2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
65 else if (S_ISREG(mode
))
66 return flags
& ~FS_DIRSYNC_FL
;
68 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
76 unsigned int iflags
= 0;
78 if (flags
& BTRFS_INODE_SYNC
)
80 if (flags
& BTRFS_INODE_IMMUTABLE
)
81 iflags
|= FS_IMMUTABLE_FL
;
82 if (flags
& BTRFS_INODE_APPEND
)
83 iflags
|= FS_APPEND_FL
;
84 if (flags
& BTRFS_INODE_NODUMP
)
85 iflags
|= FS_NODUMP_FL
;
86 if (flags
& BTRFS_INODE_NOATIME
)
87 iflags
|= FS_NOATIME_FL
;
88 if (flags
& BTRFS_INODE_DIRSYNC
)
89 iflags
|= FS_DIRSYNC_FL
;
90 if (flags
& BTRFS_INODE_NODATACOW
)
91 iflags
|= FS_NOCOW_FL
;
93 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
94 iflags
|= FS_COMPR_FL
;
95 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
96 iflags
|= FS_NOCOMP_FL
;
102 * Update inode->i_flags based on the btrfs internal flags.
104 void btrfs_update_iflags(struct inode
*inode
)
106 struct btrfs_inode
*ip
= BTRFS_I(inode
);
108 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
110 if (ip
->flags
& BTRFS_INODE_SYNC
)
111 inode
->i_flags
|= S_SYNC
;
112 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
113 inode
->i_flags
|= S_IMMUTABLE
;
114 if (ip
->flags
& BTRFS_INODE_APPEND
)
115 inode
->i_flags
|= S_APPEND
;
116 if (ip
->flags
& BTRFS_INODE_NOATIME
)
117 inode
->i_flags
|= S_NOATIME
;
118 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
119 inode
->i_flags
|= S_DIRSYNC
;
123 * Inherit flags from the parent inode.
125 * Currently only the compression flags and the cow flags are inherited.
127 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
134 flags
= BTRFS_I(dir
)->flags
;
136 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
137 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
138 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
139 } else if (flags
& BTRFS_INODE_COMPRESS
) {
140 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
141 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
144 if (flags
& BTRFS_INODE_NODATACOW
) {
145 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
146 if (S_ISREG(inode
->i_mode
))
147 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
150 btrfs_update_iflags(inode
);
153 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
155 struct btrfs_inode
*ip
= BTRFS_I(file
->f_path
.dentry
->d_inode
);
156 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
158 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
163 static int check_flags(unsigned int flags
)
165 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
166 FS_NOATIME_FL
| FS_NODUMP_FL
| \
167 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
168 FS_NOCOMP_FL
| FS_COMPR_FL
|
172 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
178 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
180 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
181 struct btrfs_inode
*ip
= BTRFS_I(inode
);
182 struct btrfs_root
*root
= ip
->root
;
183 struct btrfs_trans_handle
*trans
;
184 unsigned int flags
, oldflags
;
187 unsigned int i_oldflags
;
190 if (btrfs_root_readonly(root
))
193 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
196 ret
= check_flags(flags
);
200 if (!inode_owner_or_capable(inode
))
203 ret
= mnt_want_write_file(file
);
207 mutex_lock(&inode
->i_mutex
);
209 ip_oldflags
= ip
->flags
;
210 i_oldflags
= inode
->i_flags
;
211 mode
= inode
->i_mode
;
213 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
214 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
215 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
216 if (!capable(CAP_LINUX_IMMUTABLE
)) {
222 if (flags
& FS_SYNC_FL
)
223 ip
->flags
|= BTRFS_INODE_SYNC
;
225 ip
->flags
&= ~BTRFS_INODE_SYNC
;
226 if (flags
& FS_IMMUTABLE_FL
)
227 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
229 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
230 if (flags
& FS_APPEND_FL
)
231 ip
->flags
|= BTRFS_INODE_APPEND
;
233 ip
->flags
&= ~BTRFS_INODE_APPEND
;
234 if (flags
& FS_NODUMP_FL
)
235 ip
->flags
|= BTRFS_INODE_NODUMP
;
237 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
238 if (flags
& FS_NOATIME_FL
)
239 ip
->flags
|= BTRFS_INODE_NOATIME
;
241 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
242 if (flags
& FS_DIRSYNC_FL
)
243 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
245 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
246 if (flags
& FS_NOCOW_FL
) {
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
253 if (inode
->i_size
== 0)
254 ip
->flags
|= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM
;
257 ip
->flags
|= BTRFS_INODE_NODATACOW
;
261 * Revert back under same assuptions as above
264 if (inode
->i_size
== 0)
265 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM
);
268 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
277 if (flags
& FS_NOCOMP_FL
) {
278 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
279 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
280 } else if (flags
& FS_COMPR_FL
) {
281 ip
->flags
|= BTRFS_INODE_COMPRESS
;
282 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
284 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
287 trans
= btrfs_start_transaction(root
, 1);
289 ret
= PTR_ERR(trans
);
293 btrfs_update_iflags(inode
);
294 inode_inc_iversion(inode
);
295 inode
->i_ctime
= CURRENT_TIME
;
296 ret
= btrfs_update_inode(trans
, root
, inode
);
298 btrfs_end_transaction(trans
, root
);
301 ip
->flags
= ip_oldflags
;
302 inode
->i_flags
= i_oldflags
;
306 mutex_unlock(&inode
->i_mutex
);
307 mnt_drop_write_file(file
);
311 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
313 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
315 return put_user(inode
->i_generation
, arg
);
318 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
320 struct btrfs_fs_info
*fs_info
= btrfs_sb(fdentry(file
)->d_sb
);
321 struct btrfs_device
*device
;
322 struct request_queue
*q
;
323 struct fstrim_range range
;
324 u64 minlen
= ULLONG_MAX
;
326 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
329 if (!capable(CAP_SYS_ADMIN
))
333 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
337 q
= bdev_get_queue(device
->bdev
);
338 if (blk_queue_discard(q
)) {
340 minlen
= min((u64
)q
->limits
.discard_granularity
,
348 if (copy_from_user(&range
, arg
, sizeof(range
)))
350 if (range
.start
> total_bytes
||
351 range
.len
< fs_info
->sb
->s_blocksize
)
354 range
.len
= min(range
.len
, total_bytes
- range
.start
);
355 range
.minlen
= max(range
.minlen
, minlen
);
356 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
360 if (copy_to_user(arg
, &range
, sizeof(range
)))
366 static noinline
int create_subvol(struct btrfs_root
*root
,
367 struct dentry
*dentry
,
368 char *name
, int namelen
,
370 struct btrfs_qgroup_inherit
**inherit
)
372 struct btrfs_trans_handle
*trans
;
373 struct btrfs_key key
;
374 struct btrfs_root_item root_item
;
375 struct btrfs_inode_item
*inode_item
;
376 struct extent_buffer
*leaf
;
377 struct btrfs_root
*new_root
;
378 struct dentry
*parent
= dentry
->d_parent
;
380 struct timespec cur_time
= CURRENT_TIME
;
384 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
388 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
392 dir
= parent
->d_inode
;
400 trans
= btrfs_start_transaction(root
, 6);
402 return PTR_ERR(trans
);
404 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
,
405 inherit
? *inherit
: NULL
);
409 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
410 0, objectid
, NULL
, 0, 0, 0);
416 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
417 btrfs_set_header_bytenr(leaf
, leaf
->start
);
418 btrfs_set_header_generation(leaf
, trans
->transid
);
419 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
420 btrfs_set_header_owner(leaf
, objectid
);
422 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
423 (unsigned long)btrfs_header_fsid(leaf
),
425 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
426 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
428 btrfs_mark_buffer_dirty(leaf
);
430 memset(&root_item
, 0, sizeof(root_item
));
432 inode_item
= &root_item
.inode
;
433 inode_item
->generation
= cpu_to_le64(1);
434 inode_item
->size
= cpu_to_le64(3);
435 inode_item
->nlink
= cpu_to_le32(1);
436 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
437 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
440 root_item
.byte_limit
= 0;
441 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
443 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
444 btrfs_set_root_generation(&root_item
, trans
->transid
);
445 btrfs_set_root_level(&root_item
, 0);
446 btrfs_set_root_refs(&root_item
, 1);
447 btrfs_set_root_used(&root_item
, leaf
->len
);
448 btrfs_set_root_last_snapshot(&root_item
, 0);
450 btrfs_set_root_generation_v2(&root_item
,
451 btrfs_root_generation(&root_item
));
452 uuid_le_gen(&new_uuid
);
453 memcpy(root_item
.uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
454 root_item
.otime
.sec
= cpu_to_le64(cur_time
.tv_sec
);
455 root_item
.otime
.nsec
= cpu_to_le32(cur_time
.tv_nsec
);
456 root_item
.ctime
= root_item
.otime
;
457 btrfs_set_root_ctransid(&root_item
, trans
->transid
);
458 btrfs_set_root_otransid(&root_item
, trans
->transid
);
460 btrfs_tree_unlock(leaf
);
461 free_extent_buffer(leaf
);
464 btrfs_set_root_dirid(&root_item
, new_dirid
);
466 key
.objectid
= objectid
;
468 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
469 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
474 key
.offset
= (u64
)-1;
475 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
476 if (IS_ERR(new_root
)) {
477 btrfs_abort_transaction(trans
, root
, PTR_ERR(new_root
));
478 ret
= PTR_ERR(new_root
);
482 btrfs_record_root_in_trans(trans
, new_root
);
484 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
486 /* We potentially lose an unused inode item here */
487 btrfs_abort_transaction(trans
, root
, ret
);
492 * insert the directory item
494 ret
= btrfs_set_inode_index(dir
, &index
);
496 btrfs_abort_transaction(trans
, root
, ret
);
500 ret
= btrfs_insert_dir_item(trans
, root
,
501 name
, namelen
, dir
, &key
,
502 BTRFS_FT_DIR
, index
);
504 btrfs_abort_transaction(trans
, root
, ret
);
508 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
509 ret
= btrfs_update_inode(trans
, root
, dir
);
512 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
513 objectid
, root
->root_key
.objectid
,
514 btrfs_ino(dir
), index
, name
, namelen
);
520 *async_transid
= trans
->transid
;
521 err
= btrfs_commit_transaction_async(trans
, root
, 1);
523 err
= btrfs_commit_transaction(trans
, root
);
529 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
534 static int create_snapshot(struct btrfs_root
*root
, struct dentry
*dentry
,
535 char *name
, int namelen
, u64
*async_transid
,
536 bool readonly
, struct btrfs_qgroup_inherit
**inherit
)
539 struct btrfs_pending_snapshot
*pending_snapshot
;
540 struct btrfs_trans_handle
*trans
;
546 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
547 if (!pending_snapshot
)
550 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
551 BTRFS_BLOCK_RSV_TEMP
);
552 pending_snapshot
->dentry
= dentry
;
553 pending_snapshot
->root
= root
;
554 pending_snapshot
->readonly
= readonly
;
556 pending_snapshot
->inherit
= *inherit
;
557 *inherit
= NULL
; /* take responsibility to free it */
560 trans
= btrfs_start_transaction(root
->fs_info
->extent_root
, 6);
562 ret
= PTR_ERR(trans
);
566 ret
= btrfs_snap_reserve_metadata(trans
, pending_snapshot
);
569 spin_lock(&root
->fs_info
->trans_lock
);
570 list_add(&pending_snapshot
->list
,
571 &trans
->transaction
->pending_snapshots
);
572 spin_unlock(&root
->fs_info
->trans_lock
);
574 *async_transid
= trans
->transid
;
575 ret
= btrfs_commit_transaction_async(trans
,
576 root
->fs_info
->extent_root
, 1);
578 ret
= btrfs_commit_transaction(trans
,
579 root
->fs_info
->extent_root
);
582 /* cleanup_transaction has freed this for us */
584 pending_snapshot
= NULL
;
588 ret
= pending_snapshot
->error
;
592 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
596 inode
= btrfs_lookup_dentry(dentry
->d_parent
->d_inode
, dentry
);
598 ret
= PTR_ERR(inode
);
602 d_instantiate(dentry
, inode
);
605 kfree(pending_snapshot
);
609 /* copy of check_sticky in fs/namei.c()
610 * It's inline, so penalty for filesystems that don't use sticky bit is
613 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
615 kuid_t fsuid
= current_fsuid();
617 if (!(dir
->i_mode
& S_ISVTX
))
619 if (uid_eq(inode
->i_uid
, fsuid
))
621 if (uid_eq(dir
->i_uid
, fsuid
))
623 return !capable(CAP_FOWNER
);
626 /* copy of may_delete in fs/namei.c()
627 * Check whether we can remove a link victim from directory dir, check
628 * whether the type of victim is right.
