regs_avail
);
3032 __set_bit(VCPU_EXREG_PDPTR
,
3033 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3036 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3038 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3040 struct kvm_vcpu
*vcpu
)
3042 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3043 vmx_decache_cr3(vcpu
);
3044 if (!(cr0
& X86_CR0_PG
)) {
3045 /* From paging/starting to nonpaging */
3046 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3047 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3048 (CPU_BASED_CR3_LOAD_EXITING
|
3049 CPU_BASED_CR3_STORE_EXITING
));
3050 vcpu
->arch
.cr0
= cr0
;
3051 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3052 } else if (!is_paging(vcpu
)) {
3053 /* From nonpaging to paging */
3054 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3055 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3056 ~(CPU_BASED_CR3_LOAD_EXITING
|
3057 CPU_BASED_CR3_STORE_EXITING
));
3058 vcpu
->arch
.cr0
= cr0
;
3059 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3062 if (!(cr0
& X86_CR0_WP
))
3063 *hw_cr0
&= ~X86_CR0_WP
;
3066 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3068 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3069 unsigned long hw_cr0
;
3071 if (enable_unrestricted_guest
)
3072 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
3073 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3075 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
3077 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3080 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3083 #ifdef CONFIG_X86_64
3084 if (vcpu
->arch
.efer
& EFER_LME
) {
3085 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3087 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3093 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3095 if (!vcpu
->fpu_active
)
3096 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3098 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3099 vmcs_writel(GUEST_CR0
, hw_cr0
);
3100 vcpu
->arch
.cr0
= cr0
;
3101 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3104 static u64
construct_eptp(unsigned long root_hpa
)
3108 /* TODO write the value reading from MSR */
3109 eptp
= VMX_EPT_DEFAULT_MT
|
3110 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3111 if (enable_ept_ad_bits
)
3112 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3113 eptp
|= (root_hpa
& PAGE_MASK
);
3118 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3120 unsigned long guest_cr3
;
3125 eptp
= construct_eptp(cr3
);
3126 vmcs_write64(EPT_POINTER
, eptp
);
3127 guest_cr3
= is_paging(vcpu
) ? kvm_read_cr3(vcpu
) :
3128 vcpu
->kvm
->arch
.ept_identity_map_addr
;
3129 ept_load_pdptrs(vcpu
);
3132 vmx_flush_tlb(vcpu
);
3133 vmcs_writel(GUEST_CR3
, guest_cr3
);
3136 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3138 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
3139 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3141 if (cr4
& X86_CR4_VMXE
) {
3143 * To use VMXON (and later other VMX instructions), a guest
3144 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3145 * So basically the check on whether to allow nested VMX
3148 if (!nested_vmx_allowed(vcpu
))
3150 } else if (to_vmx(vcpu
)->nested
.vmxon
)
3153 vcpu
->arch
.cr4
= cr4
;
3155 if (!is_paging(vcpu
)) {
3156 hw_cr4
&= ~X86_CR4_PAE
;
3157 hw_cr4
|= X86_CR4_PSE
;
3158 } else if (!(cr4
& X86_CR4_PAE
)) {
3159 hw_cr4
&= ~X86_CR4_PAE
;
3163 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3164 vmcs_writel(GUEST_CR4
, hw_cr4
);
3168 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
3169 struct kvm_segment
*var
, int seg
)
3171 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3174 if (vmx
->rmode
.vm86_active
3175 && (seg
== VCPU_SREG_TR
|| seg
== VCPU_SREG_ES
3176 || seg
== VCPU_SREG_DS
|| seg
== VCPU_SREG_FS
3177 || seg
== VCPU_SREG_GS
)) {
3178 *var
= vmx
->rmode
.segs
[seg
];
3179 if (seg
== VCPU_SREG_TR
3180 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3182 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3183 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3186 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3187 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3188 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3189 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3190 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
3192 var
->type
= ar
& 15;
3193 var
->s
= (ar
>> 4) & 1;
3194 var
->dpl
= (ar
>> 5) & 3;
3195 var
->present
= (ar
>> 7) & 1;
3196 var
->avl
= (ar
>> 12) & 1;
3197 var
->l
= (ar
>> 13) & 1;
3198 var
->db
= (ar
>> 14) & 1;
3199 var
->g
= (ar
>> 15) & 1;
3200 var
->unusable
= (ar
>> 16) & 1;
3203 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3205 struct kvm_segment s
;
3207 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3208 vmx_get_segment(vcpu
, &s
, seg
);
3211 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3214 static int __vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3216 if (!is_protmode(vcpu
))
3219 if (!is_long_mode(vcpu
)
3220 && (kvm_get_rflags(vcpu
) & X86_EFLAGS_VM
)) /* if virtual 8086 */
3223 return vmx_read_guest_seg_selector(to_vmx(vcpu
), VCPU_SREG_CS
) & 3;
3226 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3228 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3231 * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3232 * fail; use the cache instead.
3234 if (unlikely(vmx
->emulation_required
&& emulate_invalid_guest_state
)) {
3238 if (!test_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
3239 __set_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3240 vmx
->cpl
= __vmx_get_cpl(vcpu
);
3247 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3251 if (var
->unusable
|| !var
->present
)
3254 ar
= var
->type
& 15;
3255 ar
|= (var
->s
& 1) << 4;
3256 ar
|= (var
->dpl
& 3) << 5;
3257 ar
|= (var
->present
& 1) << 7;
3258 ar
|= (var
->avl
& 1) << 12;
3259 ar
|= (var
->l
& 1) << 13;
3260 ar
|= (var
->db
& 1) << 14;
3261 ar
|= (var
->g
& 1) << 15;
3267 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
3268 struct kvm_segment
*var
, int seg
)
3270 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3271 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3274 vmx_segment_cache_clear(vmx
);
3276 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
3277 vmcs_write16(sf
->selector
, var
->selector
);
3278 vmx
->rmode
.segs
[VCPU_SREG_TR
] = *var
;
3281 vmcs_writel(sf
->base
, var
->base
);
3282 vmcs_write32(sf
->limit
, var
->limit
);
3283 vmcs_write16(sf
->selector
, var
->selector
);
3284 if (vmx
->rmode
.vm86_active
&& var
->s
) {
3285 vmx
->rmode
.segs
[seg
] = *var
;
3287 * Hack real-mode segments into vm86 compatibility.
3289 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
3290 vmcs_writel(sf
->base
, 0xf0000);
3293 ar
= vmx_segment_access_rights(var
);
3296 * Fix the "Accessed" bit in AR field of segment registers for older
3298 * IA32 arch specifies that at the time of processor reset the
3299 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3300 * is setting it to 0 in the userland code. This causes invalid guest
3301 * state vmexit when "unrestricted guest" mode is turned on.
3302 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3303 * tree. Newer qemu binaries with that qemu fix would not need this
3306 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
3307 ar
|= 0x1; /* Accessed */
3309 vmcs_write32(sf
->ar_bytes
, ar
);
3310 __clear_bit(VCPU_EXREG_CPL
, (ulong
*)&vcpu
->arch
.regs_avail
);
3313 * Fix segments for real mode guest in hosts that don't have
3314 * "unrestricted_mode" or it was disabled.
3315 * This is done to allow migration of the guests from hosts with
3316 * unrestricted guest like Westmere to older host that don't have
3317 * unrestricted guest like Nehelem.
3319 if (vmx
->rmode
.vm86_active
) {
3322 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
3323 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
3324 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
3325 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
3326 vmcs_write16(GUEST_CS_SELECTOR
,
3327 vmcs_readl(GUEST_CS_BASE
) >> 4);
3333 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
3336 vmcs_write16(GUEST_SS_SELECTOR
,
3337 vmcs_readl(GUEST_SS_BASE
) >> 4);
3338 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
3339 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
3345 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3347 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3349 *db
= (ar
>> 14) & 1;
3350 *l
= (ar
>> 13) & 1;
3353 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3355 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3356 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3359 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3361 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3362 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3365 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3367 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3368 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3371 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3373 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3374 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3377 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3379 struct kvm_segment var
;
3382 vmx_get_segment(vcpu
, &var
, seg
);
3383 ar
= vmx_segment_access_rights(&var
);
3385 if (var
.base
!= (var
.selector
<< 4))
3387 if (var
.limit
< 0xffff)
3389 if (((ar
| (3 << AR_DPL_SHIFT
)) & ~(AR_G_MASK
| AR_DB_MASK
)) != 0xf3)
3395 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3397 struct kvm_segment cs
;
3398 unsigned int cs_rpl
;
3400 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3401 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
3405 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
3409 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
3410 if (cs
.dpl
> cs_rpl
)
3413 if (cs
.dpl
!= cs_rpl
)
3419 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3423 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
3425 struct kvm_segment ss
;
3426 unsigned int ss_rpl
;
3428 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3429 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
3433 if (ss
.type
!= 3 && ss
.type
!= 7)
3437 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
3445 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3447 struct kvm_segment var
;
3450 vmx_get_segment(vcpu
, &var
, seg
);
3451 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
3459 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
3460 if (var
.dpl
< rpl
) /* DPL < RPL */
3464 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3470 static bool tr_valid(struct kvm_vcpu
*vcpu
)
3472 struct kvm_segment tr
;
3474 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
3478 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3480 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
3488 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
3490 struct kvm_segment ldtr
;
3492 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
3496 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
3506 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
3508 struct kvm_segment cs
, ss
;
3510 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3511 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3513 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
3514 (ss
.selector
& SELECTOR_RPL_MASK
));
3518 * Check if guest state is valid. Returns true if valid, false if
3520 * We assume that registers are always usable
3522 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
3524 /* real mode guest state checks */
3525 if (!is_protmode(vcpu
)) {
3526 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
3528 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
3530 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
3532 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
3534 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
3536 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
3539 /* protected mode guest state checks */
3540 if (!cs_ss_rpl_check(vcpu
))
3542 if (!code_segment_valid(vcpu
))
3544 if (!stack_segment_valid(vcpu
))
3546 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
3548 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
3550 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
3552 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
3554 if (!tr_valid(vcpu
))
3556 if (!ldtr_valid(vcpu
))
3560 * - Add checks on RIP
3561 * - Add checks on RFLAGS
3567 static int init_rmode_tss(struct kvm
*kvm
)
3571 int r
, idx
, ret
= 0;
3573 idx
= srcu_read_lock(&kvm
->srcu
);
3574 fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
3575 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3578 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
3579 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
3580 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
3583 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
3586 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
3590 r
= kvm_write_guest_page(kvm
, fn
, &data
,
3591 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
3598 srcu_read_unlock(&kvm
->srcu
, idx
);
3602 static int init_rmode_identity_map(struct kvm
*kvm
)
3605 pfn_t identity_map_pfn
;
3610 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
3611 printk(KERN_ERR
"EPT: identity-mapping pagetable "
3612 "haven't been allocated!\n");
3615 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
3618 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
3619 idx
= srcu_read_lock(&kvm
->srcu
);
3620 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
3623 /* Set up identity-mapping pagetable for EPT in real mode */
3624 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
3625 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
3626 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
3627 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
3628 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
3632 kvm
->arch
.ept_identity_pagetable_done
= true;
3635 srcu_read_unlock(&kvm
->srcu
, idx
);
3639 static void seg_setup(int seg
)
3641 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3644 vmcs_write16(sf
->selector
, 0);
3645 vmcs_writel(sf
->base
, 0);
3646 vmcs_write32(sf
->limit
, 0xffff);
3647 if (enable_unrestricted_guest
) {
3649 if (seg
== VCPU_SREG_CS
)
3650 ar
|= 0x08; /* code segment */
3654 vmcs_write32(sf
->ar_bytes
, ar
);
3657 static int alloc_apic_access_page(struct kvm
*kvm
)
3660 struct kvm_userspace_memory_region kvm_userspace_mem
;
3663 mutex_lock(&kvm
->slots_lock
);
3664 if (kvm
->arch
.apic_access_page
)
3666 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
3667 kvm_userspace_mem
.flags
= 0;
3668 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
3669 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
3670 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
3674 page
= gfn_to_page(kvm
, 0xfee00);
3675 if (is_error_page(page
)) {
3680 kvm
->arch
.apic_access_page
= page
;
3682 mutex_unlock(&kvm
->slots_lock
);
3686 static int alloc_identity_pagetable(struct kvm
*kvm
)
3689 struct kvm_userspace_memory_region kvm_userspace_mem
;
3692 mutex_lock(&kvm
->slots_lock
);
3693 if (kvm
->arch
.ept_identity_pagetable
)
3695 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
3696 kvm_userspace_mem
.flags
= 0;
3697 kvm_userspace_mem
.guest_phys_addr
=
3698 kvm
->arch
.ept_identity_map_addr
;
3699 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
3700 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
3704 page
= gfn_to_page(kvm
, kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
);
3705 if (is_error_page(page
)) {
3710 kvm
->arch
.ept_identity_pagetable
= page
;
3712 mutex_unlock(&kvm
->slots_lock
);
3716 static void allocate_vpid(struct vcpu_vmx
*vmx
)
3723 spin_lock(&vmx_vpid_lock
);
3724 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
3725 if (vpid
< VMX_NR_VPIDS
) {
3727 __set_bit(vpid
, vmx_vpid_bitmap
);
3729 spin_unlock(&vmx_vpid_lock
);
3732 static void free_vpid(struct vcpu_vmx
*vmx
)
3736 spin_lock(&vmx_vpid_lock
);
3738 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3739 spin_unlock(&vmx_vpid_lock
);
3742 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
3744 int f
= sizeof(unsigned long);
3746 if (!cpu_has_vmx_msr_bitmap())
3750 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3751 * have the write-low and read-high bitmap offsets the wrong way round.
