2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args
{
60 struct btrfs_root
*root
;
63 static const struct inode_operations btrfs_dir_inode_operations
;
64 static const struct inode_operations btrfs_symlink_inode_operations
;
65 static const struct inode_operations btrfs_dir_ro_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct address_space_operations btrfs_symlink_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
75 struct kmem_cache
*btrfs_trans_handle_cachep
;
76 struct kmem_cache
*btrfs_transaction_cachep
;
77 struct kmem_cache
*btrfs_path_cachep
;
78 struct kmem_cache
*btrfs_free_space_cachep
;
81 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
82 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
83 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
84 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
85 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
86 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
87 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
88 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
91 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
92 static int btrfs_truncate(struct inode
*inode
);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
94 static noinline
int cow_file_range(struct inode
*inode
,
95 struct page
*locked_page
,
96 u64 start
, u64 end
, int *page_started
,
97 unsigned long *nr_written
, int unlock
);
98 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
99 u64 len
, u64 orig_start
,
100 u64 block_start
, u64 block_len
,
101 u64 orig_block_len
, int type
);
103 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
104 struct inode
*inode
, struct inode
*dir
,
105 const struct qstr
*qstr
)
109 err
= btrfs_init_acl(trans
, inode
, dir
);
111 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
120 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
121 struct btrfs_root
*root
, struct inode
*inode
,
122 u64 start
, size_t size
, size_t compressed_size
,
124 struct page
**compressed_pages
)
126 struct btrfs_key key
;
127 struct btrfs_path
*path
;
128 struct extent_buffer
*leaf
;
129 struct page
*page
= NULL
;
132 struct btrfs_file_extent_item
*ei
;
135 size_t cur_size
= size
;
137 unsigned long offset
;
139 if (compressed_size
&& compressed_pages
)
140 cur_size
= compressed_size
;
142 path
= btrfs_alloc_path();
146 path
->leave_spinning
= 1;
148 key
.objectid
= btrfs_ino(inode
);
150 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
151 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
153 inode_add_bytes(inode
, size
);
154 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
160 leaf
= path
->nodes
[0];
161 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
162 struct btrfs_file_extent_item
);
163 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
164 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
165 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
166 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
167 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
168 ptr
= btrfs_file_extent_inline_start(ei
);
170 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
173 while (compressed_size
> 0) {
174 cpage
= compressed_pages
[i
];
175 cur_size
= min_t(unsigned long, compressed_size
,
178 kaddr
= kmap_atomic(cpage
);
179 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
180 kunmap_atomic(kaddr
);
184 compressed_size
-= cur_size
;
186 btrfs_set_file_extent_compression(leaf
, ei
,
189 page
= find_get_page(inode
->i_mapping
,
190 start
>> PAGE_CACHE_SHIFT
);
191 btrfs_set_file_extent_compression(leaf
, ei
, 0);
192 kaddr
= kmap_atomic(page
);
193 offset
= start
& (PAGE_CACHE_SIZE
- 1);
194 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
195 kunmap_atomic(kaddr
);
196 page_cache_release(page
);
198 btrfs_mark_buffer_dirty(leaf
);
199 btrfs_free_path(path
);
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
210 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
211 ret
= btrfs_update_inode(trans
, root
, inode
);
215 btrfs_free_path(path
);
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
225 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
226 struct btrfs_root
*root
,
227 struct inode
*inode
, u64 start
, u64 end
,
228 size_t compressed_size
, int compress_type
,
229 struct page
**compressed_pages
)
231 u64 isize
= i_size_read(inode
);
232 u64 actual_end
= min(end
+ 1, isize
);
233 u64 inline_len
= actual_end
- start
;
234 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
235 ~((u64
)root
->sectorsize
- 1);
236 u64 data_len
= inline_len
;
240 data_len
= compressed_size
;
243 actual_end
>= PAGE_CACHE_SIZE
||
244 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
246 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
248 data_len
> root
->fs_info
->max_inline
) {
252 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, aligned_end
, 1);
256 if (isize
> actual_end
)
257 inline_len
= min_t(u64
, isize
, actual_end
);
258 ret
= insert_inline_extent(trans
, root
, inode
, start
,
259 inline_len
, compressed_size
,
260 compress_type
, compressed_pages
);
261 if (ret
&& ret
!= -ENOSPC
) {
262 btrfs_abort_transaction(trans
, root
, ret
);
264 } else if (ret
== -ENOSPC
) {
268 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
269 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
273 struct async_extent
{
278 unsigned long nr_pages
;
280 struct list_head list
;
285 struct btrfs_root
*root
;
286 struct page
*locked_page
;
289 struct list_head extents
;
290 struct btrfs_work work
;
293 static noinline
int add_async_extent(struct async_cow
*cow
,
294 u64 start
, u64 ram_size
,
297 unsigned long nr_pages
,
300 struct async_extent
*async_extent
;
302 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
303 BUG_ON(!async_extent
); /* -ENOMEM */
304 async_extent
->start
= start
;
305 async_extent
->ram_size
= ram_size
;
306 async_extent
->compressed_size
= compressed_size
;
307 async_extent
->pages
= pages
;
308 async_extent
->nr_pages
= nr_pages
;
309 async_extent
->compress_type
= compress_type
;
310 list_add_tail(&async_extent
->list
, &cow
->extents
);
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
328 * are written in the same order that the flusher thread sent them
331 static noinline
int compress_file_range(struct inode
*inode
,
332 struct page
*locked_page
,
334 struct async_cow
*async_cow
,
337 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
338 struct btrfs_trans_handle
*trans
;
340 u64 blocksize
= root
->sectorsize
;
342 u64 isize
= i_size_read(inode
);
344 struct page
**pages
= NULL
;
345 unsigned long nr_pages
;
346 unsigned long nr_pages_ret
= 0;
347 unsigned long total_compressed
= 0;
348 unsigned long total_in
= 0;
349 unsigned long max_compressed
= 128 * 1024;
350 unsigned long max_uncompressed
= 128 * 1024;
353 int compress_type
= root
->fs_info
->compress_type
;
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end
- start
+ 1) < 16 * 1024 &&
357 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
358 btrfs_add_inode_defrag(NULL
, inode
);
360 actual_end
= min_t(u64
, isize
, end
+ 1);
363 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
364 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
376 if (actual_end
<= start
)
377 goto cleanup_and_bail_uncompressed
;
379 total_compressed
= actual_end
- start
;
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
391 total_compressed
= min(total_compressed
, max_uncompressed
);
392 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
393 num_bytes
= max(blocksize
, num_bytes
);
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
402 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
403 (btrfs_test_opt(root
, COMPRESS
) ||
404 (BTRFS_I(inode
)->force_compress
) ||
405 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
407 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
409 /* just bail out to the uncompressed code */
413 if (BTRFS_I(inode
)->force_compress
)
414 compress_type
= BTRFS_I(inode
)->force_compress
;
416 ret
= btrfs_compress_pages(compress_type
,
417 inode
->i_mapping
, start
,
418 total_compressed
, pages
,
419 nr_pages
, &nr_pages_ret
,
425 unsigned long offset
= total_compressed
&
426 (PAGE_CACHE_SIZE
- 1);
427 struct page
*page
= pages
[nr_pages_ret
- 1];
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
434 kaddr
= kmap_atomic(page
);
435 memset(kaddr
+ offset
, 0,
436 PAGE_CACHE_SIZE
- offset
);
437 kunmap_atomic(kaddr
);
444 trans
= btrfs_join_transaction(root
);
446 ret
= PTR_ERR(trans
);
448 goto cleanup_and_out
;
450 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
452 /* lets try to make an inline extent */
453 if (ret
|| total_in
< (actual_end
- start
)) {
454 /* we didn't compress the entire range, try
455 * to make an uncompressed inline extent.
457 ret
= cow_file_range_inline(trans
, root
, inode
,
458 start
, end
, 0, 0, NULL
);
460 /* try making a compressed inline extent */
461 ret
= cow_file_range_inline(trans
, root
, inode
,
464 compress_type
, pages
);
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
472 extent_clear_unlock_delalloc(inode
,
473 &BTRFS_I(inode
)->io_tree
,
475 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
476 EXTENT_CLEAR_DELALLOC
|
477 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
479 btrfs_end_transaction(trans
, root
);
482 btrfs_end_transaction(trans
, root
);
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
491 total_compressed
= (total_compressed
+ blocksize
- 1) &
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
498 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
499 ~(PAGE_CACHE_SIZE
- 1);
500 if (total_compressed
>= total_in
) {
503 num_bytes
= total_in
;
506 if (!will_compress
&& pages
) {
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
511 for (i
= 0; i
< nr_pages_ret
; i
++) {
512 WARN_ON(pages
[i
]->mapping
);
513 page_cache_release(pages
[i
]);
517 total_compressed
= 0;
520 /* flag the file so we don't compress in the future */
521 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
522 !(BTRFS_I(inode
)->force_compress
)) {
523 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
533 add_async_extent(async_cow
, start
, num_bytes
,
534 total_compressed
, pages
, nr_pages_ret
,
537 if (start
+ num_bytes
< end
) {
544 cleanup_and_bail_uncompressed
:
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
552 if (page_offset(locked_page
) >= start
&&
553 page_offset(locked_page
) <= end
) {
554 __set_page_dirty_nobuffers(locked_page
);
555 /* unlocked later on in the async handlers */
557 add_async_extent(async_cow
, start
, end
- start
+ 1,
558 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
566 for (i
= 0; i
< nr_pages_ret
; i
++) {
567 WARN_ON(pages
[i
]->mapping
);
568 page_cache_release(pages
[i
]);
575 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
577 EXTENT_CLEAR_UNLOCK_PAGE
|
579 EXTENT_CLEAR_DELALLOC
|
580 EXTENT_SET_WRITEBACK
|
581 EXTENT_END_WRITEBACK
);
582 if (!trans
|| IS_ERR(trans
))
583 btrfs_error(root
->fs_info
, ret
, "Failed to join transaction");
585 btrfs_abort_transaction(trans
, root
, ret
);
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
595 static noinline
int submit_compressed_extents(struct inode
*inode
,
596 struct async_cow
*async_cow
)
598 struct async_extent
*async_extent
;
600 struct btrfs_trans_handle
*trans
;
601 struct btrfs_key ins
;
602 struct extent_map
*em
;
603 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
604 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
605 struct extent_io_tree
*io_tree
;
608 if (list_empty(&async_cow
->extents
))
612 while (!list_empty(&async_cow
->extents
)) {
613 async_extent
= list_entry(async_cow
->extents
.next
,
614 struct async_extent
, list
);
615 list_del(&async_extent
->list
);
617 io_tree
= &BTRFS_I(inode
)->io_tree
;
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent
->pages
) {
622 int page_started
= 0;
623 unsigned long nr_written
= 0;
625 lock_extent(io_tree
, async_extent
->start
,
626 async_extent
->start
+
627 async_extent
->ram_size
- 1);
629 /* allocate blocks */
630 ret
= cow_file_range(inode
, async_cow
->locked_page
,
632 async_extent
->start
+
633 async_extent
->ram_size
- 1,
634 &page_started
, &nr_written
, 0);
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
644 if (!page_started
&& !ret
)
645 extent_write_locked_range(io_tree
,
646 inode
, async_extent
->start
,
647 async_extent
->start
+
648 async_extent
->ram_size
- 1,
656 lock_extent(io_tree
, async_extent
->start
,
657 async_extent
->start
+ async_extent
->ram_size
- 1);
659 trans
= btrfs_join_transaction(root
);
661 ret
= PTR_ERR(trans
);
663 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
664 ret
= btrfs_reserve_extent(trans
, root
,
665 async_extent
->compressed_size
,
666 async_extent
->compressed_size
,
667 0, alloc_hint
, &ins
, 1);
668 if (ret
&& ret
!= -ENOSPC
)
669 btrfs_abort_transaction(trans
, root
, ret
);
670 btrfs_end_transaction(trans
, root
);
675 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
676 WARN_ON(async_extent
->pages
[i
]->mapping
);
677 page_cache_release(async_extent
->pages
[i
]);
679 kfree(async_extent
->pages
);
680 async_extent
->nr_pages
= 0;
681 async_extent
->pages
= NULL
;
682 unlock_extent(io_tree
, async_extent
->start
,
683 async_extent
->start
+
684 async_extent
->ram_size
- 1);
687 goto out_free
; /* JDM: Requeue? */
691 * here we're doing allocation and writeback of the
694 btrfs_drop_extent_cache(inode
, async_extent
->start
,
695 async_extent
->start
+
696 async_extent
->ram_size
- 1, 0);
698 em
= alloc_extent_map();
699 BUG_ON(!em
); /* -ENOMEM */
700 em
->start
= async_extent
->start
;
701 em
->len
= async_extent
->ram_size
;
702 em
->orig_start
= em
->start
;
704 em
->block_start
= ins
.objectid
;
705 em
->block_len
= ins
.offset
;
706 em
->orig_block_len
= ins
.offset
;
707 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
708 em
->compress_type
= async_extent
->compress_type
;
709 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
710 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
714 write_lock(&em_tree
->lock
);
715 ret
= add_extent_mapping(em_tree
, em
);
718 &em_tree
->modified_extents
);
719 write_unlock(&em_tree
->lock
);
720 if (ret
!= -EEXIST
) {
724 btrfs_drop_extent_cache(inode
, async_extent
->start
,
725 async_extent
->start
+
726 async_extent
->ram_size
- 1, 0);
729 ret
= btrfs_add_ordered_extent_compress(inode
,
732 async_extent
->ram_size
,
734 BTRFS_ORDERED_COMPRESSED
,
735 async_extent
->compress_type
);
736 BUG_ON(ret
); /* -ENOMEM */
739 * clear dirty, set writeback and unlock the pages.
741 extent_clear_unlock_delalloc(inode
,
742 &BTRFS_I(inode
)->io_tree
,
744 async_extent
->start
+
745 async_extent
->ram_size
- 1,
746 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
747 EXTENT_CLEAR_UNLOCK
|
748 EXTENT_CLEAR_DELALLOC
|
749 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
751 ret
= btrfs_submit_compressed_write(inode
,
753 async_extent
->ram_size
,
755 ins
.offset
, async_extent
->pages
,
756 async_extent
->nr_pages
);
758 BUG_ON(ret
); /* -ENOMEM */
759 alloc_hint
= ins
.objectid
+ ins
.offset
;
771 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
774 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
775 struct extent_map
*em
;
778 read_lock(&em_tree
->lock
);
779 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
782 * if block start isn't an actual block number then find the
783 * first block in this inode and use that as a hint. If that
784 * block is also bogus then just don't worry about it.
786 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
788 em
= search_extent_mapping(em_tree
, 0, 0);
789 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
790 alloc_hint
= em
->block_start
;
794 alloc_hint
= em
->block_start
;
798 read_unlock(&em_tree
->lock
);
804 * when extent_io.c finds a delayed allocation range in the file,
805 * the call backs end up in this code. The basic idea is to
806 * allocate extents on disk for the range, and create ordered data structs
807 * in ram to track those extents.
809 * locked_page is the page that writepage had locked already. We use
810 * it to make sure we don't do extra locks or unlocks.
812 * *page_started is set to one if we unlock locked_page and do everything
813 * required to start IO on it. It may be clean and already done with
816 static noinline
int __cow_file_range(struct btrfs_trans_handle
*trans
,
818 struct btrfs_root
*root
,
819 struct page
*locked_page
,
820 u64 start
, u64 end
, int *page_started
,
821 unsigned long *nr_written
,
826 unsigned long ram_size
;
829 u64 blocksize
= root
->sectorsize
;
830 struct btrfs_key ins
;
831 struct extent_map
*em
;
832 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
835 BUG_ON(btrfs_is_free_space_inode(inode
));
837 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
838 num_bytes
= max(blocksize
, num_bytes
);
839 disk_num_bytes
= num_bytes
;
841 /* if this is a small write inside eof, kick off defrag */
842 if (num_bytes
< 64 * 1024 &&
843 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
844 btrfs_add_inode_defrag(trans
, inode
);
847 /* lets try to make an inline extent */
848 ret
= cow_file_range_inline(trans
, root
, inode
,
849 start
, end
, 0, 0, NULL
);
851 extent_clear_unlock_delalloc(inode
,
852 &BTRFS_I(inode
)->io_tree
,
854 EXTENT_CLEAR_UNLOCK_PAGE
|
855 EXTENT_CLEAR_UNLOCK
|
856 EXTENT_CLEAR_DELALLOC
|
858 EXTENT_SET_WRITEBACK
|
859 EXTENT_END_WRITEBACK
);
861 *nr_written
= *nr_written
+
862 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
865 } else if (ret
< 0) {
866 btrfs_abort_transaction(trans
, root
, ret
);
871 BUG_ON(disk_num_bytes
>
872 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
874 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
875 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
877 while (disk_num_bytes
> 0) {
880 cur_alloc_size
= disk_num_bytes
;
881 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
882 root
->sectorsize
, 0, alloc_hint
,
885 btrfs_abort_transaction(trans
, root
, ret
);
889 em
= alloc_extent_map();
890 BUG_ON(!em
); /* -ENOMEM */
892 em
->orig_start
= em
->start
;
893 ram_size
= ins
.offset
;
894 em
->len
= ins
.offset
;
896 em
->block_start
= ins
.objectid
;
897 em
->block_len
= ins
.offset
;
898 em
->orig_block_len
= ins
.offset
;
899 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
900 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
904 write_lock(&em_tree
->lock
);
905 ret
= add_extent_mapping(em_tree
, em
);
908 &em_tree
->modified_extents
);
909 write_unlock(&em_tree
->lock
);
910 if (ret
!= -EEXIST
) {
914 btrfs_drop_extent_cache(inode
, start
,
915 start
+ ram_size
- 1, 0);
918 cur_alloc_size
= ins
.offset
;
919 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
920 ram_size
, cur_alloc_size
, 0);
921 BUG_ON(ret
); /* -ENOMEM */
923 if (root
->root_key
.objectid
==
924 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
925 ret
= btrfs_reloc_clone_csums(inode
, start
,
928 btrfs_abort_transaction(trans
, root
, ret
);
933 if (disk_num_bytes
< cur_alloc_size
)
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
943 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
944 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
947 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
948 start
, start
+ ram_size
- 1,
950 disk_num_bytes
-= cur_alloc_size
;
951 num_bytes
-= cur_alloc_size
;
952 alloc_hint
= ins
.objectid
+ ins
.offset
;
953 start
+= cur_alloc_size
;
959 extent_clear_unlock_delalloc(inode
,
960 &BTRFS_I(inode
)->io_tree
,
961 start
, end
, locked_page
,
962 EXTENT_CLEAR_UNLOCK_PAGE
|
963 EXTENT_CLEAR_UNLOCK
|
964 EXTENT_CLEAR_DELALLOC
|
966 EXTENT_SET_WRITEBACK
|
967 EXTENT_END_WRITEBACK
);
972 static noinline
int cow_file_range(struct inode
*inode
,
973 struct page
*locked_page
,
974 u64 start
, u64 end
, int *page_started
,
975 unsigned long *nr_written
,
978 struct btrfs_trans_handle
*trans
;
979 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
982 trans
= btrfs_join_transaction(root
);
984 extent_clear_unlock_delalloc(inode
,
985 &BTRFS_I(inode
)->io_tree
,
986 start
, end
, locked_page
,
987 EXTENT_CLEAR_UNLOCK_PAGE
|
988 EXTENT_CLEAR_UNLOCK
|
989 EXTENT_CLEAR_DELALLOC
|
991 EXTENT_SET_WRITEBACK
|
992 EXTENT_END_WRITEBACK
);
993 return PTR_ERR(trans
);
995 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
997 ret
= __cow_file_range(trans
, inode
, root
, locked_page
, start
, end
,
998 page_started
, nr_written
, unlock
);
1000 btrfs_end_transaction(trans
, root
);
1006 * work queue call back to started compression on a file and pages
1008 static noinline
void async_cow_start(struct btrfs_work
*work
)
1010 struct async_cow
*async_cow
;
1012 async_cow
= container_of(work
, struct async_cow
, work
);
1014 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1015 async_cow
->start
, async_cow
->end
, async_cow
,
1017 if (num_added
== 0) {
1018 btrfs_add_delayed_iput(async_cow
->inode
);
1019 async_cow
->inode
= NULL
;
1024 * work queue call back to submit previously compressed pages
1026 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1028 struct async_cow
*async_cow
;
1029 struct btrfs_root
*root
;
1030 unsigned long nr_pages
;
1032 async_cow
= container_of(work
, struct async_cow
, work
);
1034 root
= async_cow
->root
;
1035 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1038 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1040 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1041 wake_up(&root
->fs_info
->async_submit_wait
);
1043 if (async_cow
->inode
)
1044 submit_compressed_extents(async_cow
->inode
, async_cow
);
1047 static noinline
void async_cow_free(struct btrfs_work
*work
)
1049 struct async_cow
*async_cow
;
1050 async_cow
= container_of(work
, struct async_cow
, work
);
1051 if (async_cow
->inode
)
1052 btrfs_add_delayed_iput(async_cow
->inode
);
1056 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1057 u64 start
, u64 end
, int *page_started
,
1058 unsigned long *nr_written
)
1060 struct async_cow
*async_cow
;
1061 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1062 unsigned long nr_pages
;
1064 int limit
= 10 * 1024 * 1024;
1066 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1067 1, 0, NULL
, GFP_NOFS
);
1068 while (start
< end
) {
1069 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1070 BUG_ON(!async_cow
); /* -ENOMEM */
1071 async_cow
->inode
= igrab(inode
);
1072 async_cow
->root
= root
;
1073 async_cow
->locked_page
= locked_page
;
1074 async_cow
->start
= start
;
1076 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
1079 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1081 async_cow
->end
= cur_end
;
1082 INIT_LIST_HEAD(&async_cow
->extents
);
1084 async_cow
->work
.func
= async_cow_start
;
1085 async_cow
->work
.ordered_func
= async_cow_submit
;
1086 async_cow
->work
.ordered_free
= async_cow_free
;
1087 async_cow
->work
.flags
= 0;
1089 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1091 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1093 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1096 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1097 wait_event(root
->fs_info
->async_submit_wait
,
1098 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1102 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1103 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1104 wait_event(root
->fs_info
->async_submit_wait
,
1105 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1109 *nr_written
+= nr_pages
;
1110 start
= cur_end
+ 1;
1116 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1117 u64 bytenr
, u64 num_bytes
)
1120 struct btrfs_ordered_sum
*sums
;
1123 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1124 bytenr
+ num_bytes
- 1, &list
, 0);
1125 if (ret
== 0 && list_empty(&list
))
1128 while (!list_empty(&list
)) {
1129 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1130 list_del(&sums
->list
);
1137 * when nowcow writeback call back. This checks for snapshots or COW copies
1138 * of the extents that exist in the file, and COWs the file as required.