629 * 1. We can't do it if dir is read-only (done in permission())
630 * 2. We should have write and exec permissions on dir
631 * 3. We can't remove anything from append-only dir
632 * 4. We can't do anything with immutable dir (done in permission())
633 * 5. If the sticky bit on dir is set we should either
634 * a. be owner of dir, or
635 * b. be owner of victim, or
636 * c. have CAP_FOWNER capability
637 * 6. If the victim is append-only or immutable we can't do antyhing with
638 * links pointing to it.
639 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
640 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
641 * 9. We can't remove a root or mountpoint.
642 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
643 * nfs_async_unlink().
646 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
650 if (!victim
->d_inode
)
653 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
654 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
656 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
661 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
662 IS_APPEND(victim
->d_inode
)||
663 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
666 if (!S_ISDIR(victim
->d_inode
->i_mode
))
670 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
674 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
679 /* copy of may_create in fs/namei.c() */
680 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
686 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
690 * Create a new subvolume below @parent. This is largely modeled after
691 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
692 * inside this filesystem so it's quite a bit simpler.
694 static noinline
int btrfs_mksubvol(struct path
*parent
,
695 char *name
, int namelen
,
696 struct btrfs_root
*snap_src
,
697 u64
*async_transid
, bool readonly
,
698 struct btrfs_qgroup_inherit
**inherit
)
700 struct inode
*dir
= parent
->dentry
->d_inode
;
701 struct dentry
*dentry
;
704 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
706 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
707 error
= PTR_ERR(dentry
);
715 error
= btrfs_may_create(dir
, dentry
);
720 * even if this name doesn't exist, we may get hash collisions.
721 * check for them now when we can safely fail
723 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
729 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
731 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
735 error
= create_snapshot(snap_src
, dentry
, name
, namelen
,
736 async_transid
, readonly
, inherit
);
738 error
= create_subvol(BTRFS_I(dir
)->root
, dentry
,
739 name
, namelen
, async_transid
, inherit
);
742 fsnotify_mkdir(dir
, dentry
);
744 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
748 mutex_unlock(&dir
->i_mutex
);
753 * When we're defragging a range, we don't want to kick it off again
754 * if it is really just waiting for delalloc to send it down.
755 * If we find a nice big extent or delalloc range for the bytes in the
756 * file you want to defrag, we return 0 to let you know to skip this
759 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
761 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
762 struct extent_map
*em
= NULL
;
763 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
766 read_lock(&em_tree
->lock
);
767 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
768 read_unlock(&em_tree
->lock
);
771 end
= extent_map_end(em
);
773 if (end
- offset
> thresh
)
776 /* if we already have a nice delalloc here, just stop */
778 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
779 thresh
, EXTENT_DELALLOC
, 1);
786 * helper function to walk through a file and find extents
787 * newer than a specific transid, and smaller than thresh.
789 * This is used by the defragging code to find new and small
792 static int find_new_extents(struct btrfs_root
*root
,
793 struct inode
*inode
, u64 newer_than
,
794 u64
*off
, int thresh
)
796 struct btrfs_path
*path
;
797 struct btrfs_key min_key
;
798 struct btrfs_key max_key
;
799 struct extent_buffer
*leaf
;
800 struct btrfs_file_extent_item
*extent
;
803 u64 ino
= btrfs_ino(inode
);
805 path
= btrfs_alloc_path();
809 min_key
.objectid
= ino
;
810 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
811 min_key
.offset
= *off
;
813 max_key
.objectid
= ino
;
814 max_key
.type
= (u8
)-1;
815 max_key
.offset
= (u64
)-1;
817 path
->keep_locks
= 1;
820 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
821 path
, 0, newer_than
);
824 if (min_key
.objectid
!= ino
)
826 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
829 leaf
= path
->nodes
[0];
830 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
831 struct btrfs_file_extent_item
);
833 type
= btrfs_file_extent_type(leaf
, extent
);
834 if (type
== BTRFS_FILE_EXTENT_REG
&&
835 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
836 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
837 *off
= min_key
.offset
;
838 btrfs_free_path(path
);
842 if (min_key
.offset
== (u64
)-1)
846 btrfs_release_path(path
);
849 btrfs_free_path(path
);
853 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
855 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
856 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
857 struct extent_map
*em
;
858 u64 len
= PAGE_CACHE_SIZE
;
861 * hopefully we have this extent in the tree already, try without
862 * the full extent lock
864 read_lock(&em_tree
->lock
);
865 em
= lookup_extent_mapping(em_tree
, start
, len
);
866 read_unlock(&em_tree
->lock
);
869 /* get the big lock and read metadata off disk */
870 lock_extent(io_tree
, start
, start
+ len
- 1);
871 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
872 unlock_extent(io_tree
, start
, start
+ len
- 1);
881 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
883 struct extent_map
*next
;
886 /* this is the last extent */
887 if (em
->start
+ em
->len
>= i_size_read(inode
))
890 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
891 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
894 free_extent_map(next
);
898 static int should_defrag_range(struct inode
*inode
, u64 start
, int thresh
,
899 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
902 struct extent_map
*em
;
904 bool next_mergeable
= true;
907 * make sure that once we start defragging an extent, we keep on
910 if (start
< *defrag_end
)
915 em
= defrag_lookup_extent(inode
, start
);
919 /* this will cover holes, and inline extents */
920 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
925 next_mergeable
= defrag_check_next_extent(inode
, em
);
928 * we hit a real extent, if it is big or the next extent is not a
929 * real extent, don't bother defragging it
931 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
932 (em
->len
>= thresh
|| !next_mergeable
))
936 * last_len ends up being a counter of how many bytes we've defragged.
937 * every time we choose not to defrag an extent, we reset *last_len
938 * so that the next tiny extent will force a defrag.
940 * The end result of this is that tiny extents before a single big
941 * extent will force at least part of that big extent to be defragged.
944 *defrag_end
= extent_map_end(em
);
947 *skip
= extent_map_end(em
);
956 * it doesn't do much good to defrag one or two pages
957 * at a time. This pulls in a nice chunk of pages
960 * It also makes sure the delalloc code has enough
961 * dirty data to avoid making new small extents as part
964 * It's a good idea to start RA on this range
965 * before calling this.
967 static int cluster_pages_for_defrag(struct inode
*inode
,
969 unsigned long start_index
,
972 unsigned long file_end
;
973 u64 isize
= i_size_read(inode
);
980 struct btrfs_ordered_extent
*ordered
;
981 struct extent_state
*cached_state
= NULL
;
982 struct extent_io_tree
*tree
;
983 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
985 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
986 if (!isize
|| start_index
> file_end
)
989 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
991 ret
= btrfs_delalloc_reserve_space(inode
,
992 page_cnt
<< PAGE_CACHE_SHIFT
);
996 tree
= &BTRFS_I(inode
)->io_tree
;
998 /* step one, lock all the pages */
999 for (i
= 0; i
< page_cnt
; i
++) {
1002 page
= find_or_create_page(inode
->i_mapping
,
1003 start_index
+ i
, mask
);
1007 page_start
= page_offset(page
);
1008 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
1010 lock_extent(tree
, page_start
, page_end
);
1011 ordered
= btrfs_lookup_ordered_extent(inode
,
1013 unlock_extent(tree
, page_start
, page_end
);
1018 btrfs_start_ordered_extent(inode
, ordered
, 1);
1019 btrfs_put_ordered_extent(ordered
);
1022 * we unlocked the page above, so we need check if
1023 * it was released or not.