3752 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3754 if (msr
<= 0x1fff) {
3755 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
3756 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
3757 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
3759 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
3760 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
3764 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
3767 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
3768 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
3772 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3773 * will not change in the lifetime of the guest.
3774 * Note that host-state that does change is set elsewhere. E.g., host-state
3775 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3777 static void vmx_set_constant_host_state(void)
3783 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
3784 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
3785 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3787 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
3788 #ifdef CONFIG_X86_64
3790 * Load null selectors, so we can avoid reloading them in
3791 * __vmx_load_host_state(), in case userspace uses the null selectors
3792 * too (the expected case).
3794 vmcs_write16(HOST_DS_SELECTOR
, 0);
3795 vmcs_write16(HOST_ES_SELECTOR
, 0);
3797 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
3798 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
3800 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
3801 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
3803 native_store_idt(&dt
);
3804 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
3806 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
3808 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
3809 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
3810 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
3811 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
3813 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
3814 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
3815 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
3819 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
3821 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
3823 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
3824 if (is_guest_mode(&vmx
->vcpu
))
3825 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
3826 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
3827 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
3830 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
3832 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
3833 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
3834 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3835 #ifdef CONFIG_X86_64
3836 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
3837 CPU_BASED_CR8_LOAD_EXITING
;
3841 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
3842 CPU_BASED_CR3_LOAD_EXITING
|
3843 CPU_BASED_INVLPG_EXITING
;
3844 return exec_control
;
3847 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
3849 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
3850 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
3851 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
3853 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
3855 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
3856 enable_unrestricted_guest
= 0;
3857 /* Enable INVPCID for non-ept guests may cause performance regression. */
3858 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
3860 if (!enable_unrestricted_guest
)
3861 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
3863 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
3864 return exec_control
;
3867 static void ept_set_mmio_spte_mask(void)
3870 * EPT Misconfigurations can be generated if the value of bits 2:0
3871 * of an EPT paging-structure entry is 110b (write/execute).
3872 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3875 kvm_mmu_set_mmio_spte_mask(0xffull
<< 49 | 0x6ull
);
3879 * Sets up the vmcs for emulated real mode.
3881 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
3883 #ifdef CONFIG_X86_64
3889 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
3890 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
3892 if (cpu_has_vmx_msr_bitmap())
3893 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
3895 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
3898 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
3899 vmcs_config
.pin_based_exec_ctrl
);
3901 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
3903 if (cpu_has_secondary_exec_ctrls()) {
3904 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
3905 vmx_secondary_exec_control(vmx
));
3909 vmcs_write32(PLE_GAP
, ple_gap
);
3910 vmcs_write32(PLE_WINDOW
, ple_window
);
3913 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
3914 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
3915 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
3917 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
3918 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
3919 vmx_set_constant_host_state();
3920 #ifdef CONFIG_X86_64
3921 rdmsrl(MSR_FS_BASE
, a
);
3922 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
3923 rdmsrl(MSR_GS_BASE
, a
);
3924 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
3926 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
3927 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
3930 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
3931 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
3932 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
3933 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
3934 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
3936 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
3937 u32 msr_low
, msr_high
;
3939 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
3940 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
3941 /* Write the default value follow host pat */
3942 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
3943 /* Keep arch.pat sync with GUEST_IA32_PAT */
3944 vmx
->vcpu
.arch
.pat
= host_pat
;
3947 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
3948 u32 index
= vmx_msr_index
[i
];
3949 u32 data_low
, data_high
;
3952 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
3954 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
3956 vmx
->guest_msrs
[j
].index
= i
;
3957 vmx
->guest_msrs
[j
].data
= 0;
3958 vmx
->guest_msrs
[j
].mask
= -1ull;
3962 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
3964 /* 22.2.1, 20.8.1 */
3965 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
3967 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
3968 set_cr4_guest_host_mask(vmx
);
3973 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
3975 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3979 vmx
->rmode
.vm86_active
= 0;
3981 vmx
->soft_vnmi_blocked
= 0;
3983 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
3984 kvm_set_cr8(&vmx
->vcpu
, 0);
3985 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
3986 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
3987 msr
|= MSR_IA32_APICBASE_BSP
;
3988 kvm_set_apic_base(&vmx
->vcpu
, msr
);
3990 vmx_segment_cache_clear(vmx
);
3992 seg_setup(VCPU_SREG_CS
);
3994 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3995 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3997 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
3998 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
3999 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
4001 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
4002 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
4005 seg_setup(VCPU_SREG_DS
);
4006 seg_setup(VCPU_SREG_ES
);
4007 seg_setup(VCPU_SREG_FS
);
4008 seg_setup(VCPU_SREG_GS
);
4009 seg_setup(VCPU_SREG_SS
);
4011 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4012 vmcs_writel(GUEST_TR_BASE
, 0);
4013 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
4014 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4016 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
4017 vmcs_writel(GUEST_LDTR_BASE
, 0);
4018 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
4019 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
4021 vmcs_write32(GUEST_SYSENTER_CS
, 0);
4022 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
4023 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
4025 vmcs_writel(GUEST_RFLAGS
, 0x02);
4026 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
4027 kvm_rip_write(vcpu
, 0xfff0);
4029 kvm_rip_write(vcpu
, 0);
4031 vmcs_writel(GUEST_GDTR_BASE
, 0);
4032 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
4034 vmcs_writel(GUEST_IDTR_BASE
, 0);
4035 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
4037 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
4038 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
4039 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
4041 /* Special registers */
4042 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4046 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
4048 if (cpu_has_vmx_tpr_shadow()) {
4049 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
4050 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
4051 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
4052 __pa(vmx
->vcpu
.arch
.apic
->regs
));
4053 vmcs_write32(TPR_THRESHOLD
, 0);
4056 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
4057 vmcs_write64(APIC_ACCESS_ADDR
,
4058 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
4061 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
4063 vmx
->vcpu
.arch
.cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
4064 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4065 vmx_set_cr0(&vmx
->vcpu
, kvm_read_cr0(vcpu
)); /* enter rmode */
4066 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
4067 vmx_set_cr4(&vmx
->vcpu
, 0);
4068 vmx_set_efer(&vmx
->vcpu
, 0);
4069 vmx_fpu_activate(&vmx
->vcpu
);
4070 update_exception_bitmap(&vmx
->vcpu
);
4072 vpid_sync_context(vmx
);
4076 /* HACK: Don't enable emulation on guest boot/reset */
4077 vmx
->emulation_required
= 0;
4083 * In nested virtualization, check if L1 asked to exit on external interrupts.
4084 * For most existing hypervisors, this will always return true.
4086 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
4088 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
4089 PIN_BASED_EXT_INTR_MASK
;
4092 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
4094 u32 cpu_based_vm_exec_control
;
4095 if (is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
)) {
4097 * We get here if vmx_interrupt_allowed() said we can't
4098 * inject to L1 now because L2 must run. Ask L2 to exit
4099 * right after entry, so we can inject to L1 more promptly.
4101 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT
, vcpu
);
4105 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4106 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
4107 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4110 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
4112 u32 cpu_based_vm_exec_control
;
4114 if (!cpu_has_virtual_nmis()) {
4115 enable_irq_window(vcpu
);
4119 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
4120 enable_irq_window(vcpu
);
4123 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4124 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
4125 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4128 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
4130 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4132 int irq
= vcpu
->arch
.interrupt
.nr
;
4134 trace_kvm_inj_virq(irq
);
4136 ++vcpu
->stat
.irq_injections
;
4137 if (vmx
->rmode
.vm86_active
) {
4139 if (vcpu
->arch
.interrupt
.soft
)
4140 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
4141 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
4142 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4145 intr
= irq
| INTR_INFO_VALID_MASK
;
4146 if (vcpu
->arch
.interrupt
.soft
) {
4147 intr
|= INTR_TYPE_SOFT_INTR
;
4148 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
4149 vmx
->vcpu
.arch
.event_exit_inst_len
);
4151 intr
|= INTR_TYPE_EXT_INTR
;
4152 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
4155 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
4157 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4159 if (is_guest_mode(vcpu
))
4162 if (!cpu_has_virtual_nmis()) {
4164 * Tracking the NMI-blocked state in software is built upon
4165 * finding the next open IRQ window. This, in turn, depends on
4166 * well-behaving guests: They have to keep IRQs disabled at
4167 * least as long as the NMI handler runs. Otherwise we may
4168 * cause NMI nesting, maybe breaking the guest. But as this is
4169 * highly unlikely, we can live with the residual risk.
4171 vmx
->soft_vnmi_blocked
= 1;
4172 vmx
->vnmi_blocked_time
= 0;
4175 ++vcpu
->stat
.nmi_injections
;
4176 vmx
->nmi_known_unmasked
= false;
4177 if (vmx
->rmode
.vm86_active
) {
4178 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
4179 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
4182 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
4183 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
4186 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
4188 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
4191 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4192 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
4193 | GUEST_INTR_STATE_NMI
));
4196 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
4198 if (!cpu_has_virtual_nmis())
4199 return to_vmx(vcpu
)->soft_vnmi_blocked
;
4200 if (to_vmx(vcpu
)->nmi_known_unmasked
)
4202 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
4205 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
4207 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4209 if (!cpu_has_virtual_nmis()) {
4210 if (vmx
->soft_vnmi_blocked
!= masked
) {
4211 vmx
->soft_vnmi_blocked
= masked
;
4212 vmx
->vnmi_blocked_time
= 0;
4215 vmx
->nmi_known_unmasked
= !masked
;
4217 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
4218 GUEST_INTR_STATE_NMI
);
4220 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
4221 GUEST_INTR_STATE_NMI
);
4225 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
4227 if (is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
)) {
4228 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4229 if (to_vmx(vcpu
)->nested
.nested_run_pending
||
4230 (vmcs12
->idt_vectoring_info_field
&
4231 VECTORING_INFO_VALID_MASK
))
4233 nested_vmx_vmexit(vcpu
);
4234 vmcs12
->vm_exit_reason
= EXIT_REASON_EXTERNAL_INTERRUPT
;
4235 vmcs12
->vm_exit_intr_info
= 0;
4236 /* fall through to normal code, but now in L1, not L2 */
4239 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
4240 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
4241 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
4244 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
4247 struct kvm_userspace_memory_region tss_mem
= {
4248 .slot
= TSS_PRIVATE_MEMSLOT
,
4249 .guest_phys_addr
= addr
,
4250 .memory_size
= PAGE_SIZE
* 3,
4254 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
4257 kvm
->arch
.tss_addr
= addr
;
4258 if (!init_rmode_tss(kvm
))
4264 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
4265 int vec
, u32 err_code
)
4268 * Instruction with address size override prefix opcode 0x67
4269 * Cause the #SS fault with 0 error code in VM86 mode.
4271 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
4272 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
)
4275 * Forward all other exceptions that are valid in real mode.
4276 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4277 * the required debugging infrastructure rework.
4281 if (vcpu
->guest_debug
&
4282 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
4284 kvm_queue_exception(vcpu
, vec
);
4288 * Update instruction length as we may reinject the exception
4289 * from user space while in guest debugging mode.
4291 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
4292 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4293 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
4304 kvm_queue_exception(vcpu
, vec
);
4311 * Trigger machine check on the host. We assume all the MSRs are already set up
4312 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4313 * We pass a fake environment to the machine check handler because we want
4314 * the guest to be always treated like user space, no matter what context
4315 * it used internally.
