2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
34 #include "btrfs_inode.h"
35 #include "transaction.h"
37 static int g_verbose
= 0;
39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42 * A fs_path is a helper to dynamically build path names with unknown size.
43 * It reallocates the internal buffer on demand.
44 * It allows fast adding of path elements on the right side (normal path) and
45 * fast adding to the left side (reversed path). A reversed path can also be
46 * unreversed if needed.
64 #define FS_PATH_INLINE_SIZE \
65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68 /* reused for each extent */
70 struct btrfs_root
*root
;
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81 struct file
*send_filp
;
87 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
91 struct btrfs_root
*send_root
;
92 struct btrfs_root
*parent_root
;
93 struct clone_root
*clone_roots
;
96 /* current state of the compare_tree call */
97 struct btrfs_path
*left_path
;
98 struct btrfs_path
*right_path
;
99 struct btrfs_key
*cmp_key
;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen
;
109 int cur_inode_deleted
;
115 struct list_head new_refs
;
116 struct list_head deleted_refs
;
118 struct radix_tree_root name_cache
;
119 struct list_head name_cache_list
;
122 struct file
*cur_inode_filp
;
126 struct name_cache_entry
{
127 struct list_head list
;
129 * radix_tree has only 32bit entries but we need to handle 64bit inums.
130 * We use the lower 32bit of the 64bit inum to store it in the tree. If
131 * more then one inum would fall into the same entry, we use radix_list
132 * to store the additional entries. radix_list is also used to store
133 * entries where two entries have the same inum but different
136 struct list_head radix_list
;
142 int need_later_update
;
147 static void fs_path_reset(struct fs_path
*p
)
150 p
->start
= p
->buf
+ p
->buf_len
- 1;
160 static struct fs_path
*fs_path_alloc(struct send_ctx
*sctx
)
164 p
= kmalloc(sizeof(*p
), GFP_NOFS
);
169 p
->buf
= p
->inline_buf
;
170 p
->buf_len
= FS_PATH_INLINE_SIZE
;
175 static struct fs_path
*fs_path_alloc_reversed(struct send_ctx
*sctx
)
179 p
= fs_path_alloc(sctx
);
187 static void fs_path_free(struct send_ctx
*sctx
, struct fs_path
*p
)
191 if (p
->buf
!= p
->inline_buf
) {
200 static int fs_path_len(struct fs_path
*p
)
202 return p
->end
- p
->start
;
205 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
213 if (p
->buf_len
>= len
)
216 path_len
= p
->end
- p
->start
;
217 old_buf_len
= p
->buf_len
;
218 len
= PAGE_ALIGN(len
);
220 if (p
->buf
== p
->inline_buf
) {
221 tmp_buf
= kmalloc(len
, GFP_NOFS
);
223 tmp_buf
= vmalloc(len
);
228 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
232 if (p
->virtual_mem
) {
233 tmp_buf
= vmalloc(len
);
236 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
239 tmp_buf
= krealloc(p
->buf
, len
, GFP_NOFS
);
241 tmp_buf
= vmalloc(len
);
244 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
253 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
254 p
->end
= p
->buf
+ p
->buf_len
- 1;
255 p
->start
= p
->end
- path_len
;
256 memmove(p
->start
, tmp_buf
, path_len
+ 1);
259 p
->end
= p
->start
+ path_len
;
264 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
)
269 new_len
= p
->end
- p
->start
+ name_len
;
270 if (p
->start
!= p
->end
)
272 ret
= fs_path_ensure_buf(p
, new_len
);
277 if (p
->start
!= p
->end
)
279 p
->start
-= name_len
;
280 p
->prepared
= p
->start
;
282 if (p
->start
!= p
->end
)
284 p
->prepared
= p
->end
;
293 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
297 ret
= fs_path_prepare_for_add(p
, name_len
);
300 memcpy(p
->prepared
, name
, name_len
);
307 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
311 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
);
314 memcpy(p
->prepared
, p2
->start
, p2
->end
- p2
->start
);
321 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
322 struct extent_buffer
*eb
,
323 unsigned long off
, int len
)
327 ret
= fs_path_prepare_for_add(p
, len
);
331 read_extent_buffer(eb
, p
->prepared
, off
, len
);
339 static void fs_path_remove(struct fs_path
*p
)
342 while (p
->start
!= p
->end
&& *p
->end
!= '/')
348 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
352 p
->reversed
= from
->reversed
;
355 ret
= fs_path_add_path(p
, from
);
361 static void fs_path_unreverse(struct fs_path
*p
)
370 len
= p
->end
- p
->start
;
372 p
->end
= p
->start
+ len
;
373 memmove(p
->start
, tmp
, len
+ 1);
377 static struct btrfs_path
*alloc_path_for_send(void)
379 struct btrfs_path
*path
;
381 path
= btrfs_alloc_path();
384 path
->search_commit_root
= 1;
385 path
->skip_locking
= 1;
389 int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
399 ret
= vfs_write(filp
, (char *)buf
+ pos
, len
- pos
, off
);
400 /* TODO handle that correctly */
401 /*if (ret == -ERESTARTSYS) {
420 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
422 struct btrfs_tlv_header
*hdr
;
423 int total_len
= sizeof(*hdr
) + len
;
424 int left
= sctx
->send_max_size
- sctx
->send_size
;
426 if (unlikely(left
< total_len
))
429 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
430 hdr
->tlv_type
= cpu_to_le16(attr
);
431 hdr
->tlv_len
= cpu_to_le16(len
);
432 memcpy(hdr
+ 1, data
, len
);
433 sctx
->send_size
+= total_len
;
439 static int tlv_put_u8(struct send_ctx
*sctx
, u16 attr
, u8 value
)
441 return tlv_put(sctx
, attr
, &value
, sizeof(value
));
444 static int tlv_put_u16(struct send_ctx
*sctx
, u16 attr
, u16 value
)
446 __le16 tmp
= cpu_to_le16(value
);
447 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
450 static int tlv_put_u32(struct send_ctx
*sctx
, u16 attr
, u32 value
)
452 __le32 tmp
= cpu_to_le32(value
);
453 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
457 static int tlv_put_u64(struct send_ctx
*sctx
, u16 attr
, u64 value
)
459 __le64 tmp
= cpu_to_le64(value
);
460 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
463 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
464 const char *str
, int len
)
468 return tlv_put(sctx
, attr
, str
, len
);
471 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
474 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
478 static int tlv_put_timespec(struct send_ctx
*sctx
, u16 attr
,
481 struct btrfs_timespec bts
;
482 bts
.sec
= cpu_to_le64(ts
->tv_sec
);
483 bts
.nsec
= cpu_to_le32(ts
->tv_nsec
);
484 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
488 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
489 struct extent_buffer
*eb
,
490 struct btrfs_timespec
*ts
)
492 struct btrfs_timespec bts
;
493 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
494 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
498 #define TLV_PUT(sctx, attrtype, attrlen, data) \
500 ret = tlv_put(sctx, attrtype, attrlen, data); \
502 goto tlv_put_failure; \
505 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 ret = tlv_put_u##bits(sctx, attrtype, value); \
509 goto tlv_put_failure; \
512 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
513 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
514 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
515 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
516 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 ret = tlv_put_string(sctx, attrtype, str, len); \
520 goto tlv_put_failure; \
522 #define TLV_PUT_PATH(sctx, attrtype, p) \
524 ret = tlv_put_string(sctx, attrtype, p->start, \
525 p->end - p->start); \
527 goto tlv_put_failure; \
529 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 goto tlv_put_failure; \
535 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 ret = tlv_put_timespec(sctx, attrtype, ts); \
539 goto tlv_put_failure; \
541 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 goto tlv_put_failure; \
548 static int send_header(struct send_ctx
*sctx
)
550 struct btrfs_stream_header hdr
;
552 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
553 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
555 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
560 * For each command/item we want to send to userspace, we call this function.
562 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
564 struct btrfs_cmd_header
*hdr
;
566 if (!sctx
->send_buf
) {
571 BUG_ON(sctx
->send_size
);
573 sctx
->send_size
+= sizeof(*hdr
);
574 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
575 hdr
->cmd
= cpu_to_le16(cmd
);
580 static int send_cmd(struct send_ctx
*sctx
)
583 struct btrfs_cmd_header
*hdr
;
586 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
587 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
590 crc
= crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
591 hdr
->crc
= cpu_to_le32(crc
);
593 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
596 sctx
->total_send_size
+= sctx
->send_size
;
597 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
604 * Sends a move instruction to user space
606 static int send_rename(struct send_ctx
*sctx
,
607 struct fs_path
*from
, struct fs_path
*to
)
611 verbose_printk("btrfs: send_rename %s -> %s\n", from
->start
, to
->start
);
613 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
617 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
618 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
620 ret
= send_cmd(sctx
);
628 * Sends a link instruction to user space
630 static int send_link(struct send_ctx
*sctx
,
631 struct fs_path
*path
, struct fs_path
*lnk
)
635 verbose_printk("btrfs: send_link %s -> %s\n", path
->start
, lnk
->start
);
637 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
641 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
642 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
644 ret
= send_cmd(sctx
);
652 * Sends an unlink instruction to user space
654 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
658 verbose_printk("btrfs: send_unlink %s\n", path
->start
);
660 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
664 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
666 ret
= send_cmd(sctx
);
674 * Sends a rmdir instruction to user space
676 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
680 verbose_printk("btrfs: send_rmdir %s\n", path
->start
);
682 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
686 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
688 ret
= send_cmd(sctx
);
696 * Helper function to retrieve some fields from an inode item.
698 static int get_inode_info(struct btrfs_root
*root
,
699 u64 ino
, u64
*size
, u64
*gen
,
700 u64
*mode
, u64
*uid
, u64
*gid
,
704 struct btrfs_inode_item
*ii
;
705 struct btrfs_key key
;
706 struct btrfs_path
*path
;
708 path
= alloc_path_for_send();
713 key
.type
= BTRFS_INODE_ITEM_KEY
;
715 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
723 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
724 struct btrfs_inode_item
);
726 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
728 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
730 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
732 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
734 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
736 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
739 btrfs_free_path(path
);
743 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
748 * Helper function to iterate the entries in ONE btrfs_inode_ref or
749 * btrfs_inode_extref.
750 * The iterate callback may return a non zero value to stop iteration. This can
751 * be a negative value for error codes or 1 to simply stop it.
753 * path must point to the INODE_REF or INODE_EXTREF when called.