1025 if (page
->mapping
!= inode
->i_mapping
) {
1027 page_cache_release(page
);
1032 if (!PageUptodate(page
)) {
1033 btrfs_readpage(NULL
, page
);
1035 if (!PageUptodate(page
)) {
1037 page_cache_release(page
);
1043 if (page
->mapping
!= inode
->i_mapping
) {
1045 page_cache_release(page
);
1055 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1059 * so now we have a nice long stream of locked
1060 * and up to date pages, lets wait on them
1062 for (i
= 0; i
< i_done
; i
++)
1063 wait_on_page_writeback(pages
[i
]);
1065 page_start
= page_offset(pages
[0]);
1066 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1068 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1069 page_start
, page_end
- 1, 0, &cached_state
);
1070 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1071 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1072 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1073 &cached_state
, GFP_NOFS
);
1075 if (i_done
!= page_cnt
) {
1076 spin_lock(&BTRFS_I(inode
)->lock
);
1077 BTRFS_I(inode
)->outstanding_extents
++;
1078 spin_unlock(&BTRFS_I(inode
)->lock
);
1079 btrfs_delalloc_release_space(inode
,
1080 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1084 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1085 &cached_state
, GFP_NOFS
);
1087 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1088 page_start
, page_end
- 1, &cached_state
,
1091 for (i
= 0; i
< i_done
; i
++) {
1092 clear_page_dirty_for_io(pages
[i
]);
1093 ClearPageChecked(pages
[i
]);
1094 set_page_extent_mapped(pages
[i
]);
1095 set_page_dirty(pages
[i
]);
1096 unlock_page(pages
[i
]);
1097 page_cache_release(pages
[i
]);
1101 for (i
= 0; i
< i_done
; i
++) {
1102 unlock_page(pages
[i
]);
1103 page_cache_release(pages
[i
]);
1105 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1110 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1111 struct btrfs_ioctl_defrag_range_args
*range
,
1112 u64 newer_than
, unsigned long max_to_defrag
)
1114 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1115 struct file_ra_state
*ra
= NULL
;
1116 unsigned long last_index
;
1117 u64 isize
= i_size_read(inode
);
1121 u64 newer_off
= range
->start
;
1123 unsigned long ra_index
= 0;
1125 int defrag_count
= 0;
1126 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1127 int extent_thresh
= range
->extent_thresh
;
1128 int max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1129 int cluster
= max_cluster
;
1130 u64 new_align
= ~((u64
)128 * 1024 - 1);
1131 struct page
**pages
= NULL
;
1133 if (extent_thresh
== 0)
1134 extent_thresh
= 256 * 1024;
1136 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1137 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1139 if (range
->compress_type
)
1140 compress_type
= range
->compress_type
;
1147 * if we were not given a file, allocate a readahead
1151 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1154 file_ra_state_init(ra
, inode
->i_mapping
);
1159 pages
= kmalloc(sizeof(struct page
*) * max_cluster
,
1166 /* find the last page to defrag */
1167 if (range
->start
+ range
->len
> range
->start
) {
1168 last_index
= min_t(u64
, isize
- 1,
1169 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1171 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1175 ret
= find_new_extents(root
, inode
, newer_than
,
1176 &newer_off
, 64 * 1024);
1178 range
->start
= newer_off
;
1180 * we always align our defrag to help keep
1181 * the extents in the file evenly spaced
1183 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1187 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1190 max_to_defrag
= last_index
+ 1;
1193 * make writeback starts from i, so the defrag range can be
1194 * written sequentially.
1196 if (i
< inode
->i_mapping
->writeback_index
)
1197 inode
->i_mapping
->writeback_index
= i
;
1199 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1200 (i
< (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
1201 PAGE_CACHE_SHIFT
)) {
1203 * make sure we stop running if someone unmounts
1206 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1209 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1210 extent_thresh
, &last_len
, &skip
,
1211 &defrag_end
, range
->flags
&
1212 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1215 * the should_defrag function tells us how much to skip
1216 * bump our counter by the suggested amount
1218 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1219 i
= max(i
+ 1, next
);
1224 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1225 PAGE_CACHE_SHIFT
) - i
;
1226 cluster
= min(cluster
, max_cluster
);
1228 cluster
= max_cluster
;
1231 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1232 BTRFS_I(inode
)->force_compress
= compress_type
;
1234 if (i
+ cluster
> ra_index
) {
1235 ra_index
= max(i
, ra_index
);
1236 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1238 ra_index
+= max_cluster
;
1241 mutex_lock(&inode
->i_mutex
);
1242 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1244 mutex_unlock(&inode
->i_mutex
);
1248 defrag_count
+= ret
;
1249 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1250 mutex_unlock(&inode
->i_mutex
);
1253 if (newer_off
== (u64
)-1)
1259 newer_off
= max(newer_off
+ 1,
1260 (u64
)i
<< PAGE_CACHE_SHIFT
);
1262 ret
= find_new_extents(root
, inode
,
1263 newer_than
, &newer_off
,
1266 range
->start
= newer_off
;
1267 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1274 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1282 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1283 filemap_flush(inode
->i_mapping
);
1285 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1286 /* the filemap_flush will queue IO into the worker threads, but
1287 * we have to make sure the IO is actually started and that
1288 * ordered extents get created before we return
1290 atomic_inc(&root
->fs_info
->async_submit_draining
);
1291 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1292 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1293 wait_event(root
->fs_info
->async_submit_wait
,
1294 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1295 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1297 atomic_dec(&root
->fs_info
->async_submit_draining
);
1299 mutex_lock(&inode
->i_mutex
);
1300 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1301 mutex_unlock(&inode
->i_mutex
);
1304 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1305 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1317 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1323 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
1324 struct btrfs_ioctl_vol_args
*vol_args
;
1325 struct btrfs_trans_handle
*trans
;
1326 struct btrfs_device
*device
= NULL
;
1328 char *devstr
= NULL
;
1332 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1335 if (!capable(CAP_SYS_ADMIN
))
1338 ret
= mnt_want_write_file(file
);
1342 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1344 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1345 mnt_drop_write_file(file
);
1349 mutex_lock(&root
->fs_info
->volume_mutex
);
1350 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1351 if (IS_ERR(vol_args
)) {
1352 ret
= PTR_ERR(vol_args
);
1356 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1358 sizestr
= vol_args
->name
;
1359 devstr
= strchr(sizestr
, ':');
1362 sizestr
= devstr
+ 1;
1364 devstr
= vol_args
->name
;
1365 devid
= simple_strtoull(devstr
, &end
, 10);
1366 printk(KERN_INFO
"btrfs: resizing devid %llu\n",
1367 (unsigned long long)devid
);
1370 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1372 printk(KERN_INFO
"btrfs: resizer unable to find device %llu\n",
1373 (unsigned long long)devid
);
1378 if (!device
->writeable
) {
1379 printk(KERN_INFO
"btrfs: resizer unable to apply on "
1380 "readonly device %llu\n",
1381 (unsigned long long)devid
);
1386 if (!strcmp(sizestr
, "max"))
1387 new_size
= device
->bdev
->bd_inode
->i_size
;
1389 if (sizestr
[0] == '-') {
1392 } else if (sizestr
[0] == '+') {
1396 new_size
= memparse(sizestr
, NULL
);
1397 if (new_size
== 0) {
1403 if (device
->is_tgtdev_for_dev_replace
) {
1408 old_size
= device
->total_bytes
;
1411 if (new_size
> old_size
) {
1415 new_size
= old_size
- new_size
;
1416 } else if (mod
> 0) {
1417 new_size
= old_size
+ new_size
;
1420 if (new_size
< 256 * 1024 * 1024) {
1424 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1429 do_div(new_size
, root
->sectorsize
);
1430 new_size
*= root
->sectorsize
;
1432 printk_in_rcu(KERN_INFO
"btrfs: new size for %s is %llu\n",
1433 rcu_str_deref(device
->name
),
1434 (unsigned long long)new_size
);
1436 if (new_size
> old_size
) {
1437 trans
= btrfs_start_transaction(root
, 0);
1438 if (IS_ERR(trans
)) {
1439 ret
= PTR_ERR(trans
);
1442 ret
= btrfs_grow_device(trans
, device
, new_size
);
1443 btrfs_commit_transaction(trans
, root
);
1444 } else if (new_size
< old_size
) {
1445 ret
= btrfs_shrink_device(device
, new_size
);
1446 } /* equal, nothing need to do */
1451 mutex_unlock(&root
->fs_info
->volume_mutex
);
1452 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1453 mnt_drop_write_file(file
);
1457 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1458 char *name
, unsigned long fd
, int subvol
,
1459 u64
*transid
, bool readonly
,
1460 struct btrfs_qgroup_inherit
**inherit
)
1465 ret
= mnt_want_write_file(file
);
1469 namelen
= strlen(name
);
1470 if (strchr(name
, '/')) {
1472 goto out_drop_write
;
1475 if (name
[0] == '.' &&
1476 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1478 goto out_drop_write
;
1482 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1483 NULL
, transid
, readonly
, inherit
);
1485 struct fd src
= fdget(fd
);
1486 struct inode
*src_inode
;
1489 goto out_drop_write
;
1492 src_inode
= src
.file
->f_path
.dentry
->d_inode
;
1493 if (src_inode
->i_sb
!= file
->f_path
.dentry
->d_inode
->i_sb
) {
1494 printk(KERN_INFO
"btrfs: Snapshot src from "
1498 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1499 BTRFS_I(src_inode
)->root
,
1500 transid
, readonly
, inherit
);
1505 mnt_drop_write_file(file
);
1510 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1511 void __user
*arg
, int subvol
)
1513 struct btrfs_ioctl_vol_args
*vol_args
;
1516 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1517 if (IS_ERR(vol_args
))
1518 return PTR_ERR(vol_args
);
1519 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1521 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1522 vol_args
->fd
, subvol
,
1529 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1530 void __user
*arg
, int subvol
)
1532 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1536 bool readonly
= false;
