2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
38 static int __ext2_write_inode(struct inode
*inode
, int do_sync
);
41 * Test whether an inode is a fast symlink.
43 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
45 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
46 (inode
->i_sb
->s_blocksize
>> 9) : 0;
48 return (S_ISLNK(inode
->i_mode
) &&
49 inode
->i_blocks
- ea_blocks
== 0);
52 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
);
54 static void ext2_write_failed(struct address_space
*mapping
, loff_t to
)
56 struct inode
*inode
= mapping
->host
;
58 if (to
> inode
->i_size
) {
59 truncate_pagecache(inode
, to
, inode
->i_size
);
60 ext2_truncate_blocks(inode
, inode
->i_size
);
65 * Called at the last iput() if i_nlink is zero.
67 void ext2_evict_inode(struct inode
* inode
)
69 struct ext2_block_alloc_info
*rsv
;
72 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
74 dquot_initialize(inode
);
79 truncate_inode_pages(&inode
->i_data
, 0);
82 sb_start_intwrite(inode
->i_sb
);
84 EXT2_I(inode
)->i_dtime
= get_seconds();
85 mark_inode_dirty(inode
);
86 __ext2_write_inode(inode
, inode_needs_sync(inode
));
90 ext2_truncate_blocks(inode
, 0);
93 invalidate_inode_buffers(inode
);
96 ext2_discard_reservation(inode
);
97 rsv
= EXT2_I(inode
)->i_block_alloc_info
;
98 EXT2_I(inode
)->i_block_alloc_info
= NULL
;
103 ext2_free_inode(inode
);
104 sb_end_intwrite(inode
->i_sb
);
111 struct buffer_head
*bh
;
114 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
116 p
->key
= *(p
->p
= v
);
120 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
122 while (from
<= to
&& from
->key
== *from
->p
)
128 * ext2_block_to_path - parse the block number into array of offsets
129 * @inode: inode in question (we are only interested in its superblock)
130 * @i_block: block number to be parsed
131 * @offsets: array to store the offsets in
132 * @boundary: set this non-zero if the referred-to block is likely to be
133 * followed (on disk) by an indirect block.
134 * To store the locations of file's data ext2 uses a data structure common
135 * for UNIX filesystems - tree of pointers anchored in the inode, with
136 * data blocks at leaves and indirect blocks in intermediate nodes.
137 * This function translates the block number into path in that tree -
138 * return value is the path length and @offsets[n] is the offset of
139 * pointer to (n+1)th node in the nth one. If @block is out of range
140 * (negative or too large) warning is printed and zero returned.
142 * Note: function doesn't find node addresses, so no IO is needed. All
143 * we need to know is the capacity of indirect blocks (taken from the
148 * Portability note: the last comparison (check that we fit into triple
149 * indirect block) is spelled differently, because otherwise on an
150 * architecture with 32-bit longs and 8Kb pages we might get into trouble
151 * if our filesystem had 8Kb blocks. We might use long long, but that would
152 * kill us on x86. Oh, well, at least the sign propagation does not matter -
153 * i_block would have to be negative in the very beginning, so we would not
157 static int ext2_block_to_path(struct inode
*inode
,
158 long i_block
, int offsets
[4], int *boundary
)
160 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
161 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
162 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
163 indirect_blocks
= ptrs
,
164 double_blocks
= (1 << (ptrs_bits
* 2));
169 ext2_msg(inode
->i_sb
, KERN_WARNING
,
170 "warning: %s: block < 0", __func__
);
171 } else if (i_block
< direct_blocks
) {
172 offsets
[n
++] = i_block
;
173 final
= direct_blocks
;
174 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
175 offsets
[n
++] = EXT2_IND_BLOCK
;
176 offsets
[n
++] = i_block
;
178 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
179 offsets
[n
++] = EXT2_DIND_BLOCK
;
180 offsets
[n
++] = i_block
>> ptrs_bits
;
181 offsets
[n
++] = i_block
& (ptrs
- 1);
183 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
184 offsets
[n
++] = EXT2_TIND_BLOCK
;
185 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
186 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
187 offsets
[n
++] = i_block
& (ptrs
- 1);
190 ext2_msg(inode
->i_sb
, KERN_WARNING
,
191 "warning: %s: block is too big", __func__
);
194 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
200 * ext2_get_branch - read the chain of indirect blocks leading to data
201 * @inode: inode in question
202 * @depth: depth of the chain (1 - direct pointer, etc.)