1140 * If no cow copies or snapshots exist, we write directly to the existing
1143 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1144 struct page
*locked_page
,
1145 u64 start
, u64 end
, int *page_started
, int force
,
1146 unsigned long *nr_written
)
1148 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1149 struct btrfs_trans_handle
*trans
;
1150 struct extent_buffer
*leaf
;
1151 struct btrfs_path
*path
;
1152 struct btrfs_file_extent_item
*fi
;
1153 struct btrfs_key found_key
;
1167 u64 ino
= btrfs_ino(inode
);
1169 path
= btrfs_alloc_path();
1171 extent_clear_unlock_delalloc(inode
,
1172 &BTRFS_I(inode
)->io_tree
,
1173 start
, end
, locked_page
,
1174 EXTENT_CLEAR_UNLOCK_PAGE
|
1175 EXTENT_CLEAR_UNLOCK
|
1176 EXTENT_CLEAR_DELALLOC
|
1177 EXTENT_CLEAR_DIRTY
|
1178 EXTENT_SET_WRITEBACK
|
1179 EXTENT_END_WRITEBACK
);
1183 nolock
= btrfs_is_free_space_inode(inode
);
1186 trans
= btrfs_join_transaction_nolock(root
);
1188 trans
= btrfs_join_transaction(root
);
1190 if (IS_ERR(trans
)) {
1191 extent_clear_unlock_delalloc(inode
,
1192 &BTRFS_I(inode
)->io_tree
,
1193 start
, end
, locked_page
,
1194 EXTENT_CLEAR_UNLOCK_PAGE
|
1195 EXTENT_CLEAR_UNLOCK
|
1196 EXTENT_CLEAR_DELALLOC
|
1197 EXTENT_CLEAR_DIRTY
|
1198 EXTENT_SET_WRITEBACK
|
1199 EXTENT_END_WRITEBACK
);
1200 btrfs_free_path(path
);
1201 return PTR_ERR(trans
);
1204 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1206 cow_start
= (u64
)-1;
1209 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1212 btrfs_abort_transaction(trans
, root
, ret
);
1215 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1216 leaf
= path
->nodes
[0];
1217 btrfs_item_key_to_cpu(leaf
, &found_key
,
1218 path
->slots
[0] - 1);
1219 if (found_key
.objectid
== ino
&&
1220 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1225 leaf
= path
->nodes
[0];
1226 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1227 ret
= btrfs_next_leaf(root
, path
);
1229 btrfs_abort_transaction(trans
, root
, ret
);
1234 leaf
= path
->nodes
[0];
1240 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1242 if (found_key
.objectid
> ino
||
1243 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1244 found_key
.offset
> end
)
1247 if (found_key
.offset
> cur_offset
) {
1248 extent_end
= found_key
.offset
;
1253 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1254 struct btrfs_file_extent_item
);
1255 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1257 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1258 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1259 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1260 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1261 extent_end
= found_key
.offset
+
1262 btrfs_file_extent_num_bytes(leaf
, fi
);
1264 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1265 if (extent_end
<= start
) {
1269 if (disk_bytenr
== 0)
1271 if (btrfs_file_extent_compression(leaf
, fi
) ||
1272 btrfs_file_extent_encryption(leaf
, fi
) ||
1273 btrfs_file_extent_other_encoding(leaf
, fi
))
1275 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1277 if (btrfs_extent_readonly(root
, disk_bytenr
))
1279 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1281 extent_offset
, disk_bytenr
))
1283 disk_bytenr
+= extent_offset
;
1284 disk_bytenr
+= cur_offset
- found_key
.offset
;
1285 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1287 * force cow if csum exists in the range.
1288 * this ensure that csum for a given extent are
1289 * either valid or do not exist.
1291 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1294 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1295 extent_end
= found_key
.offset
+
1296 btrfs_file_extent_inline_len(leaf
, fi
);
1297 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1302 if (extent_end
<= start
) {
1307 if (cow_start
== (u64
)-1)
1308 cow_start
= cur_offset
;
1309 cur_offset
= extent_end
;
1310 if (cur_offset
> end
)
1316 btrfs_release_path(path
);
1317 if (cow_start
!= (u64
)-1) {
1318 ret
= __cow_file_range(trans
, inode
, root
, locked_page
,
1319 cow_start
, found_key
.offset
- 1,
1320 page_started
, nr_written
, 1);
1322 btrfs_abort_transaction(trans
, root
, ret
);
1325 cow_start
= (u64
)-1;
1328 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1329 struct extent_map
*em
;
1330 struct extent_map_tree
*em_tree
;
1331 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1332 em
= alloc_extent_map();
1333 BUG_ON(!em
); /* -ENOMEM */
1334 em
->start
= cur_offset
;
1335 em
->orig_start
= found_key
.offset
- extent_offset
;
1336 em
->len
= num_bytes
;
1337 em
->block_len
= num_bytes
;
1338 em
->block_start
= disk_bytenr
;
1339 em
->orig_block_len
= disk_num_bytes
;
1340 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1341 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1342 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1343 em
->generation
= -1;
1345 write_lock(&em_tree
->lock
);
1346 ret
= add_extent_mapping(em_tree
, em
);
1348 list_move(&em
->list
,
1349 &em_tree
->modified_extents
);
1350 write_unlock(&em_tree
->lock
);
1351 if (ret
!= -EEXIST
) {
1352 free_extent_map(em
);
1355 btrfs_drop_extent_cache(inode
, em
->start
,
1356 em
->start
+ em
->len
- 1, 0);
1358 type
= BTRFS_ORDERED_PREALLOC
;
1360 type
= BTRFS_ORDERED_NOCOW
;
1363 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1364 num_bytes
, num_bytes
, type
);
1365 BUG_ON(ret
); /* -ENOMEM */
1367 if (root
->root_key
.objectid
==
1368 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1369 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1372 btrfs_abort_transaction(trans
, root
, ret
);
1377 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1378 cur_offset
, cur_offset
+ num_bytes
- 1,
1379 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1380 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1381 EXTENT_SET_PRIVATE2
);
1382 cur_offset
= extent_end
;
1383 if (cur_offset
> end
)
1386 btrfs_release_path(path
);
1388 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1389 cow_start
= cur_offset
;
1393 if (cow_start
!= (u64
)-1) {
1394 ret
= __cow_file_range(trans
, inode
, root
, locked_page
,
1396 page_started
, nr_written
, 1);
1398 btrfs_abort_transaction(trans
, root
, ret
);
1404 err
= btrfs_end_transaction(trans
, root
);
1408 if (ret
&& cur_offset
< end
)
1409 extent_clear_unlock_delalloc(inode
,
1410 &BTRFS_I(inode
)->io_tree
,
1411 cur_offset
, end
, locked_page
,
1412 EXTENT_CLEAR_UNLOCK_PAGE
|
1413 EXTENT_CLEAR_UNLOCK
|
1414 EXTENT_CLEAR_DELALLOC
|
1415 EXTENT_CLEAR_DIRTY
|
1416 EXTENT_SET_WRITEBACK
|
1417 EXTENT_END_WRITEBACK
);
1419 btrfs_free_path(path
);
1424 * extent_io.c call back to do delayed allocation processing
1426 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1427 u64 start
, u64 end
, int *page_started
,
1428 unsigned long *nr_written
)
1431 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1433 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) {
1434 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1435 page_started
, 1, nr_written
);
1436 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
) {
1437 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1438 page_started
, 0, nr_written
);
1439 } else if (!btrfs_test_opt(root
, COMPRESS
) &&
1440 !(BTRFS_I(inode
)->force_compress
) &&
1441 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
)) {
1442 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1443 page_started
, nr_written
, 1);
1445 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1446 &BTRFS_I(inode
)->runtime_flags
);
1447 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1448 page_started
, nr_written
);
1453 static void btrfs_split_extent_hook(struct inode
*inode
,
1454 struct extent_state
*orig
, u64 split
)
1456 /* not delalloc, ignore it */
1457 if (!(orig
->state
& EXTENT_DELALLOC
))
1460 spin_lock(&BTRFS_I(inode
)->lock
);
1461 BTRFS_I(inode
)->outstanding_extents
++;
1462 spin_unlock(&BTRFS_I(inode
)->lock
);
1466 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1467 * extents so we can keep track of new extents that are just merged onto old
1468 * extents, such as when we are doing sequential writes, so we can properly
1469 * account for the metadata space we'll need.
1471 static void btrfs_merge_extent_hook(struct inode
*inode
,
1472 struct extent_state
*new,
1473 struct extent_state
*other
)
1475 /* not delalloc, ignore it */
1476 if (!(other
->state
& EXTENT_DELALLOC
))
1479 spin_lock(&BTRFS_I(inode
)->lock
);
1480 BTRFS_I(inode
)->outstanding_extents
--;
1481 spin_unlock(&BTRFS_I(inode
)->lock
);
1485 * extent_io.c set_bit_hook, used to track delayed allocation
1486 * bytes in this file, and to maintain the list of inodes that
1487 * have pending delalloc work to be done.
1489 static void btrfs_set_bit_hook(struct inode
*inode
,
1490 struct extent_state
*state
, int *bits
)
1494 * set_bit and clear bit hooks normally require _irqsave/restore
1495 * but in this case, we are only testing for the DELALLOC
1496 * bit, which is only set or cleared with irqs on
1498 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1499 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1500 u64 len
= state
->end
+ 1 - state
->start
;
1501 bool do_list
= !btrfs_is_free_space_inode(inode
);
1503 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1504 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1506 spin_lock(&BTRFS_I(inode
)->lock
);
1507 BTRFS_I(inode
)->outstanding_extents
++;
1508 spin_unlock(&BTRFS_I(inode
)->lock
);
1511 spin_lock(&root
->fs_info
->delalloc_lock
);
1512 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1513 root
->fs_info
->delalloc_bytes
+= len
;
1514 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1515 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1516 &root
->fs_info
->delalloc_inodes
);
1518 spin_unlock(&root
->fs_info
->delalloc_lock
);
1523 * extent_io.c clear_bit_hook, see set_bit_hook for why
1525 static void btrfs_clear_bit_hook(struct inode
*inode
,
1526 struct extent_state
*state
, int *bits
)
1529 * set_bit and clear bit hooks normally require _irqsave/restore
1530 * but in this case, we are only testing for the DELALLOC
1531 * bit, which is only set or cleared with irqs on
1533 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1534 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1535 u64 len
= state
->end
+ 1 - state
->start
;
1536 bool do_list
= !btrfs_is_free_space_inode(inode
);
1538 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1539 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1540 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1541 spin_lock(&BTRFS_I(inode
)->lock
);
1542 BTRFS_I(inode
)->outstanding_extents
--;
1543 spin_unlock(&BTRFS_I(inode
)->lock
);
1546 if (*bits
& EXTENT_DO_ACCOUNTING
)
1547 btrfs_delalloc_release_metadata(inode
, len
);
1549 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1551 btrfs_free_reserved_data_space(inode
, len
);
1553 spin_lock(&root
->fs_info
->delalloc_lock
);
1554 root
->fs_info
->delalloc_bytes
-= len
;
1555 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1557 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1558 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1559 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1561 spin_unlock(&root
->fs_info
->delalloc_lock
);
1566 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1567 * we don't create bios that span stripes or chunks
1569 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1570 size_t size
, struct bio
*bio
,
1571 unsigned long bio_flags
)
1573 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1574 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1579 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1582 length
= bio
->bi_size
;
1583 map_length
= length
;
1584 ret
= btrfs_map_block(root
->fs_info
, READ
, logical
,
1585 &map_length
, NULL
, 0);
1586 /* Will always return 0 with map_multi == NULL */
1588 if (map_length
< length
+ size
)
1594 * in order to insert checksums into the metadata in large chunks,
1595 * we wait until bio submission time. All the pages in the bio are
1596 * checksummed and sums are attached onto the ordered extent record.
1598 * At IO completion time the cums attached on the ordered extent record
1599 * are inserted into the btree
1601 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1602 struct bio
*bio
, int mirror_num
,
1603 unsigned long bio_flags
,
1606 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1609 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1610 BUG_ON(ret
); /* -ENOMEM */
1615 * in order to insert checksums into the metadata in large chunks,
1616 * we wait until bio submission time. All the pages in the bio are
1617 * checksummed and sums are attached onto the ordered extent record.
1619 * At IO completion time the cums attached on the ordered extent record
1620 * are inserted into the btree
1622 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1623 int mirror_num
, unsigned long bio_flags
,
1626 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1629 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1631 bio_endio(bio
, ret
);
1636 * extent_io.c submission hook. This does the right thing for csum calculation
1637 * on write, or reading the csums from the tree before a read
1639 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1640 int mirror_num
, unsigned long bio_flags
,
1643 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1647 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1649 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1651 if (btrfs_is_free_space_inode(inode
))
1654 if (!(rw
& REQ_WRITE
)) {
1655 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1659 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1660 ret
= btrfs_submit_compressed_read(inode
, bio
,
1664 } else if (!skip_sum
) {
1665 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1670 } else if (async
&& !skip_sum
) {
1671 /* csum items have already been cloned */
1672 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1674 /* we're doing a write, do the async checksumming */
1675 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1676 inode
, rw
, bio
, mirror_num
,
1677 bio_flags
, bio_offset
,
1678 __btrfs_submit_bio_start
,
1679 __btrfs_submit_bio_done
);
1681 } else if (!skip_sum
) {
1682 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1688 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1692 bio_endio(bio
, ret
);
1697 * given a list of ordered sums record them in the inode. This happens
1698 * at IO completion time based on sums calculated at bio submission time.
1700 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1701 struct inode
*inode
, u64 file_offset
,
1702 struct list_head
*list
)
1704 struct btrfs_ordered_sum
*sum
;
1706 list_for_each_entry(sum
, list
, list
) {
1707 btrfs_csum_file_blocks(trans
,
1708 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1713 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1714 struct extent_state
**cached_state
)
1716 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1717 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1718 cached_state
, GFP_NOFS
);
1721 /* see btrfs_writepage_start_hook for details on why this is required */
1722 struct btrfs_writepage_fixup
{
1724 struct btrfs_work work
;
1727 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1729 struct btrfs_writepage_fixup
*fixup
;
1730 struct btrfs_ordered_extent
*ordered
;
1731 struct extent_state
*cached_state
= NULL
;
1733 struct inode
*inode
;
1738 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1742 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1743 ClearPageChecked(page
);
1747 inode
= page
->mapping
->host
;
1748 page_start
= page_offset(page
);
1749 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1751 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1754 /* already ordered? We're done */
1755 if (PagePrivate2(page
))
1758 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1760 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1761 page_end
, &cached_state
, GFP_NOFS
);
1763 btrfs_start_ordered_extent(inode
, ordered
, 1);
1764 btrfs_put_ordered_extent(ordered
);
1768 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1770 mapping_set_error(page
->mapping
, ret
);
1771 end_extent_writepage(page
, ret
, page_start
, page_end
);
1772 ClearPageChecked(page
);
1776 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1777 ClearPageChecked(page
);
1778 set_page_dirty(page
);
1780 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1781 &cached_state
, GFP_NOFS
);
1784 page_cache_release(page
);
1789 * There are a few paths in the higher layers of the kernel that directly
1790 * set the page dirty bit without asking the filesystem if it is a
1791 * good idea. This causes problems because we want to make sure COW
1792 * properly happens and the data=ordered rules are followed.
1794 * In our case any range that doesn't have the ORDERED bit set
1795 * hasn't been properly setup for IO. We kick off an async process
1796 * to fix it up. The async helper will wait for ordered extents, set
1797 * the delalloc bit and make it safe to write the page.
1799 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1801 struct inode
*inode
= page
->mapping
->host
;
1802 struct btrfs_writepage_fixup
*fixup
;
1803 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1805 /* this page is properly in the ordered list */
1806 if (TestClearPagePrivate2(page
))
1809 if (PageChecked(page
))
1812 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1816 SetPageChecked(page
);
1817 page_cache_get(page
);
1818 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1820 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1824 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1825 struct inode
*inode
, u64 file_pos
,
1826 u64 disk_bytenr
, u64 disk_num_bytes
,
1827 u64 num_bytes
, u64 ram_bytes
,
1828 u8 compression
, u8 encryption
,
1829 u16 other_encoding
, int extent_type
)
1831 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1832 struct btrfs_file_extent_item
*fi
;
1833 struct btrfs_path
*path
;
1834 struct extent_buffer
*leaf
;
1835 struct btrfs_key ins
;
1838 path
= btrfs_alloc_path();
1842 path
->leave_spinning
= 1;
1845 * we may be replacing one extent in the tree with another.
1846 * The new extent is pinned in the extent map, and we don't want
1847 * to drop it from the cache until it is completely in the btree.
1849 * So, tell btrfs_drop_extents to leave this extent in the cache.
1850 * the caller is expected to unpin it and allow it to be merged
1853 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1854 file_pos
+ num_bytes
, 0);
1858 ins
.objectid
= btrfs_ino(inode
);
1859 ins
.offset
= file_pos
;
1860 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1861 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1864 leaf
= path
->nodes
[0];
1865 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1866 struct btrfs_file_extent_item
);
1867 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1868 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1869 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1870 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1871 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1872 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1873 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1874 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1875 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1876 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1878 btrfs_mark_buffer_dirty(leaf
);
1879 btrfs_release_path(path
);
1881 inode_add_bytes(inode
, num_bytes
);
1883 ins
.objectid
= disk_bytenr
;
1884 ins
.offset
= disk_num_bytes
;
1885 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1886 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1887 root
->root_key
.objectid
,
1888 btrfs_ino(inode
), file_pos
, &ins
);
1890 btrfs_free_path(path
);
1896 * helper function for btrfs_finish_ordered_io, this
1897 * just reads in some of the csum leaves to prime them into ram
1898 * before we start the transaction. It limits the amount of btree
1899 * reads required while inside the transaction.
1901 /* as ordered data IO finishes, this gets called so we can finish
1902 * an ordered extent if the range of bytes in the file it covers are
1905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
1907 struct inode
*inode
= ordered_extent
->inode
;
1908 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1909 struct btrfs_trans_handle
*trans
= NULL
;
1910 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1911 struct extent_state
*cached_state
= NULL
;
1912 int compress_type
= 0;
1916 nolock
= btrfs_is_free_space_inode(inode
);
1918 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
1923 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1924 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
1925 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1927 trans
= btrfs_join_transaction_nolock(root
);
1929 trans
= btrfs_join_transaction(root
);
1930 if (IS_ERR(trans
)) {
1931 ret
= PTR_ERR(trans
);
1935 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1936 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1937 if (ret
) /* -ENOMEM or corruption */
1938 btrfs_abort_transaction(trans
, root
, ret
);
1942 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1943 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1947 trans
= btrfs_join_transaction_nolock(root
);
1949 trans
= btrfs_join_transaction(root
);
1950 if (IS_ERR(trans
)) {
1951 ret
= PTR_ERR(trans
);
1955 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1957 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1958 compress_type
= ordered_extent
->compress_type
;
1959 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1960 BUG_ON(compress_type
);
1961 ret
= btrfs_mark_extent_written(trans
, inode
,
1962 ordered_extent
->file_offset
,
1963 ordered_extent
->file_offset
+
1964 ordered_extent
->len
);
1966 BUG_ON(root
== root
->fs_info
->tree_root
);
1967 ret
= insert_reserved_file_extent(trans
, inode
,
1968 ordered_extent
->file_offset
,
1969 ordered_extent
->start
,
1970 ordered_extent
->disk_len
,
1971 ordered_extent
->len
,
1972 ordered_extent
->len
,
1973 compress_type
, 0, 0,
1974 BTRFS_FILE_EXTENT_REG
);
1976 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1977 ordered_extent
->file_offset
, ordered_extent
->len
,
1980 btrfs_abort_transaction(trans
, root
, ret
);
1984 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1985 &ordered_extent
->list
);
1987 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1988 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1989 if (ret
) { /* -ENOMEM or corruption */
1990 btrfs_abort_transaction(trans
, root
, ret
);
1995 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1996 ordered_extent
->file_offset
+
1997 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1999 if (root
!= root
->fs_info
->tree_root
)
2000 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2002 btrfs_end_transaction(trans
, root
);
2005 clear_extent_uptodate(io_tree
, ordered_extent
->file_offset
,
2006 ordered_extent
->file_offset
+
2007 ordered_extent
->len
- 1, NULL
, GFP_NOFS
);
2010 * This needs to be done to make sure anybody waiting knows we are done
2011 * updating everything for this ordered extent.