1537 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1539 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1540 if (IS_ERR(vol_args
))
1541 return PTR_ERR(vol_args
);
1542 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1544 if (vol_args
->flags
&
1545 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1546 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1551 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1553 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1555 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1556 if (vol_args
->size
> PAGE_CACHE_SIZE
) {
1560 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1561 if (IS_ERR(inherit
)) {
1562 ret
= PTR_ERR(inherit
);
1567 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1568 vol_args
->fd
, subvol
, ptr
,
1569 readonly
, &inherit
);
1571 if (ret
== 0 && ptr
&&
1573 offsetof(struct btrfs_ioctl_vol_args_v2
,
1574 transid
), ptr
, sizeof(*ptr
)))
1582 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1585 struct inode
*inode
= fdentry(file
)->d_inode
;
1586 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1590 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1593 down_read(&root
->fs_info
->subvol_sem
);
1594 if (btrfs_root_readonly(root
))
1595 flags
|= BTRFS_SUBVOL_RDONLY
;
1596 up_read(&root
->fs_info
->subvol_sem
);
1598 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1604 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1607 struct inode
*inode
= fdentry(file
)->d_inode
;
1608 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1609 struct btrfs_trans_handle
*trans
;
1614 ret
= mnt_want_write_file(file
);
1618 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1620 goto out_drop_write
;
1623 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1625 goto out_drop_write
;
1628 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1630 goto out_drop_write
;
1633 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1635 goto out_drop_write
;
1638 if (!inode_owner_or_capable(inode
)) {
1640 goto out_drop_write
;
1643 down_write(&root
->fs_info
->subvol_sem
);
1646 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1649 root_flags
= btrfs_root_flags(&root
->root_item
);
1650 if (flags
& BTRFS_SUBVOL_RDONLY
)
1651 btrfs_set_root_flags(&root
->root_item
,
1652 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1654 btrfs_set_root_flags(&root
->root_item
,
1655 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1657 trans
= btrfs_start_transaction(root
, 1);
1658 if (IS_ERR(trans
)) {
1659 ret
= PTR_ERR(trans
);
1663 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1664 &root
->root_key
, &root
->root_item
);
1666 btrfs_commit_transaction(trans
, root
);
1669 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1671 up_write(&root
->fs_info
->subvol_sem
);
1673 mnt_drop_write_file(file
);
1679 * helper to check if the subvolume references other subvolumes
1681 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1683 struct btrfs_path
*path
;
1684 struct btrfs_key key
;
1687 path
= btrfs_alloc_path();
1691 key
.objectid
= root
->root_key
.objectid
;
1692 key
.type
= BTRFS_ROOT_REF_KEY
;
1693 key
.offset
= (u64
)-1;
1695 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1702 if (path
->slots
[0] > 0) {
1704 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1705 if (key
.objectid
== root
->root_key
.objectid
&&
1706 key
.type
== BTRFS_ROOT_REF_KEY
)
1710 btrfs_free_path(path
);
1714 static noinline
int key_in_sk(struct btrfs_key
*key
,
1715 struct btrfs_ioctl_search_key
*sk
)
1717 struct btrfs_key test
;
1720 test
.objectid
= sk
->min_objectid
;
1721 test
.type
= sk
->min_type
;
1722 test
.offset
= sk
->min_offset
;
1724 ret
= btrfs_comp_cpu_keys(key
, &test
);
1728 test
.objectid
= sk
->max_objectid
;
1729 test
.type
= sk
->max_type
;
1730 test
.offset
= sk
->max_offset
;
1732 ret
= btrfs_comp_cpu_keys(key
, &test
);
1738 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1739 struct btrfs_path
*path
,
1740 struct btrfs_key
*key
,
1741 struct btrfs_ioctl_search_key
*sk
,
1743 unsigned long *sk_offset
,
1747 struct extent_buffer
*leaf
;
1748 struct btrfs_ioctl_search_header sh
;
1749 unsigned long item_off
;
1750 unsigned long item_len
;
1756 leaf
= path
->nodes
[0];
1757 slot
= path
->slots
[0];
1758 nritems
= btrfs_header_nritems(leaf
);
1760 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1764 found_transid
= btrfs_header_generation(leaf
);
1766 for (i
= slot
; i
< nritems
; i
++) {
1767 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1768 item_len
= btrfs_item_size_nr(leaf
, i
);
1770 if (item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1773 if (sizeof(sh
) + item_len
+ *sk_offset
>
1774 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1779 btrfs_item_key_to_cpu(leaf
, key
, i
);
1780 if (!key_in_sk(key
, sk
))
1783 sh
.objectid
= key
->objectid
;
1784 sh
.offset
= key
->offset
;
1785 sh
.type
= key
->type
;
1787 sh
.transid
= found_transid
;
1789 /* copy search result header */
1790 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1791 *sk_offset
+= sizeof(sh
);
1794 char *p
= buf
+ *sk_offset
;
1796 read_extent_buffer(leaf
, p
,
1797 item_off
, item_len
);
1798 *sk_offset
+= item_len
;
1802 if (*num_found
>= sk
->nr_items
)
1807 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1809 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1812 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1822 static noinline
int search_ioctl(struct inode
*inode
,
1823 struct btrfs_ioctl_search_args
*args
)
1825 struct btrfs_root
*root
;
1826 struct btrfs_key key
;
1827 struct btrfs_key max_key
;
1828 struct btrfs_path
*path
;
1829 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1830 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1833 unsigned long sk_offset
= 0;
1835 path
= btrfs_alloc_path();
1839 if (sk
->tree_id
== 0) {
1840 /* search the root of the inode that was passed */
1841 root
= BTRFS_I(inode
)->root
;
1843 key
.objectid
= sk
->tree_id
;
1844 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1845 key
.offset
= (u64
)-1;
1846 root
= btrfs_read_fs_root_no_name(info
, &key
);
1848 printk(KERN_ERR
"could not find root %llu\n",
1850 btrfs_free_path(path
);
1855 key
.objectid
= sk
->min_objectid
;
1856 key
.type
= sk
->min_type
;
1857 key
.offset
= sk
->min_offset
;
1859 max_key
.objectid
= sk
->max_objectid
;
1860 max_key
.type
= sk
->max_type
;
1861 max_key
.offset
= sk
->max_offset
;
1863 path
->keep_locks
= 1;
1866 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0,
1873 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1874 &sk_offset
, &num_found
);
1875 btrfs_release_path(path
);
1876 if (ret
|| num_found
>= sk
->nr_items
)
1882 sk
->nr_items
= num_found
;
1883 btrfs_free_path(path
);
1887 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1890 struct btrfs_ioctl_search_args
*args
;
1891 struct inode
*inode
;
1894 if (!capable(CAP_SYS_ADMIN
))
1897 args
= memdup_user(argp
, sizeof(*args
));
1899 return PTR_ERR(args
);
1901 inode
= fdentry(file
)->d_inode
;
1902 ret
= search_ioctl(inode
, args
);
1903 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1910 * Search INODE_REFs to identify path name of 'dirid' directory
1911 * in a 'tree_id' tree. and sets path name to 'name'.
1913 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1914 u64 tree_id
, u64 dirid
, char *name
)
1916 struct btrfs_root
*root
;
1917 struct btrfs_key key
;
1923 struct btrfs_inode_ref
*iref
;
1924 struct extent_buffer
*l
;
1925 struct btrfs_path
*path
;
1927 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1932 path
= btrfs_alloc_path();
1936 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1938 key
.objectid
= tree_id
;
1939 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1940 key
.offset
= (u64
)-1;
1941 root
= btrfs_read_fs_root_no_name(info
, &key
);
1943 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1948 key
.objectid
= dirid
;
1949 key
.type
= BTRFS_INODE_REF_KEY
;
1950 key
.offset
= (u64
)-1;
1953 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1958 slot
= path
->slots
[0];
1959 if (ret
> 0 && slot
> 0)
1961 btrfs_item_key_to_cpu(l
, &key
, slot
);
1963 if (ret
> 0 && (key
.objectid
!= dirid
||
1964 key
.type
!= BTRFS_INODE_REF_KEY
)) {
1969 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
1970 len
= btrfs_inode_ref_name_len(l
, iref
);
1972 total_len
+= len
+ 1;
1977 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
1979 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
1982 btrfs_release_path(path
);
1983 key
.objectid
= key
.offset
;
1984 key
.offset
= (u64
)-1;
1985 dirid
= key
.objectid
;
1989 memmove(name
, ptr
, total_len
);
1990 name
[total_len
]='\0';
1993 btrfs_free_path(path
);
1997 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2000 struct btrfs_ioctl_ino_lookup_args
*args
;
2001 struct inode
*inode
;
2004 if (!capable(CAP_SYS_ADMIN
))
2007 args
= memdup_user(argp
, sizeof(*args
));
2009 return PTR_ERR(args
);
2011 inode
= fdentry(file
)->d_inode
;
2013 if (args
->treeid
== 0)
2014 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2016 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2017 args
->treeid
, args
->objectid
,
2020 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2027 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2030 struct dentry
*parent
= fdentry(file
);
2031 struct dentry
*dentry
;
2032 struct inode
*dir
= parent
->d_inode
;
2033 struct inode
*inode
;
2034 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2035 struct btrfs_root
*dest
= NULL
;
2036 struct btrfs_ioctl_vol_args
*vol_args
;
2037 struct btrfs_trans_handle
*trans
;
2042 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2043 if (IS_ERR(vol_args
))
2044 return PTR_ERR(vol_args
);
2046 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2047 namelen
= strlen(vol_args
->name
);
2048 if (strchr(vol_args
->name
, '/') ||
2049 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2054 err
= mnt_want_write_file(file
);
2058 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
2059 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2060 if (IS_ERR(dentry
)) {
2061 err
= PTR_ERR(dentry
);
2062 goto out_unlock_dir
;
2065 if (!dentry
->d_inode
) {
2070 inode
= dentry
->d_inode
;
2071 dest
= BTRFS_I(inode
)->root
;
2072 if (!capable(CAP_SYS_ADMIN
)){
2074 * Regular user. Only allow this with a special mount
2075 * option, when the user has write+exec access to the
2076 * subvol root, and when rmdir(2) would have been
2079 * Note that this is _not_ check that the subvol is
2080 * empty or doesn't contain data that we wouldn't
2081 * otherwise be able to delete.