755 static int iterate_inode_ref(struct send_ctx
*sctx
,
756 struct btrfs_root
*root
, struct btrfs_path
*path
,
757 struct btrfs_key
*found_key
, int resolve
,
758 iterate_inode_ref_t iterate
, void *ctx
)
760 struct extent_buffer
*eb
= path
->nodes
[0];
761 struct btrfs_item
*item
;
762 struct btrfs_inode_ref
*iref
;
763 struct btrfs_inode_extref
*extref
;
764 struct btrfs_path
*tmp_path
;
768 int slot
= path
->slots
[0];
775 unsigned long name_off
;
776 unsigned long elem_size
;
779 p
= fs_path_alloc_reversed(sctx
);
783 tmp_path
= alloc_path_for_send();
785 fs_path_free(sctx
, p
);
790 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
791 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
792 struct btrfs_inode_ref
);
793 item
= btrfs_item_nr(eb
, slot
);
794 total
= btrfs_item_size(eb
, item
);
795 elem_size
= sizeof(*iref
);
797 ptr
= btrfs_item_ptr_offset(eb
, slot
);
798 total
= btrfs_item_size_nr(eb
, slot
);
799 elem_size
= sizeof(*extref
);
802 while (cur
< total
) {
805 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
806 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
807 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
808 name_off
= (unsigned long)(iref
+ 1);
809 index
= btrfs_inode_ref_index(eb
, iref
);
810 dir
= found_key
->offset
;
812 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
813 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
814 name_off
= (unsigned long)&extref
->name
;
815 index
= btrfs_inode_extref_index(eb
, extref
);
816 dir
= btrfs_inode_extref_parent(eb
, extref
);
820 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
824 ret
= PTR_ERR(start
);
827 if (start
< p
->buf
) {
828 /* overflow , try again with larger buffer */
829 ret
= fs_path_ensure_buf(p
,
830 p
->buf_len
+ p
->buf
- start
);
833 start
= btrfs_ref_to_path(root
, tmp_path
,
838 ret
= PTR_ERR(start
);
841 BUG_ON(start
< p
->buf
);
845 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
851 cur
+= elem_size
+ name_len
;
852 ret
= iterate(num
, dir
, index
, p
, ctx
);
859 btrfs_free_path(tmp_path
);
860 fs_path_free(sctx
, p
);
864 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
865 const char *name
, int name_len
,
866 const char *data
, int data_len
,
870 * Helper function to iterate the entries in ONE btrfs_dir_item.
871 * The iterate callback may return a non zero value to stop iteration. This can
872 * be a negative value for error codes or 1 to simply stop it.
874 * path must point to the dir item when called.
876 static int iterate_dir_item(struct send_ctx
*sctx
,
877 struct btrfs_root
*root
, struct btrfs_path
*path
,
878 struct btrfs_key
*found_key
,
879 iterate_dir_item_t iterate
, void *ctx
)
882 struct extent_buffer
*eb
;
883 struct btrfs_item
*item
;
884 struct btrfs_dir_item
*di
;
885 struct btrfs_key di_key
;
900 buf
= kmalloc(buf_len
, GFP_NOFS
);
907 slot
= path
->slots
[0];
908 item
= btrfs_item_nr(eb
, slot
);
909 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
912 total
= btrfs_item_size(eb
, item
);
915 while (cur
< total
) {
916 name_len
= btrfs_dir_name_len(eb
, di
);
917 data_len
= btrfs_dir_data_len(eb
, di
);
918 type
= btrfs_dir_type(eb
, di
);
919 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
921 if (name_len
+ data_len
> buf_len
) {
922 buf_len
= PAGE_ALIGN(name_len
+ data_len
);
924 buf2
= vmalloc(buf_len
);
931 buf2
= krealloc(buf
, buf_len
, GFP_NOFS
);
933 buf2
= vmalloc(buf_len
);
947 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
948 name_len
+ data_len
);
950 len
= sizeof(*di
) + name_len
+ data_len
;
951 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
954 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
955 data_len
, type
, ctx
);
974 static int __copy_first_ref(int num
, u64 dir
, int index
,
975 struct fs_path
*p
, void *ctx
)
978 struct fs_path
*pt
= ctx
;
980 ret
= fs_path_copy(pt
, p
);
984 /* we want the first only */
989 * Retrieve the first path of an inode. If an inode has more then one
990 * ref/hardlink, this is ignored.
992 static int get_inode_path(struct send_ctx
*sctx
, struct btrfs_root
*root
,
993 u64 ino
, struct fs_path
*path
)
996 struct btrfs_key key
, found_key
;
997 struct btrfs_path
*p
;
999 p
= alloc_path_for_send();
1003 fs_path_reset(path
);
1006 key
.type
= BTRFS_INODE_REF_KEY
;
1009 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1016 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1017 if (found_key
.objectid
!= ino
||
1018 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1019 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1024 ret
= iterate_inode_ref(sctx
, root
, p
, &found_key
, 1,
1025 __copy_first_ref
, path
);
1035 struct backref_ctx
{
1036 struct send_ctx
*sctx
;
1038 /* number of total found references */
1042 * used for clones found in send_root. clones found behind cur_objectid
1043 * and cur_offset are not considered as allowed clones.
1048 /* may be truncated in case it's the last extent in a file */
1051 /* Just to check for bugs in backref resolving */
1055 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1057 u64 root
= (u64
)(uintptr_t)key
;
1058 struct clone_root
*cr
= (struct clone_root
*)elt
;
1060 if (root
< cr
->root
->objectid
)
1062 if (root
> cr
->root
->objectid
)
1067 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1069 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1070 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1072 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1074 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1080 * Called for every backref that is found for the current extent.
1081 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1083 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1085 struct backref_ctx
*bctx
= ctx_
;
1086 struct clone_root
*found
;
1090 /* First check if the root is in the list of accepted clone sources */
1091 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1092 bctx
->sctx
->clone_roots_cnt
,
1093 sizeof(struct clone_root
),
1094 __clone_root_cmp_bsearch
);
1098 if (found
->root
== bctx
->sctx
->send_root
&&
1099 ino
== bctx
->cur_objectid
&&
1100 offset
== bctx
->cur_offset
) {
1101 bctx
->found_itself
= 1;
1105 * There are inodes that have extents that lie behind its i_size. Don't
1106 * accept clones from these extents.
1108 ret
= get_inode_info(found
->root
, ino
, &i_size
, NULL
, NULL
, NULL
, NULL
,
1113 if (offset
+ bctx
->extent_len
> i_size
)
1117 * Make sure we don't consider clones from send_root that are
1118 * behind the current inode/offset.
1120 if (found
->root
== bctx
->sctx
->send_root
) {
1122 * TODO for the moment we don't accept clones from the inode
1123 * that is currently send. We may change this when
1124 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1127 if (ino
>= bctx
->cur_objectid
)
1130 if (ino
> bctx
->cur_objectid
)
1132 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1138 found
->found_refs
++;
1139 if (ino
< found
->ino
) {
1141 found
->offset
= offset
;
1142 } else if (found
->ino
== ino
) {
1144 * same extent found more then once in the same file.
1146 if (found
->offset
> offset
+ bctx
->extent_len
)
1147 found
->offset
= offset
;
1154 * Given an inode, offset and extent item, it finds a good clone for a clone
1155 * instruction. Returns -ENOENT when none could be found. The function makes
1156 * sure that the returned clone is usable at the point where sending is at the
1157 * moment. This means, that no clones are accepted which lie behind the current
1160 * path must point to the extent item when called.
1162 static int find_extent_clone(struct send_ctx
*sctx
,
1163 struct btrfs_path
*path
,
1164 u64 ino
, u64 data_offset
,
1166 struct clone_root
**found
)
1173 u64 extent_item_pos
;
1175 struct btrfs_file_extent_item
*fi
;
1176 struct extent_buffer
*eb
= path
->nodes
[0];
1177 struct backref_ctx
*backref_ctx
= NULL
;
1178 struct clone_root
*cur_clone_root
;
1179 struct btrfs_key found_key
;
1180 struct btrfs_path
*tmp_path
;
1184 tmp_path
= alloc_path_for_send();
1188 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_NOFS
);
1194 if (data_offset
>= ino_size
) {
1196 * There may be extents that lie behind the file's size.
1197 * I at least had this in combination with snapshotting while
1198 * writing large files.
1204 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1205 struct btrfs_file_extent_item
);
1206 extent_type
= btrfs_file_extent_type(eb
, fi
);
1207 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1211 compressed
= btrfs_file_extent_compression(eb
, fi
);
1213 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1214 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1215 if (disk_byte
== 0) {
1219 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1221 ret
= extent_from_logical(sctx
->send_root
->fs_info
, disk_byte
, tmp_path
,
1222 &found_key
, &flags
);
1223 btrfs_release_path(tmp_path
);
1227 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1233 * Setup the clone roots.
1235 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1236 cur_clone_root
= sctx
->clone_roots
+ i
;
1237 cur_clone_root
->ino
= (u64
)-1;
1238 cur_clone_root
->offset
= 0;
1239 cur_clone_root
->found_refs
= 0;
1242 backref_ctx
->sctx
= sctx
;
1243 backref_ctx
->found
= 0;
1244 backref_ctx
->cur_objectid
= ino
;
1245 backref_ctx
->cur_offset
= data_offset
;
1246 backref_ctx
->found_itself
= 0;
1247 backref_ctx
->extent_len
= num_bytes
;
1250 * The last extent of a file may be too large due to page alignment.
1251 * We need to adjust extent_len in this case so that the checks in
1252 * __iterate_backrefs work.
1254 if (data_offset
+ num_bytes
>= ino_size
)
1255 backref_ctx
->extent_len
= ino_size
- data_offset
;
1258 * Now collect all backrefs.
1260 if (compressed
== BTRFS_COMPRESS_NONE
)
1261 extent_item_pos
= logical
- found_key
.objectid
;
1263 extent_item_pos
= 0;
1265 extent_item_pos
= logical
- found_key
.objectid
;
1266 ret
= iterate_extent_inodes(sctx
->send_root
->fs_info
,
1267 found_key
.objectid
, extent_item_pos
, 1,
1268 __iterate_backrefs
, backref_ctx
);
1273 if (!backref_ctx
->found_itself
) {
1274 /* found a bug in backref code? */
1276 printk(KERN_ERR
"btrfs: ERROR did not find backref in "
1277 "send_root. inode=%llu, offset=%llu, "
1278 "disk_byte=%llu found extent=%llu\n",
1279 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1283 verbose_printk(KERN_DEBUG
"btrfs: find_extent_clone: data_offset=%llu, "
1285 "num_bytes=%llu, logical=%llu\n",
1286 data_offset
, ino
, num_bytes
, logical
);
1288 if (!backref_ctx
->found
)
1289 verbose_printk("btrfs: no clones found\n");
1291 cur_clone_root
= NULL
;
1292 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1293 if (sctx
->clone_roots
[i
].found_refs
) {
1294 if (!cur_clone_root
)
1295 cur_clone_root
= sctx
->clone_roots
+ i
;
1296 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1297 /* prefer clones from send_root over others */
1298 cur_clone_root
= sctx
->clone_roots
+ i
;
1303 if (cur_clone_root
) {
1304 *found
= cur_clone_root
;
1311 btrfs_free_path(tmp_path
);
1316 static int read_symlink(struct send_ctx
*sctx
,
1317 struct btrfs_root
*root
,
1319 struct fs_path
*dest
)
1322 struct btrfs_path
*path
;
1323 struct btrfs_key key
;
1324 struct btrfs_file_extent_item
*ei
;
1330 path
= alloc_path_for_send();
1335 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1337 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1342 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1343 struct btrfs_file_extent_item
);
1344 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1345 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1346 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1347 BUG_ON(compression
);
1349 off
= btrfs_file_extent_inline_start(ei
);
1350 len
= btrfs_file_extent_inline_len(path
->nodes
[0], ei
);
1352 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1355 btrfs_free_path(path
);
1360 * Helper function to generate a file name that is unique in the root of
1361 * send_root and parent_root. This is used to generate names for orphan inodes.
