Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / mm / hugetlbpage.c
blobae1aa71d0115f8ef2509e8ae4a1789385446df18
1 /*
2 * IA-32 Huge TLB Page Support for Kernel.
4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5 */
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
14 #include <asm/mman.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
19 static unsigned long page_table_shareable(struct vm_area_struct *svma,
20 struct vm_area_struct *vma,
21 unsigned long addr, pgoff_t idx)
23 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
24 svma->vm_start;
25 unsigned long sbase = saddr & PUD_MASK;
26 unsigned long s_end = sbase + PUD_SIZE;
28 /* Allow segments to share if only one is marked locked */
29 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
30 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
33 * match the virtual addresses, permission and the alignment of the
34 * page table page.
36 if (pmd_index(addr) != pmd_index(saddr) ||
37 vm_flags != svm_flags ||
38 sbase < svma->vm_start || svma->vm_end < s_end)
39 return 0;
41 return saddr;
44 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
46 unsigned long base = addr & PUD_MASK;
47 unsigned long end = base + PUD_SIZE;
50 * check on proper vm_flags and page table alignment
52 if (vma->vm_flags & VM_MAYSHARE &&
53 vma->vm_start <= base && end <= vma->vm_end)
54 return 1;
55 return 0;
59 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
60 * and returns the corresponding pte. While this is not necessary for the
61 * !shared pmd case because we can allocate the pmd later as well, it makes the
62 * code much cleaner. pmd allocation is essential for the shared case because
63 * pud has to be populated inside the same i_mmap_mutex section - otherwise
64 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
65 * bad pmd for sharing.
67 static pte_t *
68 huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
70 struct vm_area_struct *vma = find_vma(mm, addr);
71 struct address_space *mapping = vma->vm_file->f_mapping;
72 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
73 vma->vm_pgoff;
74 struct vm_area_struct *svma;
75 unsigned long saddr;
76 pte_t *spte = NULL;
77 pte_t *pte;
79 if (!vma_shareable(vma, addr))
80 return (pte_t *)pmd_alloc(mm, pud, addr);
82 mutex_lock(&mapping->i_mmap_mutex);
83 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
84 if (svma == vma)
85 continue;
87 saddr = page_table_shareable(svma, vma, addr, idx);
88 if (saddr) {
89 spte = huge_pte_offset(svma->vm_mm, saddr);
90 if (spte) {
91 get_page(virt_to_page(spte));
92 break;
97 if (!spte)
98 goto out;
100 spin_lock(&mm->page_table_lock);
101 if (pud_none(*pud))
102 pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
103 else
104 put_page(virt_to_page(spte));
105 spin_unlock(&mm->page_table_lock);
106 out:
107 pte = (pte_t *)pmd_alloc(mm, pud, addr);
108 mutex_unlock(&mapping->i_mmap_mutex);
109 return pte;
113 * unmap huge page backed by shared pte.
115 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
116 * indicated by page_count > 1, unmap is achieved by clearing pud and
117 * decrementing the ref count. If count == 1, the pte page is not shared.
119 * called with vma->vm_mm->page_table_lock held.
121 * returns: 1 successfully unmapped a shared pte page
122 * 0 the underlying pte page is not shared, or it is the last user
124 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
126 pgd_t *pgd = pgd_offset(mm, *addr);
127 pud_t *pud = pud_offset(pgd, *addr);
129 BUG_ON(page_count(virt_to_page(ptep)) == 0);
130 if (page_count(virt_to_page(ptep)) == 1)
131 return 0;
133 pud_clear(pud);
134 put_page(virt_to_page(ptep));
135 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
136 return 1;
139 pte_t *huge_pte_alloc(struct mm_struct *mm,
140 unsigned long addr, unsigned long sz)
142 pgd_t *pgd;
143 pud_t *pud;
144 pte_t *pte = NULL;
146 pgd = pgd_offset(mm, addr);
147 pud = pud_alloc(mm, pgd, addr);
148 if (pud) {
149 if (sz == PUD_SIZE) {
150 pte = (pte_t *)pud;
151 } else {
152 BUG_ON(sz != PMD_SIZE);
153 if (pud_none(*pud))
154 pte = huge_pmd_share(mm, addr, pud);
155 else
156 pte = (pte_t *)pmd_alloc(mm, pud, addr);
159 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
161 return pte;
164 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
166 pgd_t *pgd;
167 pud_t *pud;
168 pmd_t *pmd = NULL;
170 pgd = pgd_offset(mm, addr);
171 if (pgd_present(*pgd)) {
172 pud = pud_offset(pgd, addr);
173 if (pud_present(*pud)) {
174 if (pud_large(*pud))
175 return (pte_t *)pud;