2083 * Users who want to delete empty subvols should try
2087 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2091 * Do not allow deletion if the parent dir is the same
2092 * as the dir to be deleted. That means the ioctl
2093 * must be called on the dentry referencing the root
2094 * of the subvol, not a random directory contained
2101 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2106 /* check if subvolume may be deleted by a user */
2107 err
= btrfs_may_delete(dir
, dentry
, 1);
2111 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2116 mutex_lock(&inode
->i_mutex
);
2117 err
= d_invalidate(dentry
);
2121 down_write(&root
->fs_info
->subvol_sem
);
2123 err
= may_destroy_subvol(dest
);
2127 trans
= btrfs_start_transaction(root
, 0);
2128 if (IS_ERR(trans
)) {
2129 err
= PTR_ERR(trans
);
2132 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2134 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2135 dest
->root_key
.objectid
,
2136 dentry
->d_name
.name
,
2137 dentry
->d_name
.len
);
2140 btrfs_abort_transaction(trans
, root
, ret
);
2144 btrfs_record_root_in_trans(trans
, dest
);
2146 memset(&dest
->root_item
.drop_progress
, 0,
2147 sizeof(dest
->root_item
.drop_progress
));
2148 dest
->root_item
.drop_level
= 0;
2149 btrfs_set_root_refs(&dest
->root_item
, 0);
2151 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
2152 ret
= btrfs_insert_orphan_item(trans
,
2153 root
->fs_info
->tree_root
,
2154 dest
->root_key
.objectid
);
2156 btrfs_abort_transaction(trans
, root
, ret
);
2162 ret
= btrfs_end_transaction(trans
, root
);
2165 inode
->i_flags
|= S_DEAD
;
2167 up_write(&root
->fs_info
->subvol_sem
);
2169 mutex_unlock(&inode
->i_mutex
);
2171 shrink_dcache_sb(root
->fs_info
->sb
);
2172 btrfs_invalidate_inodes(dest
);
2178 mutex_unlock(&dir
->i_mutex
);
2179 mnt_drop_write_file(file
);
2185 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2187 struct inode
*inode
= fdentry(file
)->d_inode
;
2188 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2189 struct btrfs_ioctl_defrag_range_args
*range
;
2192 ret
= mnt_want_write_file(file
);
2196 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2198 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2199 mnt_drop_write_file(file
);
2203 if (btrfs_root_readonly(root
)) {
2208 switch (inode
->i_mode
& S_IFMT
) {
2210 if (!capable(CAP_SYS_ADMIN
)) {
2214 ret
= btrfs_defrag_root(root
, 0);
2217 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
, 0);
2220 if (!(file
->f_mode
& FMODE_WRITE
)) {
2225 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2232 if (copy_from_user(range
, argp
,
2238 /* compression requires us to start the IO */
2239 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2240 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2241 range
->extent_thresh
= (u32
)-1;
2244 /* the rest are all set to zero by kzalloc */
2245 range
->len
= (u64
)-1;
2247 ret
= btrfs_defrag_file(fdentry(file
)->d_inode
, file
,
2257 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2258 mnt_drop_write_file(file
);
2262 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2264 struct btrfs_ioctl_vol_args
*vol_args
;
2267 if (!capable(CAP_SYS_ADMIN
))
2270 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2272 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2276 mutex_lock(&root
->fs_info
->volume_mutex
);
2277 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2278 if (IS_ERR(vol_args
)) {
2279 ret
= PTR_ERR(vol_args
);
2283 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2284 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2288 mutex_unlock(&root
->fs_info
->volume_mutex
);
2289 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2293 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2295 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
2296 struct btrfs_ioctl_vol_args
*vol_args
;
2299 if (!capable(CAP_SYS_ADMIN
))
2302 ret
= mnt_want_write_file(file
);
2306 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2308 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2309 mnt_drop_write_file(file
);
2313 mutex_lock(&root
->fs_info
->volume_mutex
);
2314 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2315 if (IS_ERR(vol_args
)) {
2316 ret
= PTR_ERR(vol_args
);
2320 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2321 ret
= btrfs_rm_device(root
, vol_args
->name
);
2325 mutex_unlock(&root
->fs_info
->volume_mutex
);
2326 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2327 mnt_drop_write_file(file
);
2331 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2333 struct btrfs_ioctl_fs_info_args
*fi_args
;
2334 struct btrfs_device
*device
;
2335 struct btrfs_device
*next
;
2336 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2339 if (!capable(CAP_SYS_ADMIN
))
2342 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2346 fi_args
->num_devices
= fs_devices
->num_devices
;
2347 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2349 mutex_lock(&fs_devices
->device_list_mutex
);
2350 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2351 if (device
->devid
> fi_args
->max_id
)
2352 fi_args
->max_id
= device
->devid
;
2354 mutex_unlock(&fs_devices
->device_list_mutex
);
2356 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2363 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2365 struct btrfs_ioctl_dev_info_args
*di_args
;
2366 struct btrfs_device
*dev
;
2367 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2369 char *s_uuid
= NULL
;
2370 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2372 if (!capable(CAP_SYS_ADMIN
))
2375 di_args
= memdup_user(arg
, sizeof(*di_args
));
2376 if (IS_ERR(di_args
))
2377 return PTR_ERR(di_args
);
2379 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2380 s_uuid
= di_args
->uuid
;
2382 mutex_lock(&fs_devices
->device_list_mutex
);
2383 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2384 mutex_unlock(&fs_devices
->device_list_mutex
);
2391 di_args
->devid
= dev
->devid
;
2392 di_args
->bytes_used
= dev
->bytes_used
;
2393 di_args
->total_bytes
= dev
->total_bytes
;
2394 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2396 struct rcu_string
*name
;
2399 name
= rcu_dereference(dev
->name
);
2400 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2402 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2404 di_args
->path
[0] = '\0';
2408 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2415 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2416 u64 off
, u64 olen
, u64 destoff
)
2418 struct inode
*inode
= fdentry(file
)->d_inode
;
2419 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2422 struct btrfs_trans_handle
*trans
;
2423 struct btrfs_path
*path
;
2424 struct extent_buffer
*leaf
;
2426 struct btrfs_key key
;
2431 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2435 * - split compressed inline extents. annoying: we need to
2436 * decompress into destination's address_space (the file offset
2437 * may change, so source mapping won't do), then recompress (or
2438 * otherwise reinsert) a subrange.
2439 * - allow ranges within the same file to be cloned (provided
2440 * they don't overlap)?
2443 /* the destination must be opened for writing */
2444 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2447 if (btrfs_root_readonly(root
))
2450 ret
= mnt_want_write_file(file
);
2454 src_file
= fdget(srcfd
);
2455 if (!src_file
.file
) {
2457 goto out_drop_write
;
2461 if (src_file
.file
->f_path
.mnt
!= file
->f_path
.mnt
)
2464 src
= src_file
.file
->f_dentry
->d_inode
;
2470 /* the src must be open for reading */
2471 if (!(src_file
.file
->f_mode
& FMODE_READ
))
2474 /* don't make the dst file partly checksummed */
2475 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2476 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
2480 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2484 if (src
->i_sb
!= inode
->i_sb
)
2488 buf
= vmalloc(btrfs_level_size(root
, 0));
2492 path
= btrfs_alloc_path();
2500 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2501 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2503 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2504 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2507 /* determine range to clone */
2509 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2512 olen
= len
= src
->i_size
- off
;
2513 /* if we extend to eof, continue to block boundary */
2514 if (off
+ len
== src
->i_size
)
2515 len
= ALIGN(src
->i_size
, bs
) - off
;
2517 /* verify the end result is block aligned */
2518 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2519 !IS_ALIGNED(destoff
, bs
))
2522 if (destoff
> inode
->i_size
) {
2523 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
2528 /* truncate page cache pages from target inode range */
2529 truncate_inode_pages_range(&inode
->i_data
, destoff
,
2530 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
2532 /* do any pending delalloc/csum calc on src, one way or
2533 another, and lock file content */
2535 struct btrfs_ordered_extent
*ordered
;
2536 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2537 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+ len
- 1);
2539 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1,
2540 EXTENT_DELALLOC
, 0, NULL
))
2542 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2544 btrfs_put_ordered_extent(ordered
);
2545 btrfs_wait_ordered_range(src
, off
, len
);
2549 key
.objectid
= btrfs_ino(src
);
2550 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2555 * note the key will change type as we walk through the
2558 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
2563 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2564 if (path
->slots
[0] >= nritems
) {
2565 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
2570 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2572 leaf
= path
->nodes
[0];
2573 slot
= path
->slots
[0];
2575 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2576 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2577 key
.objectid
!= btrfs_ino(src
))
2580 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2581 struct btrfs_file_extent_item
*extent
;
2584 struct btrfs_key new_key
;
2585 u64 disko
= 0, diskl
= 0;
2586 u64 datao
= 0, datal
= 0;
2590 size
= btrfs_item_size_nr(leaf
, slot
);
2591 read_extent_buffer(leaf
, buf