2013 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2016 btrfs_put_ordered_extent(ordered_extent
);
2017 /* once for the tree */
2018 btrfs_put_ordered_extent(ordered_extent
);
2023 static void finish_ordered_fn(struct btrfs_work
*work
)
2025 struct btrfs_ordered_extent
*ordered_extent
;
2026 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2027 btrfs_finish_ordered_io(ordered_extent
);
2030 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2031 struct extent_state
*state
, int uptodate
)
2033 struct inode
*inode
= page
->mapping
->host
;
2034 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2035 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2036 struct btrfs_workers
*workers
;
2038 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2040 ClearPagePrivate2(page
);
2041 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2042 end
- start
+ 1, uptodate
))
2045 ordered_extent
->work
.func
= finish_ordered_fn
;
2046 ordered_extent
->work
.flags
= 0;
2048 if (btrfs_is_free_space_inode(inode
))
2049 workers
= &root
->fs_info
->endio_freespace_worker
;
2051 workers
= &root
->fs_info
->endio_write_workers
;
2052 btrfs_queue_worker(workers
, &ordered_extent
->work
);
2058 * when reads are done, we need to check csums to verify the data is correct
2059 * if there's a match, we allow the bio to finish. If not, the code in
2060 * extent_io.c will try to find good copies for us.
2062 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2063 struct extent_state
*state
, int mirror
)
2065 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2066 struct inode
*inode
= page
->mapping
->host
;
2067 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2069 u64
private = ~(u32
)0;
2071 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2074 if (PageChecked(page
)) {
2075 ClearPageChecked(page
);
2079 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2082 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2083 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2084 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
2089 if (state
&& state
->start
== start
) {
2090 private = state
->private;
2093 ret
= get_state_private(io_tree
, start
, &private);
2095 kaddr
= kmap_atomic(page
);
2099 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
2100 btrfs_csum_final(csum
, (char *)&csum
);
2101 if (csum
!= private)
2104 kunmap_atomic(kaddr
);
2109 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
2111 (unsigned long long)btrfs_ino(page
->mapping
->host
),
2112 (unsigned long long)start
, csum
,
2113 (unsigned long long)private);
2114 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2115 flush_dcache_page(page
);
2116 kunmap_atomic(kaddr
);
2122 struct delayed_iput
{
2123 struct list_head list
;
2124 struct inode
*inode
;
2127 /* JDM: If this is fs-wide, why can't we add a pointer to
2128 * btrfs_inode instead and avoid the allocation? */
2129 void btrfs_add_delayed_iput(struct inode
*inode
)
2131 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2132 struct delayed_iput
*delayed
;
2134 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2137 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2138 delayed
->inode
= inode
;
2140 spin_lock(&fs_info
->delayed_iput_lock
);
2141 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2142 spin_unlock(&fs_info
->delayed_iput_lock
);
2145 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2148 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2149 struct delayed_iput
*delayed
;
2152 spin_lock(&fs_info
->delayed_iput_lock
);
2153 empty
= list_empty(&fs_info
->delayed_iputs
);
2154 spin_unlock(&fs_info
->delayed_iput_lock
);
2158 spin_lock(&fs_info
->delayed_iput_lock
);
2159 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2160 spin_unlock(&fs_info
->delayed_iput_lock
);
2162 while (!list_empty(&list
)) {
2163 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2164 list_del(&delayed
->list
);
2165 iput(delayed
->inode
);
2170 enum btrfs_orphan_cleanup_state
{
2171 ORPHAN_CLEANUP_STARTED
= 1,
2172 ORPHAN_CLEANUP_DONE
= 2,
2176 * This is called in transaction commit time. If there are no orphan
2177 * files in the subvolume, it removes orphan item and frees block_rsv
2180 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2181 struct btrfs_root
*root
)
2183 struct btrfs_block_rsv
*block_rsv
;
2186 if (atomic_read(&root
->orphan_inodes
) ||
2187 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2190 spin_lock(&root
->orphan_lock
);
2191 if (atomic_read(&root
->orphan_inodes
)) {
2192 spin_unlock(&root
->orphan_lock
);
2196 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
2197 spin_unlock(&root
->orphan_lock
);
2201 block_rsv
= root
->orphan_block_rsv
;
2202 root
->orphan_block_rsv
= NULL
;
2203 spin_unlock(&root
->orphan_lock
);
2205 if (root
->orphan_item_inserted
&&
2206 btrfs_root_refs(&root
->root_item
) > 0) {
2207 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2208 root
->root_key
.objectid
);
2210 root
->orphan_item_inserted
= 0;
2214 WARN_ON(block_rsv
->size
> 0);
2215 btrfs_free_block_rsv(root
, block_rsv
);
2220 * This creates an orphan entry for the given inode in case something goes
2221 * wrong in the middle of an unlink/truncate.
2223 * NOTE: caller of this function should reserve 5 units of metadata for
2226 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2228 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2229 struct btrfs_block_rsv
*block_rsv
= NULL
;
2234 if (!root
->orphan_block_rsv
) {
2235 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2240 spin_lock(&root
->orphan_lock
);
2241 if (!root
->orphan_block_rsv
) {
2242 root
->orphan_block_rsv
= block_rsv
;
2243 } else if (block_rsv
) {
2244 btrfs_free_block_rsv(root
, block_rsv
);
2248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2249 &BTRFS_I(inode
)->runtime_flags
)) {
2252 * For proper ENOSPC handling, we should do orphan
2253 * cleanup when mounting. But this introduces backward
2254 * compatibility issue.
2256 if (!xchg(&root
->orphan_item_inserted
, 1))
2262 atomic_inc(&root
->orphan_inodes
);
2265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2266 &BTRFS_I(inode
)->runtime_flags
))
2268 spin_unlock(&root
->orphan_lock
);
2270 /* grab metadata reservation from transaction handle */
2272 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2273 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
2276 /* insert an orphan item to track this unlinked/truncated file */
2278 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2279 if (ret
&& ret
!= -EEXIST
) {
2280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2281 &BTRFS_I(inode
)->runtime_flags
);
2282 btrfs_abort_transaction(trans
, root
, ret
);
2288 /* insert an orphan item to track subvolume contains orphan files */
2290 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2291 root
->root_key
.objectid
);
2292 if (ret
&& ret
!= -EEXIST
) {
2293 btrfs_abort_transaction(trans
, root
, ret
);
2301 * We have done the truncate/delete so we can go ahead and remove the orphan
2302 * item for this particular inode.
2304 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2306 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2307 int delete_item
= 0;
2308 int release_rsv
= 0;
2311 spin_lock(&root
->orphan_lock
);
2312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2313 &BTRFS_I(inode
)->runtime_flags
))
2316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2317 &BTRFS_I(inode
)->runtime_flags
))
2319 spin_unlock(&root
->orphan_lock
);
2321 if (trans
&& delete_item
) {
2322 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2323 BUG_ON(ret
); /* -ENOMEM or corruption (JDM: Recheck) */
2327 btrfs_orphan_release_metadata(inode
);
2328 atomic_dec(&root
->orphan_inodes
);
2335 * this cleans up any orphans that may be left on the list from the last use
2338 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2340 struct btrfs_path
*path
;
2341 struct extent_buffer
*leaf
;
2342 struct btrfs_key key
, found_key
;
2343 struct btrfs_trans_handle
*trans
;
2344 struct inode
*inode
;
2345 u64 last_objectid
= 0;
2346 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2348 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2351 path
= btrfs_alloc_path();
2358 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2359 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2360 key
.offset
= (u64
)-1;
2363 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2368 * if ret == 0 means we found what we were searching for, which
2369 * is weird, but possible, so only screw with path if we didn't
2370 * find the key and see if we have stuff that matches
2374 if (path
->slots
[0] == 0)
2379 /* pull out the item */
2380 leaf
= path
->nodes
[0];
2381 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2383 /* make sure the item matches what we want */
2384 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2386 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2389 /* release the path since we're done with it */
2390 btrfs_release_path(path
);
2393 * this is where we are basically btrfs_lookup, without the
2394 * crossing root thing. we store the inode number in the
2395 * offset of the orphan item.
2398 if (found_key
.offset
== last_objectid
) {
2399 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2400 "stopping orphan cleanup\n");
2405 last_objectid
= found_key
.offset
;
2407 found_key
.objectid
= found_key
.offset
;
2408 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2409 found_key
.offset
= 0;
2410 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2411 ret
= PTR_RET(inode
);
2412 if (ret
&& ret
!= -ESTALE
)
2415 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
2416 struct btrfs_root
*dead_root
;
2417 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2418 int is_dead_root
= 0;
2421 * this is an orphan in the tree root. Currently these
2422 * could come from 2 sources:
2423 * a) a snapshot deletion in progress
2424 * b) a free space cache inode
2425 * We need to distinguish those two, as the snapshot
2426 * orphan must not get deleted.
2427 * find_dead_roots already ran before us, so if this
2428 * is a snapshot deletion, we should find the root
2429 * in the dead_roots list
2431 spin_lock(&fs_info
->trans_lock
);
2432 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2434 if (dead_root
->root_key
.objectid
==
2435 found_key
.objectid
) {
2440 spin_unlock(&fs_info
->trans_lock
);
2442 /* prevent this orphan from being found again */
2443 key
.offset
= found_key
.objectid
- 1;
2448 * Inode is already gone but the orphan item is still there,
2449 * kill the orphan item.
2451 if (ret
== -ESTALE
) {
2452 trans
= btrfs_start_transaction(root
, 1);
2453 if (IS_ERR(trans
)) {
2454 ret
= PTR_ERR(trans
);
2457 printk(KERN_ERR
"auto deleting %Lu\n",
2458 found_key
.objectid
);
2459 ret
= btrfs_del_orphan_item(trans
, root
,
2460 found_key
.objectid
);
2461 BUG_ON(ret
); /* -ENOMEM or corruption (JDM: Recheck) */
2462 btrfs_end_transaction(trans
, root
);
2467 * add this inode to the orphan list so btrfs_orphan_del does
2468 * the proper thing when we hit it
2470 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2471 &BTRFS_I(inode
)->runtime_flags
);
2473 /* if we have links, this was a truncate, lets do that */
2474 if (inode
->i_nlink
) {
2475 if (!S_ISREG(inode
->i_mode
)) {
2482 /* 1 for the orphan item deletion. */
2483 trans
= btrfs_start_transaction(root
, 1);
2484 if (IS_ERR(trans
)) {
2485 ret
= PTR_ERR(trans
);
2488 ret
= btrfs_orphan_add(trans
, inode
);
2489 btrfs_end_transaction(trans
, root
);
2493 ret
= btrfs_truncate(inode
);
2498 /* this will do delete_inode and everything for us */
2503 /* release the path since we're done with it */
2504 btrfs_release_path(path
);
2506 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2508 if (root
->orphan_block_rsv
)
2509 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2512 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2513 trans
= btrfs_join_transaction(root
);
2515 btrfs_end_transaction(trans
, root
);
2519 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2521 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2525 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2526 btrfs_free_path(path
);
2531 * very simple check to peek ahead in the leaf looking for xattrs. If we
2532 * don't find any xattrs, we know there can't be any acls.
2534 * slot is the slot the inode is in, objectid is the objectid of the inode
2536 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2537 int slot
, u64 objectid
)
2539 u32 nritems
= btrfs_header_nritems(leaf
);
2540 struct btrfs_key found_key
;
2544 while (slot
< nritems
) {
2545 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2547 /* we found a different objectid, there must not be acls */
2548 if (found_key
.objectid
!= objectid
)
2551 /* we found an xattr, assume we've got an acl */
2552 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2556 * we found a key greater than an xattr key, there can't
2557 * be any acls later on
2559 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2566 * it goes inode, inode backrefs, xattrs, extents,
2567 * so if there are a ton of hard links to an inode there can
2568 * be a lot of backrefs. Don't waste time searching too hard,
2569 * this is just an optimization
2574 /* we hit the end of the leaf before we found an xattr or
2575 * something larger than an xattr. We have to assume the inode
2582 * read an inode from the btree into the in-memory inode
2584 static void btrfs_read_locked_inode(struct inode
*inode
)
2586 struct btrfs_path
*path
;
2587 struct extent_buffer
*leaf
;
2588 struct btrfs_inode_item
*inode_item
;
2589 struct btrfs_timespec
*tspec
;
2590 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2591 struct btrfs_key location
;
2595 bool filled
= false;
2597 ret
= btrfs_fill_inode(inode
, &rdev
);
2601 path
= btrfs_alloc_path();
2605 path
->leave_spinning
= 1;
2606 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2608 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2612 leaf
= path
->nodes
[0];
2617 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2618 struct btrfs_inode_item
);
2619 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2620 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2621 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
2622 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
2623 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2625 tspec
= btrfs_inode_atime(inode_item
);
2626 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2627 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2629 tspec
= btrfs_inode_mtime(inode_item
);
2630 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2631 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2633 tspec
= btrfs_inode_ctime(inode_item
);
2634 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2635 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2637 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2638 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2639 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
2642 * If we were modified in the current generation and evicted from memory
2643 * and then re-read we need to do a full sync since we don't have any
2644 * idea about which extents were modified before we were evicted from
2647 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
2648 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2649 &BTRFS_I(inode
)->runtime_flags
);
2651 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
2652 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2654 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2656 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2657 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2660 * try to precache a NULL acl entry for files that don't have
2661 * any xattrs or acls
2663 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2666 cache_no_acl(inode
);
2668 btrfs_free_path(path
);
2670 switch (inode
->i_mode
& S_IFMT
) {
2672 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2673 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2674 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2675 inode
->i_fop
= &btrfs_file_operations
;
2676 inode
->i_op
= &btrfs_file_inode_operations
;
2679 inode
->i_fop
= &btrfs_dir_file_operations
;
2680 if (root
== root
->fs_info
->tree_root
)
2681 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2683 inode
->i_op
= &btrfs_dir_inode_operations
;
2686 inode
->i_op
= &btrfs_symlink_inode_operations
;
2687 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2688 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2691 inode
->i_op
= &btrfs_special_inode_operations
;
2692 init_special_inode(inode
, inode
->i_mode
, rdev
);
2696 btrfs_update_iflags(inode
);
2700 btrfs_free_path(path
);
2701 make_bad_inode(inode
);
2705 * given a leaf and an inode, copy the inode fields into the leaf
2707 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2708 struct extent_buffer
*leaf
,
2709 struct btrfs_inode_item
*item
,
2710 struct inode
*inode
)
2712 btrfs_set_inode_uid(leaf
, item
, i_uid_read(inode
));
2713 btrfs_set_inode_gid(leaf
, item
, i_gid_read(inode
));
2714 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2715 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2716 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2718 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2719 inode
->i_atime
.tv_sec
);
2720 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2721 inode
->i_atime
.tv_nsec
);
2723 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2724 inode
->i_mtime
.tv_sec
);
2725 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2726 inode
->i_mtime
.tv_nsec
);
2728 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2729 inode
->i_ctime
.tv_sec
);
2730 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2731 inode
->i_ctime
.tv_nsec
);
2733 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2734 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2735 btrfs_set_inode_sequence(leaf
, item
, inode
->i_version
);
2736 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2737 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2738 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2739 btrfs_set_inode_block_group(leaf
, item
, 0);
2743 * copy everything in the in-memory inode into the btree.
2745 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2746 struct btrfs_root
*root
, struct inode
*inode
)
2748 struct btrfs_inode_item
*inode_item
;
2749 struct btrfs_path
*path
;
2750 struct extent_buffer
*leaf
;
2753 path
= btrfs_alloc_path();
2757 path
->leave_spinning
= 1;
2758 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2766 btrfs_unlock_up_safe(path
, 1);
2767 leaf
= path
->nodes
[0];
2768 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2769 struct btrfs_inode_item
);
2771 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2772 btrfs_mark_buffer_dirty(leaf
);
2773 btrfs_set_inode_last_trans(trans
, inode
);
2776 btrfs_free_path(path
);
2781 * copy everything in the in-memory inode into the btree.
2783 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2784 struct btrfs_root
*root
, struct inode
*inode
)
2789 * If the inode is a free space inode, we can deadlock during commit
2790 * if we put it into the delayed code.
2792 * The data relocation inode should also be directly updated
2795 if (!btrfs_is_free_space_inode(inode
)
2796 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2797 btrfs_update_root_times(trans
, root
);
2799 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2801 btrfs_set_inode_last_trans(trans
, inode
);
2805 return btrfs_update_inode_item(trans
, root
, inode
);
2808 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2809 struct btrfs_root
*root
,
2810 struct inode
*inode
)
2814 ret
= btrfs_update_inode(trans
, root
, inode
);
2816 return btrfs_update_inode_item(trans
, root
, inode
);
2821 * unlink helper that gets used here in inode.c and in the tree logging
2822 * recovery code. It remove a link in a directory with a given name, and
2823 * also drops the back refs in the inode to the directory
2825 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2826 struct btrfs_root
*root
,
2827 struct inode
*dir
, struct inode
*inode
,
2828 const char *name
, int name_len
)
2830 struct btrfs_path
*path
;
2832 struct extent_buffer
*leaf
;
2833 struct btrfs_dir_item
*di
;
2834 struct btrfs_key key
;
2836 u64 ino
= btrfs_ino(inode
);
2837 u64 dir_ino
= btrfs_ino(dir
);
2839 path
= btrfs_alloc_path();
2845 path
->leave_spinning
= 1;
2846 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2847 name
, name_len
, -1);
2856 leaf
= path
->nodes
[0];
2857 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2858 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2861 btrfs_release_path(path
);
2863 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2866 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2867 "inode %llu parent %llu\n", name_len
, name
,
2868 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2869 btrfs_abort_transaction(trans
, root
, ret
);
2873 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2875 btrfs_abort_transaction(trans
, root
, ret
);
2879 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2881 if (ret
!= 0 && ret
!= -ENOENT
) {
2882 btrfs_abort_transaction(trans
, root
, ret
);
2886 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2891 btrfs_free_path(path
);
2895 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2896 inode_inc_iversion(inode
);
2897 inode_inc_iversion(dir
);
2898 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2899 ret
= btrfs_update_inode(trans
, root
, dir
);
2904 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2905 struct btrfs_root
*root
,
2906 struct inode
*dir
, struct inode
*inode
,
2907 const char *name
, int name_len
)
2910 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2912 btrfs_drop_nlink(inode
);
2913 ret
= btrfs_update_inode(trans
, root
, inode
);
2919 /* helper to check if there is any shared block in the path */
2920 static int check_path_shared(struct btrfs_root
*root
,
2921 struct btrfs_path
*path
)
2923 struct extent_buffer
*eb
;
2927 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2930 if (!path
->nodes
[level
])
2932 eb
= path
->nodes
[level
];
2933 if (!btrfs_block_can_be_shared(root
, eb
))
2935 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2944 * helper to start transaction for unlink and rmdir.
2946 * unlink and rmdir are special in btrfs, they do not always free space.
2947 * so in enospc case, we should make sure they will free space before
2948 * allowing them to use the global metadata reservation.