4317 static void kvm_machine_check(void)
4319 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4320 struct pt_regs regs
= {
4321 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
4322 .flags
= X86_EFLAGS_IF
,
4325 do_machine_check(®s
, 0);
4329 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
4331 /* already handled by vcpu_run */
4335 static int handle_exception(struct kvm_vcpu
*vcpu
)
4337 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4338 struct kvm_run
*kvm_run
= vcpu
->run
;
4339 u32 intr_info
, ex_no
, error_code
;
4340 unsigned long cr2
, rip
, dr6
;
4342 enum emulation_result er
;
4344 vect_info
= vmx
->idt_vectoring_info
;
4345 intr_info
= vmx
->exit_intr_info
;
4347 if (is_machine_check(intr_info
))
4348 return handle_machine_check(vcpu
);
4350 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
4351 return 1; /* already handled by vmx_vcpu_run() */
4353 if (is_no_device(intr_info
)) {
4354 vmx_fpu_activate(vcpu
);
4358 if (is_invalid_opcode(intr_info
)) {
4359 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
4360 if (er
!= EMULATE_DONE
)
4361 kvm_queue_exception(vcpu
, UD_VECTOR
);
4366 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
4367 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
4370 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4371 * MMIO, it is better to report an internal error.
4372 * See the comments in vmx_handle_exit.
4374 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
4375 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
4376 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4377 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
4378 vcpu
->run
->internal
.ndata
= 2;
4379 vcpu
->run
->internal
.data
[0] = vect_info
;
4380 vcpu
->run
->internal
.data
[1] = intr_info
;
4384 if (is_page_fault(intr_info
)) {
4385 /* EPT won't cause page fault directly */
4387 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
4388 trace_kvm_page_fault(cr2
, error_code
);
4390 if (kvm_event_needs_reinjection(vcpu
))
4391 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
4392 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
4395 if (vmx
->rmode
.vm86_active
&&
4396 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
4398 if (vcpu
->arch
.halt_request
) {
4399 vcpu
->arch
.halt_request
= 0;
4400 return kvm_emulate_halt(vcpu
);
4405 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
4408 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
4409 if (!(vcpu
->guest_debug
&
4410 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
4411 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
4412 kvm_queue_exception(vcpu
, DB_VECTOR
);
4415 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
4416 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
4420 * Update instruction length as we may reinject #BP from
4421 * user space while in guest debugging mode. Reading it for
4422 * #DB as well causes no harm, it is not used in that case.
4424 vmx
->vcpu
.arch
.event_exit_inst_len
=
4425 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4426 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
4427 rip
= kvm_rip_read(vcpu
);
4428 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
4429 kvm_run
->debug
.arch
.exception
= ex_no
;
4432 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
4433 kvm_run
->ex
.exception
= ex_no
;
4434 kvm_run
->ex
.error_code
= error_code
;
4440 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
4442 ++vcpu
->stat
.irq_exits
;
4446 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
4448 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
4452 static int handle_io(struct kvm_vcpu
*vcpu
)
4454 unsigned long exit_qualification
;
4455 int size
, in
, string
;
4458 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4459 string
= (exit_qualification
& 16) != 0;
4460 in
= (exit_qualification
& 8) != 0;
4462 ++vcpu
->stat
.io_exits
;
4465 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4467 port
= exit_qualification
>> 16;
4468 size
= (exit_qualification
& 7) + 1;
4469 skip_emulated_instruction(vcpu
);
4471 return kvm_fast_pio_out(vcpu
, size
, port
);
4475 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
4478 * Patch in the VMCALL instruction:
4480 hypercall
[0] = 0x0f;
4481 hypercall
[1] = 0x01;
4482 hypercall
[2] = 0xc1;
4485 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4486 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
4488 if (to_vmx(vcpu
)->nested
.vmxon
&&
4489 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
4492 if (is_guest_mode(vcpu
)) {
4494 * We get here when L2 changed cr0 in a way that did not change
4495 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4496 * but did change L0 shadowed bits. This can currently happen
4497 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4498 * loading) while pretending to allow the guest to change it.
4500 if (kvm_set_cr0(vcpu
, (val
& vcpu
->arch
.cr0_guest_owned_bits
) |
4501 (vcpu
->arch
.cr0
& ~vcpu
->arch
.cr0_guest_owned_bits
)))
4503 vmcs_writel(CR0_READ_SHADOW
, val
);
4506 return kvm_set_cr0(vcpu
, val
);
4509 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
4511 if (is_guest_mode(vcpu
)) {
4512 if (kvm_set_cr4(vcpu
, (val
& vcpu
->arch
.cr4_guest_owned_bits
) |
4513 (vcpu
->arch
.cr4
& ~vcpu
->arch
.cr4_guest_owned_bits
)))
4515 vmcs_writel(CR4_READ_SHADOW
, val
);
4518 return kvm_set_cr4(vcpu
, val
);
4521 /* called to set cr0 as approriate for clts instruction exit. */
4522 static void handle_clts(struct kvm_vcpu
*vcpu
)
4524 if (is_guest_mode(vcpu
)) {
4526 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4527 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4528 * just pretend it's off (also in arch.cr0 for fpu_activate).
4530 vmcs_writel(CR0_READ_SHADOW
,
4531 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
4532 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
4534 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
4537 static int handle_cr(struct kvm_vcpu
*vcpu
)
4539 unsigned long exit_qualification
, val
;
4544 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4545 cr
= exit_qualification
& 15;
4546 reg
= (exit_qualification
>> 8) & 15;
4547 switch ((exit_qualification
>> 4) & 3) {
4548 case 0: /* mov to cr */
4549 val
= kvm_register_read(vcpu
, reg
);
4550 trace_kvm_cr_write(cr
, val
);
4553 err
= handle_set_cr0(vcpu
, val
);
4554 kvm_complete_insn_gp(vcpu
, err
);
4557 err
= kvm_set_cr3(vcpu
, val
);
4558 kvm_complete_insn_gp(vcpu
, err
);
4561 err
= handle_set_cr4(vcpu
, val
);
4562 kvm_complete_insn_gp(vcpu
, err
);
4565 u8 cr8_prev
= kvm_get_cr8(vcpu
);
4566 u8 cr8
= kvm_register_read(vcpu
, reg
);
4567 err
= kvm_set_cr8(vcpu
, cr8
);
4568 kvm_complete_insn_gp(vcpu
, err
);
4569 if (irqchip_in_kernel(vcpu
->kvm
))
4571 if (cr8_prev
<= cr8
)
4573 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
4580 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
4581 skip_emulated_instruction(vcpu
);
4582 vmx_fpu_activate(vcpu
);
4584 case 1: /*mov from cr*/
4587 val
= kvm_read_cr3(vcpu
);
4588 kvm_register_write(vcpu
, reg
, val
);
4589 trace_kvm_cr_read(cr
, val
);
4590 skip_emulated_instruction(vcpu
);
4593 val
= kvm_get_cr8(vcpu
);
4594 kvm_register_write(vcpu
, reg
, val
);
4595 trace_kvm_cr_read(cr
, val
);
4596 skip_emulated_instruction(vcpu
);
4601 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
4602 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
4603 kvm_lmsw(vcpu
, val
);
4605 skip_emulated_instruction(vcpu
);
4610 vcpu
->run
->exit_reason
= 0;
4611 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
4612 (int)(exit_qualification
>> 4) & 3, cr
);
4616 static int handle_dr(struct kvm_vcpu
*vcpu
)
4618 unsigned long exit_qualification
;
4621 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4622 if (!kvm_require_cpl(vcpu
, 0))
4624 dr
= vmcs_readl(GUEST_DR7
);
4627 * As the vm-exit takes precedence over the debug trap, we
4628 * need to emulate the latter, either for the host or the
4629 * guest debugging itself.
4631 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
4632 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
4633 vcpu
->run
->debug
.arch
.dr7
= dr
;
4634 vcpu
->run
->debug
.arch
.pc
=
4635 vmcs_readl(GUEST_CS_BASE
) +
4636 vmcs_readl(GUEST_RIP
);
4637 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
4638 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
4641 vcpu
->arch
.dr7
&= ~DR7_GD
;
4642 vcpu
->arch
.dr6
|= DR6_BD
;
4643 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
4644 kvm_queue_exception(vcpu
, DB_VECTOR
);
4649 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4650 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
4651 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
4652 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
4654 if (!kvm_get_dr(vcpu
, dr
, &val
))
4655 kvm_register_write(vcpu
, reg
, val
);
4657 kvm_set_dr(vcpu
, dr
, vcpu
->arch
.regs
[reg
]);
4658 skip_emulated_instruction(vcpu
);
4662 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
4664 vmcs_writel(GUEST_DR7
, val
);
4667 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
4669 kvm_emulate_cpuid(vcpu
);
4673 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
4675 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
4678 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
4679 trace_kvm_msr_read_ex(ecx
);
4680 kvm_inject_gp(vcpu
, 0);
4684 trace_kvm_msr_read(ecx
, data
);
4686 /* FIXME: handling of bits 32:63 of rax, rdx */
4687 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
4688 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
4689 skip_emulated_instruction(vcpu
);
4693 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
4695 struct msr_data msr
;
4696 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
4697 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
4698 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
4702 msr
.host_initiated
= false;
4703 if (vmx_set_msr(vcpu
, &msr
) != 0) {
4704 trace_kvm_msr_write_ex(ecx
, data
);
4705 kvm_inject_gp(vcpu
, 0);
4709 trace_kvm_msr_write(ecx
, data
);
4710 skip_emulated_instruction(vcpu
);
4714 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
4716 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4720 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
4722 u32 cpu_based_vm_exec_control
;
4724 /* clear pending irq */
4725 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
4726 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
4727 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
4729 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4731 ++vcpu
->stat
.irq_window_exits
;
4734 * If the user space waits to inject interrupts, exit as soon as
4737 if (!irqchip_in_kernel(vcpu
->kvm
) &&
4738 vcpu
->run
->request_interrupt_window
&&
4739 !kvm_cpu_has_interrupt(vcpu
)) {
4740 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
4746 static int handle_halt(struct kvm_vcpu
*vcpu
)
4748 skip_emulated_instruction(vcpu
);
4749 return kvm_emulate_halt(vcpu
);
4752 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
4754 skip_emulated_instruction(vcpu
);
4755 kvm_emulate_hypercall(vcpu
);
4759 static int handle_invd(struct kvm_vcpu
*vcpu
)
4761 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4764 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
4766 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4768 kvm_mmu_invlpg(vcpu
, exit_qualification
);
4769 skip_emulated_instruction(vcpu
);
4773 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
4777 err
= kvm_rdpmc(vcpu
);
4778 kvm_complete_insn_gp(vcpu
, err
);
4783 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
4785 skip_emulated_instruction(vcpu
);
4786 kvm_emulate_wbinvd(vcpu
);
4790 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
4792 u64 new_bv
= kvm_read_edx_eax(vcpu
);
4793 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4795 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
4796 skip_emulated_instruction(vcpu
);
4800 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
4802 if (likely(fasteoi
)) {
4803 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4804 int access_type
, offset
;
4806 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
4807 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
4809 * Sane guest uses MOV to write EOI, with written value
4810 * not cared. So make a short-circuit here by avoiding
4811 * heavy instruction emulation.
4813 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
4814 (offset
== APIC_EOI
)) {
4815 kvm_lapic_set_eoi(vcpu
);
4816 skip_emulated_instruction(vcpu
);
4820 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
4823 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
4825 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4826 unsigned long exit_qualification
;
4827 bool has_error_code
= false;
4830 int reason
, type
, idt_v
, idt_index
;
4832 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
4833 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
4834 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
4836 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4838 reason
= (u32
)exit_qualification
>> 30;
4839 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
4841 case INTR_TYPE_NMI_INTR
:
4842 vcpu
->arch
.nmi_injected
= false;
4843 vmx_set_nmi_mask(vcpu
, true);
4845 case INTR_TYPE_EXT_INTR
:
4846 case INTR_TYPE_SOFT_INTR
:
4847 kvm_clear_interrupt_queue(vcpu
);
4849 case INTR_TYPE_HARD_EXCEPTION
:
4850 if (vmx
->idt_vectoring_info
&
4851 VECTORING_INFO_DELIVER_CODE_MASK
) {
4852 has_error_code
= true;
4854 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
4857 case INTR_TYPE_SOFT_EXCEPTION
:
4858 kvm_clear_exception_queue(vcpu
);
4864 tss_selector
= exit_qualification
;
4866 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
4867 type
!= INTR_TYPE_EXT_INTR
&&
4868 type
!= INTR_TYPE_NMI_INTR
))
4869 skip_emulated_instruction(vcpu
);
4871 if (kvm_task_switch(vcpu
, tss_selector
,
4872 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
4873 has_error_code
, error_code
) == EMULATE_FAIL
) {
4874 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4875 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4876 vcpu
->run
->internal
.ndata
= 0;
4880 /* clear all local breakpoint enable flags */
4881 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
4884 * TODO: What about debug traps on tss switch?
4885 * Are we supposed to inject them and update dr6?