,
2592 btrfs_item_ptr_offset(leaf
, slot
),
2595 extent
= btrfs_item_ptr(leaf
, slot
,
2596 struct btrfs_file_extent_item
);
2597 comp
= btrfs_file_extent_compression(leaf
, extent
);
2598 type
= btrfs_file_extent_type(leaf
, extent
);
2599 if (type
== BTRFS_FILE_EXTENT_REG
||
2600 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2601 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2603 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2605 datao
= btrfs_file_extent_offset(leaf
, extent
);
2606 datal
= btrfs_file_extent_num_bytes(leaf
,
2608 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2609 /* take upper bound, may be compressed */
2610 datal
= btrfs_file_extent_ram_bytes(leaf
,
2613 btrfs_release_path(path
);
2615 if (key
.offset
+ datal
<= off
||
2616 key
.offset
>= off
+ len
- 1)
2619 memcpy(&new_key
, &key
, sizeof(new_key
));
2620 new_key
.objectid
= btrfs_ino(inode
);
2621 if (off
<= key
.offset
)
2622 new_key
.offset
= key
.offset
+ destoff
- off
;
2624 new_key
.offset
= destoff
;
2627 * 1 - adjusting old extent (we may have to split it)
2628 * 1 - add new extent
2631 trans
= btrfs_start_transaction(root
, 3);
2632 if (IS_ERR(trans
)) {
2633 ret
= PTR_ERR(trans
);
2637 if (type
== BTRFS_FILE_EXTENT_REG
||
2638 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2640 * a | --- range to clone ---| b
2641 * | ------------- extent ------------- |
2644 /* substract range b */
2645 if (key
.offset
+ datal
> off
+ len
)
2646 datal
= off
+ len
- key
.offset
;
2648 /* substract range a */
2649 if (off
> key
.offset
) {
2650 datao
+= off
- key
.offset
;
2651 datal
-= off
- key
.offset
;
2654 ret
= btrfs_drop_extents(trans
, root
, inode
,
2656 new_key
.offset
+ datal
,
2659 btrfs_abort_transaction(trans
, root
,
2661 btrfs_end_transaction(trans
, root
);
2665 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2668 btrfs_abort_transaction(trans
, root
,
2670 btrfs_end_transaction(trans
, root
);
2674 leaf
= path
->nodes
[0];
2675 slot
= path
->slots
[0];
2676 write_extent_buffer(leaf
, buf
,
2677 btrfs_item_ptr_offset(leaf
, slot
),
2680 extent
= btrfs_item_ptr(leaf
, slot
,
2681 struct btrfs_file_extent_item
);
2683 /* disko == 0 means it's a hole */
2687 btrfs_set_file_extent_offset(leaf
, extent
,
2689 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2692 inode_add_bytes(inode
, datal
);
2693 ret
= btrfs_inc_extent_ref(trans
, root
,
2695 root
->root_key
.objectid
,
2697 new_key
.offset
- datao
,
2700 btrfs_abort_transaction(trans
,
2703 btrfs_end_transaction(trans
,
2709 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2712 if (off
> key
.offset
) {
2713 skip
= off
- key
.offset
;
2714 new_key
.offset
+= skip
;
2717 if (key
.offset
+ datal
> off
+ len
)
2718 trim
= key
.offset
+ datal
- (off
+ len
);
2720 if (comp
&& (skip
|| trim
)) {
2722 btrfs_end_transaction(trans
, root
);
2725 size
-= skip
+ trim
;
2726 datal
-= skip
+ trim
;
2728 ret
= btrfs_drop_extents(trans
, root
, inode
,
2730 new_key
.offset
+ datal
,
2733 btrfs_abort_transaction(trans
, root
,
2735 btrfs_end_transaction(trans
, root
);
2739 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2742 btrfs_abort_transaction(trans
, root
,
2744 btrfs_end_transaction(trans
, root
);
2750 btrfs_file_extent_calc_inline_size(0);
2751 memmove(buf
+start
, buf
+start
+skip
,
2755 leaf
= path
->nodes
[0];
2756 slot
= path
->slots
[0];
2757 write_extent_buffer(leaf
, buf
,
2758 btrfs_item_ptr_offset(leaf
, slot
),
2760 inode_add_bytes(inode
, datal
);
2763 btrfs_mark_buffer_dirty(leaf
);
2764 btrfs_release_path(path
);
2766 inode_inc_iversion(inode
);
2767 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2770 * we round up to the block size at eof when
2771 * determining which extents to clone above,
2772 * but shouldn't round up the file size
2774 endoff
= new_key
.offset
+ datal
;
2775 if (endoff
> destoff
+olen
)
2776 endoff
= destoff
+olen
;
2777 if (endoff
> inode
->i_size
)
2778 btrfs_i_size_write(inode
, endoff
);
2780 ret
= btrfs_update_inode(trans
, root
, inode
);
2782 btrfs_abort_transaction(trans
, root
, ret
);
2783 btrfs_end_transaction(trans
, root
);
2786 ret
= btrfs_end_transaction(trans
, root
);
2789 btrfs_release_path(path
);
2794 btrfs_release_path(path
);
2795 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2797 mutex_unlock(&src
->i_mutex
);
2798 mutex_unlock(&inode
->i_mutex
);
2800 btrfs_free_path(path
);
2804 mnt_drop_write_file(file
);
2808 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2810 struct btrfs_ioctl_clone_range_args args
;
2812 if (copy_from_user(&args
, argp
, sizeof(args
)))
2814 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2815 args
.src_length
, args
.dest_offset
);
2819 * there are many ways the trans_start and trans_end ioctls can lead
2820 * to deadlocks. They should only be used by applications that
2821 * basically own the machine, and have a very in depth understanding
2822 * of all the possible deadlocks and enospc problems.
2824 static long btrfs_ioctl_trans_start(struct file
*file
)
2826 struct inode
*inode
= fdentry(file
)->d_inode
;
2827 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2828 struct btrfs_trans_handle
*trans
;
2832 if (!capable(CAP_SYS_ADMIN
))
2836 if (file
->private_data
)
2840 if (btrfs_root_readonly(root
))
2843 ret
= mnt_want_write_file(file
);
2847 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2850 trans
= btrfs_start_ioctl_transaction(root
);
2854 file
->private_data
= trans
;
2858 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2859 mnt_drop_write_file(file
);
2864 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2866 struct inode
*inode
= fdentry(file
)->d_inode
;
2867 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2868 struct btrfs_root
*new_root
;
2869 struct btrfs_dir_item
*di
;
2870 struct btrfs_trans_handle
*trans
;
2871 struct btrfs_path
*path
;
2872 struct btrfs_key location
;
2873 struct btrfs_disk_key disk_key
;
2878 if (!capable(CAP_SYS_ADMIN
))
2881 ret
= mnt_want_write_file(file
);
2885 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
2891 objectid
= root
->root_key
.objectid
;
2893 location
.objectid
= objectid
;
2894 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2895 location
.offset
= (u64
)-1;
2897 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2898 if (IS_ERR(new_root
)) {
2899 ret
= PTR_ERR(new_root
);
2903 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
2908 path
= btrfs_alloc_path();
2913 path
->leave_spinning
= 1;
2915 trans
= btrfs_start_transaction(root
, 1);
2916 if (IS_ERR(trans
)) {
2917 btrfs_free_path(path
);
2918 ret
= PTR_ERR(trans
);
2922 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
2923 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2924 dir_id
, "default", 7, 1);
2925 if (IS_ERR_OR_NULL(di
)) {
2926 btrfs_free_path(path
);
2927 btrfs_end_transaction(trans
, root
);
2928 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2929 "this isn't going to work\n");
2934 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2935 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
2936 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2937 btrfs_free_path(path
);
2939 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
2940 btrfs_end_transaction(trans
, root
);
2942 mnt_drop_write_file(file
);
2946 void btrfs_get_block_group_info(struct list_head
*groups_list
,
2947 struct btrfs_ioctl_space_info
*space
)
2949 struct btrfs_block_group_cache
*block_group
;
2951 space
->total_bytes
= 0;
2952 space
->used_bytes
= 0;
2954 list_for_each_entry(block_group
, groups_list
, list
) {
2955 space
->flags
= block_group
->flags
;
2956 space
->total_bytes
+= block_group
->key
.offset
;
2957 space
->used_bytes
+=
2958 btrfs_block_group_used(&block_group
->item
);
2962 long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
2964 struct btrfs_ioctl_space_args space_args
;
2965 struct btrfs_ioctl_space_info space
;
2966 struct btrfs_ioctl_space_info
*dest
;
2967 struct btrfs_ioctl_space_info
*dest_orig
;
2968 struct btrfs_ioctl_space_info __user
*user_dest
;
2969 struct btrfs_space_info
*info
;
2970 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
2971 BTRFS_BLOCK_GROUP_SYSTEM
,
2972 BTRFS_BLOCK_GROUP_METADATA
,
2973 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
2980 if (copy_from_user(&space_args
,
2981 (struct btrfs_ioctl_space_args __user
*)arg
,
2982 sizeof(space_args
)))
2985 for (i
= 0; i
< num_types
; i
++) {
2986 struct btrfs_space_info
*tmp
;
2990 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2992 if (tmp
->flags
== types
[i
]) {
3002 down_read(&info
->groups_sem
);
3003 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3004 if (!list_empty(&info
->block_groups
[c
]))
3007 up_read(&info
->groups_sem
);
3010 /* space_slots == 0 means they are asking for a count */
3011 if (space_args
.space_slots
== 0) {
3012 space_args
.total_spaces
= slot_count
;
3016 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
3018 alloc_size
= sizeof(*dest
) * slot_count
;
3020 /* we generally have at most 6 or so space infos, one for each raid
3021 * level. So, a whole page should be more than enough for everyone
3023 if (alloc_size
> PAGE_CACHE_SIZE
)
3026 space_args
.total_spaces
= 0;
3027 dest
= kmalloc(alloc_size
, GFP_NOFS
);
3032 /* now we have a buffer to copy into */
3033 for (i
= 0; i
< num_types
; i
++) {
3034 struct btrfs_space_info
*tmp
;
3041 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3043 if (tmp
->flags
== types
[i
]) {
3052 down_read(&info
->groups_sem
);
3053 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3054 if (!list_empty(&info
->block_groups
[c
])) {
3055 btrfs_get_block_group_info(
3056 &info
->block_groups
[c
], &space
);
3057 memcpy(dest
, &space
, sizeof(space
));
3059 space_args
.total_spaces
++;
3065 up_read(&info
->groups_sem
);
3068 user_dest
= (struct btrfs_ioctl_space_info __user
*)
3069 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
3071 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
3076 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
3083 * there are many ways the trans_start and trans_end ioctls can lead
3084 * to deadlocks. They should only be used by applications that
3085 * basically own the machine, and have a very in depth understanding
3086 * of all the possible deadlocks and enospc problems.