203 * @offsets: offsets of pointers in inode/indirect blocks
204 * @chain: place to store the result
205 * @err: here we store the error value
207 * Function fills the array of triples <key, p, bh> and returns %NULL
208 * if everything went OK or the pointer to the last filled triple
209 * (incomplete one) otherwise. Upon the return chain[i].key contains
210 * the number of (i+1)-th block in the chain (as it is stored in memory,
211 * i.e. little-endian 32-bit), chain[i].p contains the address of that
212 * number (it points into struct inode for i==0 and into the bh->b_data
213 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
214 * block for i>0 and NULL for i==0. In other words, it holds the block
215 * numbers of the chain, addresses they were taken from (and where we can
216 * verify that chain did not change) and buffer_heads hosting these
219 * Function stops when it stumbles upon zero pointer (absent block)
220 * (pointer to last triple returned, *@err == 0)
221 * or when it gets an IO error reading an indirect block
222 * (ditto, *@err == -EIO)
223 * or when it notices that chain had been changed while it was reading
224 * (ditto, *@err == -EAGAIN)
225 * or when it reads all @depth-1 indirect blocks successfully and finds
226 * the whole chain, all way to the data (returns %NULL, *err == 0).
228 static Indirect
*ext2_get_branch(struct inode
*inode
,
234 struct super_block
*sb
= inode
->i_sb
;
236 struct buffer_head
*bh
;
239 /* i_data is not going away, no lock needed */
240 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
244 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
247 read_lock(&EXT2_I(inode
)->i_meta_lock
);
248 if (!verify_chain(chain
, p
))
250 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
251 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
258 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
269 * ext2_find_near - find a place for allocation with sufficient locality
271 * @ind: descriptor of indirect block.
273 * This function returns the preferred place for block allocation.
274 * It is used when heuristic for sequential allocation fails.
276 * + if there is a block to the left of our position - allocate near it.
277 * + if pointer will live in indirect block - allocate near that block.
278 * + if pointer will live in inode - allocate in the same cylinder group.
280 * In the latter case we colour the starting block by the callers PID to
281 * prevent it from clashing with concurrent allocations for a different inode
282 * in the same block group. The PID is used here so that functionally related
283 * files will be close-by on-disk.
285 * Caller must make sure that @ind is valid and will stay that way.
288 static ext2_fsblk_t
ext2_find_near(struct inode
*inode
, Indirect
*ind
)
290 struct ext2_inode_info
*ei
= EXT2_I(inode
);
291 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
293 ext2_fsblk_t bg_start
;
296 /* Try to find previous block */
297 for (p
= ind
->p
- 1; p
>= start
; p
--)
299 return le32_to_cpu(*p
);
301 /* No such thing, so let's try location of indirect block */
303 return ind
->bh
->b_blocknr
;
306 * It is going to be referred from inode itself? OK, just put it into
307 * the same cylinder group then.
309 bg_start
= ext2_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
310 colour
= (current
->pid
% 16) *
311 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
312 return bg_start
+ colour
;
316 * ext2_find_goal - find a preferred place for allocation.
318 * @block: block we want
319 * @partial: pointer to the last triple within a chain
321 * Returns preferred place for a block (the goal).
324 static inline ext2_fsblk_t
ext2_find_goal(struct inode
*inode
, long block
,
327 struct ext2_block_alloc_info
*block_i
;
329 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
332 * try the heuristic for sequential allocation,
333 * failing that at least try to get decent locality.
335 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
336 && (block_i
->last_alloc_physical_block
!= 0)) {
337 return block_i
->last_alloc_physical_block
+ 1;
340 return ext2_find_near(inode
, partial
);
344 * ext2_blks_to_allocate: Look up the block map and count the number
345 * of direct blocks need to be allocated for the given branch.
347 * @branch: chain of indirect blocks
348 * @k: number of blocks need for indirect blocks
349 * @blks: number of data blocks to be mapped.
350 * @blocks_to_boundary: the offset in the indirect block
352 * return the total number of blocks to be allocate, including the
353 * direct and indirect blocks.
356 ext2_blks_to_allocate(Indirect
* branch
, int k
, unsigned long blks
,
357 int blocks_to_boundary
)
359 unsigned long count
= 0;
362 * Simple case, [t,d]Indirect block(s) has not allocated yet
363 * then it's clear blocks on that path have not allocated
366 /* right now don't hanel cross boundary allocation */
367 if (blks
< blocks_to_boundary
+ 1)
370 count
+= blocks_to_boundary
+ 1;
375 while (count
< blks
&& count
<= blocks_to_boundary
376 && le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
383 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
384 * @indirect_blks: the number of blocks need to allocate for indirect
387 * @new_blocks: on return it will store the new block numbers for
388 * the indirect blocks(if needed) and the first direct block,
389 * @blks: on return it will store the total number of allocated
392 static int ext2_alloc_blocks(struct inode
*inode
,
393 ext2_fsblk_t goal
, int indirect_blks
, int blks
,
394 ext2_fsblk_t new_blocks
[4], int *err
)
397 unsigned long count
= 0;
399 ext2_fsblk_t current_block
= 0;
403 * Here we try to allocate the requested multiple blocks at once,
404 * on a best-effort basis.