2950 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2951 struct dentry
*dentry
)
2953 struct btrfs_trans_handle
*trans
;
2954 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2955 struct btrfs_path
*path
;
2956 struct btrfs_dir_item
*di
;
2957 struct inode
*inode
= dentry
->d_inode
;
2962 u64 ino
= btrfs_ino(inode
);
2963 u64 dir_ino
= btrfs_ino(dir
);
2966 * 1 for the possible orphan item
2967 * 1 for the dir item
2968 * 1 for the dir index
2969 * 1 for the inode ref
2970 * 1 for the inode ref in the tree log
2971 * 2 for the dir entries in the log
2974 trans
= btrfs_start_transaction(root
, 8);
2975 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2978 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2979 return ERR_PTR(-ENOSPC
);
2981 /* check if there is someone else holds reference */
2982 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2983 return ERR_PTR(-ENOSPC
);
2985 if (atomic_read(&inode
->i_count
) > 2)
2986 return ERR_PTR(-ENOSPC
);
2988 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2989 return ERR_PTR(-ENOSPC
);
2991 path
= btrfs_alloc_path();
2993 root
->fs_info
->enospc_unlink
= 0;
2994 return ERR_PTR(-ENOMEM
);
2997 /* 1 for the orphan item */
2998 trans
= btrfs_start_transaction(root
, 1);
2999 if (IS_ERR(trans
)) {
3000 btrfs_free_path(path
);
3001 root
->fs_info
->enospc_unlink
= 0;
3005 path
->skip_locking
= 1;
3006 path
->search_commit_root
= 1;
3008 ret
= btrfs_lookup_inode(trans
, root
, path
,
3009 &BTRFS_I(dir
)->location
, 0);
3015 if (check_path_shared(root
, path
))
3020 btrfs_release_path(path
);
3022 ret
= btrfs_lookup_inode(trans
, root
, path
,
3023 &BTRFS_I(inode
)->location
, 0);
3029 if (check_path_shared(root
, path
))
3034 btrfs_release_path(path
);
3036 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
3037 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
3043 BUG_ON(ret
== 0); /* Corruption */
3044 if (check_path_shared(root
, path
))
3046 btrfs_release_path(path
);
3054 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3055 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
3061 if (check_path_shared(root
, path
))
3067 btrfs_release_path(path
);
3069 ret
= btrfs_get_inode_ref_index(trans
, root
, path
, dentry
->d_name
.name
,
3070 dentry
->d_name
.len
, ino
, dir_ino
, 0,
3077 if (check_path_shared(root
, path
))
3080 btrfs_release_path(path
);
3083 * This is a commit root search, if we can lookup inode item and other
3084 * relative items in the commit root, it means the transaction of
3085 * dir/file creation has been committed, and the dir index item that we
3086 * delay to insert has also been inserted into the commit root. So
3087 * we needn't worry about the delayed insertion of the dir index item
3090 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
3091 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
3096 BUG_ON(ret
== -ENOENT
);
3097 if (check_path_shared(root
, path
))
3102 btrfs_free_path(path
);
3103 /* Migrate the orphan reservation over */
3105 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
3106 &root
->fs_info
->global_block_rsv
,
3107 trans
->bytes_reserved
);
3110 btrfs_end_transaction(trans
, root
);
3111 root
->fs_info
->enospc_unlink
= 0;
3112 return ERR_PTR(err
);
3115 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
3119 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
3120 struct btrfs_root
*root
)
3122 if (trans
->block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
) {
3123 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3124 trans
->bytes_reserved
);
3125 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3126 BUG_ON(!root
->fs_info
->enospc_unlink
);
3127 root
->fs_info
->enospc_unlink
= 0;
3129 btrfs_end_transaction(trans
, root
);
3132 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3134 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3135 struct btrfs_trans_handle
*trans
;
3136 struct inode
*inode
= dentry
->d_inode
;
3139 trans
= __unlink_start_trans(dir
, dentry
);
3141 return PTR_ERR(trans
);
3143 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3145 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3146 dentry
->d_name
.name
, dentry
->d_name
.len
);
3150 if (inode
->i_nlink
== 0) {
3151 ret
= btrfs_orphan_add(trans
, inode
);
3157 __unlink_end_trans(trans
, root
);
3158 btrfs_btree_balance_dirty(root
);
3162 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3163 struct btrfs_root
*root
,
3164 struct inode
*dir
, u64 objectid
,
3165 const char *name
, int name_len
)
3167 struct btrfs_path
*path
;
3168 struct extent_buffer
*leaf
;
3169 struct btrfs_dir_item
*di
;
3170 struct btrfs_key key
;
3173 u64 dir_ino
= btrfs_ino(dir
);
3175 path
= btrfs_alloc_path();
3179 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3180 name
, name_len
, -1);
3181 if (IS_ERR_OR_NULL(di
)) {
3189 leaf
= path
->nodes
[0];
3190 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3191 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3192 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3194 btrfs_abort_transaction(trans
, root
, ret
);
3197 btrfs_release_path(path
);
3199 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3200 objectid
, root
->root_key
.objectid
,
3201 dir_ino
, &index
, name
, name_len
);
3203 if (ret
!= -ENOENT
) {
3204 btrfs_abort_transaction(trans
, root
, ret
);
3207 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3209 if (IS_ERR_OR_NULL(di
)) {
3214 btrfs_abort_transaction(trans
, root
, ret
);
3218 leaf
= path
->nodes
[0];
3219 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3220 btrfs_release_path(path
);
3223 btrfs_release_path(path
);
3225 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3227 btrfs_abort_transaction(trans
, root
, ret
);
3231 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3232 inode_inc_iversion(dir
);
3233 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3234 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3236 btrfs_abort_transaction(trans
, root
, ret
);
3238 btrfs_free_path(path
);
3242 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3244 struct inode
*inode
= dentry
->d_inode
;
3246 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3247 struct btrfs_trans_handle
*trans
;
3249 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3251 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3254 trans
= __unlink_start_trans(dir
, dentry
);
3256 return PTR_ERR(trans
);
3258 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3259 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3260 BTRFS_I(inode
)->location
.objectid
,
3261 dentry
->d_name
.name
,
3262 dentry
->d_name
.len
);
3266 err
= btrfs_orphan_add(trans
, inode
);
3270 /* now the directory is empty */
3271 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3272 dentry
->d_name
.name
, dentry
->d_name
.len
);
3274 btrfs_i_size_write(inode
, 0);
3276 __unlink_end_trans(trans
, root
);
3277 btrfs_btree_balance_dirty(root
);
3283 * this can truncate away extent items, csum items and directory items.
3284 * It starts at a high offset and removes keys until it can't find
3285 * any higher than new_size
3287 * csum items that cross the new i_size are truncated to the new size
3290 * min_type is the minimum key type to truncate down to. If set to 0, this
3291 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3293 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3294 struct btrfs_root
*root
,
3295 struct inode
*inode
,
3296 u64 new_size
, u32 min_type
)
3298 struct btrfs_path
*path
;
3299 struct extent_buffer
*leaf
;
3300 struct btrfs_file_extent_item
*fi
;
3301 struct btrfs_key key
;
3302 struct btrfs_key found_key
;
3303 u64 extent_start
= 0;
3304 u64 extent_num_bytes
= 0;
3305 u64 extent_offset
= 0;
3307 u64 mask
= root
->sectorsize
- 1;
3308 u32 found_type
= (u8
)-1;
3311 int pending_del_nr
= 0;
3312 int pending_del_slot
= 0;
3313 int extent_type
= -1;
3316 u64 ino
= btrfs_ino(inode
);
3318 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3320 path
= btrfs_alloc_path();
3326 * We want to drop from the next block forward in case this new size is
3327 * not block aligned since we will be keeping the last block of the
3328 * extent just the way it is.
3330 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3331 btrfs_drop_extent_cache(inode
, (new_size
+ mask
) & (~mask
), (u64
)-1, 0);
3334 * This function is also used to drop the items in the log tree before
3335 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3336 * it is used to drop the loged items. So we shouldn't kill the delayed
3339 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3340 btrfs_kill_delayed_inode_items(inode
);
3343 key
.offset
= (u64
)-1;
3347 path
->leave_spinning
= 1;
3348 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3355 /* there are no items in the tree for us to truncate, we're
3358 if (path
->slots
[0] == 0)
3365 leaf
= path
->nodes
[0];
3366 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3367 found_type
= btrfs_key_type(&found_key
);
3369 if (found_key
.objectid
!= ino
)
3372 if (found_type
< min_type
)
3375 item_end
= found_key
.offset
;
3376 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3377 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3378 struct btrfs_file_extent_item
);
3379 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3380 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3382 btrfs_file_extent_num_bytes(leaf
, fi
);
3383 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3384 item_end
+= btrfs_file_extent_inline_len(leaf
,
3389 if (found_type
> min_type
) {
3392 if (item_end
< new_size
)
3394 if (found_key
.offset
>= new_size
)
3400 /* FIXME, shrink the extent if the ref count is only 1 */
3401 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3404 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3406 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3408 u64 orig_num_bytes
=
3409 btrfs_file_extent_num_bytes(leaf
, fi
);
3410 extent_num_bytes
= new_size
-
3411 found_key
.offset
+ root
->sectorsize
- 1;
3412 extent_num_bytes
= extent_num_bytes
&
3413 ~((u64
)root
->sectorsize
- 1);
3414 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3416 num_dec
= (orig_num_bytes
-
3418 if (root
->ref_cows
&& extent_start
!= 0)
3419 inode_sub_bytes(inode
, num_dec
);
3420 btrfs_mark_buffer_dirty(leaf
);
3423 btrfs_file_extent_disk_num_bytes(leaf
,
3425 extent_offset
= found_key
.offset
-
3426 btrfs_file_extent_offset(leaf
, fi
);
3428 /* FIXME blocksize != 4096 */
3429 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3430 if (extent_start
!= 0) {
3433 inode_sub_bytes(inode
, num_dec
);
3436 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3438 * we can't truncate inline items that have had
3442 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3443 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3444 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3445 u32 size
= new_size
- found_key
.offset
;
3447 if (root
->ref_cows
) {
3448 inode_sub_bytes(inode
, item_end
+ 1 -
3452 btrfs_file_extent_calc_inline_size(size
);
3453 btrfs_truncate_item(trans
, root
, path
,
3455 } else if (root
->ref_cows
) {
3456 inode_sub_bytes(inode
, item_end
+ 1 -
3462 if (!pending_del_nr
) {
3463 /* no pending yet, add ourselves */
3464 pending_del_slot
= path
->slots
[0];
3466 } else if (pending_del_nr
&&
3467 path
->slots
[0] + 1 == pending_del_slot
) {
3468 /* hop on the pending chunk */
3470 pending_del_slot
= path
->slots
[0];
3477 if (found_extent
&& (root
->ref_cows
||
3478 root
== root
->fs_info
->tree_root
)) {
3479 btrfs_set_path_blocking(path
);
3480 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3481 extent_num_bytes
, 0,
3482 btrfs_header_owner(leaf
),
3483 ino
, extent_offset
, 0);
3487 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3490 if (path
->slots
[0] == 0 ||
3491 path
->slots
[0] != pending_del_slot
) {
3492 if (pending_del_nr
) {
3493 ret
= btrfs_del_items(trans
, root
, path
,
3497 btrfs_abort_transaction(trans
,
3503 btrfs_release_path(path
);
3510 if (pending_del_nr
) {
3511 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3514 btrfs_abort_transaction(trans
, root
, ret
);
3517 btrfs_free_path(path
);
3522 * btrfs_truncate_page - read, zero a chunk and write a page
3523 * @inode - inode that we're zeroing
3524 * @from - the offset to start zeroing
3525 * @len - the length to zero, 0 to zero the entire range respective to the
3527 * @front - zero up to the offset instead of from the offset on
3529 * This will find the page for the "from" offset and cow the page and zero the
3530 * part we want to zero. This is used with truncate and hole punching.
3532 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
3535 struct address_space
*mapping
= inode
->i_mapping
;
3536 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3537 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3538 struct btrfs_ordered_extent
*ordered
;
3539 struct extent_state
*cached_state
= NULL
;
3541 u32 blocksize
= root
->sectorsize
;
3542 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3543 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3545 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3550 if ((offset
& (blocksize
- 1)) == 0 &&
3551 (!len
|| ((len
& (blocksize
- 1)) == 0)))
3553 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3558 page
= find_or_create_page(mapping
, index
, mask
);
3560 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3565 page_start
= page_offset(page
);
3566 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3568 if (!PageUptodate(page
)) {
3569 ret
= btrfs_readpage(NULL
, page
);
3571 if (page
->mapping
!= mapping
) {
3573 page_cache_release(page
);
3576 if (!PageUptodate(page
)) {
3581 wait_on_page_writeback(page
);
3583 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
3584 set_page_extent_mapped(page
);
3586 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3588 unlock_extent_cached(io_tree
, page_start
, page_end
,
3589 &cached_state
, GFP_NOFS
);
3591 page_cache_release(page
);
3592 btrfs_start_ordered_extent(inode
, ordered
, 1);
3593 btrfs_put_ordered_extent(ordered
);
3597 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3598 EXTENT_DIRTY
| EXTENT_DELALLOC
|
3599 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
3600 0, 0, &cached_state
, GFP_NOFS
);
3602 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3605 unlock_extent_cached(io_tree
, page_start
, page_end
,
3606 &cached_state
, GFP_NOFS
);
3610 if (offset
!= PAGE_CACHE_SIZE
) {
3612 len
= PAGE_CACHE_SIZE
- offset
;
3615 memset(kaddr
, 0, offset
);
3617 memset(kaddr
+ offset
, 0, len
);
3618 flush_dcache_page(page
);
3621 ClearPageChecked(page
);
3622 set_page_dirty(page
);
3623 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3628 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3630 page_cache_release(page
);
3636 * This function puts in dummy file extents for the area we're creating a hole
3637 * for. So if we are truncating this file to a larger size we need to insert
3638 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3639 * the range between oldsize and size
3641 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3643 struct btrfs_trans_handle
*trans
;
3644 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3645 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3646 struct extent_map
*em
= NULL
;
3647 struct extent_state
*cached_state
= NULL
;
3648 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3649 u64 mask
= root
->sectorsize
- 1;
3650 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3651 u64 block_end
= (size
+ mask
) & ~mask
;
3657 if (size
<= hole_start
)
3661 struct btrfs_ordered_extent
*ordered
;
3662 btrfs_wait_ordered_range(inode
, hole_start
,
3663 block_end
- hole_start
);
3664 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3666 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3669 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3670 &cached_state
, GFP_NOFS
);
3671 btrfs_put_ordered_extent(ordered
);
3674 cur_offset
= hole_start
;
3676 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3677 block_end
- cur_offset
, 0);
3683 last_byte
= min(extent_map_end(em
), block_end
);
3684 last_byte
= (last_byte
+ mask
) & ~mask
;
3685 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3686 struct extent_map
*hole_em
;
3687 hole_size
= last_byte
- cur_offset
;
3689 trans
= btrfs_start_transaction(root
, 3);
3690 if (IS_ERR(trans
)) {
3691 err
= PTR_ERR(trans
);
3695 err
= btrfs_drop_extents(trans
, root
, inode
,
3697 cur_offset
+ hole_size
, 1);
3699 btrfs_abort_transaction(trans
, root
, err
);
3700 btrfs_end_transaction(trans
, root
);
3704 err
= btrfs_insert_file_extent(trans
, root
,
3705 btrfs_ino(inode
), cur_offset
, 0,
3706 0, hole_size
, 0, hole_size
,
3709 btrfs_abort_transaction(trans
, root
, err
);
3710 btrfs_end_transaction(trans
, root
);
3714 btrfs_drop_extent_cache(inode
, cur_offset
,
3715 cur_offset
+ hole_size
- 1, 0);
3716 hole_em
= alloc_extent_map();
3718 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3719 &BTRFS_I(inode
)->runtime_flags
);
3722 hole_em
->start
= cur_offset
;
3723 hole_em
->len
= hole_size
;
3724 hole_em
->orig_start
= cur_offset
;
3726 hole_em
->block_start
= EXTENT_MAP_HOLE
;
3727 hole_em
->block_len
= 0;
3728 hole_em
->orig_block_len
= 0;
3729 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3730 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
3731 hole_em
->generation
= trans
->transid
;
3734 write_lock(&em_tree
->lock
);
3735 err
= add_extent_mapping(em_tree
, hole_em
);
3737 list_move(&hole_em
->list
,
3738 &em_tree
->modified_extents
);
3739 write_unlock(&em_tree
->lock
);
3742 btrfs_drop_extent_cache(inode
, cur_offset
,
3746 free_extent_map(hole_em
);
3748 btrfs_update_inode(trans
, root
, inode
);
3749 btrfs_end_transaction(trans
, root
);
3751 free_extent_map(em
);
3753 cur_offset
= last_byte
;
3754 if (cur_offset
>= block_end
)
3758 free_extent_map(em
);
3759 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3764 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
3766 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3767 struct btrfs_trans_handle
*trans
;
3768 loff_t oldsize
= i_size_read(inode
);
3769 loff_t newsize
= attr
->ia_size
;
3770 int mask
= attr
->ia_valid
;
3773 if (newsize
== oldsize
)
3777 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
3778 * special case where we need to update the times despite not having
3779 * these flags set. For all other operations the VFS set these flags
3780 * explicitly if it wants a timestamp update.
3782 if (newsize
!= oldsize
&& (!(mask
& (ATTR_CTIME
| ATTR_MTIME
))))
3783 inode
->i_ctime
= inode
->i_mtime
= current_fs_time(inode
->i_sb
);
3785 if (newsize
> oldsize
) {
3786 truncate_pagecache(inode
, oldsize
, newsize
);
3787 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3791 trans
= btrfs_start_transaction(root
, 1);
3793 return PTR_ERR(trans
);
3795 i_size_write(inode
, newsize
);
3796 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3797 ret
= btrfs_update_inode(trans
, root
, inode
);
3798 btrfs_end_transaction(trans
, root
);
3802 * We're truncating a file that used to have good data down to
3803 * zero. Make sure it gets into the ordered flush list so that
3804 * any new writes get down to disk quickly.
3807 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
3808 &BTRFS_I(inode
)->runtime_flags
);
3811 * 1 for the orphan item we're going to add
3812 * 1 for the orphan item deletion.
3814 trans
= btrfs_start_transaction(root
, 2);
3816 return PTR_ERR(trans
);
3819 * We need to do this in case we fail at _any_ point during the
3820 * actual truncate. Once we do the truncate_setsize we could
3821 * invalidate pages which forces any outstanding ordered io to
3822 * be instantly completed which will give us extents that need
3823 * to be truncated. If we fail to get an orphan inode down we
3824 * could have left over extents that were never meant to live,
3825 * so we need to garuntee from this point on that everything
3826 * will be consistent.
3828 ret
= btrfs_orphan_add(trans
, inode
);
3829 btrfs_end_transaction(trans
, root
);
3833 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3834 truncate_setsize(inode
, newsize
);
3835 ret
= btrfs_truncate(inode
);
3836 if (ret
&& inode
->i_nlink
)
3837 btrfs_orphan_del(NULL
, inode
);
3843 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3845 struct inode
*inode
= dentry
->d_inode
;
3846 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3849 if (btrfs_root_readonly(root
))
3852 err
= inode_change_ok(inode
, attr
);
3856 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3857 err
= btrfs_setsize(inode
, attr
);
3862 if (attr
->ia_valid
) {
3863 setattr_copy(inode
, attr
);
3864 inode_inc_iversion(inode
);
3865 err
= btrfs_dirty_inode(inode
);
3867 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
3868 err
= btrfs_acl_chmod(inode
);
3874 void btrfs_evict_inode(struct inode
*inode
)
3876 struct btrfs_trans_handle
*trans
;
3877 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3878 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3879 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3882 trace_btrfs_inode_evict(inode
);
3884 truncate_inode_pages(&inode
->i_data
, 0);
3885 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3886 btrfs_is_free_space_inode(inode
)))
3889 if (is_bad_inode(inode
)) {
3890 btrfs_orphan_del(NULL
, inode
);
3893 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3894 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3896 if (root
->fs_info
->log_root_recovering
) {
3897 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3898 &BTRFS_I(inode
)->runtime_flags
));
3902 if (inode
->i_nlink
> 0) {
3903 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3907 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3909 btrfs_orphan_del(NULL
, inode
);
3912 rsv
->size
= min_size
;
3914 global_rsv
= &root
->fs_info
->global_block_rsv
;
3916 btrfs_i_size_write(inode
, 0);
3919 * This is a bit simpler than btrfs_truncate since we've already
3920 * reserved our space for our orphan item in the unlink, so we just
3921 * need to reserve some slack space in case we add bytes and update
3922 * inode item when doing the truncate.
3925 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
3926 BTRFS_RESERVE_FLUSH_LIMIT
);
3929 * Try and steal from the global reserve since we will
3930 * likely not use this space anyway, we want to try as
3931 * hard as possible to get this to work.
3934 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3937 printk(KERN_WARNING
"Could not get space for a "
3938 "delete, will truncate on mount %d\n", ret
);
3939 btrfs_orphan_del(NULL
, inode
);
3940 btrfs_free_block_rsv(root
, rsv
);
3944 trans
= btrfs_start_transaction_lflush(root
, 1);
3945 if (IS_ERR(trans
)) {
3946 btrfs_orphan_del(NULL
, inode
);
3947 btrfs_free_block_rsv(root
, rsv
);
3951 trans
->block_rsv
= rsv
;
3953 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3957 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3958 ret
= btrfs_update_inode(trans
, root
, inode
);
3961 btrfs_end_transaction(trans
, root
);
3963 btrfs_btree_balance_dirty(root
);
3966 btrfs_free_block_rsv(root
, rsv
);
3969 trans
->block_rsv
= root
->orphan_block_rsv
;
3970 ret
= btrfs_orphan_del(trans
, inode
);
3974 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3975 if (!(root
== root
->fs_info
->tree_root
||
3976 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3977 btrfs_return_ino(root
, btrfs_ino(inode
));
3979 btrfs_end_transaction(trans
, root
);
3980 btrfs_btree_balance_dirty(root
);
3987 * this returns the key found in the dir entry in the location pointer.
3988 * If no dir entries were found, location->objectid is 0.
3990 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3991 struct btrfs_key
*location
)
3993 const char *name
= dentry
->d_name
.name
;
3994 int namelen
= dentry
->d_name
.len
;
3995 struct btrfs_dir_item
*di
;
3996 struct btrfs_path
*path
;
3997 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4000 path
= btrfs_alloc_path();
4004 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
4009 if (IS_ERR_OR_NULL(di
))
4012 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
4014 btrfs_free_path(path
);
4017 location
->objectid
= 0;
4022 * when we hit a tree root in a directory, the btrfs part of the inode
4023 * needs to be changed to reflect the root directory of the tree root. This
4024 * is kind of like crossing a mount point.