3088 long btrfs_ioctl_trans_end(struct file
*file
)
3090 struct inode
*inode
= fdentry(file
)->d_inode
;
3091 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3092 struct btrfs_trans_handle
*trans
;
3094 trans
= file
->private_data
;
3097 file
->private_data
= NULL
;
3099 btrfs_end_transaction(trans
, root
);
3101 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3103 mnt_drop_write_file(file
);
3107 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
3110 struct btrfs_trans_handle
*trans
;
3114 trans
= btrfs_attach_transaction(root
);
3115 if (IS_ERR(trans
)) {
3116 if (PTR_ERR(trans
) != -ENOENT
)
3117 return PTR_ERR(trans
);
3119 /* No running transaction, don't bother */
3120 transid
= root
->fs_info
->last_trans_committed
;
3123 transid
= trans
->transid
;
3124 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
3126 btrfs_end_transaction(trans
, root
);
3131 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
3136 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
3142 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
3145 transid
= 0; /* current trans */
3147 return btrfs_wait_for_commit(root
, transid
);
3150 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
3152 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3153 struct btrfs_ioctl_scrub_args
*sa
;
3156 if (!capable(CAP_SYS_ADMIN
))
3159 sa
= memdup_user(arg
, sizeof(*sa
));
3163 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
3164 ret
= mnt_want_write_file(file
);
3169 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
3170 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
3173 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3176 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
3177 mnt_drop_write_file(file
);
3183 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
3185 if (!capable(CAP_SYS_ADMIN
))
3188 return btrfs_scrub_cancel(root
->fs_info
);
3191 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
3194 struct btrfs_ioctl_scrub_args
*sa
;
3197 if (!capable(CAP_SYS_ADMIN
))
3200 sa
= memdup_user(arg
, sizeof(*sa
));
3204 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
3206 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3213 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
3216 struct btrfs_ioctl_get_dev_stats
*sa
;
3219 sa
= memdup_user(arg
, sizeof(*sa
));
3223 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
3228 ret
= btrfs_get_dev_stats(root
, sa
);
3230 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3237 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
3239 struct btrfs_ioctl_dev_replace_args
*p
;
3242 if (!capable(CAP_SYS_ADMIN
))
3245 p
= memdup_user(arg
, sizeof(*p
));
3250 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
3252 &root
->fs_info
->mutually_exclusive_operation_running
,
3254 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3257 ret
= btrfs_dev_replace_start(root
, p
);
3259 &root
->fs_info
->mutually_exclusive_operation_running
,
3263 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
3264 btrfs_dev_replace_status(root
->fs_info
, p
);
3267 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
3268 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
3275 if (copy_to_user(arg
, p
, sizeof(*p
)))
3282 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
3288 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
3289 struct inode_fs_paths
*ipath
= NULL
;
3290 struct btrfs_path
*path
;
3292 if (!capable(CAP_SYS_ADMIN
))
3295 path
= btrfs_alloc_path();
3301 ipa
= memdup_user(arg
, sizeof(*ipa
));
3308 size
= min_t(u32
, ipa
->size
, 4096);
3309 ipath
= init_ipath(size
, root
, path
);
3310 if (IS_ERR(ipath
)) {
3311 ret
= PTR_ERR(ipath
);
3316 ret
= paths_from_inode(ipa
->inum
, ipath
);
3320 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
3321 rel_ptr
= ipath
->fspath
->val
[i
] -
3322 (u64
)(unsigned long)ipath
->fspath
->val
;
3323 ipath
->fspath
->val
[i
] = rel_ptr
;
3326 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
3327 (void *)(unsigned long)ipath
->fspath
, size
);
3334 btrfs_free_path(path
);
3341 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3343 struct btrfs_data_container
*inodes
= ctx
;
3344 const size_t c
= 3 * sizeof(u64
);
3346 if (inodes
->bytes_left
>= c
) {
3347 inodes
->bytes_left
-= c
;
3348 inodes
->val
[inodes
->elem_cnt
] = inum
;
3349 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
3350 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
3351 inodes
->elem_cnt
+= 3;
3353 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
3354 inodes
->bytes_left
= 0;
3355 inodes
->elem_missed
+= 3;
3361 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
3366 struct btrfs_ioctl_logical_ino_args
*loi
;
3367 struct btrfs_data_container
*inodes
= NULL
;
3368 struct btrfs_path
*path
= NULL
;
3370 if (!capable(CAP_SYS_ADMIN
))
3373 loi
= memdup_user(arg
, sizeof(*loi
));
3380 path
= btrfs_alloc_path();
3386 size
= min_t(u32
, loi
->size
, 64 * 1024);
3387 inodes
= init_data_container(size
);
3388 if (IS_ERR(inodes
)) {
3389 ret
= PTR_ERR(inodes
);
3394 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
3395 build_ino_list
, inodes
);
3401 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
3402 (void *)(unsigned long)inodes
, size
);
3407 btrfs_free_path(path
);
3414 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
3415 struct btrfs_ioctl_balance_args
*bargs
)
3417 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3419 bargs
->flags
= bctl
->flags
;
3421 if (atomic_read(&fs_info
->balance_running
))
3422 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
3423 if (atomic_read(&fs_info
->balance_pause_req
))
3424 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
3425 if (atomic_read(&fs_info
->balance_cancel_req
))
3426 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
3428 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
3429 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
3430 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
3433 spin_lock(&fs_info
->balance_lock
);
3434 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3435 spin_unlock(&fs_info
->balance_lock
);
3437 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3441 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
3443 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3444 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3445 struct btrfs_ioctl_balance_args
*bargs
;
3446 struct btrfs_balance_control
*bctl
;
3447 bool need_unlock
; /* for mut. excl. ops lock */
3450 if (!capable(CAP_SYS_ADMIN
))
3453 ret
= mnt_want_write_file(file
);
3458 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
3459 mutex_lock(&fs_info
->volume_mutex
);
3460 mutex_lock(&fs_info
->balance_mutex
);
3466 * mut. excl. ops lock is locked. Three possibilites:
3467 * (1) some other op is running
3468 * (2) balance is running
3469 * (3) balance is paused -- special case (think resume)
3471 mutex_lock(&fs_info
->balance_mutex
);
3472 if (fs_info
->balance_ctl
) {
3473 /* this is either (2) or (3) */
3474 if (!atomic_read(&fs_info
->balance_running
)) {
3475 mutex_unlock(&fs_info
->balance_mutex
);
3476 if (!mutex_trylock(&fs_info
->volume_mutex
))
3478 mutex_lock(&fs_info
->balance_mutex
);
3480 if (fs_info
->balance_ctl
&&
3481 !atomic_read(&fs_info
->balance_running
)) {
3483 need_unlock
= false;
3487 mutex_unlock(&fs_info
->balance_mutex
);
3488 mutex_unlock(&fs_info
->volume_mutex
);
3492 mutex_unlock(&fs_info
->balance_mutex
);
3498 mutex_unlock(&fs_info
->balance_mutex
);
3499 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3505 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
3508 bargs
= memdup_user(arg
, sizeof(*bargs
));
3509 if (IS_ERR(bargs
)) {
3510 ret
= PTR_ERR(bargs
);
3514 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
3515 if (!fs_info
->balance_ctl
) {
3520 bctl
= fs_info
->balance_ctl
;
3521 spin_lock(&fs_info
->balance_lock
);
3522 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3523 spin_unlock(&fs_info
->balance_lock
);
3531 if (fs_info
->balance_ctl
) {
3536 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3542 bctl
->fs_info
= fs_info
;
3544 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
3545 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
3546 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
3548 bctl
->flags
= bargs
->flags
;
3550 /* balance everything - no filters */
3551 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
3556 * Ownership of bctl and mutually_exclusive_operation_running
3557 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3558 * or, if restriper was paused all the way until unmount, in
3559 * free_fs_info. mutually_exclusive_operation_running is
3560 * cleared in __cancel_balance.