1363 static int gen_unique_name(struct send_ctx
*sctx
,
1365 struct fs_path
*dest
)
1368 struct btrfs_path
*path
;
1369 struct btrfs_dir_item
*di
;
1374 path
= alloc_path_for_send();
1379 len
= snprintf(tmp
, sizeof(tmp
) - 1, "o%llu-%llu-%llu",
1381 if (len
>= sizeof(tmp
)) {
1382 /* should really not happen */
1387 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1388 path
, BTRFS_FIRST_FREE_OBJECTID
,
1389 tmp
, strlen(tmp
), 0);
1390 btrfs_release_path(path
);
1396 /* not unique, try again */
1401 if (!sctx
->parent_root
) {
1407 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1408 path
, BTRFS_FIRST_FREE_OBJECTID
,
1409 tmp
, strlen(tmp
), 0);
1410 btrfs_release_path(path
);
1416 /* not unique, try again */
1424 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1427 btrfs_free_path(path
);
1432 inode_state_no_change
,
1433 inode_state_will_create
,
1434 inode_state_did_create
,
1435 inode_state_will_delete
,
1436 inode_state_did_delete
,
1439 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1447 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1449 if (ret
< 0 && ret
!= -ENOENT
)
1453 if (!sctx
->parent_root
) {
1454 right_ret
= -ENOENT
;
1456 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1457 NULL
, NULL
, NULL
, NULL
);
1458 if (ret
< 0 && ret
!= -ENOENT
)
1463 if (!left_ret
&& !right_ret
) {
1464 if (left_gen
== gen
&& right_gen
== gen
) {
1465 ret
= inode_state_no_change
;
1466 } else if (left_gen
== gen
) {
1467 if (ino
< sctx
->send_progress
)
1468 ret
= inode_state_did_create
;
1470 ret
= inode_state_will_create
;
1471 } else if (right_gen
== gen
) {
1472 if (ino
< sctx
->send_progress
)
1473 ret
= inode_state_did_delete
;
1475 ret
= inode_state_will_delete
;
1479 } else if (!left_ret
) {
1480 if (left_gen
== gen
) {
1481 if (ino
< sctx
->send_progress
)
1482 ret
= inode_state_did_create
;
1484 ret
= inode_state_will_create
;
1488 } else if (!right_ret
) {
1489 if (right_gen
== gen
) {
1490 if (ino
< sctx
->send_progress
)
1491 ret
= inode_state_did_delete
;
1493 ret
= inode_state_will_delete
;
1505 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1509 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1513 if (ret
== inode_state_no_change
||
1514 ret
== inode_state_did_create
||
1515 ret
== inode_state_will_delete
)
1525 * Helper function to lookup a dir item in a dir.
1527 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1528 u64 dir
, const char *name
, int name_len
,
1533 struct btrfs_dir_item
*di
;
1534 struct btrfs_key key
;
1535 struct btrfs_path
*path
;
1537 path
= alloc_path_for_send();
1541 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1542 dir
, name
, name_len
, 0);
1551 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1552 *found_inode
= key
.objectid
;
1553 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1556 btrfs_free_path(path
);
1561 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1562 * generation of the parent dir and the name of the dir entry.
1564 static int get_first_ref(struct send_ctx
*sctx
,
1565 struct btrfs_root
*root
, u64 ino
,
1566 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1569 struct btrfs_key key
;
1570 struct btrfs_key found_key
;
1571 struct btrfs_path
*path
;
1575 path
= alloc_path_for_send();
1580 key
.type
= BTRFS_INODE_REF_KEY
;
1583 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1587 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1589 if (ret
|| found_key
.objectid
!= ino
||
1590 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1591 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1596 if (key
.type
== BTRFS_INODE_REF_KEY
) {
1597 struct btrfs_inode_ref
*iref
;
1598 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1599 struct btrfs_inode_ref
);
1600 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1601 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1602 (unsigned long)(iref
+ 1),
1604 parent_dir
= found_key
.offset
;
1606 struct btrfs_inode_extref
*extref
;
1607 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1608 struct btrfs_inode_extref
);
1609 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1610 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1611 (unsigned long)&extref
->name
, len
);
1612 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1616 btrfs_release_path(path
);
1618 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
, NULL
,
1626 btrfs_free_path(path
);
1630 static int is_first_ref(struct send_ctx
*sctx
,
1631 struct btrfs_root
*root
,
1633 const char *name
, int name_len
)
1636 struct fs_path
*tmp_name
;
1640 tmp_name
= fs_path_alloc(sctx
);
1644 ret
= get_first_ref(sctx
, root
, ino
, &tmp_dir
, &tmp_dir_gen
, tmp_name
);
1648 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1653 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1656 fs_path_free(sctx
, tmp_name
);
1661 * Used by process_recorded_refs to determine if a new ref would overwrite an
1662 * already existing ref. In case it detects an overwrite, it returns the
1663 * inode/gen in who_ino/who_gen.
1664 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1665 * to make sure later references to the overwritten inode are possible.
1666 * Orphanizing is however only required for the first ref of an inode.
1667 * process_recorded_refs does an additional is_first_ref check to see if
1668 * orphanizing is really required.
1670 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1671 const char *name
, int name_len
,
1672 u64
*who_ino
, u64
*who_gen
)
1675 u64 other_inode
= 0;
1678 if (!sctx
->parent_root
)
1681 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1685 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1686 &other_inode
, &other_type
);
1687 if (ret
< 0 && ret
!= -ENOENT
)
1695 * Check if the overwritten ref was already processed. If yes, the ref
1696 * was already unlinked/moved, so we can safely assume that we will not
1697 * overwrite anything at this point in time.
1699 if (other_inode
> sctx
->send_progress
) {
1700 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1701 who_gen
, NULL
, NULL
, NULL
, NULL
);
1706 *who_ino
= other_inode
;
1716 * Checks if the ref was overwritten by an already processed inode. This is
1717 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1718 * thus the orphan name needs be used.
1719 * process_recorded_refs also uses it to avoid unlinking of refs that were
1722 static int did_overwrite_ref(struct send_ctx
*sctx
,
1723 u64 dir
, u64 dir_gen
,
1724 u64 ino
, u64 ino_gen
,
1725 const char *name
, int name_len
)
1732 if (!sctx
->parent_root
)
1735 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1739 /* check if the ref was overwritten by another ref */
1740 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1741 &ow_inode
, &other_type
);
1742 if (ret
< 0 && ret
!= -ENOENT
)
1745 /* was never and will never be overwritten */
1750 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1755 if (ow_inode
== ino
&& gen
== ino_gen
) {
1760 /* we know that it is or will be overwritten. check this now */
1761 if (ow_inode
< sctx
->send_progress
)
1771 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1772 * that got overwritten. This is used by process_recorded_refs to determine
1773 * if it has to use the path as returned by get_cur_path or the orphan name.
1775 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1778 struct fs_path
*name
= NULL
;
1782 if (!sctx
->parent_root
)
1785 name
= fs_path_alloc(sctx
);
1789 ret
= get_first_ref(sctx
, sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
1793 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
1794 name
->start
, fs_path_len(name
));
1797 fs_path_free(sctx
, name
);
1802 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1803 * so we need to do some special handling in case we have clashes. This function
1804 * takes care of this with the help of name_cache_entry::radix_list.
1805 * In case of error, nce is kfreed.
1807 static int name_cache_insert(struct send_ctx
*sctx
,
1808 struct name_cache_entry
*nce
)
1811 struct list_head
*nce_head
;
1813 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1814 (unsigned long)nce
->ino
);
1816 nce_head
= kmalloc(sizeof(*nce_head
), GFP_NOFS
);
1821 INIT_LIST_HEAD(nce_head
);
1823 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
1830 list_add_tail(&nce
->radix_list
, nce_head
);
1831 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1832 sctx
->name_cache_size
++;
1837 static void name_cache_delete(struct send_ctx
*sctx
,
1838 struct name_cache_entry
*nce
)
1840 struct list_head
*nce_head
;
1842 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1843 (unsigned long)nce
->ino
);
1846 list_del(&nce
->radix_list
);
1847 list_del(&nce
->list
);
1848 sctx
->name_cache_size
--;
1850 if (list_empty(nce_head
)) {
1851 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
1856 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
1859 struct list_head
*nce_head
;
1860 struct name_cache_entry
*cur
;
1862 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
1866 list_for_each_entry(cur
, nce_head
, radix_list
) {
1867 if (cur
->ino
== ino
&& cur
->gen
== gen
)
1874 * Removes the entry from the list and adds it back to the end. This marks the
1875 * entry as recently used so that name_cache_clean_unused does not remove it.
1877 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
1879 list_del(&nce
->list
);
1880 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1884 * Remove some entries from the beginning of name_cache_list.
1886 static void name_cache_clean_unused(struct send_ctx
*sctx
)
1888 struct name_cache_entry
*nce
;
1890 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
1893 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
1894 nce
= list_entry(sctx
->name_cache_list
.next
,
1895 struct name_cache_entry
, list
);
1896 name_cache_delete(sctx
, nce
);
1901 static void name_cache_free(struct send_ctx
*sctx
)
1903 struct name_cache_entry
*nce
;
1905 while (!list_empty(&sctx
->name_cache_list
)) {
1906 nce
= list_entry(sctx
->name_cache_list
.next
,
1907 struct name_cache_entry
, list
);
1908 name_cache_delete(sctx
, nce
);
1914 * Used by get_cur_path for each ref up to the root.
1915 * Returns 0 if it succeeded.
1916 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1917 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1918 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1919 * Returns <0 in case of error.