4026 static int fixup_tree_root_location(struct btrfs_root
*root
,
4028 struct dentry
*dentry
,
4029 struct btrfs_key
*location
,
4030 struct btrfs_root
**sub_root
)
4032 struct btrfs_path
*path
;
4033 struct btrfs_root
*new_root
;
4034 struct btrfs_root_ref
*ref
;
4035 struct extent_buffer
*leaf
;
4039 path
= btrfs_alloc_path();
4046 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
4047 BTRFS_I(dir
)->root
->root_key
.objectid
,
4048 location
->objectid
);
4055 leaf
= path
->nodes
[0];
4056 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
4057 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
4058 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
4061 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
4062 (unsigned long)(ref
+ 1),
4063 dentry
->d_name
.len
);
4067 btrfs_release_path(path
);
4069 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
4070 if (IS_ERR(new_root
)) {
4071 err
= PTR_ERR(new_root
);
4075 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
4080 *sub_root
= new_root
;
4081 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
4082 location
->type
= BTRFS_INODE_ITEM_KEY
;
4083 location
->offset
= 0;
4086 btrfs_free_path(path
);
4090 static void inode_tree_add(struct inode
*inode
)
4092 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4093 struct btrfs_inode
*entry
;
4095 struct rb_node
*parent
;
4096 u64 ino
= btrfs_ino(inode
);
4098 p
= &root
->inode_tree
.rb_node
;
4101 if (inode_unhashed(inode
))
4104 spin_lock(&root
->inode_lock
);
4107 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
4109 if (ino
< btrfs_ino(&entry
->vfs_inode
))
4110 p
= &parent
->rb_left
;
4111 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
4112 p
= &parent
->rb_right
;
4114 WARN_ON(!(entry
->vfs_inode
.i_state
&
4115 (I_WILL_FREE
| I_FREEING
)));
4116 rb_erase(parent
, &root
->inode_tree
);
4117 RB_CLEAR_NODE(parent
);
4118 spin_unlock(&root
->inode_lock
);
4122 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
4123 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4124 spin_unlock(&root
->inode_lock
);
4127 static void inode_tree_del(struct inode
*inode
)
4129 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4132 spin_lock(&root
->inode_lock
);
4133 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
4134 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4135 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
4136 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4138 spin_unlock(&root
->inode_lock
);
4141 * Free space cache has inodes in the tree root, but the tree root has a
4142 * root_refs of 0, so this could end up dropping the tree root as a
4143 * snapshot, so we need the extra !root->fs_info->tree_root check to
4144 * make sure we don't drop it.
4146 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
4147 root
!= root
->fs_info
->tree_root
) {
4148 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
4149 spin_lock(&root
->inode_lock
);
4150 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4151 spin_unlock(&root
->inode_lock
);
4153 btrfs_add_dead_root(root
);
4157 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
4159 struct rb_node
*node
;
4160 struct rb_node
*prev
;
4161 struct btrfs_inode
*entry
;
4162 struct inode
*inode
;
4165 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4167 spin_lock(&root
->inode_lock
);
4169 node
= root
->inode_tree
.rb_node
;
4173 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4175 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
4176 node
= node
->rb_left
;
4177 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
4178 node
= node
->rb_right
;
4184 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4185 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
4189 prev
= rb_next(prev
);
4193 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4194 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
4195 inode
= igrab(&entry
->vfs_inode
);
4197 spin_unlock(&root
->inode_lock
);
4198 if (atomic_read(&inode
->i_count
) > 1)
4199 d_prune_aliases(inode
);
4201 * btrfs_drop_inode will have it removed from
4202 * the inode cache when its usage count
4207 spin_lock(&root
->inode_lock
);
4211 if (cond_resched_lock(&root
->inode_lock
))
4214 node
= rb_next(node
);
4216 spin_unlock(&root
->inode_lock
);
4219 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4221 struct btrfs_iget_args
*args
= p
;
4222 inode
->i_ino
= args
->ino
;
4223 BTRFS_I(inode
)->root
= args
->root
;
4227 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4229 struct btrfs_iget_args
*args
= opaque
;
4230 return args
->ino
== btrfs_ino(inode
) &&
4231 args
->root
== BTRFS_I(inode
)->root
;
4234 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4236 struct btrfs_root
*root
)
4238 struct inode
*inode
;
4239 struct btrfs_iget_args args
;
4240 args
.ino
= objectid
;
4243 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4244 btrfs_init_locked_inode
,
4249 /* Get an inode object given its location and corresponding root.
4250 * Returns in *is_new if the inode was read from disk
4252 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4253 struct btrfs_root
*root
, int *new)
4255 struct inode
*inode
;
4257 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4259 return ERR_PTR(-ENOMEM
);
4261 if (inode
->i_state
& I_NEW
) {
4262 BTRFS_I(inode
)->root
= root
;
4263 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4264 btrfs_read_locked_inode(inode
);
4265 if (!is_bad_inode(inode
)) {
4266 inode_tree_add(inode
);
4267 unlock_new_inode(inode
);
4271 unlock_new_inode(inode
);
4273 inode
= ERR_PTR(-ESTALE
);
4280 static struct inode
*new_simple_dir(struct super_block
*s
,
4281 struct btrfs_key
*key
,
4282 struct btrfs_root
*root
)
4284 struct inode
*inode
= new_inode(s
);
4287 return ERR_PTR(-ENOMEM
);
4289 BTRFS_I(inode
)->root
= root
;
4290 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4291 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
4293 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4294 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
4295 inode
->i_fop
= &simple_dir_operations
;
4296 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4297 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4302 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4304 struct inode
*inode
;
4305 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4306 struct btrfs_root
*sub_root
= root
;
4307 struct btrfs_key location
;
4311 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4312 return ERR_PTR(-ENAMETOOLONG
);
4314 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4316 return ERR_PTR(ret
);
4318 if (location
.objectid
== 0)
4321 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4322 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4326 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4328 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4329 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4330 &location
, &sub_root
);
4333 inode
= ERR_PTR(ret
);
4335 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4337 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4339 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4341 if (!IS_ERR(inode
) && root
!= sub_root
) {
4342 down_read(&root
->fs_info
->cleanup_work_sem
);
4343 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4344 ret
= btrfs_orphan_cleanup(sub_root
);
4345 up_read(&root
->fs_info
->cleanup_work_sem
);
4347 inode
= ERR_PTR(ret
);
4353 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4355 struct btrfs_root
*root
;
4356 struct inode
*inode
= dentry
->d_inode
;
4358 if (!inode
&& !IS_ROOT(dentry
))
4359 inode
= dentry
->d_parent
->d_inode
;
4362 root
= BTRFS_I(inode
)->root
;
4363 if (btrfs_root_refs(&root
->root_item
) == 0)
4366 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
4372 static void btrfs_dentry_release(struct dentry
*dentry
)
4374 if (dentry
->d_fsdata
)
4375 kfree(dentry
->d_fsdata
);
4378 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4383 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4387 unsigned char btrfs_filetype_table
[] = {
4388 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4391 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4394 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4395 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4396 struct btrfs_item
*item
;
4397 struct btrfs_dir_item
*di
;
4398 struct btrfs_key key
;
4399 struct btrfs_key found_key
;
4400 struct btrfs_path
*path
;
4401 struct list_head ins_list
;
4402 struct list_head del_list
;
4404 struct extent_buffer
*leaf
;
4406 unsigned char d_type
;
4411 int key_type
= BTRFS_DIR_INDEX_KEY
;
4415 int is_curr
= 0; /* filp->f_pos points to the current index? */
4417 /* FIXME, use a real flag for deciding about the key type */
4418 if (root
->fs_info
->tree_root
== root
)
4419 key_type
= BTRFS_DIR_ITEM_KEY
;
4421 /* special case for "." */
4422 if (filp
->f_pos
== 0) {
4423 over
= filldir(dirent
, ".", 1,
4424 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4429 /* special case for .., just use the back ref */
4430 if (filp
->f_pos
== 1) {
4431 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4432 over
= filldir(dirent
, "..", 2,
4433 filp
->f_pos
, pino
, DT_DIR
);
4438 path
= btrfs_alloc_path();
4444 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4445 INIT_LIST_HEAD(&ins_list
);
4446 INIT_LIST_HEAD(&del_list
);
4447 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4450 btrfs_set_key_type(&key
, key_type
);
4451 key
.offset
= filp
->f_pos
;
4452 key
.objectid
= btrfs_ino(inode
);
4454 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4459 leaf
= path
->nodes
[0];
4460 slot
= path
->slots
[0];
4461 if (slot
>= btrfs_header_nritems(leaf
)) {
4462 ret
= btrfs_next_leaf(root
, path
);
4470 item
= btrfs_item_nr(leaf
, slot
);
4471 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4473 if (found_key
.objectid
!= key
.objectid
)
4475 if (btrfs_key_type(&found_key
) != key_type
)
4477 if (found_key
.offset
< filp
->f_pos
)
4479 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4480 btrfs_should_delete_dir_index(&del_list
,
4484 filp
->f_pos
= found_key
.offset
;
4487 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4489 di_total
= btrfs_item_size(leaf
, item
);
4491 while (di_cur
< di_total
) {
4492 struct btrfs_key location
;
4494 if (verify_dir_item(root
, leaf
, di
))
4497 name_len
= btrfs_dir_name_len(leaf
, di
);
4498 if (name_len
<= sizeof(tmp_name
)) {
4499 name_ptr
= tmp_name
;
4501 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4507 read_extent_buffer(leaf
, name_ptr
,
4508 (unsigned long)(di
+ 1), name_len
);
4510 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4511 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4514 /* is this a reference to our own snapshot? If so
4517 * In contrast to old kernels, we insert the snapshot's
4518 * dir item and dir index after it has been created, so
4519 * we won't find a reference to our own snapshot. We
4520 * still keep the following code for backward
4523 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4524 location
.objectid
== root
->root_key
.objectid
) {
4528 over
= filldir(dirent
, name_ptr
, name_len
,
4529 found_key
.offset
, location
.objectid
,
4533 if (name_ptr
!= tmp_name
)
4538 di_len
= btrfs_dir_name_len(leaf
, di
) +
4539 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4541 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4547 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4550 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4556 /* Reached end of directory/root. Bump pos past the last item. */
4557 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4559 * 32-bit glibc will use getdents64, but then strtol -
4560 * so the last number we can serve is this.
4562 filp
->f_pos
= 0x7fffffff;
4568 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4569 btrfs_put_delayed_items(&ins_list
, &del_list
);
4570 btrfs_free_path(path
);
4574 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4576 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4577 struct btrfs_trans_handle
*trans
;
4579 bool nolock
= false;
4581 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
4584 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
4587 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4589 trans
= btrfs_join_transaction_nolock(root
);
4591 trans
= btrfs_join_transaction(root
);
4593 return PTR_ERR(trans
);
4594 ret
= btrfs_commit_transaction(trans
, root
);
4600 * This is somewhat expensive, updating the tree every time the
4601 * inode changes. But, it is most likely to find the inode in cache.
4602 * FIXME, needs more benchmarking...there are no reasons other than performance
4603 * to keep or drop this code.
4605 int btrfs_dirty_inode(struct inode
*inode
)
4607 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4608 struct btrfs_trans_handle
*trans
;
4611 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
4614 trans
= btrfs_join_transaction(root
);
4616 return PTR_ERR(trans
);
4618 ret
= btrfs_update_inode(trans
, root
, inode
);
4619 if (ret
&& ret
== -ENOSPC
) {
4620 /* whoops, lets try again with the full transaction */
4621 btrfs_end_transaction(trans
, root
);
4622 trans
= btrfs_start_transaction(root
, 1);
4624 return PTR_ERR(trans
);
4626 ret
= btrfs_update_inode(trans
, root
, inode
);
4628 btrfs_end_transaction(trans
, root
);
4629 if (BTRFS_I(inode
)->delayed_node
)
4630 btrfs_balance_delayed_items(root
);
4636 * This is a copy of file_update_time. We need this so we can return error on
4637 * ENOSPC for updating the inode in the case of file write and mmap writes.
4639 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
4642 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4644 if (btrfs_root_readonly(root
))
4647 if (flags
& S_VERSION
)
4648 inode_inc_iversion(inode
);
4649 if (flags
& S_CTIME
)
4650 inode
->i_ctime
= *now
;
4651 if (flags
& S_MTIME
)
4652 inode
->i_mtime
= *now
;
4653 if (flags
& S_ATIME
)
4654 inode
->i_atime
= *now
;
4655 return btrfs_dirty_inode(inode
);
4659 * find the highest existing sequence number in a directory
4660 * and then set the in-memory index_cnt variable to reflect
4661 * free sequence numbers
4663 static int btrfs_set_inode_index_count(struct inode
*inode
)
4665 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4666 struct btrfs_key key
, found_key
;
4667 struct btrfs_path
*path
;
4668 struct extent_buffer
*leaf
;
4671 key
.objectid
= btrfs_ino(inode
);
4672 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4673 key
.offset
= (u64
)-1;
4675 path
= btrfs_alloc_path();
4679 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4682 /* FIXME: we should be able to handle this */
4688 * MAGIC NUMBER EXPLANATION:
4689 * since we search a directory based on f_pos we have to start at 2
4690 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4691 * else has to start at 2
4693 if (path
->slots
[0] == 0) {
4694 BTRFS_I(inode
)->index_cnt
= 2;
4700 leaf
= path
->nodes
[0];
4701 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4703 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4704 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4705 BTRFS_I(inode
)->index_cnt
= 2;
4709 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4711 btrfs_free_path(path
);
4716 * helper to find a free sequence number in a given directory. This current
4717 * code is very simple, later versions will do smarter things in the btree
4719 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4723 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4724 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4726 ret
= btrfs_set_inode_index_count(dir
);
4732 *index
= BTRFS_I(dir
)->index_cnt
;
4733 BTRFS_I(dir
)->index_cnt
++;
4738 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4739 struct btrfs_root
*root
,
4741 const char *name
, int name_len
,
4742 u64 ref_objectid
, u64 objectid
,
4743 umode_t mode
, u64
*index
)
4745 struct inode
*inode
;
4746 struct btrfs_inode_item
*inode_item
;
4747 struct btrfs_key
*location
;
4748 struct btrfs_path
*path
;
4749 struct btrfs_inode_ref
*ref
;
4750 struct btrfs_key key
[2];
4756 path
= btrfs_alloc_path();
4758 return ERR_PTR(-ENOMEM
);
4760 inode
= new_inode(root
->fs_info
->sb
);
4762 btrfs_free_path(path
);
4763 return ERR_PTR(-ENOMEM
);
4767 * we have to initialize this early, so we can reclaim the inode
4768 * number if we fail afterwards in this function.
4770 inode
->i_ino
= objectid
;
4773 trace_btrfs_inode_request(dir
);
4775 ret
= btrfs_set_inode_index(dir
, index
);
4777 btrfs_free_path(path
);
4779 return ERR_PTR(ret
);
4783 * index_cnt is ignored for everything but a dir,
4784 * btrfs_get_inode_index_count has an explanation for the magic
4787 BTRFS_I(inode
)->index_cnt
= 2;
4788 BTRFS_I(inode
)->root
= root
;
4789 BTRFS_I(inode
)->generation
= trans
->transid
;
4790 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4793 * We could have gotten an inode number from somebody who was fsynced
4794 * and then removed in this same transaction, so let's just set full
4795 * sync since it will be a full sync anyway and this will blow away the
4796 * old info in the log.
4798 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
4805 key
[0].objectid
= objectid
;
4806 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4810 * Start new inodes with an inode_ref. This is slightly more
4811 * efficient for small numbers of hard links since they will
4812 * be packed into one item. Extended refs will kick in if we
4813 * add more hard links than can fit in the ref item.
4815 key
[1].objectid
= objectid
;
4816 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4817 key
[1].offset
= ref_objectid
;
4819 sizes
[0] = sizeof(struct btrfs_inode_item
);
4820 sizes
[1] = name_len
+ sizeof(*ref
);
4822 path
->leave_spinning
= 1;
4823 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4827 inode_init_owner(inode
, dir
, mode
);
4828 inode_set_bytes(inode
, 0);
4829 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4830 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4831 struct btrfs_inode_item
);
4832 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
4833 sizeof(*inode_item
));
4834 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4836 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4837 struct btrfs_inode_ref
);
4838 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4839 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4840 ptr
= (unsigned long)(ref
+ 1);
4841 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4843 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4844 btrfs_free_path(path
);
4846 location
= &BTRFS_I(inode
)->location
;
4847 location
->objectid
= objectid
;
4848 location
->offset
= 0;
4849 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4851 btrfs_inherit_iflags(inode
, dir
);
4853 if (S_ISREG(mode
)) {
4854 if (btrfs_test_opt(root
, NODATASUM
))
4855 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4856 if (btrfs_test_opt(root
, NODATACOW
))
4857 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4860 insert_inode_hash(inode
);
4861 inode_tree_add(inode
);
4863 trace_btrfs_inode_new(inode
);
4864 btrfs_set_inode_last_trans(trans
, inode
);
4866 btrfs_update_root_times(trans
, root
);
4871 BTRFS_I(dir
)->index_cnt
--;
4872 btrfs_free_path(path
);
4874 return ERR_PTR(ret
);
4877 static inline u8
btrfs_inode_type(struct inode
*inode
)
4879 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4883 * utility function to add 'inode' into 'parent_inode' with
4884 * a give name and a given sequence number.
4885 * if 'add_backref' is true, also insert a backref from the
4886 * inode to the parent directory.
4888 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4889 struct inode
*parent_inode
, struct inode
*inode
,
4890 const char *name
, int name_len
, int add_backref
, u64 index
)
4893 struct btrfs_key key
;
4894 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4895 u64 ino
= btrfs_ino(inode
);
4896 u64 parent_ino
= btrfs_ino(parent_inode
);
4898 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4899 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4902 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4906 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4907 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4908 key
.objectid
, root
->root_key
.objectid
,
4909 parent_ino
, index
, name
, name_len
);
4910 } else if (add_backref
) {
4911 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4915 /* Nothing to clean up yet */
4919 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4921 btrfs_inode_type(inode
), index
);
4922 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
4925 btrfs_abort_transaction(trans
, root
, ret
);
4929 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4931 inode_inc_iversion(parent_inode
);
4932 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4933 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4935 btrfs_abort_transaction(trans
, root
, ret
);
4939 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4942 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4943 key
.objectid
, root
->root_key
.objectid
,
4944 parent_ino
, &local_index
, name
, name_len
);
4946 } else if (add_backref
) {
4950 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
4951 ino
, parent_ino
, &local_index
);
4956 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4957 struct inode
*dir
, struct dentry
*dentry
,
4958 struct inode
*inode
, int backref
, u64 index
)
4960 int err
= btrfs_add_link(trans
, dir
, inode
,
4961 dentry
->d_name
.name
, dentry
->d_name
.len
,
4968 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4969 umode_t mode
, dev_t rdev
)
4971 struct btrfs_trans_handle
*trans
;
4972 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4973 struct inode
*inode
= NULL
;
4979 if (!new_valid_dev(rdev
))
4983 * 2 for inode item and ref
4985 * 1 for xattr if selinux is on
4987 trans
= btrfs_start_transaction(root
, 5);
4989 return PTR_ERR(trans
);
4991 err
= btrfs_find_free_ino(root
, &objectid
);
4995 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4996 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4998 if (IS_ERR(inode
)) {
4999 err
= PTR_ERR(inode
);
5003 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5009 err
= btrfs_update_inode(trans
, root
, inode
);
5016 * If the active LSM wants to access the inode during
5017 * d_instantiate it needs these. Smack checks to see
5018 * if the filesystem supports xattrs by looking at the
5022 inode
->i_op
= &btrfs_special_inode_operations
;
5023 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5027 init_special_inode(inode
, inode
->i_mode
, rdev
);
5028 btrfs_update_inode(trans
, root
, inode
);
5029 d_instantiate(dentry
, inode
);
5032 btrfs_end_transaction(trans
, root
);
5033 btrfs_btree_balance_dirty(root
);
5035 inode_dec_link_count(inode
);
5041 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
5042 umode_t mode
, bool excl
)
5044 struct btrfs_trans_handle
*trans
;
5045 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5046 struct inode
*inode
= NULL
;
5047 int drop_inode_on_err
= 0;
5053 * 2 for inode item and ref
5055 * 1 for xattr if selinux is on
5057 trans
= btrfs_start_transaction(root
, 5);
5059 return PTR_ERR(trans
);
5061 err
= btrfs_find_free_ino(root
, &objectid
);
5065 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5066 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5068 if (IS_ERR(inode
)) {
5069 err
= PTR_ERR(inode
);
5072 drop_inode_on_err
= 1;
5074 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5078 err
= btrfs_update_inode(trans
, root
, inode
);
5083 * If the active LSM wants to access the inode during
5084 * d_instantiate it needs these. Smack checks to see
5085 * if the filesystem supports xattrs by looking at the
5088 inode
->i_fop
= &btrfs_file_operations
;
5089 inode
->i_op
= &btrfs_file_inode_operations
;
5091 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5095 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5096 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5097 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5098 d_instantiate(dentry
, inode
);
5101 btrfs_end_transaction(trans
, root
);
5102 if (err
&& drop_inode_on_err
) {
5103 inode_dec_link_count(inode
);
5106 btrfs_btree_balance_dirty(root
);
5110 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
5111 struct dentry
*dentry
)
5113 struct btrfs_trans_handle
*trans
;
5114 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5115 struct inode
*inode
= old_dentry
->d_inode
;
5120 /* do not allow sys_link's with other subvols of the same device */
5121 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
5124 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
5127 err
= btrfs_set_inode_index(dir
, &index
);
5132 * 2 items for inode and inode ref
5133 * 2 items for dir items
5134 * 1 item for parent inode
5136 trans
= btrfs_start_transaction(root
, 5);
5137 if (IS_ERR(trans
)) {
5138 err
= PTR_ERR(trans
);
5142 btrfs_inc_nlink(inode
);
5143 inode_inc_iversion(inode
);
5144 inode
->i_ctime
= CURRENT_TIME
;
5146 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
5148 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
5153 struct dentry
*parent
= dentry
->d_parent
;
5154 err
= btrfs_update_inode(trans
, root
, inode
);
5157 d_instantiate(dentry
, inode
);
5158 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
5161 btrfs_end_transaction(trans
, root
);
5164 inode_dec_link_count(inode
);
5167 btrfs_btree_balance_dirty(root
);
5171 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
5173 struct inode
*inode
= NULL
;
5174 struct btrfs_trans_handle
*trans
;
5175 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5177 int drop_on_err
= 0;
5182 * 2 items for inode and ref
5183 * 2 items for dir items
5184 * 1 for xattr if selinux is on
5186 trans
= btrfs_start_transaction(root
, 5);
5188 return PTR_ERR(trans
);
5190 err
= btrfs_find_free_ino(root
, &objectid
);
5194 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5195 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5196 S_IFDIR
| mode
, &index
);
5197 if (IS_ERR(inode
)) {
5198 err
= PTR_ERR(inode
);
5204 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5208 inode
->i_op
= &btrfs_dir_inode_operations
;
5209 inode
->i_fop
= &btrfs_dir_file_operations
;
5211 btrfs_i_size_write(inode
, 0);
5212 err
= btrfs_update_inode(trans
, root
, inode
);
5216 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
5217 dentry
->d_name
.len
, 0, index
);
5221 d_instantiate(dentry
, inode
);
5225 btrfs_end_transaction(trans
, root
);
5228 btrfs_btree_balance_dirty(root
);
5232 /* helper for btfs_get_extent. Given an existing extent in the tree,
5233 * and an extent that you want to insert, deal with overlap and insert
5234 * the new extent into the tree.