176 pmd = pmd_offset(pud, addr);
179 return (pte_t *) pmd;
182 #if 0 /* This is just for testing */
183 struct page *
184 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
186 unsigned long start = address;
187 int length = 1;
188 int nr;
189 struct page *page;
190 struct vm_area_struct *vma;
192 vma = find_vma(mm, addr);
193 if (!vma || !is_vm_hugetlb_page(vma))
194 return ERR_PTR(-EINVAL);
196 pte = huge_pte_offset(mm, address);
198 /* hugetlb should be locked, and hence, prefaulted */
199 WARN_ON(!pte || pte_none(*pte));
201 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
203 WARN_ON(!PageHead(page));
205 return page;
208 int pmd_huge(pmd_t pmd)
210 return 0;
213 int pud_huge(pud_t pud)
215 return 0;
218 struct page *
219 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
220 pmd_t *pmd, int write)
222 return NULL;
225 #else
227 struct page *
228 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
230 return ERR_PTR(-EINVAL);
233 int pmd_huge(pmd_t pmd)
235 return !!(pmd_val(pmd) & _PAGE_PSE);
238 int pud_huge(pud_t pud)
240 return !!(pud_val(pud) & _PAGE_PSE);
243 struct page *
244 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
245 pmd_t *pmd, int write)
247 struct page *page;
249 page = pte_page(*(pte_t *)pmd);
250 if (page)
251 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
252 return page;
255 struct page *
256 follow_huge_pud(struct mm_struct *mm, unsigned long address,
257 pud_t *pud, int write)
259 struct page *page;
261 page = pte_page(*(pte_t *)pud);
262 if (page)
263 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
264 return page;
267 #endif
269 /* x86_64 also uses this file */
271 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
272 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
273 unsigned long addr, unsigned long len,
274 unsigned long pgoff, unsigned long flags)
276 struct hstate *h = hstate_file(file);
277 struct vm_unmapped_area_info info;
279 info.flags = 0;
280 info.length = len;
281 info.low_limit = TASK_UNMAPPED_BASE;
282 info.high_limit = TASK_SIZE;
283 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
284 info.align_offset = 0;
285 return vm_unmapped_area(&info);
288 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
289 unsigned long addr0, unsigned long len,
290 unsigned long pgoff, unsigned long flags)
292 struct hstate *h = hstate_file(file);
293 struct vm_unmapped_area_info info;
294 unsigned long addr;
296 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
297 info.length = len;
298 info.low_limit = PAGE_SIZE;
299 info.high_limit = current->mm->mmap_base;
300 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
301 info.align_offset = 0;
302 addr = vm_unmapped_area(&info);
305 * A failed mmap() very likely causes application failure,
306 * so fall back to the bottom-up function here. This scenario
307 * can happen with large stack limits and large mmap()
308 * allocations.
310 if (addr & ~PAGE_MASK) {
311 VM_BUG_ON(addr != -ENOMEM);
312 info.flags = 0;
313 info.low_limit = TASK_UNMAPPED_BASE;
314 info.high_limit = TASK_SIZE;
315 addr = vm_unmapped_area(&info);
318 return addr;
321 unsigned long
322 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
323 unsigned long len, unsigned long pgoff, unsigned long flags)
325 struct hstate *h = hstate_file(file);
326 struct mm_struct *mm = current->mm;
327 struct vm_area_struct *vma;
329 if (len & ~huge_page_mask(h))
330 return -EINVAL;
331 if (len > TASK_SIZE)
332 return -ENOMEM;
334 if (flags & MAP_FIXED) {
335 if (prepare_hugepage_range(file, addr, len))
336 return -EINVAL;
337 return addr;
340 if (addr) {
341 addr = ALIGN(addr, huge_page_size(h));
342 vma = find_vma(mm, addr);
343 if (TASK_SIZE - len >= addr &&
344 (!vma || addr + len <= vma->vm_start))
345 return addr;
347 if (mm->get_unmapped_area == arch_get_unmapped_area)
348 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
349 pgoff, flags);
350 else
351 return hugetlb_get_unmapped_area_topdown(file, addr, len,
352 pgoff, flags);
355 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
357 #ifdef CONFIG_X86_64
358 static __init int setup_hugepagesz(char *opt)
360 unsigned long ps = memparse(opt, &opt);
361 if (ps == PMD_SIZE) {
362 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
363 } else if (ps == PUD_SIZE && cpu_has_gbpages) {
364 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
365 } else {
366 printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
367 ps >> 20);
368 return 0;
370 return 1;
372 __setup("hugepagesz=", setup_hugepagesz);
373 #endif