1921 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
1925 struct fs_path
*dest
)
1929 struct btrfs_path
*path
= NULL
;
1930 struct name_cache_entry
*nce
= NULL
;
1933 * First check if we already did a call to this function with the same
1934 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1935 * return the cached result.
1937 nce
= name_cache_search(sctx
, ino
, gen
);
1939 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
1940 name_cache_delete(sctx
, nce
);
1944 name_cache_used(sctx
, nce
);
1945 *parent_ino
= nce
->parent_ino
;
1946 *parent_gen
= nce
->parent_gen
;
1947 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
1955 path
= alloc_path_for_send();
1960 * If the inode is not existent yet, add the orphan name and return 1.
1961 * This should only happen for the parent dir that we determine in
1964 ret
= is_inode_existent(sctx
, ino
, gen
);
1969 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
1977 * Depending on whether the inode was already processed or not, use
1978 * send_root or parent_root for ref lookup.
1980 if (ino
< sctx
->send_progress
)
1981 ret
= get_first_ref(sctx
, sctx
->send_root
, ino
,
1982 parent_ino
, parent_gen
, dest
);
1984 ret
= get_first_ref(sctx
, sctx
->parent_root
, ino
,
1985 parent_ino
, parent_gen
, dest
);
1990 * Check if the ref was overwritten by an inode's ref that was processed
1991 * earlier. If yes, treat as orphan and return 1.
1993 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
1994 dest
->start
, dest
->end
- dest
->start
);
1998 fs_path_reset(dest
);
1999 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2007 * Store the result of the lookup in the name cache.
2009 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_NOFS
);
2017 nce
->parent_ino
= *parent_ino
;
2018 nce
->parent_gen
= *parent_gen
;
2019 nce
->name_len
= fs_path_len(dest
);
2021 strcpy(nce
->name
, dest
->start
);
2023 if (ino
< sctx
->send_progress
)
2024 nce
->need_later_update
= 0;
2026 nce
->need_later_update
= 1;
2028 nce_ret
= name_cache_insert(sctx
, nce
);
2031 name_cache_clean_unused(sctx
);
2034 btrfs_free_path(path
);
2039 * Magic happens here. This function returns the first ref to an inode as it
2040 * would look like while receiving the stream at this point in time.
2041 * We walk the path up to the root. For every inode in between, we check if it
2042 * was already processed/sent. If yes, we continue with the parent as found
2043 * in send_root. If not, we continue with the parent as found in parent_root.
2044 * If we encounter an inode that was deleted at this point in time, we use the
2045 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2046 * that were not created yet and overwritten inodes/refs.
2048 * When do we have have orphan inodes:
2049 * 1. When an inode is freshly created and thus no valid refs are available yet
2050 * 2. When a directory lost all it's refs (deleted) but still has dir items
2051 * inside which were not processed yet (pending for move/delete). If anyone
2052 * tried to get the path to the dir items, it would get a path inside that
2054 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2055 * of an unprocessed inode. If in that case the first ref would be
2056 * overwritten, the overwritten inode gets "orphanized". Later when we
2057 * process this overwritten inode, it is restored at a new place by moving
2060 * sctx->send_progress tells this function at which point in time receiving
2063 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2064 struct fs_path
*dest
)
2067 struct fs_path
*name
= NULL
;
2068 u64 parent_inode
= 0;
2072 name
= fs_path_alloc(sctx
);
2079 fs_path_reset(dest
);
2081 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2082 fs_path_reset(name
);
2084 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2085 &parent_inode
, &parent_gen
, name
);
2091 ret
= fs_path_add_path(dest
, name
);
2100 fs_path_free(sctx
, name
);
2102 fs_path_unreverse(dest
);
2107 * Called for regular files when sending extents data. Opens a struct file
2108 * to read from the file.
2110 static int open_cur_inode_file(struct send_ctx
*sctx
)
2113 struct btrfs_key key
;
2115 struct inode
*inode
;
2116 struct dentry
*dentry
;
2120 if (sctx
->cur_inode_filp
)
2123 key
.objectid
= sctx
->cur_ino
;
2124 key
.type
= BTRFS_INODE_ITEM_KEY
;
2127 inode
= btrfs_iget(sctx
->send_root
->fs_info
->sb
, &key
, sctx
->send_root
,
2129 if (IS_ERR(inode
)) {
2130 ret
= PTR_ERR(inode
);
2134 dentry
= d_obtain_alias(inode
);
2136 if (IS_ERR(dentry
)) {
2137 ret
= PTR_ERR(dentry
);
2141 path
.mnt
= sctx
->mnt
;
2142 path
.dentry
= dentry
;
2143 filp
= dentry_open(&path
, O_RDONLY
| O_LARGEFILE
, current_cred());
2147 ret
= PTR_ERR(filp
);
2150 sctx
->cur_inode_filp
= filp
;
2154 * no xxxput required here as every vfs op
2155 * does it by itself on failure
2161 * Closes the struct file that was created in open_cur_inode_file
2163 static int close_cur_inode_file(struct send_ctx
*sctx
)
2167 if (!sctx
->cur_inode_filp
)
2170 ret
= filp_close(sctx
->cur_inode_filp
, NULL
);
2171 sctx
->cur_inode_filp
= NULL
;
2178 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2180 static int send_subvol_begin(struct send_ctx
*sctx
)
2183 struct btrfs_root
*send_root
= sctx
->send_root
;
2184 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2185 struct btrfs_path
*path
;
2186 struct btrfs_key key
;
2187 struct btrfs_root_ref
*ref
;
2188 struct extent_buffer
*leaf
;
2192 path
= alloc_path_for_send();
2196 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_NOFS
);
2198 btrfs_free_path(path
);
2202 key
.objectid
= send_root
->objectid
;
2203 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2206 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2215 leaf
= path
->nodes
[0];
2216 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2217 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2218 key
.objectid
!= send_root
->objectid
) {
2222 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2223 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2224 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2225 btrfs_release_path(path
);
2228 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2232 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2237 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2238 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2239 sctx
->send_root
->root_item
.uuid
);
2240 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2241 sctx
->send_root
->root_item
.ctransid
);
2243 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2244 sctx
->parent_root
->root_item
.uuid
);
2245 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2246 sctx
->parent_root
->root_item
.ctransid
);
2249 ret
= send_cmd(sctx
);
2253 btrfs_free_path(path
);
2258 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2263 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino
, size
);
2265 p
= fs_path_alloc(sctx
);
2269 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2273 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2276 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2277 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2279 ret
= send_cmd(sctx
);
2283 fs_path_free(sctx
, p
);
2287 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2292 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino
, mode
);
2294 p
= fs_path_alloc(sctx
);
2298 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2302 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2305 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2306 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2308 ret
= send_cmd(sctx
);
2312 fs_path_free(sctx
, p
);
2316 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2321 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino
, uid
, gid
);
2323 p
= fs_path_alloc(sctx
);
2327 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2331 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2334 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2335 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2336 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2338 ret
= send_cmd(sctx
);
2342 fs_path_free(sctx
, p
);
2346 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2349 struct fs_path
*p
= NULL
;
2350 struct btrfs_inode_item
*ii
;
2351 struct btrfs_path
*path
= NULL
;
2352 struct extent_buffer
*eb
;
2353 struct btrfs_key key
;
2356 verbose_printk("btrfs: send_utimes %llu\n", ino
);
2358 p
= fs_path_alloc(sctx
);
2362 path
= alloc_path_for_send();
2369 key
.type
= BTRFS_INODE_ITEM_KEY
;
2371 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2375 eb
= path
->nodes
[0];
2376 slot
= path
->slots
[0];
2377 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2379 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2383 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2386 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2387 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
,
2388 btrfs_inode_atime(ii
));
2389 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
,
2390 btrfs_inode_mtime(ii
));
2391 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
,
2392 btrfs_inode_ctime(ii
));
2393 /* TODO Add otime support when the otime patches get into upstream */
2395 ret
= send_cmd(sctx
);
2399 fs_path_free(sctx
, p
);
2400 btrfs_free_path(path
);
2405 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2406 * a valid path yet because we did not process the refs yet. So, the inode
2407 * is created as orphan.
2409 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2418 verbose_printk("btrfs: send_create_inode %llu\n", ino
);
2420 p
= fs_path_alloc(sctx
);
2424 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
, NULL
,
2429 if (S_ISREG(mode
)) {
2430 cmd
= BTRFS_SEND_C_MKFILE
;
2431 } else if (S_ISDIR(mode
)) {
2432 cmd
= BTRFS_SEND_C_MKDIR
;
2433 } else if (S_ISLNK(mode
)) {
2434 cmd
= BTRFS_SEND_C_SYMLINK
;
2435 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2436 cmd
= BTRFS_SEND_C_MKNOD
;
2437 } else if (S_ISFIFO(mode
)) {
2438 cmd
= BTRFS_SEND_C_MKFIFO
;
2439 } else if (S_ISSOCK(mode
)) {
2440 cmd
= BTRFS_SEND_C_MKSOCK
;
2442 printk(KERN_WARNING
"btrfs: unexpected inode type %o",
2443 (int)(mode
& S_IFMT
));
2448 ret
= begin_cmd(sctx
, cmd
);
2452 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2456 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2457 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2459 if (S_ISLNK(mode
)) {
2461 ret
= read_symlink(sctx
, sctx
->send_root
, ino
, p
);
2464 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2465 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2466 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2467 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2468 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2471 ret
= send_cmd(sctx
);
2478 fs_path_free(sctx
, p
);
2483 * We need some special handling for inodes that get processed before the parent
2484 * directory got created. See process_recorded_refs for details.
2485 * This function does the check if we already created the dir out of order.
2487 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2490 struct btrfs_path
*path
= NULL
;
2491 struct btrfs_key key
;
2492 struct btrfs_key found_key
;
2493 struct btrfs_key di_key
;
2494 struct extent_buffer
*eb
;
2495 struct btrfs_dir_item
*di
;
2498 path
= alloc_path_for_send();
2505 key
.type
= BTRFS_DIR_INDEX_KEY
;
2508 ret
= btrfs_search_slot_for_read(sctx
->send_root
, &key
, path
,
2513 eb
= path
->nodes
[0];
2514 slot
= path
->slots
[0];
2515 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2517 if (ret
|| found_key
.objectid
!= key
.objectid
||
2518 found_key
.type
!= key
.type
) {
2523 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2524 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2526 if (di_key
.objectid
< sctx
->send_progress
) {
2531 key
.offset
= found_key
.offset
+ 1;
2532 btrfs_release_path(path
);
2536 btrfs_free_path(path
);
2541 * Only creates the inode if it is:
2542 * 1. Not a directory
2543 * 2. Or a directory which was not created already due to out of order
2544 * directories. See did_create_dir and process_recorded_refs for details.