405 * To build a branch, we should allocate blocks for
406 * the indirect blocks(if not allocated yet), and at least
407 * the first direct block of this branch. That's the
408 * minimum number of blocks need to allocate(required)
410 target
= blks
+ indirect_blks
;
414 /* allocating blocks for indirect blocks and direct blocks */
415 current_block
= ext2_new_blocks(inode
,goal
,&count
,err
);
420 /* allocate blocks for indirect blocks */
421 while (index
< indirect_blks
&& count
) {
422 new_blocks
[index
++] = current_block
++;
430 /* save the new block number for the first direct block */
431 new_blocks
[index
] = current_block
;
433 /* total number of blocks allocated for direct blocks */
438 for (i
= 0; i
<index
; i
++)
439 ext2_free_blocks(inode
, new_blocks
[i
], 1);
441 mark_inode_dirty(inode
);
446 * ext2_alloc_branch - allocate and set up a chain of blocks.
448 * @num: depth of the chain (number of blocks to allocate)
449 * @offsets: offsets (in the blocks) to store the pointers to next.
450 * @branch: place to store the chain in.
452 * This function allocates @num blocks, zeroes out all but the last one,
453 * links them into chain and (if we are synchronous) writes them to disk.
454 * In other words, it prepares a branch that can be spliced onto the
455 * inode. It stores the information about that chain in the branch[], in
456 * the same format as ext2_get_branch() would do. We are calling it after
457 * we had read the existing part of chain and partial points to the last
458 * triple of that (one with zero ->key). Upon the exit we have the same
459 * picture as after the successful ext2_get_block(), except that in one
460 * place chain is disconnected - *branch->p is still zero (we did not
461 * set the last link), but branch->key contains the number that should
462 * be placed into *branch->p to fill that gap.
464 * If allocation fails we free all blocks we've allocated (and forget
465 * their buffer_heads) and return the error value the from failed
466 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
467 * as described above and return 0.
470 static int ext2_alloc_branch(struct inode
*inode
,
471 int indirect_blks
, int *blks
, ext2_fsblk_t goal
,
472 int *offsets
, Indirect
*branch
)
474 int blocksize
= inode
->i_sb
->s_blocksize
;
477 struct buffer_head
*bh
;
479 ext2_fsblk_t new_blocks
[4];
480 ext2_fsblk_t current_block
;
482 num
= ext2_alloc_blocks(inode
, goal
, indirect_blks
,
483 *blks
, new_blocks
, &err
);
487 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
489 * metadata blocks and data blocks are allocated.
491 for (n
= 1; n
<= indirect_blks
; n
++) {
493 * Get buffer_head for parent block, zero it out
494 * and set the pointer to new one, then send
497 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
500 memset(bh
->b_data
, 0, blocksize
);
501 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
502 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
503 *branch
[n
].p
= branch
[n
].key
;
504 if ( n
== indirect_blks
) {
505 current_block
= new_blocks
[n
];
507 * End of chain, update the last new metablock of
508 * the chain to point to the new allocated
509 * data blocks numbers
511 for (i
=1; i
< num
; i
++)
512 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
514 set_buffer_uptodate(bh
);
516 mark_buffer_dirty_inode(bh
, inode
);
517 /* We used to sync bh here if IS_SYNC(inode).
518 * But we now rely upon generic_write_sync()
519 * and b_inode_buffers. But not for directories.
521 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
522 sync_dirty_buffer(bh
);
529 * ext2_splice_branch - splice the allocated branch onto inode.
531 * @block: (logical) number of block we are adding
532 * @where: location of missing link
533 * @num: number of indirect blocks we are adding
534 * @blks: number of direct blocks we are adding
536 * This function fills the missing link and does all housekeeping needed in
537 * inode (->i_blocks, etc.). In case of success we end up with the full
538 * chain to new block and return 0.