4891 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
4893 unsigned long exit_qualification
;
4898 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
4900 gla_validity
= (exit_qualification
>> 7) & 0x3;
4901 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
4902 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
4903 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4904 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
4905 vmcs_readl(GUEST_LINEAR_ADDRESS
));
4906 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
4907 (long unsigned int)exit_qualification
);
4908 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
4909 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
4913 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
4914 trace_kvm_page_fault(gpa
, exit_qualification
);
4916 /* It is a write fault? */
4917 error_code
= exit_qualification
& (1U << 1);
4918 /* ept page table is present? */
4919 error_code
|= (exit_qualification
>> 3) & 0x1;
4921 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
4924 static u64
ept_rsvd_mask(u64 spte
, int level
)
4929 for (i
= 51; i
> boot_cpu_data
.x86_phys_bits
; i
--)
4930 mask
|= (1ULL << i
);
4933 /* bits 7:3 reserved */
4935 else if (level
== 2) {
4936 if (spte
& (1ULL << 7))
4937 /* 2MB ref, bits 20:12 reserved */
4940 /* bits 6:3 reserved */
4947 static void ept_misconfig_inspect_spte(struct kvm_vcpu
*vcpu
, u64 spte
,
4950 printk(KERN_ERR
"%s: spte 0x%llx level %d\n", __func__
, spte
, level
);
4952 /* 010b (write-only) */
4953 WARN_ON((spte
& 0x7) == 0x2);
4955 /* 110b (write/execute) */
4956 WARN_ON((spte
& 0x7) == 0x6);
4958 /* 100b (execute-only) and value not supported by logical processor */
4959 if (!cpu_has_vmx_ept_execute_only())
4960 WARN_ON((spte
& 0x7) == 0x4);
4964 u64 rsvd_bits
= spte
& ept_rsvd_mask(spte
, level
);
4966 if (rsvd_bits
!= 0) {
4967 printk(KERN_ERR
"%s: rsvd_bits = 0x%llx\n",
4968 __func__
, rsvd_bits
);
4972 if (level
== 1 || (level
== 2 && (spte
& (1ULL << 7)))) {
4973 u64 ept_mem_type
= (spte
& 0x38) >> 3;
4975 if (ept_mem_type
== 2 || ept_mem_type
== 3 ||
4976 ept_mem_type
== 7) {
4977 printk(KERN_ERR
"%s: ept_mem_type=0x%llx\n",
4978 __func__
, ept_mem_type
);
4985 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
4988 int nr_sptes
, i
, ret
;
4991 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
4993 ret
= handle_mmio_page_fault_common(vcpu
, gpa
, true);
4994 if (likely(ret
== 1))
4995 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
5000 /* It is the real ept misconfig */
5001 printk(KERN_ERR
"EPT: Misconfiguration.\n");
5002 printk(KERN_ERR
"EPT: GPA: 0x%llx\n", gpa
);
5004 nr_sptes
= kvm_mmu_get_spte_hierarchy(vcpu
, gpa
, sptes
);
5006 for (i
= PT64_ROOT_LEVEL
; i
> PT64_ROOT_LEVEL
- nr_sptes
; --i
)
5007 ept_misconfig_inspect_spte(vcpu
, sptes
[i
-1], i
);
5009 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
5010 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
5015 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
5017 u32 cpu_based_vm_exec_control
;
5019 /* clear pending NMI */
5020 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5021 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
5022 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5023 ++vcpu
->stat
.nmi_window_exits
;
5024 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5029 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
5031 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5032 enum emulation_result err
= EMULATE_DONE
;
5035 bool intr_window_requested
;
5036 unsigned count
= 130;
5038 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5039 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
5041 while (!guest_state_valid(vcpu
) && count
-- != 0) {
5042 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
5043 return handle_interrupt_window(&vmx
->vcpu
);
5045 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
5048 err
= emulate_instruction(vcpu
, 0);
5050 if (err
== EMULATE_DO_MMIO
) {
5055 if (err
!= EMULATE_DONE
) {
5056 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5057 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5058 vcpu
->run
->internal
.ndata
= 0;
5062 if (signal_pending(current
))
5068 vmx
->emulation_required
= !guest_state_valid(vcpu
);
5074 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5075 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5077 static int handle_pause(struct kvm_vcpu
*vcpu
)
5079 skip_emulated_instruction(vcpu
);
5080 kvm_vcpu_on_spin(vcpu
);
5085 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
5087 kvm_queue_exception(vcpu
, UD_VECTOR
);
5092 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5093 * We could reuse a single VMCS for all the L2 guests, but we also want the
5094 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5095 * allows keeping them loaded on the processor, and in the future will allow
5096 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5097 * every entry if they never change.
5098 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5099 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5101 * The following functions allocate and free a vmcs02 in this pool.
5104 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5105 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
5107 struct vmcs02_list
*item
;
5108 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
5109 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
5110 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
5111 return &item
->vmcs02
;
5114 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
5115 /* Recycle the least recently used VMCS. */
5116 item
= list_entry(vmx
->nested
.vmcs02_pool
.prev
,
5117 struct vmcs02_list
, list
);
5118 item
->vmptr
= vmx
->nested
.current_vmptr
;
5119 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
5120 return &item
->vmcs02
;
5123 /* Create a new VMCS */
5124 item
= (struct vmcs02_list
*)
5125 kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
5128 item
->vmcs02
.vmcs
= alloc_vmcs();
5129 if (!item
->vmcs02
.vmcs
) {
5133 loaded_vmcs_init(&item
->vmcs02
);
5134 item
->vmptr
= vmx
->nested
.current_vmptr
;
5135 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
5136 vmx
->nested
.vmcs02_num
++;
5137 return &item
->vmcs02
;
5140 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5141 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
5143 struct vmcs02_list
*item
;
5144 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
5145 if (item
->vmptr
== vmptr
) {
5146 free_loaded_vmcs(&item
->vmcs02
);
5147 list_del(&item
->list
);
5149 vmx
->nested
.vmcs02_num
--;
5155 * Free all VMCSs saved for this vcpu, except the one pointed by
5156 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5157 * currently used, if running L2), and vmcs01 when running L2.
5159 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
5161 struct vmcs02_list
*item
, *n
;
5162 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
5163 if (vmx
->loaded_vmcs
!= &item
->vmcs02
)
5164 free_loaded_vmcs(&item
->vmcs02
);
5165 list_del(&item
->list
);
5168 vmx
->nested
.vmcs02_num
= 0;
5170 if (vmx
->loaded_vmcs
!= &vmx
->vmcs01
)
5171 free_loaded_vmcs(&vmx
->vmcs01
);
5175 * Emulate the VMXON instruction.
5176 * Currently, we just remember that VMX is active, and do not save or even
5177 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5178 * do not currently need to store anything in that guest-allocated memory
5179 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5180 * argument is different from the VMXON pointer (which the spec says they do).
5182 static int handle_vmon(struct kvm_vcpu
*vcpu
)
5184 struct kvm_segment cs
;
5185 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5187 /* The Intel VMX Instruction Reference lists a bunch of bits that
5188 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5189 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5190 * Otherwise, we should fail with #UD. We test these now:
5192 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
5193 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
5194 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
5195 kvm_queue_exception(vcpu
, UD_VECTOR
);
5199 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5200 if (is_long_mode(vcpu
) && !cs
.l
) {
5201 kvm_queue_exception(vcpu
, UD_VECTOR
);
5205 if (vmx_get_cpl(vcpu
)) {
5206 kvm_inject_gp(vcpu
, 0);
5210 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
5211 vmx
->nested
.vmcs02_num
= 0;
5213 vmx
->nested
.vmxon
= true;
5215 skip_emulated_instruction(vcpu
);
5220 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5221 * for running VMX instructions (except VMXON, whose prerequisites are
5222 * slightly different). It also specifies what exception to inject otherwise.
5224 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
5226 struct kvm_segment cs
;
5227 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5229 if (!vmx
->nested
.vmxon
) {
5230 kvm_queue_exception(vcpu
, UD_VECTOR
);
5234 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5235 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
5236 (is_long_mode(vcpu
) && !cs
.l
)) {
5237 kvm_queue_exception(vcpu
, UD_VECTOR
);
5241 if (vmx_get_cpl(vcpu
)) {
5242 kvm_inject_gp(vcpu
, 0);
5250 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5251 * just stops using VMX.
5253 static void free_nested(struct vcpu_vmx
*vmx
)
5255 if (!vmx
->nested
.vmxon
)
5257 vmx
->nested
.vmxon
= false;
5258 if (vmx
->nested
.current_vmptr
!= -1ull) {
5259 kunmap(vmx
->nested
.current_vmcs12_page
);
5260 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5261 vmx
->nested
.current_vmptr
= -1ull;
5262 vmx
->nested
.current_vmcs12
= NULL
;
5264 /* Unpin physical memory we referred to in current vmcs02 */
5265 if (vmx
->nested
.apic_access_page
) {
5266 nested_release_page(vmx
->nested
.apic_access_page
);
5267 vmx
->nested
.apic_access_page
= 0;
5270 nested_free_all_saved_vmcss(vmx
);
5273 /* Emulate the VMXOFF instruction */
5274 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
5276 if (!nested_vmx_check_permission(vcpu
))
5278 free_nested(to_vmx(vcpu
));
5279 skip_emulated_instruction(vcpu
);
5284 * Decode the memory-address operand of a vmx instruction, as recorded on an
5285 * exit caused by such an instruction (run by a guest hypervisor).
5286 * On success, returns 0. When the operand is invalid, returns 1 and throws
5289 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
5290 unsigned long exit_qualification
,
5291 u32 vmx_instruction_info
, gva_t
*ret
)
5294 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5295 * Execution", on an exit, vmx_instruction_info holds most of the
5296 * addressing components of the operand. Only the displacement part
5297 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5298 * For how an actual address is calculated from all these components,
5299 * refer to Vol. 1, "Operand Addressing".
5301 int scaling
= vmx_instruction_info
& 3;
5302 int addr_size
= (vmx_instruction_info
>> 7) & 7;
5303 bool is_reg
= vmx_instruction_info
& (1u << 10);
5304 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
5305 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
5306 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
5307 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
5308 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
5311 kvm_queue_exception(vcpu
, UD_VECTOR
);
5315 /* Addr = segment_base + offset */
5316 /* offset = base + [index * scale] + displacement */
5317 *ret
= vmx_get_segment_base(vcpu
, seg_reg
);
5319 *ret
+= kvm_register_read(vcpu
, base_reg
);
5321 *ret
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
5322 *ret
+= exit_qualification
; /* holds the displacement */
5324 if (addr_size
== 1) /* 32 bit */
5328 * TODO: throw #GP (and return 1) in various cases that the VM*
5329 * instructions require it - e.g., offset beyond segment limit,
5330 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5331 * address, and so on. Currently these are not checked.
5337 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5338 * set the success or error code of an emulated VMX instruction, as specified
5339 * by Vol 2B, VMX Instruction Reference, "Conventions".
5341 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
5343 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
5344 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5345 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
5348 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
5350 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5351 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
5352 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5356 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
5357 u32 vm_instruction_error
)
5359 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
5361 * failValid writes the error number to the current VMCS, which
5362 * can't be done there isn't a current VMCS.
5364 nested_vmx_failInvalid(vcpu
);
5367 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
5368 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
5369 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
5371 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
5374 /* Emulate the VMCLEAR instruction */
5375 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
5377 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5380 struct vmcs12
*vmcs12
;
5382 struct x86_exception e
;
5384 if (!nested_vmx_check_permission(vcpu
))
5387 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
5388 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
5391 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
5392 sizeof(vmptr
), &e
)) {
5393 kvm_inject_page_fault(vcpu
, &e
);
5397 if (!IS_ALIGNED(vmptr
, PAGE_SIZE
)) {
5398 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
5399 skip_emulated_instruction(vcpu
);
5403 if (vmptr
== vmx
->nested
.current_vmptr
) {
5404 kunmap(vmx
->nested
.current_vmcs12_page
);
5405 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5406 vmx
->nested
.current_vmptr
= -1ull;
5407 vmx
->nested
.current_vmcs12
= NULL
;
5410 page
= nested_get_page(vcpu
, vmptr
);
5413 * For accurate processor emulation, VMCLEAR beyond available
5414 * physical memory should do nothing at all. However, it is
5415 * possible that a nested vmx bug, not a guest hypervisor bug,
5416 * resulted in this case, so let's shut down before doing any
5419 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5422 vmcs12
= kmap(page
);
5423 vmcs12
->launch_state
= 0;
5425 nested_release_page(page
);
5427 nested_free_vmcs02(vmx
, vmptr
);
5429 skip_emulated_instruction(vcpu
);
5430 nested_vmx_succeed(vcpu
);
5434 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
5436 /* Emulate the VMLAUNCH instruction */
5437 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
5439 return nested_vmx_run(vcpu
, true);
5442 /* Emulate the VMRESUME instruction */
5443 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
5446 return nested_vmx_run(vcpu
, false);
5449 enum vmcs_field_type
{
5450 VMCS_FIELD_TYPE_U16
= 0,
5451 VMCS_FIELD_TYPE_U64
= 1,
5452 VMCS_FIELD_TYPE_U32
= 2,
5453 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
5456 static inline int vmcs_field_type(unsigned long field
)
5458 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
5459 return VMCS_FIELD_TYPE_U32
;
5460 return (field
>> 13) & 0x3 ;
5463 static inline int vmcs_field_readonly(unsigned long field
)
5465 return (((field
>> 10) & 0x3) == 1);
5469 * Read a vmcs12 field. Since these can have varying lengths and we return
5470 * one type, we chose the biggest type (u64) and zero-extend the return value
5471 * to that size. Note that the caller, handle_vmread, might need to use only
5472 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5473 * 64-bit fields are to be returned).