5236 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
5237 struct extent_map
*existing
,
5238 struct extent_map
*em
,
5239 u64 map_start
, u64 map_len
)
5243 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
5244 start_diff
= map_start
- em
->start
;
5245 em
->start
= map_start
;
5247 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
5248 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
5249 em
->block_start
+= start_diff
;
5250 em
->block_len
-= start_diff
;
5252 return add_extent_mapping(em_tree
, em
);
5255 static noinline
int uncompress_inline(struct btrfs_path
*path
,
5256 struct inode
*inode
, struct page
*page
,
5257 size_t pg_offset
, u64 extent_offset
,
5258 struct btrfs_file_extent_item
*item
)
5261 struct extent_buffer
*leaf
= path
->nodes
[0];
5264 unsigned long inline_size
;
5268 WARN_ON(pg_offset
!= 0);
5269 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5270 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
5271 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
5272 btrfs_item_nr(leaf
, path
->slots
[0]));
5273 tmp
= kmalloc(inline_size
, GFP_NOFS
);
5276 ptr
= btrfs_file_extent_inline_start(item
);
5278 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5280 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5281 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5282 extent_offset
, inline_size
, max_size
);
5284 char *kaddr
= kmap_atomic(page
);
5285 unsigned long copy_size
= min_t(u64
,
5286 PAGE_CACHE_SIZE
- pg_offset
,
5287 max_size
- extent_offset
);
5288 memset(kaddr
+ pg_offset
, 0, copy_size
);
5289 kunmap_atomic(kaddr
);
5296 * a bit scary, this does extent mapping from logical file offset to the disk.
5297 * the ugly parts come from merging extents from the disk with the in-ram
5298 * representation. This gets more complex because of the data=ordered code,
5299 * where the in-ram extents might be locked pending data=ordered completion.
5301 * This also copies inline extents directly into the page.
5304 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5305 size_t pg_offset
, u64 start
, u64 len
,
5311 u64 extent_start
= 0;
5313 u64 objectid
= btrfs_ino(inode
);
5315 struct btrfs_path
*path
= NULL
;
5316 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5317 struct btrfs_file_extent_item
*item
;
5318 struct extent_buffer
*leaf
;
5319 struct btrfs_key found_key
;
5320 struct extent_map
*em
= NULL
;
5321 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5322 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5323 struct btrfs_trans_handle
*trans
= NULL
;
5327 read_lock(&em_tree
->lock
);
5328 em
= lookup_extent_mapping(em_tree
, start
, len
);
5330 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5331 read_unlock(&em_tree
->lock
);
5334 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5335 free_extent_map(em
);
5336 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5337 free_extent_map(em
);
5341 em
= alloc_extent_map();
5346 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5347 em
->start
= EXTENT_MAP_HOLE
;
5348 em
->orig_start
= EXTENT_MAP_HOLE
;
5350 em
->block_len
= (u64
)-1;
5353 path
= btrfs_alloc_path();
5359 * Chances are we'll be called again, so go ahead and do
5365 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5366 objectid
, start
, trans
!= NULL
);
5373 if (path
->slots
[0] == 0)
5378 leaf
= path
->nodes
[0];
5379 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5380 struct btrfs_file_extent_item
);
5381 /* are we inside the extent that was found? */
5382 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5383 found_type
= btrfs_key_type(&found_key
);
5384 if (found_key
.objectid
!= objectid
||
5385 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5389 found_type
= btrfs_file_extent_type(leaf
, item
);
5390 extent_start
= found_key
.offset
;
5391 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5392 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5393 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5394 extent_end
= extent_start
+
5395 btrfs_file_extent_num_bytes(leaf
, item
);
5396 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5398 size
= btrfs_file_extent_inline_len(leaf
, item
);
5399 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5400 ~((u64
)root
->sectorsize
- 1);
5403 if (start
>= extent_end
) {
5405 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5406 ret
= btrfs_next_leaf(root
, path
);
5413 leaf
= path
->nodes
[0];
5415 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5416 if (found_key
.objectid
!= objectid
||
5417 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5419 if (start
+ len
<= found_key
.offset
)
5422 em
->orig_start
= start
;
5423 em
->len
= found_key
.offset
- start
;
5427 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5428 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5429 em
->start
= extent_start
;
5430 em
->len
= extent_end
- extent_start
;
5431 em
->orig_start
= extent_start
-
5432 btrfs_file_extent_offset(leaf
, item
);
5433 em
->orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5435 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5437 em
->block_start
= EXTENT_MAP_HOLE
;
5440 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5441 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5442 em
->compress_type
= compress_type
;
5443 em
->block_start
= bytenr
;
5444 em
->block_len
= em
->orig_block_len
;
5446 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5447 em
->block_start
= bytenr
;
5448 em
->block_len
= em
->len
;
5449 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5450 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5453 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5457 size_t extent_offset
;
5460 em
->block_start
= EXTENT_MAP_INLINE
;
5461 if (!page
|| create
) {
5462 em
->start
= extent_start
;
5463 em
->len
= extent_end
- extent_start
;
5467 size
= btrfs_file_extent_inline_len(leaf
, item
);
5468 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5469 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5470 size
- extent_offset
);
5471 em
->start
= extent_start
+ extent_offset
;
5472 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5473 ~((u64
)root
->sectorsize
- 1);
5474 em
->orig_block_len
= em
->len
;
5475 em
->orig_start
= em
->start
;
5476 if (compress_type
) {
5477 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5478 em
->compress_type
= compress_type
;
5480 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5481 if (create
== 0 && !PageUptodate(page
)) {
5482 if (btrfs_file_extent_compression(leaf
, item
) !=
5483 BTRFS_COMPRESS_NONE
) {
5484 ret
= uncompress_inline(path
, inode
, page
,
5486 extent_offset
, item
);
5487 BUG_ON(ret
); /* -ENOMEM */
5490 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5492 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5493 memset(map
+ pg_offset
+ copy_size
, 0,
5494 PAGE_CACHE_SIZE
- pg_offset
-
5499 flush_dcache_page(page
);
5500 } else if (create
&& PageUptodate(page
)) {
5504 free_extent_map(em
);
5507 btrfs_release_path(path
);
5508 trans
= btrfs_join_transaction(root
);
5511 return ERR_CAST(trans
);
5515 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5518 btrfs_mark_buffer_dirty(leaf
);
5520 set_extent_uptodate(io_tree
, em
->start
,
5521 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5524 WARN(1, KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5528 em
->orig_start
= start
;
5531 em
->block_start
= EXTENT_MAP_HOLE
;
5532 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5534 btrfs_release_path(path
);
5535 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5536 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5537 "[%llu %llu]\n", (unsigned long long)em
->start
,
5538 (unsigned long long)em
->len
,
5539 (unsigned long long)start
,
5540 (unsigned long long)len
);
5546 write_lock(&em_tree
->lock
);
5547 ret
= add_extent_mapping(em_tree
, em
);
5548 /* it is possible that someone inserted the extent into the tree
5549 * while we had the lock dropped. It is also possible that
5550 * an overlapping map exists in the tree
5552 if (ret
== -EEXIST
) {
5553 struct extent_map
*existing
;
5557 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5558 if (existing
&& (existing
->start
> start
||
5559 existing
->start
+ existing
->len
<= start
)) {
5560 free_extent_map(existing
);
5564 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5567 err
= merge_extent_mapping(em_tree
, existing
,
5570 free_extent_map(existing
);
5572 free_extent_map(em
);
5577 free_extent_map(em
);
5581 free_extent_map(em
);
5586 write_unlock(&em_tree
->lock
);
5590 trace_btrfs_get_extent(root
, em
);
5593 btrfs_free_path(path
);
5595 ret
= btrfs_end_transaction(trans
, root
);
5600 free_extent_map(em
);
5601 return ERR_PTR(err
);
5603 BUG_ON(!em
); /* Error is always set */
5607 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5608 size_t pg_offset
, u64 start
, u64 len
,
5611 struct extent_map
*em
;
5612 struct extent_map
*hole_em
= NULL
;
5613 u64 range_start
= start
;
5619 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5626 * - a pre-alloc extent,
5627 * there might actually be delalloc bytes behind it.
5629 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
5630 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5636 /* check to see if we've wrapped (len == -1 or similar) */
5645 /* ok, we didn't find anything, lets look for delalloc */
5646 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5647 end
, len
, EXTENT_DELALLOC
, 1);
5648 found_end
= range_start
+ found
;
5649 if (found_end
< range_start
)
5650 found_end
= (u64
)-1;
5653 * we didn't find anything useful, return
5654 * the original results from get_extent()
5656 if (range_start
> end
|| found_end
<= start
) {
5662 /* adjust the range_start to make sure it doesn't
5663 * go backwards from the start they passed in
5665 range_start
= max(start
,range_start
);
5666 found
= found_end
- range_start
;
5669 u64 hole_start
= start
;
5672 em
= alloc_extent_map();
5678 * when btrfs_get_extent can't find anything it
5679 * returns one huge hole
5681 * make sure what it found really fits our range, and
5682 * adjust to make sure it is based on the start from
5686 u64 calc_end
= extent_map_end(hole_em
);
5688 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5689 free_extent_map(hole_em
);
5692 hole_start
= max(hole_em
->start
, start
);
5693 hole_len
= calc_end
- hole_start
;
5697 if (hole_em
&& range_start
> hole_start
) {
5698 /* our hole starts before our delalloc, so we
5699 * have to return just the parts of the hole
5700 * that go until the delalloc starts
5702 em
->len
= min(hole_len
,
5703 range_start
- hole_start
);
5704 em
->start
= hole_start
;
5705 em
->orig_start
= hole_start
;
5707 * don't adjust block start at all,
5708 * it is fixed at EXTENT_MAP_HOLE
5710 em
->block_start
= hole_em
->block_start
;
5711 em
->block_len
= hole_len
;
5712 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
5713 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5715 em
->start
= range_start
;
5717 em
->orig_start
= range_start
;
5718 em
->block_start
= EXTENT_MAP_DELALLOC
;
5719 em
->block_len
= found
;
5721 } else if (hole_em
) {
5726 free_extent_map(hole_em
);
5728 free_extent_map(em
);
5729 return ERR_PTR(err
);
5734 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5737 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5738 struct btrfs_trans_handle
*trans
;
5739 struct extent_map
*em
;
5740 struct btrfs_key ins
;
5744 trans
= btrfs_join_transaction(root
);
5746 return ERR_CAST(trans
);
5748 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5750 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5751 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5752 alloc_hint
, &ins
, 1);
5758 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
5759 ins
.offset
, ins
.offset
, 0);
5763 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5764 ins
.offset
, ins
.offset
, 0);
5766 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5770 btrfs_end_transaction(trans
, root
);
5775 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5776 * block must be cow'd
5778 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5779 struct inode
*inode
, u64 offset
, u64 len
)
5781 struct btrfs_path
*path
;
5783 struct extent_buffer
*leaf
;
5784 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5785 struct btrfs_file_extent_item
*fi
;
5786 struct btrfs_key key
;
5794 path
= btrfs_alloc_path();
5798 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5803 slot
= path
->slots
[0];
5806 /* can't find the item, must cow */
5813 leaf
= path
->nodes
[0];
5814 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5815 if (key
.objectid
!= btrfs_ino(inode
) ||
5816 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5817 /* not our file or wrong item type, must cow */
5821 if (key
.offset
> offset
) {
5822 /* Wrong offset, must cow */
5826 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5827 found_type
= btrfs_file_extent_type(leaf
, fi
);
5828 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5829 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5830 /* not a regular extent, must cow */
5833 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5834 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5836 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5837 if (extent_end
< offset
+ len
) {
5838 /* extent doesn't include our full range, must cow */
5842 if (btrfs_extent_readonly(root
, disk_bytenr
))
5846 * look for other files referencing this extent, if we
5847 * find any we must cow
5849 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5850 key
.offset
- backref_offset
, disk_bytenr
))
5854 * adjust disk_bytenr and num_bytes to cover just the bytes
5855 * in this extent we are about to write. If there
5856 * are any csums in that range we have to cow in order
5857 * to keep the csums correct
5859 disk_bytenr
+= backref_offset
;
5860 disk_bytenr
+= offset
- key
.offset
;
5861 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5862 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5865 * all of the above have passed, it is safe to overwrite this extent
5870 btrfs_free_path(path
);
5874 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
5875 struct extent_state
**cached_state
, int writing
)
5877 struct btrfs_ordered_extent
*ordered
;
5881 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
5884 * We're concerned with the entire range that we're going to be
5885 * doing DIO to, so we need to make sure theres no ordered
5886 * extents in this range.
5888 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
5889 lockend
- lockstart
+ 1);
5892 * We need to make sure there are no buffered pages in this
5893 * range either, we could have raced between the invalidate in
5894 * generic_file_direct_write and locking the extent. The
5895 * invalidate needs to happen so that reads after a write do not
5898 if (!ordered
&& (!writing
||
5899 !test_range_bit(&BTRFS_I(inode
)->io_tree
,
5900 lockstart
, lockend
, EXTENT_UPTODATE
, 0,
5904 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
5905 cached_state
, GFP_NOFS
);
5908 btrfs_start_ordered_extent(inode
, ordered
, 1);
5909 btrfs_put_ordered_extent(ordered
);
5911 /* Screw you mmap */
5912 ret
= filemap_write_and_wait_range(inode
->i_mapping
,
5919 * If we found a page that couldn't be invalidated just
5920 * fall back to buffered.
5922 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5923 lockstart
>> PAGE_CACHE_SHIFT
,
5924 lockend
>> PAGE_CACHE_SHIFT
);
5935 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
5936 u64 len
, u64 orig_start
,
5937 u64 block_start
, u64 block_len
,
5938 u64 orig_block_len
, int type
)
5940 struct extent_map_tree
*em_tree
;
5941 struct extent_map
*em
;
5942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5945 em_tree
= &BTRFS_I(inode
)->extent_tree
;
5946 em
= alloc_extent_map();
5948 return ERR_PTR(-ENOMEM
);
5951 em
->orig_start
= orig_start
;
5953 em
->block_len
= block_len
;
5954 em
->block_start
= block_start
;
5955 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5956 em
->orig_block_len
= orig_block_len
;
5957 em
->generation
= -1;
5958 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5959 if (type
== BTRFS_ORDERED_PREALLOC
)
5960 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
5963 btrfs_drop_extent_cache(inode
, em
->start
,
5964 em
->start
+ em
->len
- 1, 0);
5965 write_lock(&em_tree
->lock
);
5966 ret
= add_extent_mapping(em_tree
, em
);
5968 list_move(&em
->list
,
5969 &em_tree
->modified_extents
);
5970 write_unlock(&em_tree
->lock
);
5971 } while (ret
== -EEXIST
);
5974 free_extent_map(em
);
5975 return ERR_PTR(ret
);
5982 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5983 struct buffer_head
*bh_result
, int create
)
5985 struct extent_map
*em
;
5986 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5987 struct extent_state
*cached_state
= NULL
;
5988 u64 start
= iblock
<< inode
->i_blkbits
;
5989 u64 lockstart
, lockend
;
5990 u64 len
= bh_result
->b_size
;
5991 struct btrfs_trans_handle
*trans
;
5992 int unlock_bits
= EXTENT_LOCKED
;
5996 ret
= btrfs_delalloc_reserve_space(inode
, len
);
5999 unlock_bits
|= EXTENT_DELALLOC
| EXTENT_DIRTY
;
6001 len
= min_t(u64
, len
, root
->sectorsize
);
6005 lockend
= start
+ len
- 1;
6008 * If this errors out it's because we couldn't invalidate pagecache for
6009 * this range and we need to fallback to buffered.
6011 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
6015 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6016 lockend
, EXTENT_DELALLOC
, NULL
,
6017 &cached_state
, GFP_NOFS
);
6022 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
6029 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6030 * io. INLINE is special, and we could probably kludge it in here, but
6031 * it's still buffered so for safety lets just fall back to the generic
6034 * For COMPRESSED we _have_ to read the entire extent in so we can
6035 * decompress it, so there will be buffering required no matter what we
6036 * do, so go ahead and fallback to buffered.
6038 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6039 * to buffered IO. Don't blame me, this is the price we pay for using
6042 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
6043 em
->block_start
== EXTENT_MAP_INLINE
) {
6044 free_extent_map(em
);
6049 /* Just a good old fashioned hole, return */
6050 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
6051 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
6052 free_extent_map(em
);
6058 * We don't allocate a new extent in the following cases
6060 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6062 * 2) The extent is marked as PREALLOC. We're good to go here and can
6063 * just use the extent.
6067 len
= min(len
, em
->len
- (start
- em
->start
));
6068 lockstart
= start
+ len
;
6072 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
6073 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
6074 em
->block_start
!= EXTENT_MAP_HOLE
)) {
6079 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6080 type
= BTRFS_ORDERED_PREALLOC
;
6082 type
= BTRFS_ORDERED_NOCOW
;
6083 len
= min(len
, em
->len
- (start
- em
->start
));
6084 block_start
= em
->block_start
+ (start
- em
->start
);
6087 * we're not going to log anything, but we do need
6088 * to make sure the current transaction stays open
6089 * while we look for nocow cross refs
6091 trans
= btrfs_join_transaction(root
);
6095 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
6096 u64 orig_start
= em
->orig_start
;
6097 u64 orig_block_len
= em
->orig_block_len
;
6099 if (type
== BTRFS_ORDERED_PREALLOC
) {
6100 free_extent_map(em
);
6101 em
= create_pinned_em(inode
, start
, len
,
6104 orig_block_len
, type
);
6106 btrfs_end_transaction(trans
, root
);
6111 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
6112 block_start
, len
, len
, type
);
6113 btrfs_end_transaction(trans
, root
);
6115 free_extent_map(em
);
6120 btrfs_end_transaction(trans
, root
);
6124 * this will cow the extent, reset the len in case we changed
6127 len
= bh_result
->b_size
;
6128 free_extent_map(em
);
6129 em
= btrfs_new_extent_direct(inode
, start
, len
);
6134 len
= min(len
, em
->len
- (start
- em
->start
));
6136 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
6138 bh_result
->b_size
= len
;
6139 bh_result
->b_bdev
= em
->bdev
;
6140 set_buffer_mapped(bh_result
);
6142 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6143 set_buffer_new(bh_result
);
6146 * Need to update the i_size under the extent lock so buffered
6147 * readers will get the updated i_size when we unlock.
6149 if (start
+ len
> i_size_read(inode
))
6150 i_size_write(inode
, start
+ len
);
6154 * In the case of write we need to clear and unlock the entire range,
6155 * in the case of read we need to unlock only the end area that we
6156 * aren't using if there is any left over space.