2546 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2550 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2551 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2560 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2568 struct recorded_ref
{
2569 struct list_head list
;
2572 struct fs_path
*full_path
;
2580 * We need to process new refs before deleted refs, but compare_tree gives us
2581 * everything mixed. So we first record all refs and later process them.
2582 * This function is a helper to record one ref.
2584 static int record_ref(struct list_head
*head
, u64 dir
,
2585 u64 dir_gen
, struct fs_path
*path
)
2587 struct recorded_ref
*ref
;
2590 ref
= kmalloc(sizeof(*ref
), GFP_NOFS
);
2595 ref
->dir_gen
= dir_gen
;
2596 ref
->full_path
= path
;
2598 tmp
= strrchr(ref
->full_path
->start
, '/');
2600 ref
->name_len
= ref
->full_path
->end
- ref
->full_path
->start
;
2601 ref
->name
= ref
->full_path
->start
;
2602 ref
->dir_path_len
= 0;
2603 ref
->dir_path
= ref
->full_path
->start
;
2606 ref
->name_len
= ref
->full_path
->end
- tmp
;
2608 ref
->dir_path
= ref
->full_path
->start
;
2609 ref
->dir_path_len
= ref
->full_path
->end
-
2610 ref
->full_path
->start
- 1 - ref
->name_len
;
2613 list_add_tail(&ref
->list
, head
);
2617 static void __free_recorded_refs(struct send_ctx
*sctx
, struct list_head
*head
)
2619 struct recorded_ref
*cur
;
2621 while (!list_empty(head
)) {
2622 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2623 fs_path_free(sctx
, cur
->full_path
);
2624 list_del(&cur
->list
);
2629 static void free_recorded_refs(struct send_ctx
*sctx
)
2631 __free_recorded_refs(sctx
, &sctx
->new_refs
);
2632 __free_recorded_refs(sctx
, &sctx
->deleted_refs
);
2636 * Renames/moves a file/dir to its orphan name. Used when the first
2637 * ref of an unprocessed inode gets overwritten and for all non empty
2640 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2641 struct fs_path
*path
)
2644 struct fs_path
*orphan
;
2646 orphan
= fs_path_alloc(sctx
);
2650 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2654 ret
= send_rename(sctx
, path
, orphan
);
2657 fs_path_free(sctx
, orphan
);
2662 * Returns 1 if a directory can be removed at this point in time.
2663 * We check this by iterating all dir items and checking if the inode behind
2664 * the dir item was already processed.
2666 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 send_progress
)
2669 struct btrfs_root
*root
= sctx
->parent_root
;
2670 struct btrfs_path
*path
;
2671 struct btrfs_key key
;
2672 struct btrfs_key found_key
;
2673 struct btrfs_key loc
;
2674 struct btrfs_dir_item
*di
;
2677 * Don't try to rmdir the top/root subvolume dir.
2679 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2682 path
= alloc_path_for_send();
2687 key
.type
= BTRFS_DIR_INDEX_KEY
;
2691 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
2695 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2698 if (ret
|| found_key
.objectid
!= key
.objectid
||
2699 found_key
.type
!= key
.type
) {
2703 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2704 struct btrfs_dir_item
);
2705 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2707 if (loc
.objectid
> send_progress
) {
2712 btrfs_release_path(path
);
2713 key
.offset
= found_key
.offset
+ 1;
2719 btrfs_free_path(path
);
2724 * This does all the move/link/unlink/rmdir magic.
2726 static int process_recorded_refs(struct send_ctx
*sctx
)
2729 struct recorded_ref
*cur
;
2730 struct recorded_ref
*cur2
;
2731 struct ulist
*check_dirs
= NULL
;
2732 struct ulist_iterator uit
;
2733 struct ulist_node
*un
;
2734 struct fs_path
*valid_path
= NULL
;
2737 int did_overwrite
= 0;
2740 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx
->cur_ino
);
2743 * This should never happen as the root dir always has the same ref
2744 * which is always '..'
2746 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
2748 valid_path
= fs_path_alloc(sctx
);
2754 check_dirs
= ulist_alloc(GFP_NOFS
);
2761 * First, check if the first ref of the current inode was overwritten
2762 * before. If yes, we know that the current inode was already orphanized
2763 * and thus use the orphan name. If not, we can use get_cur_path to
2764 * get the path of the first ref as it would like while receiving at
2765 * this point in time.
2766 * New inodes are always orphan at the beginning, so force to use the
2767 * orphan name in this case.
2768 * The first ref is stored in valid_path and will be updated if it
2769 * gets moved around.
2771 if (!sctx
->cur_inode_new
) {
2772 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
2773 sctx
->cur_inode_gen
);
2779 if (sctx
->cur_inode_new
|| did_overwrite
) {
2780 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
2781 sctx
->cur_inode_gen
, valid_path
);
2786 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
2792 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
2794 * We may have refs where the parent directory does not exist
2795 * yet. This happens if the parent directories inum is higher
2796 * the the current inum. To handle this case, we create the
2797 * parent directory out of order. But we need to check if this
2798 * did already happen before due to other refs in the same dir.
2800 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
2803 if (ret
== inode_state_will_create
) {
2806 * First check if any of the current inodes refs did
2807 * already create the dir.
2809 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
2812 if (cur2
->dir
== cur
->dir
) {
2819 * If that did not happen, check if a previous inode
2820 * did already create the dir.
2823 ret
= did_create_dir(sctx
, cur
->dir
);
2827 ret
= send_create_inode(sctx
, cur
->dir
);
2834 * Check if this new ref would overwrite the first ref of
2835 * another unprocessed inode. If yes, orphanize the
2836 * overwritten inode. If we find an overwritten ref that is
2837 * not the first ref, simply unlink it.
2839 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
2840 cur
->name
, cur
->name_len
,
2841 &ow_inode
, &ow_gen
);
2845 ret
= is_first_ref(sctx
, sctx
->parent_root
,
2846 ow_inode
, cur
->dir
, cur
->name
,
2851 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
2856 ret
= send_unlink(sctx
, cur
->full_path
);
2863 * link/move the ref to the new place. If we have an orphan
2864 * inode, move it and update valid_path. If not, link or move
2865 * it depending on the inode mode.
2868 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
2872 ret
= fs_path_copy(valid_path
, cur
->full_path
);
2876 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2878 * Dirs can't be linked, so move it. For moved
2879 * dirs, we always have one new and one deleted
2880 * ref. The deleted ref is ignored later.
2882 ret
= send_rename(sctx
, valid_path
,
2886 ret
= fs_path_copy(valid_path
, cur
->full_path
);
2890 ret
= send_link(sctx
, cur
->full_path
,
2896 ret
= ulist_add(check_dirs
, cur
->dir
, cur
->dir_gen
,
2902 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
2904 * Check if we can already rmdir the directory. If not,
2905 * orphanize it. For every dir item inside that gets deleted
2906 * later, we do this check again and rmdir it then if possible.
2907 * See the use of check_dirs for more details.
2909 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_ino
);
2913 ret
= send_rmdir(sctx
, valid_path
);
2916 } else if (!is_orphan
) {
2917 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
2918 sctx
->cur_inode_gen
, valid_path
);
2924 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
2925 ret
= ulist_add(check_dirs
, cur
->dir
, cur
->dir_gen
,
2930 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
2931 !list_empty(&sctx
->deleted_refs
)) {
2933 * We have a moved dir. Add the old parent to check_dirs
2935 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
2937 ret
= ulist_add(check_dirs
, cur
->dir
, cur
->dir_gen
,
2941 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
2943 * We have a non dir inode. Go through all deleted refs and
2944 * unlink them if they were not already overwritten by other
2947 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
2948 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
2949 sctx
->cur_ino
, sctx
->cur_inode_gen
,
2950 cur
->name
, cur
->name_len
);
2954 ret
= send_unlink(sctx
, cur
->full_path
);
2958 ret
= ulist_add(check_dirs
, cur
->dir
, cur
->dir_gen
,
2965 * If the inode is still orphan, unlink the orphan. This may
2966 * happen when a previous inode did overwrite the first ref
2967 * of this inode and no new refs were added for the current
2968 * inode. Unlinking does not mean that the inode is deleted in
2969 * all cases. There may still be links to this inode in other
2973 ret
= send_unlink(sctx
, valid_path
);
2980 * We did collect all parent dirs where cur_inode was once located. We
2981 * now go through all these dirs and check if they are pending for
2982 * deletion and if it's finally possible to perform the rmdir now.
2983 * We also update the inode stats of the parent dirs here.
2985 ULIST_ITER_INIT(&uit
);
2986 while ((un
= ulist_next(check_dirs
, &uit
))) {
2988 * In case we had refs into dirs that were not processed yet,
2989 * we don't need to do the utime and rmdir logic for these dirs.
2990 * The dir will be processed later.