5475 static inline bool vmcs12_read_any(struct kvm_vcpu
*vcpu
,
5476 unsigned long field
, u64
*ret
)
5478 short offset
= vmcs_field_to_offset(field
);
5484 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
5486 switch (vmcs_field_type(field
)) {
5487 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
5488 *ret
= *((natural_width
*)p
);
5490 case VMCS_FIELD_TYPE_U16
:
5493 case VMCS_FIELD_TYPE_U32
:
5496 case VMCS_FIELD_TYPE_U64
:
5500 return 0; /* can never happen. */
5505 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5506 * used before) all generate the same failure when it is missing.
5508 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
5510 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5511 if (vmx
->nested
.current_vmptr
== -1ull) {
5512 nested_vmx_failInvalid(vcpu
);
5513 skip_emulated_instruction(vcpu
);
5519 static int handle_vmread(struct kvm_vcpu
*vcpu
)
5521 unsigned long field
;
5523 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5524 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5527 if (!nested_vmx_check_permission(vcpu
) ||
5528 !nested_vmx_check_vmcs12(vcpu
))
5531 /* Decode instruction info and find the field to read */
5532 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
5533 /* Read the field, zero-extended to a u64 field_value */
5534 if (!vmcs12_read_any(vcpu
, field
, &field_value
)) {
5535 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5536 skip_emulated_instruction(vcpu
);
5540 * Now copy part of this value to register or memory, as requested.
5541 * Note that the number of bits actually copied is 32 or 64 depending
5542 * on the guest's mode (32 or 64 bit), not on the given field's length.
5544 if (vmx_instruction_info
& (1u << 10)) {
5545 kvm_register_write(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
5548 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5549 vmx_instruction_info
, &gva
))
5551 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5552 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
5553 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
5556 nested_vmx_succeed(vcpu
);
5557 skip_emulated_instruction(vcpu
);
5562 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
5564 unsigned long field
;
5566 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5567 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5570 /* The value to write might be 32 or 64 bits, depending on L1's long
5571 * mode, and eventually we need to write that into a field of several
5572 * possible lengths. The code below first zero-extends the value to 64
5573 * bit (field_value), and then copies only the approriate number of
5574 * bits into the vmcs12 field.
5576 u64 field_value
= 0;
5577 struct x86_exception e
;
5579 if (!nested_vmx_check_permission(vcpu
) ||
5580 !nested_vmx_check_vmcs12(vcpu
))
5583 if (vmx_instruction_info
& (1u << 10))
5584 field_value
= kvm_register_read(vcpu
,
5585 (((vmx_instruction_info
) >> 3) & 0xf));
5587 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5588 vmx_instruction_info
, &gva
))
5590 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
5591 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), &e
)) {
5592 kvm_inject_page_fault(vcpu
, &e
);
5598 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
5599 if (vmcs_field_readonly(field
)) {
5600 nested_vmx_failValid(vcpu
,
5601 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
5602 skip_emulated_instruction(vcpu
);
5606 offset
= vmcs_field_to_offset(field
);
5608 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5609 skip_emulated_instruction(vcpu
);
5612 p
= ((char *) get_vmcs12(vcpu
)) + offset
;
5614 switch (vmcs_field_type(field
)) {
5615 case VMCS_FIELD_TYPE_U16
:
5616 *(u16
*)p
= field_value
;
5618 case VMCS_FIELD_TYPE_U32
:
5619 *(u32
*)p
= field_value
;
5621 case VMCS_FIELD_TYPE_U64
:
5622 *(u64
*)p
= field_value
;
5624 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
5625 *(natural_width
*)p
= field_value
;
5628 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5629 skip_emulated_instruction(vcpu
);
5633 nested_vmx_succeed(vcpu
);
5634 skip_emulated_instruction(vcpu
);
5638 /* Emulate the VMPTRLD instruction */
5639 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
5641 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5644 struct x86_exception e
;
5646 if (!nested_vmx_check_permission(vcpu
))
5649 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
5650 vmcs_read32(VMX_INSTRUCTION_INFO
), &gva
))
5653 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
5654 sizeof(vmptr
), &e
)) {
5655 kvm_inject_page_fault(vcpu
, &e
);
5659 if (!IS_ALIGNED(vmptr
, PAGE_SIZE
)) {
5660 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
5661 skip_emulated_instruction(vcpu
);
5665 if (vmx
->nested
.current_vmptr
!= vmptr
) {
5666 struct vmcs12
*new_vmcs12
;
5668 page
= nested_get_page(vcpu
, vmptr
);
5670 nested_vmx_failInvalid(vcpu
);
5671 skip_emulated_instruction(vcpu
);
5674 new_vmcs12
= kmap(page
);
5675 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
5677 nested_release_page_clean(page
);
5678 nested_vmx_failValid(vcpu
,
5679 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
5680 skip_emulated_instruction(vcpu
);
5683 if (vmx
->nested
.current_vmptr
!= -1ull) {
5684 kunmap(vmx
->nested
.current_vmcs12_page
);
5685 nested_release_page(vmx
->nested
.current_vmcs12_page
);
5688 vmx
->nested
.current_vmptr
= vmptr
;
5689 vmx
->nested
.current_vmcs12
= new_vmcs12
;
5690 vmx
->nested
.current_vmcs12_page
= page
;
5693 nested_vmx_succeed(vcpu
);
5694 skip_emulated_instruction(vcpu
);
5698 /* Emulate the VMPTRST instruction */
5699 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
5701 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5702 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5704 struct x86_exception e
;
5706 if (!nested_vmx_check_permission(vcpu
))
5709 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5710 vmx_instruction_info
, &vmcs_gva
))
5712 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5713 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
5714 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
5716 kvm_inject_page_fault(vcpu
, &e
);
5719 nested_vmx_succeed(vcpu
);
5720 skip_emulated_instruction(vcpu
);
5725 * The exit handlers return 1 if the exit was handled fully and guest execution
5726 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5727 * to be done to userspace and return 0.
5729 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
5730 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
5731 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
5732 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
5733 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
5734 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
5735 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
5736 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
5737 [EXIT_REASON_CPUID
] = handle_cpuid
,
5738 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
5739 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
5740 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
5741 [EXIT_REASON_HLT
] = handle_halt
,
5742 [EXIT_REASON_INVD
] = handle_invd
,
5743 [EXIT_REASON_INVLPG
] = handle_invlpg
,
5744 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
5745 [EXIT_REASON_VMCALL
] = handle_vmcall
,
5746 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
5747 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
5748 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
5749 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
5750 [EXIT_REASON_VMREAD
] = handle_vmread
,
5751 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
5752 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
5753 [EXIT_REASON_VMOFF
] = handle_vmoff
,
5754 [EXIT_REASON_VMON
] = handle_vmon
,
5755 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
5756 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
5757 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
5758 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
5759 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
5760 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
5761 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
5762 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
5763 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
5764 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_invalid_op
,
5765 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_invalid_op
,
5768 static const int kvm_vmx_max_exit_handlers
=
5769 ARRAY_SIZE(kvm_vmx_exit_handlers
);
5772 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5773 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5774 * disinterest in the current event (read or write a specific MSR) by using an
5775 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5777 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
5778 struct vmcs12
*vmcs12
, u32 exit_reason
)
5780 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5783 if (!nested_cpu_has(get_vmcs12(vcpu
), CPU_BASED_USE_MSR_BITMAPS
))
5787 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5788 * for the four combinations of read/write and low/high MSR numbers.
5789 * First we need to figure out which of the four to use:
5791 bitmap
= vmcs12
->msr_bitmap
;
5792 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
5794 if (msr_index
>= 0xc0000000) {
5795 msr_index
-= 0xc0000000;
5799 /* Then read the msr_index'th bit from this bitmap: */
5800 if (msr_index
< 1024*8) {
5802 kvm_read_guest(vcpu
->kvm
, bitmap
+ msr_index
/8, &b
, 1);
5803 return 1 & (b
>> (msr_index
& 7));
5805 return 1; /* let L1 handle the wrong parameter */
5809 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5810 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5811 * intercept (via guest_host_mask etc.) the current event.
5813 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
5814 struct vmcs12
*vmcs12
)
5816 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5817 int cr
= exit_qualification
& 15;
5818 int reg
= (exit_qualification
>> 8) & 15;
5819 unsigned long val
= kvm_register_read(vcpu
, reg
);
5821 switch ((exit_qualification
>> 4) & 3) {
5822 case 0: /* mov to cr */
5825 if (vmcs12
->cr0_guest_host_mask
&
5826 (val
^ vmcs12
->cr0_read_shadow
))
5830 if ((vmcs12
->cr3_target_count
>= 1 &&
5831 vmcs12
->cr3_target_value0
== val
) ||
5832 (vmcs12
->cr3_target_count
>= 2 &&
5833 vmcs12
->cr3_target_value1
== val
) ||
5834 (vmcs12
->cr3_target_count
>= 3 &&
5835 vmcs12
->cr3_target_value2
== val
) ||
5836 (vmcs12
->cr3_target_count
>= 4 &&
5837 vmcs12
->cr3_target_value3
== val
))
5839 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
5843 if (vmcs12
->cr4_guest_host_mask
&
5844 (vmcs12
->cr4_read_shadow
^ val
))
5848 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
5854 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
5855 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
5858 case 1: /* mov from cr */
5861 if (vmcs12
->cpu_based_vm_exec_control
&
5862 CPU_BASED_CR3_STORE_EXITING
)
5866 if (vmcs12
->cpu_based_vm_exec_control
&
5867 CPU_BASED_CR8_STORE_EXITING
)
5874 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5875 * cr0. Other attempted changes are ignored, with no exit.
5877 if (vmcs12
->cr0_guest_host_mask
& 0xe &
5878 (val
^ vmcs12
->cr0_read_shadow
))
5880 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
5881 !(vmcs12
->cr0_read_shadow
& 0x1) &&
5890 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5891 * should handle it ourselves in L0 (and then continue L2). Only call this
5892 * when in is_guest_mode (L2).
5894 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
5896 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
5897 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
5898 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5899 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5901 if (vmx
->nested
.nested_run_pending
)
5904 if (unlikely(vmx
->fail
)) {
5905 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
5906 vmcs_read32(VM_INSTRUCTION_ERROR
));
5910 switch (exit_reason
) {
5911 case EXIT_REASON_EXCEPTION_NMI
:
5912 if (!is_exception(intr_info
))
5914 else if (is_page_fault(intr_info
))
5916 return vmcs12
->exception_bitmap
&
5917 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
5918 case EXIT_REASON_EXTERNAL_INTERRUPT
:
5920 case EXIT_REASON_TRIPLE_FAULT
:
5922 case EXIT_REASON_PENDING_INTERRUPT
:
5923 case EXIT_REASON_NMI_WINDOW
:
5925 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5926 * (aka Interrupt Window Exiting) only when L1 turned it on,
5927 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5928 * Same for NMI Window Exiting.
5931 case EXIT_REASON_TASK_SWITCH
:
5933 case EXIT_REASON_CPUID
:
5935 case EXIT_REASON_HLT
:
5936 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
5937 case EXIT_REASON_INVD
:
5939 case EXIT_REASON_INVLPG
:
5940 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
5941 case EXIT_REASON_RDPMC
:
5942 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
5943 case EXIT_REASON_RDTSC
:
5944 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
5945 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
5946 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
5947 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
5948 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
5949 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
5951 * VMX instructions trap unconditionally. This allows L1 to
5952 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5955 case EXIT_REASON_CR_ACCESS
:
5956 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
5957 case EXIT_REASON_DR_ACCESS
:
5958 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
5959 case EXIT_REASON_IO_INSTRUCTION
:
5960 /* TODO: support IO bitmaps */
5962 case EXIT_REASON_MSR_READ
:
5963 case EXIT_REASON_MSR_WRITE
:
5964 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
5965 case EXIT_REASON_INVALID_STATE
:
5967 case EXIT_REASON_MWAIT_INSTRUCTION
:
5968 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
5969 case EXIT_REASON_MONITOR_INSTRUCTION
:
5970 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
5971 case EXIT_REASON_PAUSE_INSTRUCTION
:
5972 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
5973 nested_cpu_has2(vmcs12
,
5974 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
5975 case EXIT_REASON_MCE_DURING_VMENTRY
:
5977 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
5979 case EXIT_REASON_APIC_ACCESS
:
5980 return nested_cpu_has2(vmcs12
,
5981 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
5982 case EXIT_REASON_EPT_VIOLATION
:
5983 case EXIT_REASON_EPT_MISCONFIG
:
5985 case EXIT_REASON_WBINVD
:
5986 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
5987 case EXIT_REASON_XSETBV
:
5994 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
5996 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
5997 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
6001 * The guest has exited. See if we can fix it or if we need userspace
6004 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
6006 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6007 u32 exit_reason
= vmx
->exit_reason
;
6008 u32 vectoring_info
= vmx
->idt_vectoring_info
;
6010 /* If guest state is invalid, start emulating */
6011 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
6012 return handle_invalid_guest_state(vcpu
);
6015 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6016 * we did not inject a still-pending event to L1 now because of
6017 * nested_run_pending, we need to re-enable this bit.