6158 if (lockstart
< lockend
) {
6159 if (create
&& len
< lockend
- lockstart
) {
6160 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6161 lockstart
+ len
- 1,
6162 unlock_bits
| EXTENT_DEFRAG
, 1, 0,
6163 &cached_state
, GFP_NOFS
);
6165 * Beside unlock, we also need to cleanup reserved space
6166 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6168 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
6169 lockstart
+ len
, lockend
,
6170 unlock_bits
| EXTENT_DO_ACCOUNTING
|
6171 EXTENT_DEFRAG
, 1, 0, NULL
, GFP_NOFS
);
6173 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6174 lockend
, unlock_bits
, 1, 0,
6175 &cached_state
, GFP_NOFS
);
6178 free_extent_state(cached_state
);
6181 free_extent_map(em
);
6187 unlock_bits
|= EXTENT_DO_ACCOUNTING
;
6189 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6190 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
6194 struct btrfs_dio_private
{
6195 struct inode
*inode
;
6201 /* number of bios pending for this dio */
6202 atomic_t pending_bios
;
6207 struct bio
*orig_bio
;
6210 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
6212 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6213 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
6214 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6215 struct inode
*inode
= dip
->inode
;
6216 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6219 start
= dip
->logical_offset
;
6221 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
6222 struct page
*page
= bvec
->bv_page
;
6225 u64
private = ~(u32
)0;
6226 unsigned long flags
;
6228 if (get_state_private(&BTRFS_I(inode
)->io_tree
,
6231 local_irq_save(flags
);
6232 kaddr
= kmap_atomic(page
);
6233 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
6234 csum
, bvec
->bv_len
);
6235 btrfs_csum_final(csum
, (char *)&csum
);
6236 kunmap_atomic(kaddr
);
6237 local_irq_restore(flags
);
6239 flush_dcache_page(bvec
->bv_page
);
6240 if (csum
!= private) {
6242 printk(KERN_ERR
"btrfs csum failed ino %llu off"
6243 " %llu csum %u private %u\n",
6244 (unsigned long long)btrfs_ino(inode
),
6245 (unsigned long long)start
,
6246 csum
, (unsigned)private);
6251 start
+= bvec
->bv_len
;
6253 } while (bvec
<= bvec_end
);
6255 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
6256 dip
->logical_offset
+ dip
->bytes
- 1);
6257 bio
->bi_private
= dip
->private;
6261 /* If we had a csum failure make sure to clear the uptodate flag */
6263 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
6264 dio_end_io(bio
, err
);
6267 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
6269 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6270 struct inode
*inode
= dip
->inode
;
6271 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6272 struct btrfs_ordered_extent
*ordered
= NULL
;
6273 u64 ordered_offset
= dip
->logical_offset
;
6274 u64 ordered_bytes
= dip
->bytes
;
6280 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
6282 ordered_bytes
, !err
);
6286 ordered
->work
.func
= finish_ordered_fn
;
6287 ordered
->work
.flags
= 0;
6288 btrfs_queue_worker(&root
->fs_info
->endio_write_workers
,
6292 * our bio might span multiple ordered extents. If we haven't
6293 * completed the accounting for the whole dio, go back and try again
6295 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
6296 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
6302 bio
->bi_private
= dip
->private;
6306 /* If we had an error make sure to clear the uptodate flag */
6308 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
6309 dio_end_io(bio
, err
);
6312 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
6313 struct bio
*bio
, int mirror_num
,
6314 unsigned long bio_flags
, u64 offset
)
6317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6318 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
6319 BUG_ON(ret
); /* -ENOMEM */
6323 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
6325 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6328 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
6329 "sector %#Lx len %u err no %d\n",
6330 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
6331 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
6335 * before atomic variable goto zero, we must make sure
6336 * dip->errors is perceived to be set.
6338 smp_mb__before_atomic_dec();
6341 /* if there are more bios still pending for this dio, just exit */
6342 if (!atomic_dec_and_test(&dip
->pending_bios
))
6346 bio_io_error(dip
->orig_bio
);
6348 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
6349 bio_endio(dip
->orig_bio
, 0);
6355 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
6356 u64 first_sector
, gfp_t gfp_flags
)
6358 int nr_vecs
= bio_get_nr_vecs(bdev
);
6359 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
6362 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
6363 int rw
, u64 file_offset
, int skip_sum
,
6366 int write
= rw
& REQ_WRITE
;
6367 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6371 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
6376 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
6384 if (write
&& async_submit
) {
6385 ret
= btrfs_wq_submit_bio(root
->fs_info
,
6386 inode
, rw
, bio
, 0, 0,
6388 __btrfs_submit_bio_start_direct_io
,
6389 __btrfs_submit_bio_done
);
6393 * If we aren't doing async submit, calculate the csum of the
6396 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
6399 } else if (!skip_sum
) {
6400 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
, file_offset
);
6406 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
6412 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
6415 struct inode
*inode
= dip
->inode
;
6416 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6418 struct bio
*orig_bio
= dip
->orig_bio
;
6419 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
6420 u64 start_sector
= orig_bio
->bi_sector
;
6421 u64 file_offset
= dip
->logical_offset
;
6426 int async_submit
= 0;
6428 map_length
= orig_bio
->bi_size
;
6429 ret
= btrfs_map_block(root
->fs_info
, READ
, start_sector
<< 9,
6430 &map_length
, NULL
, 0);
6436 if (map_length
>= orig_bio
->bi_size
) {
6442 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
6445 bio
->bi_private
= dip
;
6446 bio
->bi_end_io
= btrfs_end_dio_bio
;
6447 atomic_inc(&dip
->pending_bios
);
6449 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6450 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6451 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6452 bvec
->bv_offset
) < bvec
->bv_len
)) {
6454 * inc the count before we submit the bio so
6455 * we know the end IO handler won't happen before
6456 * we inc the count. Otherwise, the dip might get freed
6457 * before we're done setting it up
6459 atomic_inc(&dip
->pending_bios
);
6460 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6461 file_offset
, skip_sum
,
6465 atomic_dec(&dip
->pending_bios
);
6469 start_sector
+= submit_len
>> 9;
6470 file_offset
+= submit_len
;
6475 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6476 start_sector
, GFP_NOFS
);
6479 bio
->bi_private
= dip
;
6480 bio
->bi_end_io
= btrfs_end_dio_bio
;
6482 map_length
= orig_bio
->bi_size
;
6483 ret
= btrfs_map_block(root
->fs_info
, READ
,
6485 &map_length
, NULL
, 0);
6491 submit_len
+= bvec
->bv_len
;
6498 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6507 * before atomic variable goto zero, we must
6508 * make sure dip->errors is perceived to be set.
6510 smp_mb__before_atomic_dec();
6511 if (atomic_dec_and_test(&dip
->pending_bios
))
6512 bio_io_error(dip
->orig_bio
);
6514 /* bio_end_io() will handle error, so we needn't return it */
6518 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6521 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6522 struct btrfs_dio_private
*dip
;
6523 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6525 int write
= rw
& REQ_WRITE
;
6528 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6530 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6536 dip
->private = bio
->bi_private
;
6538 dip
->logical_offset
= file_offset
;
6542 dip
->bytes
+= bvec
->bv_len
;
6544 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6546 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6547 bio
->bi_private
= dip
;
6549 dip
->orig_bio
= bio
;
6550 atomic_set(&dip
->pending_bios
, 0);
6553 bio
->bi_end_io
= btrfs_endio_direct_write
;
6555 bio
->bi_end_io
= btrfs_endio_direct_read
;
6557 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6562 * If this is a write, we need to clean up the reserved space and kill
6563 * the ordered extent.
6566 struct btrfs_ordered_extent
*ordered
;
6567 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6568 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6569 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6570 btrfs_free_reserved_extent(root
, ordered
->start
,
6572 btrfs_put_ordered_extent(ordered
);
6573 btrfs_put_ordered_extent(ordered
);
6575 bio_endio(bio
, ret
);
6578 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6579 const struct iovec
*iov
, loff_t offset
,
6580 unsigned long nr_segs
)
6586 unsigned blocksize_mask
= root
->sectorsize
- 1;
6587 ssize_t retval
= -EINVAL
;
6588 loff_t end
= offset
;
6590 if (offset
& blocksize_mask
)
6593 /* Check the memory alignment. Blocks cannot straddle pages */
6594 for (seg
= 0; seg
< nr_segs
; seg
++) {
6595 addr
= (unsigned long)iov
[seg
].iov_base
;
6596 size
= iov
[seg
].iov_len
;
6598 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6601 /* If this is a write we don't need to check anymore */
6606 * Check to make sure we don't have duplicate iov_base's in this
6607 * iovec, if so return EINVAL, otherwise we'll get csum errors
6608 * when reading back.
6610 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6611 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6620 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6621 const struct iovec
*iov
, loff_t offset
,
6622 unsigned long nr_segs
)
6624 struct file
*file
= iocb
->ki_filp
;
6625 struct inode
*inode
= file
->f_mapping
->host
;
6627 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6631 return __blockdev_direct_IO(rw
, iocb
, inode
,
6632 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6633 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6634 btrfs_submit_direct
, 0);
6637 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6639 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6640 __u64 start
, __u64 len
)
6644 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
6648 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6651 int btrfs_readpage(struct file
*file
, struct page
*page
)
6653 struct extent_io_tree
*tree
;
6654 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6655 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6658 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6660 struct extent_io_tree
*tree
;
6663 if (current
->flags
& PF_MEMALLOC
) {
6664 redirty_page_for_writepage(wbc
, page
);
6668 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6669 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6672 int btrfs_writepages(struct address_space
*mapping
,
6673 struct writeback_control
*wbc
)
6675 struct extent_io_tree
*tree
;
6677 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6678 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6682 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6683 struct list_head
*pages
, unsigned nr_pages
)
6685 struct extent_io_tree
*tree
;
6686 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6687 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6690 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6692 struct extent_io_tree
*tree
;
6693 struct extent_map_tree
*map
;
6696 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6697 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6698 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6700 ClearPagePrivate(page
);
6701 set_page_private(page
, 0);
6702 page_cache_release(page
);
6707 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6709 if (PageWriteback(page
) || PageDirty(page
))
6711 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6714 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6716 struct inode
*inode
= page
->mapping
->host
;
6717 struct extent_io_tree
*tree
;
6718 struct btrfs_ordered_extent
*ordered
;
6719 struct extent_state
*cached_state
= NULL
;
6720 u64 page_start
= page_offset(page
);
6721 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6724 * we have the page locked, so new writeback can't start,
6725 * and the dirty bit won't be cleared while we are here.
6727 * Wait for IO on this page so that we can safely clear
6728 * the PagePrivate2 bit and do ordered accounting
6730 wait_on_page_writeback(page
);
6732 tree
= &BTRFS_I(inode
)->io_tree
;
6734 btrfs_releasepage(page
, GFP_NOFS
);
6737 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
6738 ordered
= btrfs_lookup_ordered_extent(inode
,
6742 * IO on this page will never be started, so we need
6743 * to account for any ordered extents now
6745 clear_extent_bit(tree
, page_start
, page_end
,
6746 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6747 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
6748 EXTENT_DEFRAG
, 1, 0, &cached_state
, GFP_NOFS
);
6750 * whoever cleared the private bit is responsible
6751 * for the finish_ordered_io
6753 if (TestClearPagePrivate2(page
) &&
6754 btrfs_dec_test_ordered_pending(inode
, &ordered
, page_start
,
6755 PAGE_CACHE_SIZE
, 1)) {
6756 btrfs_finish_ordered_io(ordered
);
6758 btrfs_put_ordered_extent(ordered
);
6759 cached_state
= NULL
;
6760 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
6762 clear_extent_bit(tree
, page_start
, page_end
,
6763 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6764 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
6765 &cached_state
, GFP_NOFS
);
6766 __btrfs_releasepage(page
, GFP_NOFS
);
6768 ClearPageChecked(page
);
6769 if (PagePrivate(page
)) {
6770 ClearPagePrivate(page
);
6771 set_page_private(page
, 0);
6772 page_cache_release(page
);
6777 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6778 * called from a page fault handler when a page is first dirtied. Hence we must
6779 * be careful to check for EOF conditions here. We set the page up correctly
6780 * for a written page which means we get ENOSPC checking when writing into
6781 * holes and correct delalloc and unwritten extent mapping on filesystems that
6782 * support these features.
6784 * We are not allowed to take the i_mutex here so we have to play games to
6785 * protect against truncate races as the page could now be beyond EOF. Because
6786 * vmtruncate() writes the inode size before removing pages, once we have the
6787 * page lock we can determine safely if the page is beyond EOF. If it is not
6788 * beyond EOF, then the page is guaranteed safe against truncation until we
6791 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6793 struct page
*page
= vmf
->page
;
6794 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6795 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6796 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6797 struct btrfs_ordered_extent
*ordered
;
6798 struct extent_state
*cached_state
= NULL
;
6800 unsigned long zero_start
;
6807 sb_start_pagefault(inode
->i_sb
);
6808 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6810 ret
= file_update_time(vma
->vm_file
);
6816 else /* -ENOSPC, -EIO, etc */
6817 ret
= VM_FAULT_SIGBUS
;
6823 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6826 size
= i_size_read(inode
);
6827 page_start
= page_offset(page
);
6828 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6830 if ((page
->mapping
!= inode
->i_mapping
) ||
6831 (page_start
>= size
)) {
6832 /* page got truncated out from underneath us */
6835 wait_on_page_writeback(page
);
6837 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
6838 set_page_extent_mapped(page
);
6841 * we can't set the delalloc bits if there are pending ordered
6842 * extents. Drop our locks and wait for them to finish
6844 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6846 unlock_extent_cached(io_tree
, page_start
, page_end
,
6847 &cached_state
, GFP_NOFS
);
6849 btrfs_start_ordered_extent(inode
, ordered
, 1);
6850 btrfs_put_ordered_extent(ordered
);
6855 * XXX - page_mkwrite gets called every time the page is dirtied, even
6856 * if it was already dirty, so for space accounting reasons we need to
6857 * clear any delalloc bits for the range we are fixing to save. There
6858 * is probably a better way to do this, but for now keep consistent with
6859 * prepare_pages in the normal write path.
6861 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6862 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6863 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
6864 0, 0, &cached_state
, GFP_NOFS
);
6866 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6869 unlock_extent_cached(io_tree
, page_start
, page_end
,
6870 &cached_state
, GFP_NOFS
);
6871 ret
= VM_FAULT_SIGBUS
;
6876 /* page is wholly or partially inside EOF */
6877 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6878 zero_start
= size
& ~PAGE_CACHE_MASK
;
6880 zero_start
= PAGE_CACHE_SIZE
;
6882 if (zero_start
!= PAGE_CACHE_SIZE
) {
6884 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6885 flush_dcache_page(page
);
6888 ClearPageChecked(page
);
6889 set_page_dirty(page
);
6890 SetPageUptodate(page
);
6892 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6893 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6894 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
6896 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6900 sb_end_pagefault(inode
->i_sb
);
6901 return VM_FAULT_LOCKED
;
6905 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6907 sb_end_pagefault(inode
->i_sb
);
6911 static int btrfs_truncate(struct inode
*inode
)
6913 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6914 struct btrfs_block_rsv
*rsv
;
6917 struct btrfs_trans_handle
*trans
;
6918 u64 mask
= root
->sectorsize
- 1;
6919 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6921 ret
= btrfs_truncate_page(inode
, inode
->i_size
, 0, 0);
6925 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6926 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6929 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6930 * 3 things going on here
6932 * 1) We need to reserve space for our orphan item and the space to
6933 * delete our orphan item. Lord knows we don't want to have a dangling
6934 * orphan item because we didn't reserve space to remove it.
6936 * 2) We need to reserve space to update our inode.
6938 * 3) We need to have something to cache all the space that is going to
6939 * be free'd up by the truncate operation, but also have some slack
6940 * space reserved in case it uses space during the truncate (thank you
6941 * very much snapshotting).
6943 * And we need these to all be seperate. The fact is we can use alot of
6944 * space doing the truncate, and we have no earthly idea how much space
6945 * we will use, so we need the truncate reservation to be seperate so it
6946 * doesn't end up using space reserved for updating the inode or
6947 * removing the orphan item. We also need to be able to stop the
6948 * transaction and start a new one, which means we need to be able to
6949 * update the inode several times, and we have no idea of knowing how
6950 * many times that will be, so we can't just reserve 1 item for the
6951 * entirety of the opration, so that has to be done seperately as well.
6952 * Then there is the orphan item, which does indeed need to be held on
6953 * to for the whole operation, and we need nobody to touch this reserved
6954 * space except the orphan code.
6956 * So that leaves us with
6958 * 1) root->orphan_block_rsv - for the orphan deletion.
6959 * 2) rsv - for the truncate reservation, which we will steal from the
6960 * transaction reservation.
6961 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6962 * updating the inode.
6964 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
6967 rsv
->size
= min_size
;
6971 * 1 for the truncate slack space
6972 * 1 for updating the inode.
6974 trans
= btrfs_start_transaction(root
, 2);
6975 if (IS_ERR(trans
)) {
6976 err
= PTR_ERR(trans
);
6980 /* Migrate the slack space for the truncate to our reserve */
6981 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6986 * setattr is responsible for setting the ordered_data_close flag,
6987 * but that is only tested during the last file release. That
6988 * could happen well after the next commit, leaving a great big
6989 * window where new writes may get lost if someone chooses to write
6990 * to this file after truncating to zero
6992 * The inode doesn't have any dirty data here, and so if we commit
6993 * this is a noop. If someone immediately starts writing to the inode
6994 * it is very likely we'll catch some of their writes in this
6995 * transaction, and the commit will find this file on the ordered
6996 * data list with good things to send down.
6998 * This is a best effort solution, there is still a window where
6999 * using truncate to replace the contents of the file will
7000 * end up with a zero length file after a crash.
7002 if (inode
->i_size
== 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
7003 &BTRFS_I(inode
)->runtime_flags
))
7004 btrfs_add_ordered_operation(trans
, root
, inode
);
7007 * So if we truncate and then write and fsync we normally would just
7008 * write the extents that changed, which is a problem if we need to
7009 * first truncate that entire inode. So set this flag so we write out
7010 * all of the extents in the inode to the sync log so we're completely
7013 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
7014 trans
->block_rsv
= rsv
;
7017 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
7019 BTRFS_EXTENT_DATA_KEY
);
7020 if (ret
!= -ENOSPC
) {
7025 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7026 ret
= btrfs_update_inode(trans
, root
, inode
);
7032 btrfs_end_transaction(trans
, root
);
7033 btrfs_btree_balance_dirty(root
);
7035 trans
= btrfs_start_transaction(root
, 2);
7036 if (IS_ERR(trans
)) {
7037 ret
= err
= PTR_ERR(trans
);
7042 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
7044 BUG_ON(ret
); /* shouldn't happen */
7045 trans
->block_rsv
= rsv
;
7048 if (ret
== 0 && inode
->i_nlink
> 0) {
7049 trans
->block_rsv
= root
->orphan_block_rsv
;
7050 ret
= btrfs_orphan_del(trans
, inode
);
7056 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7057 ret
= btrfs_update_inode(trans
, root
, inode
);
7061 ret
= btrfs_end_transaction(trans
, root
);
7062 btrfs_btree_balance_dirty(root
);
7066 btrfs_free_block_rsv(root
, rsv
);
7075 * create a new subvolume directory/inode (helper for the ioctl).
7077 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
7078 struct btrfs_root
*new_root
, u64 new_dirid
)
7080 struct inode
*inode
;
7084 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
7085 new_dirid
, new_dirid
,
7086 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
7089 return PTR_ERR(inode
);
7090 inode
->i_op
= &btrfs_dir_inode_operations
;
7091 inode
->i_fop
= &btrfs_dir_file_operations
;
7093 set_nlink(inode
, 1);
7094 btrfs_i_size_write(inode
, 0);
7096 err
= btrfs_update_inode(trans
, new_root
, inode
);
7102 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
7104 struct btrfs_inode
*ei
;
7105 struct inode
*inode
;
7107 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
7114 ei
->last_sub_trans
= 0;
7115 ei
->logged_trans
= 0;
7116 ei
->delalloc_bytes
= 0;
7117 ei
->disk_i_size
= 0;
7120 ei
->index_cnt
= (u64
)-1;
7121 ei
->last_unlink_trans
= 0;
7122 ei
->last_log_commit
= 0;
7124 spin_lock_init(&ei
->lock
);
7125 ei
->outstanding_extents
= 0;
7126 ei
->reserved_extents
= 0;
7128 ei
->runtime_flags
= 0;
7129 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
7131 ei
->delayed_node
= NULL
;
7133 inode
= &ei
->vfs_inode
;
7134 extent_map_tree_init(&ei
->extent_tree
);
7135 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
7136 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
7137 ei
->io_tree
.track_uptodate
= 1;
7138 ei
->io_failure_tree
.track_uptodate
= 1;
7139 atomic_set(&ei
->sync_writers
, 0);
7140 mutex_init(&ei
->log_mutex
);
7141 mutex_init(&ei
->delalloc_mutex
);
7142 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
7143 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
7144 INIT_LIST_HEAD(&ei
->ordered_operations
);
7145 RB_CLEAR_NODE(&ei
->rb_node
);
7150 static void btrfs_i_callback(struct rcu_head
*head
)
7152 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
7153 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
7156 void btrfs_destroy_inode(struct inode
*inode
)
7158 struct btrfs_ordered_extent
*ordered
;
7159 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7161 WARN_ON(!hlist_empty(&inode
->i_dentry
));
7162 WARN_ON(inode
->i_data
.nrpages
);
7163 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
7164 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
7165 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
7166 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
7169 * This can happen where we create an inode, but somebody else also
7170 * created the same inode and we need to destroy the one we already
7177 * Make sure we're properly removed from the ordered operation
7181 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
7182 spin_lock(&root
->fs_info
->ordered_extent_lock
);
7183 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
7184 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
7187 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
7188 &BTRFS_I(inode
)->runtime_flags
)) {
7189 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
7190 (unsigned long long)btrfs_ino(inode
));
7191 atomic_dec(&root
->orphan_inodes
);
7195 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
7199 printk(KERN_ERR
"btrfs found ordered "
7200 "extent %llu %llu on inode cleanup\n",
7201 (unsigned long long)ordered
->file_offset
,
7202 (unsigned long long)ordered
->len
);
7203 btrfs_remove_ordered_extent(inode
, ordered
);
7204 btrfs_put_ordered_extent(ordered
);
7205 btrfs_put_ordered_extent(ordered
);
7208 inode_tree_del(inode
);
7209 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
7211 btrfs_remove_delayed_node(inode
);
7212 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
7215 int btrfs_drop_inode(struct inode
*inode
)
7217 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7219 if (btrfs_root_refs(&root
->root_item
) == 0 &&
7220 !btrfs_is_free_space_inode(inode
))
7223 return generic_drop_inode(inode
);
7226 static void init_once(void *foo
)
7228 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
7230 inode_init_once(&ei
->vfs_inode
);
7233 void btrfs_destroy_cachep(void)
7236 * Make sure all delayed rcu free inodes are flushed before we
7240 if (btrfs_inode_cachep
)
7241 kmem_cache_destroy(btrfs_inode_cachep
);
7242 if (btrfs_trans_handle_cachep
)
7243 kmem_cache_destroy(btrfs_trans_handle_cachep
);
7244 if (btrfs_transaction_cachep
)
7245 kmem_cache_destroy(btrfs_transaction_cachep
);
7246 if (btrfs_path_cachep
)
7247 kmem_cache_destroy(btrfs_path_cachep
);
7248 if (btrfs_free_space_cachep
)
7249 kmem_cache_destroy(btrfs_free_space_cachep
);
7250 if (btrfs_delalloc_work_cachep
)
7251 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
7254 int btrfs_init_cachep(void)
7256 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
7257 sizeof(struct btrfs_inode
), 0,
7258 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
7259 if (!btrfs_inode_cachep
)
7262 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
7263 sizeof(struct btrfs_trans_handle
), 0,
7264 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7265 if (!btrfs_trans_handle_cachep
)
7268 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
7269 sizeof(struct btrfs_transaction
), 0,
7270 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7271 if (!btrfs_transaction_cachep
)
7274 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
7275 sizeof(struct btrfs_path
), 0,
7276 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7277 if (!btrfs_path_cachep
)
7280 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
7281 sizeof(struct btrfs_free_space
), 0,
7282 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7283 if (!btrfs_free_space_cachep
)
7286 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
7287 sizeof(struct btrfs_delalloc_work
), 0,
7288 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
7290 if (!btrfs_delalloc_work_cachep
)
7295 btrfs_destroy_cachep();
7299 static int btrfs_getattr(struct vfsmount
*mnt
,
7300 struct dentry
*dentry
, struct kstat
*stat
)
7302 struct inode
*inode
= dentry
->d_inode
;
7303 u32 blocksize
= inode
->i_sb
->s_blocksize
;
7305 generic_fillattr(inode
, stat
);
7306 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
7307 stat
->blksize
= PAGE_CACHE_SIZE
;
7308 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
7309 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
7314 * If a file is moved, it will inherit the cow and compression flags of the new
7317 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
7319 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
7320 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
7322 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
7323 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
7325 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
7327 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
) {
7328 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
7329 b_inode
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
7331 b_inode
->flags
&= ~(BTRFS_INODE_COMPRESS
|
7332 BTRFS_INODE_NOCOMPRESS
);
7336 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
7337 struct inode
*new_dir
, struct dentry
*new_dentry
)
7339 struct btrfs_trans_handle
*trans
;
7340 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
7341 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
7342 struct inode
*new_inode
= new_dentry
->d_inode
;
7343 struct inode
*old_inode
= old_dentry
->d_inode
;
7344 struct timespec ctime
= CURRENT_TIME
;
7348 u64 old_ino
= btrfs_ino(old_inode
);
7350 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
7353 /* we only allow rename subvolume link between subvolumes */
7354 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
7357 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
7358 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
7361 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
7362 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
7366 /* check for collisions, even if the name isn't there */
7367 ret
= btrfs_check_dir_item_collision(root
, new_dir
->i_ino
,
7368 new_dentry
->d_name
.name
,
7369 new_dentry
->d_name
.len
);
7372 if (ret
== -EEXIST
) {
7374 * eexist without a new_inode */
7380 /* maybe -EOVERFLOW */
7387 * we're using rename to replace one file with another.