2992 if (un
->val
> sctx
->cur_ino
)
2995 ret
= get_cur_inode_state(sctx
, un
->val
, un
->aux
);
2999 if (ret
== inode_state_did_create
||
3000 ret
== inode_state_no_change
) {
3001 /* TODO delayed utimes */
3002 ret
= send_utimes(sctx
, un
->val
, un
->aux
);
3005 } else if (ret
== inode_state_did_delete
) {
3006 ret
= can_rmdir(sctx
, un
->val
, sctx
->cur_ino
);
3010 ret
= get_cur_path(sctx
, un
->val
, un
->aux
,
3014 ret
= send_rmdir(sctx
, valid_path
);
3024 free_recorded_refs(sctx
);
3025 ulist_free(check_dirs
);
3026 fs_path_free(sctx
, valid_path
);
3030 static int __record_new_ref(int num
, u64 dir
, int index
,
3031 struct fs_path
*name
,
3035 struct send_ctx
*sctx
= ctx
;
3039 p
= fs_path_alloc(sctx
);
3043 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
, NULL
,
3048 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3051 ret
= fs_path_add_path(p
, name
);
3055 ret
= record_ref(&sctx
->new_refs
, dir
, gen
, p
);
3059 fs_path_free(sctx
, p
);
3063 static int __record_deleted_ref(int num
, u64 dir
, int index
,
3064 struct fs_path
*name
,
3068 struct send_ctx
*sctx
= ctx
;
3072 p
= fs_path_alloc(sctx
);
3076 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
, NULL
,
3081 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3084 ret
= fs_path_add_path(p
, name
);
3088 ret
= record_ref(&sctx
->deleted_refs
, dir
, gen
, p
);
3092 fs_path_free(sctx
, p
);
3096 static int record_new_ref(struct send_ctx
*sctx
)
3100 ret
= iterate_inode_ref(sctx
, sctx
->send_root
, sctx
->left_path
,
3101 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
3110 static int record_deleted_ref(struct send_ctx
*sctx
)
3114 ret
= iterate_inode_ref(sctx
, sctx
->parent_root
, sctx
->right_path
,
3115 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
3124 struct find_ref_ctx
{
3126 struct fs_path
*name
;
3130 static int __find_iref(int num
, u64 dir
, int index
,
3131 struct fs_path
*name
,
3134 struct find_ref_ctx
*ctx
= ctx_
;
3136 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
3137 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
3138 ctx
->found_idx
= num
;
3144 static int find_iref(struct send_ctx
*sctx
,
3145 struct btrfs_root
*root
,
3146 struct btrfs_path
*path
,
3147 struct btrfs_key
*key
,
3148 u64 dir
, struct fs_path
*name
)
3151 struct find_ref_ctx ctx
;
3157 ret
= iterate_inode_ref(sctx
, root
, path
, key
, 0, __find_iref
, &ctx
);
3161 if (ctx
.found_idx
== -1)
3164 return ctx
.found_idx
;
3167 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
3168 struct fs_path
*name
,
3172 struct send_ctx
*sctx
= ctx
;
3174 ret
= find_iref(sctx
, sctx
->parent_root
, sctx
->right_path
,
3175 sctx
->cmp_key
, dir
, name
);
3177 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
3184 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
3185 struct fs_path
*name
,
3189 struct send_ctx
*sctx
= ctx
;
3191 ret
= find_iref(sctx
, sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3194 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
3201 static int record_changed_ref(struct send_ctx
*sctx
)
3205 ret
= iterate_inode_ref(sctx
, sctx
->send_root
, sctx
->left_path
,
3206 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
3209 ret
= iterate_inode_ref(sctx
, sctx
->parent_root
, sctx
->right_path
,
3210 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
3220 * Record and process all refs at once. Needed when an inode changes the
3221 * generation number, which means that it was deleted and recreated.
3223 static int process_all_refs(struct send_ctx
*sctx
,
3224 enum btrfs_compare_tree_result cmd
)
3227 struct btrfs_root
*root
;
3228 struct btrfs_path
*path
;
3229 struct btrfs_key key
;
3230 struct btrfs_key found_key
;
3231 struct extent_buffer
*eb
;
3233 iterate_inode_ref_t cb
;
3235 path
= alloc_path_for_send();
3239 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
3240 root
= sctx
->send_root
;
3241 cb
= __record_new_ref
;
3242 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
3243 root
= sctx
->parent_root
;
3244 cb
= __record_deleted_ref
;
3249 key
.objectid
= sctx
->cmp_key
->objectid
;
3250 key
.type
= BTRFS_INODE_REF_KEY
;
3253 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3259 eb
= path
->nodes
[0];
3260 slot
= path
->slots
[0];
3261 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3263 if (found_key
.objectid
!= key
.objectid
||
3264 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
3265 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
3268 ret
= iterate_inode_ref(sctx
, root
, path
, &found_key
, 0, cb
,
3270 btrfs_release_path(path
);
3274 key
.offset
= found_key
.offset
+ 1;
3276 btrfs_release_path(path
);
3278 ret
= process_recorded_refs(sctx
);
3281 btrfs_free_path(path
);
3285 static int send_set_xattr(struct send_ctx
*sctx
,
3286 struct fs_path
*path
,
3287 const char *name
, int name_len
,
3288 const char *data
, int data_len
)
3292 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
3296 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3297 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3298 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
3300 ret
= send_cmd(sctx
);
3307 static int send_remove_xattr(struct send_ctx
*sctx
,
3308 struct fs_path
*path
,
3309 const char *name
, int name_len
)
3313 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
3317 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3318 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3320 ret
= send_cmd(sctx
);
3327 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
3328 const char *name
, int name_len
,
3329 const char *data
, int data_len
,
3333 struct send_ctx
*sctx
= ctx
;
3335 posix_acl_xattr_header dummy_acl
;
3337 p
= fs_path_alloc(sctx
);
3342 * This hack is needed because empty acl's are stored as zero byte
3343 * data in xattrs. Problem with that is, that receiving these zero byte
3344 * acl's will fail later. To fix this, we send a dummy acl list that
3345 * only contains the version number and no entries.
3347 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
3348 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
3349 if (data_len
== 0) {
3350 dummy_acl
.a_version
=
3351 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
3352 data
= (char *)&dummy_acl
;
3353 data_len
= sizeof(dummy_acl
);
3357 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3361 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
3364 fs_path_free(sctx
, p
);
3368 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
3369 const char *name
, int name_len
,
3370 const char *data
, int data_len
,
3374 struct send_ctx
*sctx
= ctx
;
3377 p
= fs_path_alloc(sctx
);
3381 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3385 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
3388 fs_path_free(sctx
, p
);
3392 static int process_new_xattr(struct send_ctx
*sctx
)
3396 ret
= iterate_dir_item(sctx
, sctx
->send_root
, sctx
->left_path
,
3397 sctx
->cmp_key
, __process_new_xattr
, sctx
);
3402 static int process_deleted_xattr(struct send_ctx
*sctx
)
3406 ret
= iterate_dir_item(sctx
, sctx
->parent_root
, sctx
->right_path
,
3407 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
3412 struct find_xattr_ctx
{
3420 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
3421 const char *name
, int name_len
,
3422 const char *data
, int data_len
,
3423 u8 type
, void *vctx
)
3425 struct find_xattr_ctx
*ctx
= vctx
;
3427 if (name_len
== ctx
->name_len
&&
3428 strncmp(name
, ctx
->name
, name_len
) == 0) {
3429 ctx
->found_idx
= num
;
3430 ctx
->found_data_len
= data_len
;
3431 ctx
->found_data
= kmalloc(data_len
, GFP_NOFS
);
3432 if (!ctx
->found_data
)
3434 memcpy(ctx
->found_data
, data
, data_len
);
3440 static int find_xattr(struct send_ctx
*sctx
,
3441 struct btrfs_root
*root
,
3442 struct btrfs_path
*path
,
3443 struct btrfs_key
*key
,
3444 const char *name
, int name_len
,
3445 char **data
, int *data_len
)
3448 struct find_xattr_ctx ctx
;
3451 ctx
.name_len
= name_len
;
3453 ctx
.found_data
= NULL
;
3454 ctx
.found_data_len
= 0;
3456 ret
= iterate_dir_item(sctx
, root
, path
, key
, __find_xattr
, &ctx
);
3460 if (ctx
.found_idx
== -1)
3463 *data
= ctx
.found_data
;
3464 *data_len
= ctx
.found_data_len
;
3466 kfree(ctx
.found_data
);
3468 return ctx
.found_idx
;
3472 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
3473 const char *name
, int name_len
,
3474 const char *data
, int data_len
,
3478 struct send_ctx
*sctx
= ctx
;
3479 char *found_data
= NULL
;
3480 int found_data_len
= 0;
3481 struct fs_path
*p
= NULL
;
3483 ret
= find_xattr(sctx
, sctx
->parent_root
, sctx
->right_path
,
3484 sctx
->cmp_key
, name
, name_len
, &found_data
,
3486 if (ret
== -ENOENT
) {
3487 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
3488 data_len
, type
, ctx
);
3489 } else if (ret
>= 0) {
3490 if (data_len
!= found_data_len
||
3491 memcmp(data
, found_data
, data_len
)) {
3492 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
3493 data
, data_len
, type
, ctx
);
3500 fs_path_free(sctx
, p
);
3504 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
3505 const char *name
, int name_len
,
3506 const char *data
, int data_len
,
3510 struct send_ctx
*sctx
= ctx
;
3512 ret
= find_xattr(sctx
, sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3513 name
, name_len
, NULL
, NULL
);
3515 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
3516 data_len
, type
, ctx
);
3523 static int process_changed_xattr(struct send_ctx
*sctx
)
3527 ret
= iterate_dir_item(sctx
, sctx
->send_root
, sctx
->left_path
,
3528 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
3531 ret
= iterate_dir_item(sctx
, sctx
->parent_root
, sctx
->right_path
,
3532 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
3538 static int process_all_new_xattrs(struct send_ctx
*sctx
)
3541 struct btrfs_root
*root
;
3542 struct btrfs_path
*path
;
3543 struct btrfs_key key
;
3544 struct btrfs_key found_key
;
3545 struct extent_buffer
*eb
;
3548 path
= alloc_path_for_send();
3552 root
= sctx
->send_root
;
3554 key
.objectid
= sctx
->cmp_key
->objectid
;
3555 key
.type
= BTRFS_XATTR_ITEM_KEY
;
3558 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3566 eb
= path
->nodes
[0];
3567 slot
= path
->slots
[0];
3568 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3570 if (found_key
.objectid
!= key
.objectid
||
3571 found_key
.type
!= key
.type
) {
3576 ret
= iterate_dir_item(sctx
, root
, path
, &found_key
,
3577 __process_new_xattr
, sctx
);
3581 btrfs_release_path(path
);
3582 key
.offset
= found_key
.offset
+ 1;
3586 btrfs_free_path(path
);
3591 * Read some bytes from the current inode/file and send a write command to
3594 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
3598 loff_t pos
= offset
;
3600 mm_segment_t old_fs
;
3602 p
= fs_path_alloc(sctx
);
3607 * vfs normally only accepts user space buffers for security reasons.
3608 * we only read from the file and also only provide the read_buf buffer
3609 * to vfs. As this buffer does not come from a user space call, it's
3610 * ok to temporary allow kernel space buffers.
3615 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset
, len
);
3617 ret
= open_cur_inode_file(sctx
);
3621 ret
= vfs_read(sctx
->cur_inode_filp
, sctx
->read_buf
, len
, &pos
);
3628 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
3632 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3636 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3637 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3638 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
3640 ret
= send_cmd(sctx
);
3644 fs_path_free(sctx
, p
);
3652 * Send a clone command to user space.