6019 if (vmx
->nested
.nested_run_pending
)
6020 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6022 if (!is_guest_mode(vcpu
) && (exit_reason
== EXIT_REASON_VMLAUNCH
||
6023 exit_reason
== EXIT_REASON_VMRESUME
))
6024 vmx
->nested
.nested_run_pending
= 1;
6026 vmx
->nested
.nested_run_pending
= 0;
6028 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
6029 nested_vmx_vmexit(vcpu
);
6033 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
6034 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6035 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
6040 if (unlikely(vmx
->fail
)) {
6041 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6042 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
6043 = vmcs_read32(VM_INSTRUCTION_ERROR
);
6049 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6050 * delivery event since it indicates guest is accessing MMIO.
6051 * The vm-exit can be triggered again after return to guest that
6052 * will cause infinite loop.
6054 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
6055 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
6056 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
6057 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
6058 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6059 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
6060 vcpu
->run
->internal
.ndata
= 2;
6061 vcpu
->run
->internal
.data
[0] = vectoring_info
;
6062 vcpu
->run
->internal
.data
[1] = exit_reason
;
6066 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
6067 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
6068 get_vmcs12(vcpu
), vcpu
)))) {
6069 if (vmx_interrupt_allowed(vcpu
)) {
6070 vmx
->soft_vnmi_blocked
= 0;
6071 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
6072 vcpu
->arch
.nmi_pending
) {
6074 * This CPU don't support us in finding the end of an
6075 * NMI-blocked window if the guest runs with IRQs
6076 * disabled. So we pull the trigger after 1 s of
6077 * futile waiting, but inform the user about this.
6079 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
6080 "state on VCPU %d after 1 s timeout\n",
6081 __func__
, vcpu
->vcpu_id
);
6082 vmx
->soft_vnmi_blocked
= 0;
6086 if (exit_reason
< kvm_vmx_max_exit_handlers
6087 && kvm_vmx_exit_handlers
[exit_reason
])
6088 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
6090 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6091 vcpu
->run
->hw
.hardware_exit_reason
= exit_reason
;
6096 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
6098 if (irr
== -1 || tpr
< irr
) {
6099 vmcs_write32(TPR_THRESHOLD
, 0);
6103 vmcs_write32(TPR_THRESHOLD
, irr
);
6106 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
6110 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
6111 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
6114 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6115 exit_intr_info
= vmx
->exit_intr_info
;
6117 /* Handle machine checks before interrupts are enabled */
6118 if (is_machine_check(exit_intr_info
))
6119 kvm_machine_check();
6121 /* We need to handle NMIs before interrupts are enabled */
6122 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
6123 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
6124 kvm_before_handle_nmi(&vmx
->vcpu
);
6126 kvm_after_handle_nmi(&vmx
->vcpu
);
6130 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
6135 bool idtv_info_valid
;
6137 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
6139 if (cpu_has_virtual_nmis()) {
6140 if (vmx
->nmi_known_unmasked
)
6143 * Can't use vmx->exit_intr_info since we're not sure what
6144 * the exit reason is.
6146 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
6147 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
6148 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
6150 * SDM 3: 27.7.1.2 (September 2008)
6151 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6152 * a guest IRET fault.
6153 * SDM 3: 23.2.2 (September 2008)
6154 * Bit 12 is undefined in any of the following cases:
6155 * If the VM exit sets the valid bit in the IDT-vectoring
6156 * information field.
6157 * If the VM exit is due to a double fault.
6159 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
6160 vector
!= DF_VECTOR
&& !idtv_info_valid
)
6161 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
6162 GUEST_INTR_STATE_NMI
);
6164 vmx
->nmi_known_unmasked
=
6165 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
6166 & GUEST_INTR_STATE_NMI
);
6167 } else if (unlikely(vmx
->soft_vnmi_blocked
))
6168 vmx
->vnmi_blocked_time
+=
6169 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
6172 static void __vmx_complete_interrupts(struct vcpu_vmx
*vmx
,
6173 u32 idt_vectoring_info
,
6174 int instr_len_field
,
6175 int error_code_field
)
6179 bool idtv_info_valid
;
6181 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
6183 vmx
->vcpu
.arch
.nmi_injected
= false;
6184 kvm_clear_exception_queue(&vmx
->vcpu
);
6185 kvm_clear_interrupt_queue(&vmx
->vcpu
);
6187 if (!idtv_info_valid
)
6190 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6192 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
6193 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
6196 case INTR_TYPE_NMI_INTR
:
6197 vmx
->vcpu
.arch
.nmi_injected
= true;
6199 * SDM 3: 27.7.1.2 (September 2008)
6200 * Clear bit "block by NMI" before VM entry if a NMI
6203 vmx_set_nmi_mask(&vmx
->vcpu
, false);
6205 case INTR_TYPE_SOFT_EXCEPTION
:
6206 vmx
->vcpu
.arch
.event_exit_inst_len
=
6207 vmcs_read32(instr_len_field
);
6209 case INTR_TYPE_HARD_EXCEPTION
:
6210 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
6211 u32 err
= vmcs_read32(error_code_field
);
6212 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
6214 kvm_queue_exception(&vmx
->vcpu
, vector
);
6216 case INTR_TYPE_SOFT_INTR
:
6217 vmx
->vcpu
.arch
.event_exit_inst_len
=
6218 vmcs_read32(instr_len_field
);
6220 case INTR_TYPE_EXT_INTR
:
6221 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
6222 type
== INTR_TYPE_SOFT_INTR
);
6229 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
6231 if (is_guest_mode(&vmx
->vcpu
))
6233 __vmx_complete_interrupts(vmx
, vmx
->idt_vectoring_info
,
6234 VM_EXIT_INSTRUCTION_LEN
,
6235 IDT_VECTORING_ERROR_CODE
);
6238 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
6240 if (is_guest_mode(vcpu
))
6242 __vmx_complete_interrupts(to_vmx(vcpu
),
6243 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
6244 VM_ENTRY_INSTRUCTION_LEN
,
6245 VM_ENTRY_EXCEPTION_ERROR_CODE
);
6247 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
6250 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
6253 struct perf_guest_switch_msr
*msrs
;
6255 msrs
= perf_guest_get_msrs(&nr_msrs
);
6260 for (i
= 0; i
< nr_msrs
; i
++)
6261 if (msrs
[i
].host
== msrs
[i
].guest
)
6262 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
6264 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
6268 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
6270 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6271 unsigned long debugctlmsr
;
6273 if (is_guest_mode(vcpu
) && !vmx
->nested
.nested_run_pending
) {
6274 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6275 if (vmcs12
->idt_vectoring_info_field
&
6276 VECTORING_INFO_VALID_MASK
) {
6277 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
6278 vmcs12
->idt_vectoring_info_field
);
6279 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
6280 vmcs12
->vm_exit_instruction_len
);
6281 if (vmcs12
->idt_vectoring_info_field
&
6282 VECTORING_INFO_DELIVER_CODE_MASK
)
6283 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
6284 vmcs12
->idt_vectoring_error_code
);
6288 /* Record the guest's net vcpu time for enforced NMI injections. */
6289 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
6290 vmx
->entry_time
= ktime_get();
6292 /* Don't enter VMX if guest state is invalid, let the exit handler
6293 start emulation until we arrive back to a valid state */
6294 if (vmx
->emulation_required
&& emulate_invalid_guest_state
)
6297 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
6298 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
6299 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
6300 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
6302 /* When single-stepping over STI and MOV SS, we must clear the
6303 * corresponding interruptibility bits in the guest state. Otherwise
6304 * vmentry fails as it then expects bit 14 (BS) in pending debug
6305 * exceptions being set, but that's not correct for the guest debugging
6307 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6308 vmx_set_interrupt_shadow(vcpu
, 0);
6310 atomic_switch_perf_msrs(vmx
);
6311 debugctlmsr
= get_debugctlmsr();
6313 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
6315 /* Store host registers */
6316 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
6317 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
6318 "push %%" _ASM_CX
" \n\t"
6319 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
6321 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
6322 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
6324 /* Reload cr2 if changed */
6325 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
6326 "mov %%cr2, %%" _ASM_DX
" \n\t"
6327 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
6329 "mov %%" _ASM_AX
", %%cr2 \n\t"
6331 /* Check if vmlaunch of vmresume is needed */
6332 "cmpl $0, %c[launched](%0) \n\t"
6333 /* Load guest registers. Don't clobber flags. */
6334 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
6335 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
6336 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
6337 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
6338 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
6339 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
6340 #ifdef CONFIG_X86_64
6341 "mov %c[r8](%0), %%r8 \n\t"
6342 "mov %c[r9](%0), %%r9 \n\t"
6343 "mov %c[r10](%0), %%r10 \n\t"
6344 "mov %c[r11](%0), %%r11 \n\t"
6345 "mov %c[r12](%0), %%r12 \n\t"
6346 "mov %c[r13](%0), %%r13 \n\t"
6347 "mov %c[r14](%0), %%r14 \n\t"
6348 "mov %c[r15](%0), %%r15 \n\t"
6350 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
6352 /* Enter guest mode */
6354 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
6356 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
6358 /* Save guest registers, load host registers, keep flags */
6359 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
6361 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
6362 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
6363 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
6364 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
6365 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
6366 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
6367 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
6368 #ifdef CONFIG_X86_64
6369 "mov %%r8, %c[r8](%0) \n\t"
6370 "mov %%r9, %c[r9](%0) \n\t"
6371 "mov %%r10, %c[r10](%0) \n\t"
6372 "mov %%r11, %c[r11](%0) \n\t"
6373 "mov %%r12, %c[r12](%0) \n\t"
6374 "mov %%r13, %c[r13](%0) \n\t"
6375 "mov %%r14, %c[r14](%0) \n\t"
6376 "mov %%r15, %c[r15](%0) \n\t"
6378 "mov %%cr2, %%" _ASM_AX
" \n\t"
6379 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
6381 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
6382 "setbe %c[fail](%0) \n\t"
6383 ".pushsection .rodata \n\t"
6384 ".global vmx_return \n\t"
6385 "vmx_return: " _ASM_PTR
" 2b \n\t"
6387 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
6388 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
6389 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
6390 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
6391 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
6392 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
6393 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
6394 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
6395 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
6396 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
6397 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
6398 #ifdef CONFIG_X86_64
6399 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
6400 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
6401 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
6402 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
6403 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
6404 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
6405 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
6406 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
6408 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
6409 [wordsize
]"i"(sizeof(ulong
))
6411 #ifdef CONFIG_X86_64
6412 , "rax", "rbx", "rdi", "rsi"
6413 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6415 , "eax", "ebx", "edi", "esi"
6419 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6421 update_debugctlmsr(debugctlmsr
);
6423 #ifndef CONFIG_X86_64
6425 * The sysexit path does not restore ds/es, so we must set them to
6426 * a reasonable value ourselves.
6428 * We can't defer this to vmx_load_host_state() since that function
6429 * may be executed in interrupt context, which saves and restore segments
6430 * around it, nullifying its effect.