7388 * and the replacement file is large. Start IO on it now so
7389 * we don't add too much work to the end of the transaction
7391 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
7392 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
7393 filemap_flush(old_inode
->i_mapping
);
7395 /* close the racy window with snapshot create/destroy ioctl */
7396 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7397 down_read(&root
->fs_info
->subvol_sem
);
7399 * We want to reserve the absolute worst case amount of items. So if
7400 * both inodes are subvols and we need to unlink them then that would
7401 * require 4 item modifications, but if they are both normal inodes it
7402 * would require 5 item modifications, so we'll assume their normal
7403 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7404 * should cover the worst case number of items we'll modify.
7406 trans
= btrfs_start_transaction(root
, 20);
7407 if (IS_ERR(trans
)) {
7408 ret
= PTR_ERR(trans
);
7413 btrfs_record_root_in_trans(trans
, dest
);
7415 ret
= btrfs_set_inode_index(new_dir
, &index
);
7419 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7420 /* force full log commit if subvolume involved. */
7421 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7423 ret
= btrfs_insert_inode_ref(trans
, dest
,
7424 new_dentry
->d_name
.name
,
7425 new_dentry
->d_name
.len
,
7427 btrfs_ino(new_dir
), index
);
7431 * this is an ugly little race, but the rename is required
7432 * to make sure that if we crash, the inode is either at the
7433 * old name or the new one. pinning the log transaction lets
7434 * us make sure we don't allow a log commit to come in after
7435 * we unlink the name but before we add the new name back in.
7437 btrfs_pin_log_trans(root
);
7440 * make sure the inode gets flushed if it is replacing
7443 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7444 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7446 inode_inc_iversion(old_dir
);
7447 inode_inc_iversion(new_dir
);
7448 inode_inc_iversion(old_inode
);
7449 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7450 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7451 old_inode
->i_ctime
= ctime
;
7453 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7454 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7456 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7457 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7458 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7459 old_dentry
->d_name
.name
,
7460 old_dentry
->d_name
.len
);
7462 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7463 old_dentry
->d_inode
,
7464 old_dentry
->d_name
.name
,
7465 old_dentry
->d_name
.len
);
7467 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7470 btrfs_abort_transaction(trans
, root
, ret
);
7475 inode_inc_iversion(new_inode
);
7476 new_inode
->i_ctime
= CURRENT_TIME
;
7477 if (unlikely(btrfs_ino(new_inode
) ==
7478 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7479 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7480 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7482 new_dentry
->d_name
.name
,
7483 new_dentry
->d_name
.len
);
7484 BUG_ON(new_inode
->i_nlink
== 0);
7486 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7487 new_dentry
->d_inode
,
7488 new_dentry
->d_name
.name
,
7489 new_dentry
->d_name
.len
);
7491 if (!ret
&& new_inode
->i_nlink
== 0) {
7492 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7496 btrfs_abort_transaction(trans
, root
, ret
);
7501 fixup_inode_flags(new_dir
, old_inode
);
7503 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7504 new_dentry
->d_name
.name
,
7505 new_dentry
->d_name
.len
, 0, index
);
7507 btrfs_abort_transaction(trans
, root
, ret
);
7511 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7512 struct dentry
*parent
= new_dentry
->d_parent
;
7513 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7514 btrfs_end_log_trans(root
);
7517 btrfs_end_transaction(trans
, root
);
7519 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7520 up_read(&root
->fs_info
->subvol_sem
);
7525 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
7527 struct btrfs_delalloc_work
*delalloc_work
;
7529 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
7531 if (delalloc_work
->wait
)
7532 btrfs_wait_ordered_range(delalloc_work
->inode
, 0, (u64
)-1);
7534 filemap_flush(delalloc_work
->inode
->i_mapping
);
7536 if (delalloc_work
->delay_iput
)
7537 btrfs_add_delayed_iput(delalloc_work
->inode
);
7539 iput(delalloc_work
->inode
);
7540 complete(&delalloc_work
->completion
);
7543 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
7544 int wait
, int delay_iput
)
7546 struct btrfs_delalloc_work
*work
;
7548 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
7552 init_completion(&work
->completion
);
7553 INIT_LIST_HEAD(&work
->list
);
7554 work
->inode
= inode
;
7556 work
->delay_iput
= delay_iput
;
7557 work
->work
.func
= btrfs_run_delalloc_work
;
7562 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
7564 wait_for_completion(&work
->completion
);
7565 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
7569 * some fairly slow code that needs optimization. This walks the list
7570 * of all the inodes with pending delalloc and forces them to disk.
7572 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7574 struct btrfs_inode
*binode
;
7575 struct inode
*inode
;
7576 struct btrfs_delalloc_work
*work
, *next
;
7577 struct list_head works
;
7578 struct list_head splice
;
7581 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7584 INIT_LIST_HEAD(&works
);
7585 INIT_LIST_HEAD(&splice
);
7587 spin_lock(&root
->fs_info
->delalloc_lock
);
7588 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
7589 while (!list_empty(&splice
)) {
7590 binode
= list_entry(splice
.next
, struct btrfs_inode
,
7593 list_del_init(&binode
->delalloc_inodes
);
7595 inode
= igrab(&binode
->vfs_inode
);
7599 list_add_tail(&binode
->delalloc_inodes
,
7600 &root
->fs_info
->delalloc_inodes
);
7601 spin_unlock(&root
->fs_info
->delalloc_lock
);
7603 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
7604 if (unlikely(!work
)) {
7608 list_add_tail(&work
->list
, &works
);
7609 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
7613 spin_lock(&root
->fs_info
->delalloc_lock
);
7615 spin_unlock(&root
->fs_info
->delalloc_lock
);
7617 list_for_each_entry_safe(work
, next
, &works
, list
) {
7618 list_del_init(&work
->list
);
7619 btrfs_wait_and_free_delalloc_work(work
);
7622 spin_lock(&root
->fs_info
->delalloc_lock
);
7623 if (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
7624 spin_unlock(&root
->fs_info
->delalloc_lock
);
7627 spin_unlock(&root
->fs_info
->delalloc_lock
);
7629 /* the filemap_flush will queue IO into the worker threads, but
7630 * we have to make sure the IO is actually started and that
7631 * ordered extents get created before we return
7633 atomic_inc(&root
->fs_info
->async_submit_draining
);
7634 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7635 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7636 wait_event(root
->fs_info
->async_submit_wait
,
7637 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7638 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7640 atomic_dec(&root
->fs_info
->async_submit_draining
);
7643 list_for_each_entry_safe(work
, next
, &works
, list
) {
7644 list_del_init(&work
->list
);
7645 btrfs_wait_and_free_delalloc_work(work
);
7648 if (!list_empty_careful(&splice
)) {
7649 spin_lock(&root
->fs_info
->delalloc_lock
);
7650 list_splice_tail(&splice
, &root
->fs_info
->delalloc_inodes
);
7651 spin_unlock(&root
->fs_info
->delalloc_lock
);
7656 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7657 const char *symname
)
7659 struct btrfs_trans_handle
*trans
;
7660 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7661 struct btrfs_path
*path
;
7662 struct btrfs_key key
;
7663 struct inode
*inode
= NULL
;
7671 struct btrfs_file_extent_item
*ei
;
7672 struct extent_buffer
*leaf
;
7674 name_len
= strlen(symname
) + 1;
7675 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7676 return -ENAMETOOLONG
;
7679 * 2 items for inode item and ref
7680 * 2 items for dir items
7681 * 1 item for xattr if selinux is on
7683 trans
= btrfs_start_transaction(root
, 5);
7685 return PTR_ERR(trans
);
7687 err
= btrfs_find_free_ino(root
, &objectid
);
7691 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7692 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7693 S_IFLNK
|S_IRWXUGO
, &index
);
7694 if (IS_ERR(inode
)) {
7695 err
= PTR_ERR(inode
);
7699 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7706 * If the active LSM wants to access the inode during
7707 * d_instantiate it needs these. Smack checks to see
7708 * if the filesystem supports xattrs by looking at the
7711 inode
->i_fop
= &btrfs_file_operations
;
7712 inode
->i_op
= &btrfs_file_inode_operations
;
7714 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7718 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7719 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7720 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7725 path
= btrfs_alloc_path();
7731 key
.objectid
= btrfs_ino(inode
);
7733 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7734 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7735 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7739 btrfs_free_path(path
);
7742 leaf
= path
->nodes
[0];
7743 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7744 struct btrfs_file_extent_item
);
7745 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7746 btrfs_set_file_extent_type(leaf
, ei
,
7747 BTRFS_FILE_EXTENT_INLINE
);
7748 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7749 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7750 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7751 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7753 ptr
= btrfs_file_extent_inline_start(ei
);
7754 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7755 btrfs_mark_buffer_dirty(leaf
);
7756 btrfs_free_path(path
);
7758 inode
->i_op
= &btrfs_symlink_inode_operations
;
7759 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7760 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7761 inode_set_bytes(inode
, name_len
);
7762 btrfs_i_size_write(inode
, name_len
- 1);
7763 err
= btrfs_update_inode(trans
, root
, inode
);
7769 d_instantiate(dentry
, inode
);
7770 btrfs_end_transaction(trans
, root
);
7772 inode_dec_link_count(inode
);
7775 btrfs_btree_balance_dirty(root
);
7779 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7780 u64 start
, u64 num_bytes
, u64 min_size
,
7781 loff_t actual_len
, u64
*alloc_hint
,
7782 struct btrfs_trans_handle
*trans
)
7784 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
7785 struct extent_map
*em
;
7786 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7787 struct btrfs_key ins
;
7788 u64 cur_offset
= start
;
7791 bool own_trans
= true;
7795 while (num_bytes
> 0) {
7797 trans
= btrfs_start_transaction(root
, 3);
7798 if (IS_ERR(trans
)) {
7799 ret
= PTR_ERR(trans
);
7804 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7805 0, *alloc_hint
, &ins
, 1);
7808 btrfs_end_transaction(trans
, root
);
7812 ret
= insert_reserved_file_extent(trans
, inode
,
7813 cur_offset
, ins
.objectid
,
7814 ins
.offset
, ins
.offset
,
7815 ins
.offset
, 0, 0, 0,
7816 BTRFS_FILE_EXTENT_PREALLOC
);
7818 btrfs_abort_transaction(trans
, root
, ret
);
7820 btrfs_end_transaction(trans
, root
);
7823 btrfs_drop_extent_cache(inode
, cur_offset
,
7824 cur_offset
+ ins
.offset
-1, 0);
7826 em
= alloc_extent_map();
7828 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
7829 &BTRFS_I(inode
)->runtime_flags
);
7833 em
->start
= cur_offset
;
7834 em
->orig_start
= cur_offset
;
7835 em
->len
= ins
.offset
;
7836 em
->block_start
= ins
.objectid
;
7837 em
->block_len
= ins
.offset
;
7838 em
->orig_block_len
= ins
.offset
;
7839 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7840 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7841 em
->generation
= trans
->transid
;
7844 write_lock(&em_tree
->lock
);
7845 ret
= add_extent_mapping(em_tree
, em
);
7847 list_move(&em
->list
,
7848 &em_tree
->modified_extents
);
7849 write_unlock(&em_tree
->lock
);
7852 btrfs_drop_extent_cache(inode
, cur_offset
,
7853 cur_offset
+ ins
.offset
- 1,
7856 free_extent_map(em
);
7858 num_bytes
-= ins
.offset
;
7859 cur_offset
+= ins
.offset
;
7860 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7862 inode_inc_iversion(inode
);
7863 inode
->i_ctime
= CURRENT_TIME
;
7864 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7865 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7866 (actual_len
> inode
->i_size
) &&
7867 (cur_offset
> inode
->i_size
)) {
7868 if (cur_offset
> actual_len
)
7869 i_size
= actual_len
;
7871 i_size
= cur_offset
;
7872 i_size_write(inode
, i_size
);
7873 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7876 ret
= btrfs_update_inode(trans
, root
, inode
);
7879 btrfs_abort_transaction(trans
, root
, ret
);
7881 btrfs_end_transaction(trans
, root
);
7886 btrfs_end_transaction(trans
, root
);
7891 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7892 u64 start
, u64 num_bytes
, u64 min_size
,
7893 loff_t actual_len
, u64
*alloc_hint
)
7895 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7896 min_size
, actual_len
, alloc_hint
,
7900 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7901 struct btrfs_trans_handle
*trans
, int mode
,
7902 u64 start
, u64 num_bytes
, u64 min_size
,
7903 loff_t actual_len
, u64
*alloc_hint
)
7905 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7906 min_size
, actual_len
, alloc_hint
, trans
);
7909 static int btrfs_set_page_dirty(struct page
*page
)
7911 return __set_page_dirty_nobuffers(page
);
7914 static int btrfs_permission(struct inode
*inode
, int mask
)
7916 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7917 umode_t mode
= inode
->i_mode
;
7919 if (mask
& MAY_WRITE
&&
7920 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7921 if (btrfs_root_readonly(root
))
7923 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7926 return generic_permission(inode
, mask
);
7929 static const struct inode_operations btrfs_dir_inode_operations
= {
7930 .getattr
= btrfs_getattr
,
7931 .lookup
= btrfs_lookup
,
7932 .create
= btrfs_create
,
7933 .unlink
= btrfs_unlink
,
7935 .mkdir
= btrfs_mkdir
,
7936 .rmdir
= btrfs_rmdir
,
7937 .rename
= btrfs_rename
,
7938 .symlink
= btrfs_symlink
,
7939 .setattr
= btrfs_setattr
,
7940 .mknod
= btrfs_mknod
,
7941 .setxattr
= btrfs_setxattr
,
7942 .getxattr
= btrfs_getxattr
,
7943 .listxattr
= btrfs_listxattr
,
7944 .removexattr
= btrfs_removexattr
,
7945 .permission
= btrfs_permission
,
7946 .get_acl
= btrfs_get_acl
,
7948 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7949 .lookup
= btrfs_lookup
,
7950 .permission
= btrfs_permission
,
7951 .get_acl
= btrfs_get_acl
,
7954 static const struct file_operations btrfs_dir_file_operations
= {
7955 .llseek
= generic_file_llseek
,
7956 .read
= generic_read_dir
,
7957 .readdir
= btrfs_real_readdir
,
7958 .unlocked_ioctl
= btrfs_ioctl
,
7959 #ifdef CONFIG_COMPAT
7960 .compat_ioctl
= btrfs_ioctl
,
7962 .release
= btrfs_release_file
,
7963 .fsync
= btrfs_sync_file
,
7966 static struct extent_io_ops btrfs_extent_io_ops
= {
7967 .fill_delalloc
= run_delalloc_range
,
7968 .submit_bio_hook
= btrfs_submit_bio_hook
,
7969 .merge_bio_hook
= btrfs_merge_bio_hook
,
7970 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7971 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7972 .writepage_start_hook
= btrfs_writepage_start_hook
,
7973 .set_bit_hook
= btrfs_set_bit_hook
,
7974 .clear_bit_hook
= btrfs_clear_bit_hook
,
7975 .merge_extent_hook
= btrfs_merge_extent_hook
,
7976 .split_extent_hook
= btrfs_split_extent_hook
,
7980 * btrfs doesn't support the bmap operation because swapfiles
7981 * use bmap to make a mapping of extents in the file. They assume
7982 * these extents won't change over the life of the file and they
7983 * use the bmap result to do IO directly to the drive.
7985 * the btrfs bmap call would return logical addresses that aren't
7986 * suitable for IO and they also will change frequently as COW
7987 * operations happen. So, swapfile + btrfs == corruption.
7989 * For now we're avoiding this by dropping bmap.
7991 static const struct address_space_operations btrfs_aops
= {
7992 .readpage
= btrfs_readpage
,
7993 .writepage
= btrfs_writepage
,
7994 .writepages
= btrfs_writepages
,
7995 .readpages
= btrfs_readpages
,
7996 .direct_IO
= btrfs_direct_IO
,
7997 .invalidatepage
= btrfs_invalidatepage
,
7998 .releasepage
= btrfs_releasepage
,
7999 .set_page_dirty
= btrfs_set_page_dirty
,
8000 .error_remove_page
= generic_error_remove_page
,
8003 static const struct address_space_operations btrfs_symlink_aops
= {
8004 .readpage
= btrfs_readpage
,
8005 .writepage
= btrfs_writepage
,
8006 .invalidatepage
= btrfs_invalidatepage
,
8007 .releasepage
= btrfs_releasepage
,
8010 static const struct inode_operations btrfs_file_inode_operations
= {
8011 .getattr
= btrfs_getattr
,
8012 .setattr
= btrfs_setattr
,
8013 .setxattr
= btrfs_setxattr
,
8014 .getxattr
= btrfs_getxattr
,
8015 .listxattr
= btrfs_listxattr
,
8016 .removexattr
= btrfs_removexattr
,
8017 .permission
= btrfs_permission
,
8018 .fiemap
= btrfs_fiemap
,
8019 .get_acl
= btrfs_get_acl
,
8020 .update_time
= btrfs_update_time
,
8022 static const struct inode_operations btrfs_special_inode_operations
= {
8023 .getattr
= btrfs_getattr
,
8024 .setattr
= btrfs_setattr
,
8025 .permission
= btrfs_permission
,
8026 .setxattr
= btrfs_setxattr
,
8027 .getxattr
= btrfs_getxattr
,
8028 .listxattr
= btrfs_listxattr
,
8029 .removexattr
= btrfs_removexattr
,
8030 .get_acl
= btrfs_get_acl
,
8031 .update_time
= btrfs_update_time
,
8033 static const struct inode_operations btrfs_symlink_inode_operations
= {
8034 .readlink
= generic_readlink
,
8035 .follow_link
= page_follow_link_light
,
8036 .put_link
= page_put_link
,
8037 .getattr
= btrfs_getattr
,
8038 .setattr
= btrfs_setattr
,
8039 .permission
= btrfs_permission
,
8040 .setxattr
= btrfs_setxattr
,
8041 .getxattr
= btrfs_getxattr
,
8042 .listxattr
= btrfs_listxattr
,
8043 .removexattr
= btrfs_removexattr
,
8044 .get_acl
= btrfs_get_acl
,
8045 .update_time
= btrfs_update_time
,
8048 const struct dentry_operations btrfs_dentry_operations
= {
8049 .d_delete
= btrfs_dentry_delete
,
8050 .d_release
= btrfs_dentry_release
,