3654 static int send_clone(struct send_ctx
*sctx
,
3655 u64 offset
, u32 len
,
3656 struct clone_root
*clone_root
)
3662 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3663 "clone_inode=%llu, clone_offset=%llu\n", offset
, len
,
3664 clone_root
->root
->objectid
, clone_root
->ino
,
3665 clone_root
->offset
);
3667 p
= fs_path_alloc(sctx
);
3671 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
3675 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3679 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3680 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
3681 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3683 if (clone_root
->root
== sctx
->send_root
) {
3684 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
3685 &gen
, NULL
, NULL
, NULL
, NULL
);
3688 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
3690 ret
= get_inode_path(sctx
, clone_root
->root
,
3691 clone_root
->ino
, p
);
3696 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
3697 clone_root
->root
->root_item
.uuid
);
3698 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
3699 clone_root
->root
->root_item
.ctransid
);
3700 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
3701 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
3702 clone_root
->offset
);
3704 ret
= send_cmd(sctx
);
3708 fs_path_free(sctx
, p
);
3712 static int send_write_or_clone(struct send_ctx
*sctx
,
3713 struct btrfs_path
*path
,
3714 struct btrfs_key
*key
,
3715 struct clone_root
*clone_root
)
3718 struct btrfs_file_extent_item
*ei
;
3719 u64 offset
= key
->offset
;
3725 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3726 struct btrfs_file_extent_item
);
3727 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
3728 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3729 len
= btrfs_file_extent_inline_len(path
->nodes
[0], ei
);
3731 * it is possible the inline item won't cover the whole page,
3732 * but there may be items after this page. Make
3733 * sure to send the whole thing
3735 len
= PAGE_CACHE_ALIGN(len
);
3737 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3740 if (offset
+ len
> sctx
->cur_inode_size
)
3741 len
= sctx
->cur_inode_size
- offset
;
3750 if (l
> BTRFS_SEND_READ_SIZE
)
3751 l
= BTRFS_SEND_READ_SIZE
;
3752 ret
= send_write(sctx
, pos
+ offset
, l
);
3761 ret
= send_clone(sctx
, offset
, len
, clone_root
);
3768 static int is_extent_unchanged(struct send_ctx
*sctx
,
3769 struct btrfs_path
*left_path
,
3770 struct btrfs_key
*ekey
)
3773 struct btrfs_key key
;
3774 struct btrfs_path
*path
= NULL
;
3775 struct extent_buffer
*eb
;
3777 struct btrfs_key found_key
;
3778 struct btrfs_file_extent_item
*ei
;
3783 u64 left_offset_fixed
;
3791 path
= alloc_path_for_send();
3795 eb
= left_path
->nodes
[0];
3796 slot
= left_path
->slots
[0];
3797 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
3798 left_type
= btrfs_file_extent_type(eb
, ei
);
3800 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
3804 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
3805 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
3806 left_offset
= btrfs_file_extent_offset(eb
, ei
);
3807 left_gen
= btrfs_file_extent_generation(eb
, ei
);
3810 * Following comments will refer to these graphics. L is the left
3811 * extents which we are checking at the moment. 1-8 are the right
3812 * extents that we iterate.
3815 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3818 * |--1--|-2b-|...(same as above)
3820 * Alternative situation. Happens on files where extents got split.
3822 * |-----------7-----------|-6-|
3824 * Alternative situation. Happens on files which got larger.
3827 * Nothing follows after 8.
3830 key
.objectid
= ekey
->objectid
;
3831 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3832 key
.offset
= ekey
->offset
;
3833 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
3842 * Handle special case where the right side has no extents at all.
3844 eb
= path
->nodes
[0];
3845 slot
= path
->slots
[0];
3846 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3847 if (found_key
.objectid
!= key
.objectid
||
3848 found_key
.type
!= key
.type
) {
3854 * We're now on 2a, 2b or 7.
3857 while (key
.offset
< ekey
->offset
+ left_len
) {
3858 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
3859 right_type
= btrfs_file_extent_type(eb
, ei
);
3860 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
3861 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
3862 right_offset
= btrfs_file_extent_offset(eb
, ei
);
3863 right_gen
= btrfs_file_extent_generation(eb
, ei
);
3865 if (right_type
!= BTRFS_FILE_EXTENT_REG
) {
3871 * Are we at extent 8? If yes, we know the extent is changed.
3872 * This may only happen on the first iteration.
3874 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
3879 left_offset_fixed
= left_offset
;
3880 if (key
.offset
< ekey
->offset
) {
3881 /* Fix the right offset for 2a and 7. */
3882 right_offset
+= ekey
->offset
- key
.offset
;
3884 /* Fix the left offset for all behind 2a and 2b */
3885 left_offset_fixed
+= key
.offset
- ekey
->offset
;
3889 * Check if we have the same extent.
3891 if (left_disknr
!= right_disknr
||
3892 left_offset_fixed
!= right_offset
||
3893 left_gen
!= right_gen
) {
3899 * Go to the next extent.
3901 ret
= btrfs_next_item(sctx
->parent_root
, path
);
3905 eb
= path
->nodes
[0];
3906 slot
= path
->slots
[0];
3907 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3909 if (ret
|| found_key
.objectid
!= key
.objectid
||
3910 found_key
.type
!= key
.type
) {
3911 key
.offset
+= right_len
;
3914 if (found_key
.offset
!= key
.offset
+ right_len
) {
3915 /* Should really not happen */
3924 * We're now behind the left extent (treat as unchanged) or at the end
3925 * of the right side (treat as changed).
3927 if (key
.offset
>= ekey
->offset
+ left_len
)
3934 btrfs_free_path(path
);
3938 static int process_extent(struct send_ctx
*sctx
,
3939 struct btrfs_path
*path
,
3940 struct btrfs_key
*key
)
3943 struct clone_root
*found_clone
= NULL
;
3945 if (S_ISLNK(sctx
->cur_inode_mode
))
3948 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
3949 ret
= is_extent_unchanged(sctx
, path
, key
);
3958 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
3959 sctx
->cur_inode_size
, &found_clone
);
3960 if (ret
!= -ENOENT
&& ret
< 0)
3963 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
3969 static int process_all_extents(struct send_ctx
*sctx
)
3972 struct btrfs_root
*root
;
3973 struct btrfs_path
*path
;
3974 struct btrfs_key key
;
3975 struct btrfs_key found_key
;
3976 struct extent_buffer
*eb
;
3979 root
= sctx
->send_root
;
3980 path
= alloc_path_for_send();
3984 key
.objectid
= sctx
->cmp_key
->objectid
;
3985 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3988 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3996 eb
= path
->nodes
[0];
3997 slot
= path
->slots
[0];
3998 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4000 if (found_key
.objectid
!= key
.objectid
||
4001 found_key
.type
!= key
.type
) {
4006 ret
= process_extent(sctx
, path
, &found_key
);
4010 btrfs_release_path(path
);
4011 key
.offset
= found_key
.offset
+ 1;
4015 btrfs_free_path(path
);
4019 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
)
4023 if (sctx
->cur_ino
== 0)
4025 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
4026 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
4028 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
4031 ret
= process_recorded_refs(sctx
);
4036 * We have processed the refs and thus need to advance send_progress.
4037 * Now, calls to get_cur_xxx will take the updated refs of the current
4038 * inode into account.
4040 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4046 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
4058 ret
= process_recorded_refs_if_needed(sctx
, at_end
);
4062 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
4064 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
4067 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
4068 &left_mode
, &left_uid
, &left_gid
, NULL
);
4072 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
4074 if (!S_ISLNK(sctx
->cur_inode_mode
))
4077 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
4078 NULL
, NULL
, &right_mode
, &right_uid
,
4083 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
4085 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
4089 if (S_ISREG(sctx
->cur_inode_mode
)) {
4090 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4091 sctx
->cur_inode_size
);
4097 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4098 left_uid
, left_gid
);
4103 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4110 * Need to send that every time, no matter if it actually changed
4111 * between the two trees as we have done changes to the inode before.
4113 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
4121 static int changed_inode(struct send_ctx
*sctx
,
4122 enum btrfs_compare_tree_result result
)
4125 struct btrfs_key
*key
= sctx
->cmp_key
;
4126 struct btrfs_inode_item
*left_ii
= NULL
;
4127 struct btrfs_inode_item
*right_ii
= NULL
;
4131 ret
= close_cur_inode_file(sctx
);
4135 sctx
->cur_ino
= key
->objectid
;
4136 sctx
->cur_inode_new_gen
= 0;
4139 * Set send_progress to current inode. This will tell all get_cur_xxx
4140 * functions that the current inode's refs are not updated yet. Later,
4141 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4143 sctx
->send_progress
= sctx
->cur_ino
;
4145 if (result
== BTRFS_COMPARE_TREE_NEW
||
4146 result
== BTRFS_COMPARE_TREE_CHANGED
) {
4147 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
4148 sctx
->left_path
->slots
[0],
4149 struct btrfs_inode_item
);
4150 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
4153 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
4154 sctx
->right_path
->slots
[0],
4155 struct btrfs_inode_item
);
4156 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
4159 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
4160 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
4161 sctx
->right_path
->slots
[0],
4162 struct btrfs_inode_item
);
4164 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
4168 * The cur_ino = root dir case is special here. We can't treat
4169 * the inode as deleted+reused because it would generate a
4170 * stream that tries to delete/mkdir the root dir.
4172 if (left_gen
!= right_gen
&&
4173 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
4174 sctx
->cur_inode_new_gen
= 1;
4177 if (result
== BTRFS_COMPARE_TREE_NEW
) {
4178 sctx
->cur_inode_gen
= left_gen
;
4179 sctx
->cur_inode_new
= 1;
4180 sctx
->cur_inode_deleted
= 0;
4181 sctx
->cur_inode_size
= btrfs_inode_size(
4182 sctx
->left_path
->nodes
[0], left_ii
);
4183 sctx
->cur_inode_mode
= btrfs_inode_mode(
4184 sctx
->left_path
->nodes
[0], left_ii
);
4185 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
4186 ret
= send_create_inode_if_needed(sctx
);
4187 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
4188 sctx
->cur_inode_gen
= right_gen
;
4189 sctx
->cur_inode_new
= 0;
4190 sctx
->cur_inode_deleted
= 1;
4191 sctx
->cur_inode_size
= btrfs_inode_size(
4192 sctx
->right_path
->nodes
[0], right_ii
);
4193 sctx
->cur_inode_mode
= btrfs_inode_mode(
4194 sctx
->right_path
->nodes
[0], right_ii
);
4195 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
4197 * We need to do some special handling in case the inode was
4198 * reported as changed with a changed generation number. This
4199 * means that the original inode was deleted and new inode
4200 * reused the same inum. So we have to treat the old inode as
4201 * deleted and the new one as new.
4203 if (sctx
->cur_inode_new_gen
) {
4205 * First, process the inode as if it was deleted.
4207 sctx
->cur_inode_gen
= right_gen
;
4208 sctx
->cur_inode_new
= 0;
4209 sctx
->cur_inode_deleted
= 1;
4210 sctx
->cur_inode_size
= btrfs_inode_size(
4211 sctx
->right_path
->nodes
[0], right_ii
);
4212 sctx
->cur_inode_mode
= btrfs_inode_mode(
4213 sctx
->right_path
->nodes
[0], right_ii
);
4214 ret
= process_all_refs(sctx
,
4215 BTRFS_COMPARE_TREE_DELETED
);
4220 * Now process the inode as if it was new.