6432 loadsegment(ds
, __USER_DS
);
6433 loadsegment(es
, __USER_DS
);
6436 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
6437 | (1 << VCPU_EXREG_RFLAGS
)
6438 | (1 << VCPU_EXREG_CPL
)
6439 | (1 << VCPU_EXREG_PDPTR
)
6440 | (1 << VCPU_EXREG_SEGMENTS
)
6441 | (1 << VCPU_EXREG_CR3
));
6442 vcpu
->arch
.regs_dirty
= 0;
6444 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
6446 if (is_guest_mode(vcpu
)) {
6447 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6448 vmcs12
->idt_vectoring_info_field
= vmx
->idt_vectoring_info
;
6449 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
6450 vmcs12
->idt_vectoring_error_code
=
6451 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
6452 vmcs12
->vm_exit_instruction_len
=
6453 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
6457 vmx
->loaded_vmcs
->launched
= 1;
6459 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
6460 trace_kvm_exit(vmx
->exit_reason
, vcpu
, KVM_ISA_VMX
);
6462 vmx_complete_atomic_exit(vmx
);
6463 vmx_recover_nmi_blocking(vmx
);
6464 vmx_complete_interrupts(vmx
);
6467 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
6469 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6473 free_loaded_vmcs(vmx
->loaded_vmcs
);
6474 kfree(vmx
->guest_msrs
);
6475 kvm_vcpu_uninit(vcpu
);
6476 kmem_cache_free(kvm_vcpu_cache
, vmx
);
6479 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
6482 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
6486 return ERR_PTR(-ENOMEM
);
6490 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
6494 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
6496 if (!vmx
->guest_msrs
) {
6500 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
6501 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
6502 if (!vmx
->loaded_vmcs
->vmcs
)
6505 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
6506 loaded_vmcs_init(vmx
->loaded_vmcs
);
6511 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
6512 vmx
->vcpu
.cpu
= cpu
;
6513 err
= vmx_vcpu_setup(vmx
);
6514 vmx_vcpu_put(&vmx
->vcpu
);
6518 if (vm_need_virtualize_apic_accesses(kvm
))
6519 err
= alloc_apic_access_page(kvm
);
6524 if (!kvm
->arch
.ept_identity_map_addr
)
6525 kvm
->arch
.ept_identity_map_addr
=
6526 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
6528 if (alloc_identity_pagetable(kvm
) != 0)
6530 if (!init_rmode_identity_map(kvm
))
6534 vmx
->nested
.current_vmptr
= -1ull;
6535 vmx
->nested
.current_vmcs12
= NULL
;
6540 free_loaded_vmcs(vmx
->loaded_vmcs
);
6542 kfree(vmx
->guest_msrs
);
6544 kvm_vcpu_uninit(&vmx
->vcpu
);
6547 kmem_cache_free(kvm_vcpu_cache
, vmx
);
6548 return ERR_PTR(err
);
6551 static void __init
vmx_check_processor_compat(void *rtn
)
6553 struct vmcs_config vmcs_conf
;
6556 if (setup_vmcs_config(&vmcs_conf
) < 0)
6558 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
6559 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
6560 smp_processor_id());
6565 static int get_ept_level(void)
6567 return VMX_EPT_DEFAULT_GAW
+ 1;
6570 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
6574 /* For VT-d and EPT combination
6575 * 1. MMIO: always map as UC
6577 * a. VT-d without snooping control feature: can't guarantee the
6578 * result, try to trust guest.
6579 * b. VT-d with snooping control feature: snooping control feature of
6580 * VT-d engine can guarantee the cache correctness. Just set it
6581 * to WB to keep consistent with host. So the same as item 3.
6582 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6583 * consistent with host MTRR
6586 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
6587 else if (vcpu
->kvm
->arch
.iommu_domain
&&
6588 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
6589 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
6590 VMX_EPT_MT_EPTE_SHIFT
;
6592 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
6598 static int vmx_get_lpage_level(void)
6600 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
6601 return PT_DIRECTORY_LEVEL
;
6603 /* For shadow and EPT supported 1GB page */
6604 return PT_PDPE_LEVEL
;
6607 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
6609 struct kvm_cpuid_entry2
*best
;
6610 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6613 vmx
->rdtscp_enabled
= false;
6614 if (vmx_rdtscp_supported()) {
6615 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6616 if (exec_control
& SECONDARY_EXEC_RDTSCP
) {
6617 best
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
6618 if (best
&& (best
->edx
& bit(X86_FEATURE_RDTSCP
)))
6619 vmx
->rdtscp_enabled
= true;
6621 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
6622 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
6628 /* Exposing INVPCID only when PCID is exposed */
6629 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
6630 if (vmx_invpcid_supported() &&
6631 best
&& (best
->ebx
& bit(X86_FEATURE_INVPCID
)) &&
6632 guest_cpuid_has_pcid(vcpu
)) {
6633 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6634 exec_control
|= SECONDARY_EXEC_ENABLE_INVPCID
;
6635 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
6638 if (cpu_has_secondary_exec_ctrls()) {
6639 exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6640 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
6641 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
6645 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
6649 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
6651 if (func
== 1 && nested
)
6652 entry
->ecx
|= bit(X86_FEATURE_VMX
);
6656 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6657 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6658 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6659 * guest in a way that will both be appropriate to L1's requests, and our
6660 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6661 * function also has additional necessary side-effects, like setting various
6662 * vcpu->arch fields.
6664 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
6666 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6669 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
6670 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
6671 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
6672 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
6673 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
6674 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
6675 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
6676 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
6677 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
6678 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
6679 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
6680 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
6681 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
6682 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
6683 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
6684 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
6685 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
6686 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
6687 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
6688 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
6689 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
6690 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
6691 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
6692 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
6693 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
6694 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
6695 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
6696 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
6697 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
6698 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
6699 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
6700 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
6701 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
6702 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
6703 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
6704 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
6706 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
6707 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
6708 vmcs12
->vm_entry_intr_info_field
);
6709 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
6710 vmcs12
->vm_entry_exception_error_code
);
6711 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
6712 vmcs12
->vm_entry_instruction_len
);
6713 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
6714 vmcs12
->guest_interruptibility_info
);
6715 vmcs_write32(GUEST_ACTIVITY_STATE
, vmcs12
->guest_activity_state
);
6716 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
6717 vmcs_writel(GUEST_DR7
, vmcs12
->guest_dr7
);
6718 vmcs_writel(GUEST_RFLAGS
, vmcs12
->guest_rflags
);
6719 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
6720 vmcs12
->guest_pending_dbg_exceptions
);
6721 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
6722 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
6724 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
6726 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
6727 (vmcs_config
.pin_based_exec_ctrl
|
6728 vmcs12
->pin_based_vm_exec_control
));
6731 * Whether page-faults are trapped is determined by a combination of
6732 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6733 * If enable_ept, L0 doesn't care about page faults and we should
6734 * set all of these to L1's desires. However, if !enable_ept, L0 does
6735 * care about (at least some) page faults, and because it is not easy
6736 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6737 * to exit on each and every L2 page fault. This is done by setting
6738 * MASK=MATCH=0 and (see below) EB.PF=1.
6739 * Note that below we don't need special code to set EB.PF beyond the
6740 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6741 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6742 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6744 * A problem with this approach (when !enable_ept) is that L1 may be
6745 * injected with more page faults than it asked for. This could have
6746 * caused problems, but in practice existing hypervisors don't care.
6747 * To fix this, we will need to emulate the PFEC checking (on the L1
6748 * page tables), using walk_addr(), when injecting PFs to L1.
6750 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
6751 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
6752 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
6753 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
6755 if (cpu_has_secondary_exec_ctrls()) {
6756 u32 exec_control
= vmx_secondary_exec_control(vmx
);
6757 if (!vmx
->rdtscp_enabled
)
6758 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
6759 /* Take the following fields only from vmcs12 */
6760 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6761 if (nested_cpu_has(vmcs12
,
6762 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
6763 exec_control
|= vmcs12
->secondary_vm_exec_control
;
6765 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
6767 * Translate L1 physical address to host physical
6768 * address for vmcs02. Keep the page pinned, so this
6769 * physical address remains valid. We keep a reference
6770 * to it so we can release it later.
6772 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
6773 nested_release_page(vmx
->nested
.apic_access_page
);
6774 vmx
->nested
.apic_access_page
=
6775 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
6777 * If translation failed, no matter: This feature asks
6778 * to exit when accessing the given address, and if it
6779 * can never be accessed, this feature won't do
6782 if (!vmx
->nested
.apic_access_page
)
6784 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6786 vmcs_write64(APIC_ACCESS_ADDR
,
6787 page_to_phys(vmx
->nested
.apic_access_page
));
6790 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
6795 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6796 * Some constant fields are set here by vmx_set_constant_host_state().
6797 * Other fields are different per CPU, and will be set later when
6798 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6800 vmx_set_constant_host_state();
6803 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6804 * entry, but only if the current (host) sp changed from the value
6805 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6806 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6807 * here we just force the write to happen on entry.
6811 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
6812 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
6813 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
6814 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
6815 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
6817 * Merging of IO and MSR bitmaps not currently supported.
6818 * Rather, exit every time.
6820 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
6821 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
6822 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
6824 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
6826 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6827 * bitwise-or of what L1 wants to trap for L2, and what we want to
6828 * trap. Note that CR0.TS also needs updating - we do this later.
6830 update_exception_bitmap(vcpu
);
6831 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
6832 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
6834 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6835 vmcs_write32(VM_EXIT_CONTROLS
,
6836 vmcs12
->vm_exit_controls
| vmcs_config
.vmexit_ctrl
);
6837 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs12
->vm_entry_controls
|
6838 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
6840 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
)
6841 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
6842 else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
6843 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
6846 set_cr4_guest_host_mask(vmx
);
6848 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
6849 vmcs_write64(TSC_OFFSET
,
6850 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
6852 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
6856 * Trivially support vpid by letting L2s share their parent
6857 * L1's vpid. TODO: move to a more elaborate solution, giving
6858 * each L2 its own vpid and exposing the vpid feature to L1.
6860 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
6861 vmx_flush_tlb(vcpu
);
6864 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
6865 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
6866 if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
6867 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
6869 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
6870 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6871 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
6874 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6875 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6876 * The CR0_READ_SHADOW is what L2 should have expected to read given
6877 * the specifications by L1; It's not enough to take
6878 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6879 * have more bits than L1 expected.
6881 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
6882 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
6884 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
6885 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
6887 /* shadow page tables on either EPT or shadow page tables */
6888 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
6889 kvm_mmu_reset_context(vcpu
);
6891 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
6892 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
6896 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6897 * for running an L2 nested guest.
6899 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
6901 struct vmcs12
*vmcs12
;
6902 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6904 struct loaded_vmcs
*vmcs02
;
6906 if (!nested_vmx_check_permission(vcpu
) ||
6907 !nested_vmx_check_vmcs12(vcpu
))
6910 skip_emulated_instruction(vcpu
);
6911 vmcs12
= get_vmcs12(vcpu
);
6914 * The nested entry process starts with enforcing various prerequisites
6915 * on vmcs12 as required by the Intel SDM, and act appropriately when
6916 * they fail: As the SDM explains, some conditions should cause the
6917 * instruction to fail, while others will cause the instruction to seem
6918 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6919 * To speed up the normal (success) code path, we should avoid checking
6920 * for misconfigurations which will anyway be caught by the processor
6921 * when using the merged vmcs02.
6923 if (vmcs12
->launch_state
== launch
) {
6924 nested_vmx_failValid(vcpu
,
6925 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6926 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
6930 if ((vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_MSR_BITMAPS
) &&
6931 !IS_ALIGNED(vmcs12
->msr_bitmap
, PAGE_SIZE
)) {
6932 /*TODO: Also verify bits beyond physical address width are 0*/
6933 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6937 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) &&
6938 !IS_ALIGNED(vmcs12
->apic_access_addr
, PAGE_SIZE
)) {
6939 /*TODO: Also verify bits beyond physical address width are 0*/
6940 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6944 if (vmcs12
->vm_entry_msr_load_count
> 0 ||
6945 vmcs12
->vm_exit_msr_load_count
> 0 ||
6946 vmcs12
->vm_exit_msr_store_count
> 0) {
6947 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6949 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6953 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
6954 nested_vmx_procbased_ctls_low
, nested_vmx_procbased_ctls_high
) ||
6955 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
6956 nested_vmx_secondary_ctls_low
, nested_vmx_secondary_ctls_high
) ||
6957 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
6958 nested_vmx_pinbased_ctls_low
, nested_vmx_pinbased_ctls_high
) ||
6959 !vmx_control_verify(vmcs12
->vm_exit_controls
,
6960 nested_vmx_exit_ctls_low
, nested_vmx_exit_ctls_high
) ||
6961 !vmx_control_verify(vmcs12
->vm_entry_controls
,
6962 nested_vmx_entry_ctls_low
, nested_vmx_entry_ctls_high
))
6964 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
6968 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
6969 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
6970 nested_vmx_failValid(vcpu
,
6971 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
6975 if (((vmcs12
->guest_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
6976 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
6977 nested_vmx_entry_failure(vcpu
, vmcs12
,
6978 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
6981 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
6982 nested_vmx_entry_failure(vcpu
, vmcs12
,
6983 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
6988 * We're finally done with prerequisite checking, and can start with
6992 vmcs02
= nested_get_current_vmcs02(vmx
);
6996 enter_guest_mode(vcpu
);
6998 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
7001 vmx
->loaded_vmcs
= vmcs02
;
7003 vmx_vcpu_load(vcpu
, cpu
);
7007 vmcs12
->launch_state
= 1;
7009 prepare_vmcs02(vcpu
, vmcs12
);
7012 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7013 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7014 * returned as far as L1 is concerned. It will only return (and set
7015 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7021 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7022 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7023 * This function returns the new value we should put in vmcs12.guest_cr0.