3562 need_unlock
= false;
3564 ret
= btrfs_balance(bctl
, bargs
);
3567 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3574 mutex_unlock(&fs_info
->balance_mutex
);
3575 mutex_unlock(&fs_info
->volume_mutex
);
3577 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3579 mnt_drop_write_file(file
);
3583 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
3585 if (!capable(CAP_SYS_ADMIN
))
3589 case BTRFS_BALANCE_CTL_PAUSE
:
3590 return btrfs_pause_balance(root
->fs_info
);
3591 case BTRFS_BALANCE_CTL_CANCEL
:
3592 return btrfs_cancel_balance(root
->fs_info
);
3598 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
3601 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3602 struct btrfs_ioctl_balance_args
*bargs
;
3605 if (!capable(CAP_SYS_ADMIN
))
3608 mutex_lock(&fs_info
->balance_mutex
);
3609 if (!fs_info
->balance_ctl
) {
3614 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
3620 update_ioctl_balance_args(fs_info
, 1, bargs
);
3622 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3627 mutex_unlock(&fs_info
->balance_mutex
);
3631 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
3633 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3634 struct btrfs_ioctl_quota_ctl_args
*sa
;
3635 struct btrfs_trans_handle
*trans
= NULL
;
3639 if (!capable(CAP_SYS_ADMIN
))
3642 ret
= mnt_want_write_file(file
);
3646 sa
= memdup_user(arg
, sizeof(*sa
));
3652 if (sa
->cmd
!= BTRFS_QUOTA_CTL_RESCAN
) {
3653 trans
= btrfs_start_transaction(root
, 2);
3654 if (IS_ERR(trans
)) {
3655 ret
= PTR_ERR(trans
);
3661 case BTRFS_QUOTA_CTL_ENABLE
:
3662 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
3664 case BTRFS_QUOTA_CTL_DISABLE
:
3665 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
3667 case BTRFS_QUOTA_CTL_RESCAN
:
3668 ret
= btrfs_quota_rescan(root
->fs_info
);
3675 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3679 err
= btrfs_commit_transaction(trans
, root
);
3686 mnt_drop_write_file(file
);
3690 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
3692 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3693 struct btrfs_ioctl_qgroup_assign_args
*sa
;
3694 struct btrfs_trans_handle
*trans
;
3698 if (!capable(CAP_SYS_ADMIN
))
3701 ret
= mnt_want_write_file(file
);
3705 sa
= memdup_user(arg
, sizeof(*sa
));
3711 trans
= btrfs_join_transaction(root
);
3712 if (IS_ERR(trans
)) {
3713 ret
= PTR_ERR(trans
);
3717 /* FIXME: check if the IDs really exist */
3719 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
3722 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
3726 err
= btrfs_end_transaction(trans
, root
);
3733 mnt_drop_write_file(file
);
3737 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
3739 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3740 struct btrfs_ioctl_qgroup_create_args
*sa
;
3741 struct btrfs_trans_handle
*trans
;
3745 if (!capable(CAP_SYS_ADMIN
))
3748 ret
= mnt_want_write_file(file
);
3752 sa
= memdup_user(arg
, sizeof(*sa
));
3758 if (!sa
->qgroupid
) {
3763 trans
= btrfs_join_transaction(root
);
3764 if (IS_ERR(trans
)) {
3765 ret
= PTR_ERR(trans
);
3769 /* FIXME: check if the IDs really exist */
3771 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
,
3774 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
3777 err
= btrfs_end_transaction(trans
, root
);
3784 mnt_drop_write_file(file
);
3788 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
3790 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3791 struct btrfs_ioctl_qgroup_limit_args
*sa
;
3792 struct btrfs_trans_handle
*trans
;
3797 if (!capable(CAP_SYS_ADMIN
))
3800 ret
= mnt_want_write_file(file
);
3804 sa
= memdup_user(arg
, sizeof(*sa
));
3810 trans
= btrfs_join_transaction(root
);
3811 if (IS_ERR(trans
)) {
3812 ret
= PTR_ERR(trans
);
3816 qgroupid
= sa
->qgroupid
;
3818 /* take the current subvol as qgroup */
3819 qgroupid
= root
->root_key
.objectid
;
3822 /* FIXME: check if the IDs really exist */
3823 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
3825 err
= btrfs_end_transaction(trans
, root
);
3832 mnt_drop_write_file(file
);
3836 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
3839 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
3840 struct inode
*inode
= fdentry(file
)->d_inode
;
3841 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3842 struct btrfs_root_item
*root_item
= &root
->root_item
;
3843 struct btrfs_trans_handle
*trans
;
3844 struct timespec ct
= CURRENT_TIME
;
3847 ret
= mnt_want_write_file(file
);
3851 down_write(&root
->fs_info
->subvol_sem
);
3853 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
3858 if (btrfs_root_readonly(root
)) {
3863 if (!inode_owner_or_capable(inode
)) {
3868 sa
= memdup_user(arg
, sizeof(*sa
));
3875 trans
= btrfs_start_transaction(root
, 1);
3876 if (IS_ERR(trans
)) {
3877 ret
= PTR_ERR(trans
);
3882 sa
->rtransid
= trans
->transid
;
3883 sa
->rtime
.sec
= ct
.tv_sec
;
3884 sa
->rtime
.nsec
= ct
.tv_nsec
;
3886 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
3887 btrfs_set_root_stransid(root_item
, sa
->stransid
);
3888 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
3889 root_item
->stime
.sec
= cpu_to_le64(sa
->stime
.sec
);
3890 root_item
->stime
.nsec
= cpu_to_le32(sa
->stime
.nsec
);
3891 root_item
->rtime
.sec
= cpu_to_le64(sa
->rtime
.sec
);
3892 root_item
->rtime
.nsec
= cpu_to_le32(sa
->rtime
.nsec
);
3894 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
3895 &root
->root_key
, &root
->root_item
);
3897 btrfs_end_transaction(trans
, root
);
3901 ret
= btrfs_commit_transaction(trans
, root
);
3906 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
3912 up_write(&root
->fs_info
->subvol_sem
);
3913 mnt_drop_write_file(file
);
3917 long btrfs_ioctl(struct file
*file
, unsigned int
3918 cmd
, unsigned long arg
)
3920 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3921 void __user
*argp
= (void __user
*)arg
;
3924 case FS_IOC_GETFLAGS
:
3925 return btrfs_ioctl_getflags(file
, argp
);
3926 case FS_IOC_SETFLAGS
:
3927 return btrfs_ioctl_setflags(file
, argp
);
3928 case FS_IOC_GETVERSION
:
3929 return btrfs_ioctl_getversion(file
, argp
);
3931 return btrfs_ioctl_fitrim(file
, argp
);
3932 case BTRFS_IOC_SNAP_CREATE
:
3933 return btrfs_ioctl_snap_create(file
, argp
, 0);
3934 case BTRFS_IOC_SNAP_CREATE_V2
:
3935 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
3936 case BTRFS_IOC_SUBVOL_CREATE
:
3937 return btrfs_ioctl_snap_create(file
, argp
, 1);
3938 case BTRFS_IOC_SUBVOL_CREATE_V2
:
3939 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
3940 case BTRFS_IOC_SNAP_DESTROY
:
3941 return btrfs_ioctl_snap_destroy(file
, argp
);
3942 case BTRFS_IOC_SUBVOL_GETFLAGS
:
3943 return btrfs_ioctl_subvol_getflags(file
, argp
);
3944 case BTRFS_IOC_SUBVOL_SETFLAGS
:
3945 return btrfs_ioctl_subvol_setflags(file
, argp
);
3946 case BTRFS_IOC_DEFAULT_SUBVOL
:
3947 return btrfs_ioctl_default_subvol(file
, argp
);
3948 case BTRFS_IOC_DEFRAG
:
3949 return btrfs_ioctl_defrag(file
, NULL
);
3950 case BTRFS_IOC_DEFRAG_RANGE
:
3951 return btrfs_ioctl_defrag(file
, argp
);
3952 case BTRFS_IOC_RESIZE
:
3953 return btrfs_ioctl_resize(file
, argp
);
3954 case BTRFS_IOC_ADD_DEV
:
3955 return btrfs_ioctl_add_dev(root
, argp
);
3956 case BTRFS_IOC_RM_DEV
:
3957 return btrfs_ioctl_rm_dev(file
, argp
);
3958 case BTRFS_IOC_FS_INFO
:
3959 return btrfs_ioctl_fs_info(root
, argp
);
3960 case BTRFS_IOC_DEV_INFO
:
3961 return btrfs_ioctl_dev_info(root
, argp
);
3962 case BTRFS_IOC_BALANCE
:
3963 return btrfs_ioctl_balance(file
, NULL
);
3964 case BTRFS_IOC_CLONE
:
3965 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
3966 case BTRFS_IOC_CLONE_RANGE
:
3967 return btrfs_ioctl_clone_range(file
, argp
);
3968 case BTRFS_IOC_TRANS_START
:
3969 return btrfs_ioctl_trans_start(file
);
3970 case BTRFS_IOC_TRANS_END
:
3971 return btrfs_ioctl_trans_end(file
);
3972 case BTRFS_IOC_TREE_SEARCH
:
3973 return btrfs_ioctl_tree_search(file
, argp
);
3974 case BTRFS_IOC_INO_LOOKUP
:
3975 return btrfs_ioctl_ino_lookup(file
, argp
);
3976 case BTRFS_IOC_INO_PATHS
:
3977 return btrfs_ioctl_ino_to_path(root
, argp
);
3978 case BTRFS_IOC_LOGICAL_INO
:
3979 return btrfs_ioctl_logical_to_ino(root
, argp
);
3980 case BTRFS_IOC_SPACE_INFO
:
3981 return btrfs_ioctl_space_info(root
, argp
);
3982 case BTRFS_IOC_SYNC
:
3983 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
3985 case BTRFS_IOC_START_SYNC
:
3986 return btrfs_ioctl_start_sync(root
, argp
);
3987 case BTRFS_IOC_WAIT_SYNC
:
3988 return btrfs_ioctl_wait_sync(root
, argp
);
3989 case BTRFS_IOC_SCRUB
:
3990 return btrfs_ioctl_scrub(file
, argp
);
3991 case BTRFS_IOC_SCRUB_CANCEL
:
3992 return btrfs_ioctl_scrub_cancel(root
, argp
);
3993 case BTRFS_IOC_SCRUB_PROGRESS
:
3994 return btrfs_ioctl_scrub_progress(root
, argp
);
3995 case BTRFS_IOC_BALANCE_V2
:
3996 return btrfs_ioctl_balance(file
, argp
);
3997 case BTRFS_IOC_BALANCE_CTL
:
3998 return btrfs_ioctl_balance_ctl(root
, arg
);
3999 case BTRFS_IOC_BALANCE_PROGRESS
:
4000 return btrfs_ioctl_balance_progress(root
, argp
);
4001 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
4002 return btrfs_ioctl_set_received_subvol(file
, argp
);
4003 case BTRFS_IOC_SEND
:
4004 return btrfs_ioctl_send(file
, argp
);
4005 case BTRFS_IOC_GET_DEV_STATS
:
4006 return btrfs_ioctl_get_dev_stats(root
, argp
);
4007 case BTRFS_IOC_QUOTA_CTL
:
4008 return btrfs_ioctl_quota_ctl(file
, argp
);
4009 case BTRFS_IOC_QGROUP_ASSIGN
:
4010 return btrfs_ioctl_qgroup_assign(file
, argp
);
4011 case BTRFS_IOC_QGROUP_CREATE
:
4012 return btrfs_ioctl_qgroup_create(file
, argp
);
4013 case BTRFS_IOC_QGROUP_LIMIT
:
4014 return btrfs_ioctl_qgroup_limit(file
, argp
);
4015 case BTRFS_IOC_DEV_REPLACE
:
4016 return btrfs_ioctl_dev_replace(root
, argp
);