4222 sctx
->cur_inode_gen
= left_gen
;
4223 sctx
->cur_inode_new
= 1;
4224 sctx
->cur_inode_deleted
= 0;
4225 sctx
->cur_inode_size
= btrfs_inode_size(
4226 sctx
->left_path
->nodes
[0], left_ii
);
4227 sctx
->cur_inode_mode
= btrfs_inode_mode(
4228 sctx
->left_path
->nodes
[0], left_ii
);
4229 ret
= send_create_inode_if_needed(sctx
);
4233 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
4237 * Advance send_progress now as we did not get into
4238 * process_recorded_refs_if_needed in the new_gen case.
4240 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4243 * Now process all extents and xattrs of the inode as if
4244 * they were all new.
4246 ret
= process_all_extents(sctx
);
4249 ret
= process_all_new_xattrs(sctx
);
4253 sctx
->cur_inode_gen
= left_gen
;
4254 sctx
->cur_inode_new
= 0;
4255 sctx
->cur_inode_new_gen
= 0;
4256 sctx
->cur_inode_deleted
= 0;
4257 sctx
->cur_inode_size
= btrfs_inode_size(
4258 sctx
->left_path
->nodes
[0], left_ii
);
4259 sctx
->cur_inode_mode
= btrfs_inode_mode(
4260 sctx
->left_path
->nodes
[0], left_ii
);
4269 * We have to process new refs before deleted refs, but compare_trees gives us
4270 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4271 * first and later process them in process_recorded_refs.
4272 * For the cur_inode_new_gen case, we skip recording completely because
4273 * changed_inode did already initiate processing of refs. The reason for this is
4274 * that in this case, compare_tree actually compares the refs of 2 different
4275 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4276 * refs of the right tree as deleted and all refs of the left tree as new.
4278 static int changed_ref(struct send_ctx
*sctx
,
4279 enum btrfs_compare_tree_result result
)
4283 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4285 if (!sctx
->cur_inode_new_gen
&&
4286 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
4287 if (result
== BTRFS_COMPARE_TREE_NEW
)
4288 ret
= record_new_ref(sctx
);
4289 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
4290 ret
= record_deleted_ref(sctx
);
4291 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
4292 ret
= record_changed_ref(sctx
);
4299 * Process new/deleted/changed xattrs. We skip processing in the
4300 * cur_inode_new_gen case because changed_inode did already initiate processing
4301 * of xattrs. The reason is the same as in changed_ref
4303 static int changed_xattr(struct send_ctx
*sctx
,
4304 enum btrfs_compare_tree_result result
)
4308 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4310 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
4311 if (result
== BTRFS_COMPARE_TREE_NEW
)
4312 ret
= process_new_xattr(sctx
);
4313 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
4314 ret
= process_deleted_xattr(sctx
);
4315 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
4316 ret
= process_changed_xattr(sctx
);
4323 * Process new/deleted/changed extents. We skip processing in the
4324 * cur_inode_new_gen case because changed_inode did already initiate processing
4325 * of extents. The reason is the same as in changed_ref
4327 static int changed_extent(struct send_ctx
*sctx
,
4328 enum btrfs_compare_tree_result result
)
4332 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4334 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
4335 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
4336 ret
= process_extent(sctx
, sctx
->left_path
,
4344 * Updates compare related fields in sctx and simply forwards to the actual
4345 * changed_xxx functions.
4347 static int changed_cb(struct btrfs_root
*left_root
,
4348 struct btrfs_root
*right_root
,
4349 struct btrfs_path
*left_path
,
4350 struct btrfs_path
*right_path
,
4351 struct btrfs_key
*key
,
4352 enum btrfs_compare_tree_result result
,
4356 struct send_ctx
*sctx
= ctx
;
4358 sctx
->left_path
= left_path
;
4359 sctx
->right_path
= right_path
;
4360 sctx
->cmp_key
= key
;
4362 ret
= finish_inode_if_needed(sctx
, 0);
4366 /* Ignore non-FS objects */
4367 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
4368 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
4371 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
4372 ret
= changed_inode(sctx
, result
);
4373 else if (key
->type
== BTRFS_INODE_REF_KEY
||
4374 key
->type
== BTRFS_INODE_EXTREF_KEY
)
4375 ret
= changed_ref(sctx
, result
);
4376 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
4377 ret
= changed_xattr(sctx
, result
);
4378 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
4379 ret
= changed_extent(sctx
, result
);
4385 static int full_send_tree(struct send_ctx
*sctx
)
4388 struct btrfs_trans_handle
*trans
= NULL
;
4389 struct btrfs_root
*send_root
= sctx
->send_root
;
4390 struct btrfs_key key
;
4391 struct btrfs_key found_key
;
4392 struct btrfs_path
*path
;
4393 struct extent_buffer
*eb
;
4398 path
= alloc_path_for_send();
4402 spin_lock(&send_root
->root_item_lock
);
4403 start_ctransid
= btrfs_root_ctransid(&send_root
->root_item
);
4404 spin_unlock(&send_root
->root_item_lock
);
4406 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
4407 key
.type
= BTRFS_INODE_ITEM_KEY
;
4412 * We need to make sure the transaction does not get committed
4413 * while we do anything on commit roots. Join a transaction to prevent
4416 trans
= btrfs_join_transaction(send_root
);
4417 if (IS_ERR(trans
)) {
4418 ret
= PTR_ERR(trans
);
4424 * Make sure the tree has not changed after re-joining. We detect this
4425 * by comparing start_ctransid and ctransid. They should always match.
4427 spin_lock(&send_root
->root_item_lock
);
4428 ctransid
= btrfs_root_ctransid(&send_root
->root_item
);
4429 spin_unlock(&send_root
->root_item_lock
);
4431 if (ctransid
!= start_ctransid
) {
4432 WARN(1, KERN_WARNING
"btrfs: the root that you're trying to "
4433 "send was modified in between. This is "
4434 "probably a bug.\n");
4439 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
4447 * When someone want to commit while we iterate, end the
4448 * joined transaction and rejoin.
4450 if (btrfs_should_end_transaction(trans
, send_root
)) {
4451 ret
= btrfs_end_transaction(trans
, send_root
);
4455 btrfs_release_path(path
);
4459 eb
= path
->nodes
[0];
4460 slot
= path
->slots
[0];
4461 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4463 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
4464 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
4468 key
.objectid
= found_key
.objectid
;
4469 key
.type
= found_key
.type
;
4470 key
.offset
= found_key
.offset
+ 1;
4472 ret
= btrfs_next_item(send_root
, path
);
4482 ret
= finish_inode_if_needed(sctx
, 1);
4485 btrfs_free_path(path
);
4488 ret
= btrfs_end_transaction(trans
, send_root
);
4490 btrfs_end_transaction(trans
, send_root
);
4495 static int send_subvol(struct send_ctx
*sctx
)
4499 ret
= send_header(sctx
);
4503 ret
= send_subvol_begin(sctx
);
4507 if (sctx
->parent_root
) {
4508 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
4512 ret
= finish_inode_if_needed(sctx
, 1);
4516 ret
= full_send_tree(sctx
);
4523 ret
= close_cur_inode_file(sctx
);
4525 close_cur_inode_file(sctx
);
4527 free_recorded_refs(sctx
);
4531 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
4534 struct btrfs_root
*send_root
;
4535 struct btrfs_root
*clone_root
;
4536 struct btrfs_fs_info
*fs_info
;
4537 struct btrfs_ioctl_send_args
*arg
= NULL
;
4538 struct btrfs_key key
;
4539 struct file
*filp
= NULL
;
4540 struct send_ctx
*sctx
= NULL
;
4542 u64
*clone_sources_tmp
= NULL
;
4544 if (!capable(CAP_SYS_ADMIN
))
4547 send_root
= BTRFS_I(fdentry(mnt_file
)->d_inode
)->root
;
4548 fs_info
= send_root
->fs_info
;
4550 arg
= memdup_user(arg_
, sizeof(*arg
));
4557 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
4558 sizeof(*arg
->clone_sources
*
4559 arg
->clone_sources_count
))) {
4564 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_NOFS
);
4570 INIT_LIST_HEAD(&sctx
->new_refs
);
4571 INIT_LIST_HEAD(&sctx
->deleted_refs
);
4572 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_NOFS
);
4573 INIT_LIST_HEAD(&sctx
->name_cache_list
);
4575 sctx
->send_filp
= fget(arg
->send_fd
);
4576 if (IS_ERR(sctx
->send_filp
)) {
4577 ret
= PTR_ERR(sctx
->send_filp
);
4581 sctx
->mnt
= mnt_file
->f_path
.mnt
;
4583 sctx
->send_root
= send_root
;
4584 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
4586 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
4587 sctx
->send_buf
= vmalloc(sctx
->send_max_size
);
4588 if (!sctx
->send_buf
) {
4593 sctx
->read_buf
= vmalloc(BTRFS_SEND_READ_SIZE
);
4594 if (!sctx
->read_buf
) {
4599 sctx
->clone_roots
= vzalloc(sizeof(struct clone_root
) *
4600 (arg
->clone_sources_count
+ 1));
4601 if (!sctx
->clone_roots
) {
4606 if (arg
->clone_sources_count
) {
4607 clone_sources_tmp
= vmalloc(arg
->clone_sources_count
*
4608 sizeof(*arg
->clone_sources
));
4609 if (!clone_sources_tmp
) {
4614 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
4615 arg
->clone_sources_count
*
4616 sizeof(*arg
->clone_sources
));
4622 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
4623 key
.objectid
= clone_sources_tmp
[i
];
4624 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4625 key
.offset
= (u64
)-1;
4626 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4631 if (IS_ERR(clone_root
)) {
4632 ret
= PTR_ERR(clone_root
);
4635 sctx
->clone_roots
[i
].root
= clone_root
;
4637 vfree(clone_sources_tmp
);
4638 clone_sources_tmp
= NULL
;
4641 if (arg
->parent_root
) {
4642 key
.objectid
= arg
->parent_root
;
4643 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4644 key
.offset
= (u64
)-1;
4645 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4646 if (!sctx
->parent_root
) {
4653 * Clones from send_root are allowed, but only if the clone source
4654 * is behind the current send position. This is checked while searching
4655 * for possible clone sources.
4657 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
4659 /* We do a bsearch later */
4660 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
4661 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
4664 ret
= send_subvol(sctx
);
4668 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
4671 ret
= send_cmd(sctx
);
4679 vfree(clone_sources_tmp
);
4682 if (sctx
->send_filp
)
4683 fput(sctx
->send_filp
);
4685 vfree(sctx
->clone_roots
);
4686 vfree(sctx
->send_buf
);
4687 vfree(sctx
->read_buf
);
4689 name_cache_free(sctx
);