7024 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7025 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7026 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7027 * didn't trap the bit, because if L1 did, so would L0).
7028 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7029 * been modified by L2, and L1 knows it. So just leave the old value of
7030 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7031 * isn't relevant, because if L0 traps this bit it can set it to anything.
7032 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7033 * changed these bits, and therefore they need to be updated, but L0
7034 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7035 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7037 static inline unsigned long
7038 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7041 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
7042 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
7043 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
7044 vcpu
->arch
.cr0_guest_owned_bits
));
7047 static inline unsigned long
7048 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7051 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
7052 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
7053 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
7054 vcpu
->arch
.cr4_guest_owned_bits
));
7058 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7059 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7060 * and this function updates it to reflect the changes to the guest state while
7061 * L2 was running (and perhaps made some exits which were handled directly by L0
7062 * without going back to L1), and to reflect the exit reason.
7063 * Note that we do not have to copy here all VMCS fields, just those that
7064 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7065 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7066 * which already writes to vmcs12 directly.
7068 void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7070 /* update guest state fields: */
7071 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
7072 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
7074 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
7075 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7076 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
7077 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
7079 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
7080 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
7081 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
7082 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
7083 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
7084 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
7085 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
7086 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
7087 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
7088 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
7089 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
7090 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
7091 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
7092 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
7093 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
7094 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
7095 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
7096 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
7097 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
7098 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
7099 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
7100 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
7101 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
7102 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
7103 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
7104 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
7105 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
7106 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
7107 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
7108 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
7109 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
7110 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
7111 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
7112 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
7113 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
7114 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
7116 vmcs12
->guest_activity_state
= vmcs_read32(GUEST_ACTIVITY_STATE
);
7117 vmcs12
->guest_interruptibility_info
=
7118 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
7119 vmcs12
->guest_pending_dbg_exceptions
=
7120 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
7122 /* TODO: These cannot have changed unless we have MSR bitmaps and
7123 * the relevant bit asks not to trap the change */
7124 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
7125 if (vmcs12
->vm_entry_controls
& VM_EXIT_SAVE_IA32_PAT
)
7126 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
7127 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
7128 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
7129 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
7131 /* update exit information fields: */
7133 vmcs12
->vm_exit_reason
= vmcs_read32(VM_EXIT_REASON
);
7134 vmcs12
->exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7136 vmcs12
->vm_exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7137 vmcs12
->vm_exit_intr_error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
7138 vmcs12
->idt_vectoring_info_field
=
7139 vmcs_read32(IDT_VECTORING_INFO_FIELD
);
7140 vmcs12
->idt_vectoring_error_code
=
7141 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
7142 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
7143 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7145 /* clear vm-entry fields which are to be cleared on exit */
7146 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
7147 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
7151 * A part of what we need to when the nested L2 guest exits and we want to
7152 * run its L1 parent, is to reset L1's guest state to the host state specified
7154 * This function is to be called not only on normal nested exit, but also on
7155 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7156 * Failures During or After Loading Guest State").
7157 * This function should be called when the active VMCS is L1's (vmcs01).
7159 void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
7161 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
7162 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
7163 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
7164 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
7166 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
7167 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
7169 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
7170 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
7172 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7173 * actually changed, because it depends on the current state of
7174 * fpu_active (which may have changed).
7175 * Note that vmx_set_cr0 refers to efer set above.
7177 kvm_set_cr0(vcpu
, vmcs12
->host_cr0
);
7179 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7180 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7181 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7183 update_exception_bitmap(vcpu
);
7184 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
7185 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
7188 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7189 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7191 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
7192 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
7194 /* shadow page tables on either EPT or shadow page tables */
7195 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
7196 kvm_mmu_reset_context(vcpu
);
7200 * Trivially support vpid by letting L2s share their parent
7201 * L1's vpid. TODO: move to a more elaborate solution, giving
7202 * each L2 its own vpid and exposing the vpid feature to L1.
7204 vmx_flush_tlb(vcpu
);
7208 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
7209 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
7210 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
7211 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
7212 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
7213 vmcs_writel(GUEST_TR_BASE
, vmcs12
->host_tr_base
);
7214 vmcs_writel(GUEST_GS_BASE
, vmcs12
->host_gs_base
);
7215 vmcs_writel(GUEST_FS_BASE
, vmcs12
->host_fs_base
);
7216 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->host_es_selector
);
7217 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->host_cs_selector
);
7218 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->host_ss_selector
);
7219 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->host_ds_selector
);
7220 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->host_fs_selector
);
7221 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->host_gs_selector
);
7222 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->host_tr_selector
);
7224 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
)
7225 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
7226 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
7227 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
7228 vmcs12
->host_ia32_perf_global_ctrl
);
7232 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7233 * and modify vmcs12 to make it see what it would expect to see there if
7234 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7236 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
)
7238 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7240 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7242 leave_guest_mode(vcpu
);
7243 prepare_vmcs12(vcpu
, vmcs12
);
7246 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
7248 vmx_vcpu_load(vcpu
, cpu
);
7252 /* if no vmcs02 cache requested, remove the one we used */
7253 if (VMCS02_POOL_SIZE
== 0)
7254 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
7256 load_vmcs12_host_state(vcpu
, vmcs12
);
7258 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7259 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
7261 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7264 /* Unpin physical memory we referred to in vmcs02 */
7265 if (vmx
->nested
.apic_access_page
) {
7266 nested_release_page(vmx
->nested
.apic_access_page
);
7267 vmx
->nested
.apic_access_page
= 0;
7271 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7272 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7273 * success or failure flag accordingly.
7275 if (unlikely(vmx
->fail
)) {
7277 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
7279 nested_vmx_succeed(vcpu
);
7283 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7284 * 23.7 "VM-entry failures during or after loading guest state" (this also
7285 * lists the acceptable exit-reason and exit-qualification parameters).
7286 * It should only be called before L2 actually succeeded to run, and when
7287 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7289 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
7290 struct vmcs12
*vmcs12
,
7291 u32 reason
, unsigned long qualification
)
7293 load_vmcs12_host_state(vcpu
, vmcs12
);
7294 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
7295 vmcs12
->exit_qualification
= qualification
;
7296 nested_vmx_succeed(vcpu
);
7299 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
7300 struct x86_instruction_info
*info
,
7301 enum x86_intercept_stage stage
)
7303 return X86EMUL_CONTINUE
;
7306 static struct kvm_x86_ops vmx_x86_ops
= {
7307 .cpu_has_kvm_support
= cpu_has_kvm_support
,
7308 .disabled_by_bios
= vmx_disabled_by_bios
,
7309 .hardware_setup
= hardware_setup
,
7310 .hardware_unsetup
= hardware_unsetup
,
7311 .check_processor_compatibility
= vmx_check_processor_compat
,
7312 .hardware_enable
= hardware_enable
,
7313 .hardware_disable
= hardware_disable
,
7314 .cpu_has_accelerated_tpr
= report_flexpriority
,
7316 .vcpu_create
= vmx_create_vcpu
,
7317 .vcpu_free
= vmx_free_vcpu
,
7318 .vcpu_reset
= vmx_vcpu_reset
,
7320 .prepare_guest_switch
= vmx_save_host_state
,
7321 .vcpu_load
= vmx_vcpu_load
,
7322 .vcpu_put
= vmx_vcpu_put
,
7324 .update_db_bp_intercept
= update_exception_bitmap
,
7325 .get_msr
= vmx_get_msr
,
7326 .set_msr
= vmx_set_msr
,
7327 .get_segment_base
= vmx_get_segment_base
,
7328 .get_segment
= vmx_get_segment
,
7329 .set_segment
= vmx_set_segment
,
7330 .get_cpl
= vmx_get_cpl
,
7331 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
7332 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
7333 .decache_cr3
= vmx_decache_cr3
,
7334 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
7335 .set_cr0
= vmx_set_cr0
,
7336 .set_cr3
= vmx_set_cr3
,
7337 .set_cr4
= vmx_set_cr4
,
7338 .set_efer
= vmx_set_efer
,
7339 .get_idt
= vmx_get_idt
,
7340 .set_idt
= vmx_set_idt
,
7341 .get_gdt
= vmx_get_gdt
,
7342 .set_gdt
= vmx_set_gdt
,
7343 .set_dr7
= vmx_set_dr7
,
7344 .cache_reg
= vmx_cache_reg
,
7345 .get_rflags
= vmx_get_rflags
,
7346 .set_rflags
= vmx_set_rflags
,
7347 .fpu_activate
= vmx_fpu_activate
,
7348 .fpu_deactivate
= vmx_fpu_deactivate
,
7350 .tlb_flush
= vmx_flush_tlb
,
7352 .run
= vmx_vcpu_run
,
7353 .handle_exit
= vmx_handle_exit
,
7354 .skip_emulated_instruction
= skip_emulated_instruction
,
7355 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
7356 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
7357 .patch_hypercall
= vmx_patch_hypercall
,
7358 .set_irq
= vmx_inject_irq
,
7359 .set_nmi
= vmx_inject_nmi
,
7360 .queue_exception
= vmx_queue_exception
,
7361 .cancel_injection
= vmx_cancel_injection
,
7362 .interrupt_allowed
= vmx_interrupt_allowed
,
7363 .nmi_allowed
= vmx_nmi_allowed
,
7364 .get_nmi_mask
= vmx_get_nmi_mask
,
7365 .set_nmi_mask
= vmx_set_nmi_mask
,
7366 .enable_nmi_window
= enable_nmi_window
,
7367 .enable_irq_window
= enable_irq_window
,
7368 .update_cr8_intercept
= update_cr8_intercept
,
7370 .set_tss_addr
= vmx_set_tss_addr
,
7371 .get_tdp_level
= get_ept_level
,
7372 .get_mt_mask
= vmx_get_mt_mask
,
7374 .get_exit_info
= vmx_get_exit_info
,
7376 .get_lpage_level
= vmx_get_lpage_level
,
7378 .cpuid_update
= vmx_cpuid_update
,
7380 .rdtscp_supported
= vmx_rdtscp_supported
,
7381 .invpcid_supported
= vmx_invpcid_supported
,
7383 .set_supported_cpuid
= vmx_set_supported_cpuid
,
7385 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
7387 .set_tsc_khz
= vmx_set_tsc_khz
,
7388 .read_tsc_offset
= vmx_read_tsc_offset
,
7389 .write_tsc_offset
= vmx_write_tsc_offset
,
7390 .adjust_tsc_offset
= vmx_adjust_tsc_offset
,
7391 .compute_tsc_offset
= vmx_compute_tsc_offset
,
7392 .read_l1_tsc
= vmx_read_l1_tsc
,
7394 .set_tdp_cr3
= vmx_set_cr3
,
7396 .check_intercept
= vmx_check_intercept
,
7399 static int __init
vmx_init(void)
7403 rdmsrl_safe(MSR_EFER
, &host_efer
);
7405 for (i
= 0; i
< NR_VMX_MSR
; ++i
)
7406 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
7408 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7409 if (!vmx_io_bitmap_a
)
7414 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7415 if (!vmx_io_bitmap_b
)
7418 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7419 if (!vmx_msr_bitmap_legacy
)
7423 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
7424 if (!vmx_msr_bitmap_longmode
)
7429 * Allow direct access to the PC debug port (it is often used for I/O
7430 * delays, but the vmexits simply slow things down).
7432 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
7433 clear_bit(0x80, vmx_io_bitmap_a
);
7435 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
7437 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
7438 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
7440 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
7442 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
7443 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
7448 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
7449 crash_vmclear_local_loaded_vmcss
);
7452 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
7453 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
7454 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
7455 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
7456 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
7457 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
7460 kvm_mmu_set_mask_ptes(0ull,
7461 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
7462 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
7463 0ull, VMX_EPT_EXECUTABLE_MASK
);
7464 ept_set_mmio_spte_mask();
7472 free_page((unsigned long)vmx_msr_bitmap_longmode
);
7474 free_page((unsigned long)vmx_msr_bitmap_legacy
);
7476 free_page((unsigned long)vmx_io_bitmap_b
);
7478 free_page((unsigned long)vmx_io_bitmap_a
);
7482 static void __exit
vmx_exit(void)
7484 free_page((unsigned long)vmx_msr_bitmap_legacy
);
7485 free_page((unsigned long)vmx_msr_bitmap_longmode
);
7486 free_page((unsigned long)vmx_io_bitmap_b
);
7487 free_page((unsigned long)vmx_io_bitmap_a
);
7490 rcu_assign_pointer(crash_vmclear_loaded_vmcss
, NULL
);
7497 module_init(vmx_init
)
7498 module_exit(vmx_exit
)