540 static void ext2_splice_branch(struct inode
*inode
,
541 long block
, Indirect
*where
, int num
, int blks
)
544 struct ext2_block_alloc_info
*block_i
;
545 ext2_fsblk_t current_block
;
547 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
549 /* XXX LOCKING probably should have i_meta_lock ?*/
552 *where
->p
= where
->key
;
555 * Update the host buffer_head or inode to point to more just allocated
556 * direct blocks blocks
558 if (num
== 0 && blks
> 1) {
559 current_block
= le32_to_cpu(where
->key
) + 1;
560 for (i
= 1; i
< blks
; i
++)
561 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
565 * update the most recently allocated logical & physical block
566 * in i_block_alloc_info, to assist find the proper goal block for next
570 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
571 block_i
->last_alloc_physical_block
=
572 le32_to_cpu(where
[num
].key
) + blks
- 1;
575 /* We are done with atomic stuff, now do the rest of housekeeping */
577 /* had we spliced it onto indirect block? */
579 mark_buffer_dirty_inode(where
->bh
, inode
);
581 inode
->i_ctime
= CURRENT_TIME_SEC
;
582 mark_inode_dirty(inode
);
586 * Allocation strategy is simple: if we have to allocate something, we will
587 * have to go the whole way to leaf. So let's do it before attaching anything
588 * to tree, set linkage between the newborn blocks, write them if sync is
589 * required, recheck the path, free and repeat if check fails, otherwise
590 * set the last missing link (that will protect us from any truncate-generated
591 * removals - all blocks on the path are immune now) and possibly force the
592 * write on the parent block.
593 * That has a nice additional property: no special recovery from the failed
594 * allocations is needed - we simply release blocks and do not touch anything
595 * reachable from inode.
597 * `handle' can be NULL if create == 0.
599 * return > 0, # of blocks mapped or allocated.
600 * return = 0, if plain lookup failed.
601 * return < 0, error case.
603 static int ext2_get_blocks(struct inode
*inode
,
604 sector_t iblock
, unsigned long maxblocks
,
605 struct buffer_head
*bh_result
,
614 int blocks_to_boundary
= 0;
616 struct ext2_inode_info
*ei
= EXT2_I(inode
);
618 ext2_fsblk_t first_block
= 0;
620 depth
= ext2_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
625 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
626 /* Simplest case - block found, no allocation needed */
628 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
629 clear_buffer_new(bh_result
); /* What's this do? */
632 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
635 if (!verify_chain(chain
, chain
+ depth
- 1)) {
637 * Indirect block might be removed by
638 * truncate while we were reading it.
639 * Handling of that case: forget what we've
640 * got now, go to reread.
646 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
647 if (blk
== first_block
+ count
)
656 /* Next simple case - plain lookup or failed read of indirect block */
657 if (!create
|| err
== -EIO
)
660 mutex_lock(&ei
->truncate_mutex
);
662 * If the indirect block is missing while we are reading
663 * the chain(ext2_get_branch() returns -EAGAIN err), or
664 * if the chain has been changed after we grab the semaphore,
665 * (either because another process truncated this branch, or
666 * another get_block allocated this branch) re-grab the chain to see if
667 * the request block has been allocated or not.
669 * Since we already block the truncate/other get_block
670 * at this point, we will have the current copy of the chain when we
671 * splice the branch into the tree.
673 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
674 while (partial
> chain
) {
678 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
681 mutex_unlock(&ei
->truncate_mutex
);
684 clear_buffer_new(bh_result
);
690 * Okay, we need to do block allocation. Lazily initialize the block
691 * allocation info here if necessary
693 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
694 ext2_init_block_alloc_info(inode
);
696 goal
= ext2_find_goal(inode
, iblock
, partial
);
698 /* the number of blocks need to allocate for [d,t]indirect blocks */
699 indirect_blks
= (chain
+ depth
) - partial
- 1;
701 * Next look up the indirect map to count the totoal number of
702 * direct blocks to allocate for this branch.
704 count
= ext2_blks_to_allocate(partial
, indirect_blks
,
705 maxblocks
, blocks_to_boundary
);
707 * XXX ???? Block out ext2_truncate while we alter the tree
709 err
= ext2_alloc_branch(inode
, indirect_blks
, &count
, goal
,
710 offsets
+ (partial
- chain
), partial
);
713 mutex_unlock(&ei
->truncate_mutex
);
717 if (ext2_use_xip(inode
->i_sb
)) {
719 * we need to clear the block
721 err
= ext2_clear_xip_target (inode
,
722 le32_to_cpu(chain
[depth
-1].key
));
724 mutex_unlock(&ei
->truncate_mutex
);
729 ext2_splice_branch(inode
, iblock
, partial
, indirect_blks
, count
);
730 mutex_unlock(&ei
->truncate_mutex
);
731 set_buffer_new(bh_result
);
733 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
734 if (count
> blocks_to_boundary
)
735 set_buffer_boundary(bh_result
);
737 /* Clean up and exit */
738 partial
= chain
+ depth
- 1; /* the whole chain */
740 while (partial
> chain
) {
747 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
749 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
750 int ret
= ext2_get_blocks(inode
, iblock
, max_blocks
,
753 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
760 int ext2_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
763 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
767 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
769 return block_write_full_page(page
, ext2_get_block
, wbc
);
772 static int ext2_readpage(struct file
*file
, struct page
*page
)
774 return mpage_readpage(page
, ext2_get_block
);
778 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
779 struct list_head
*pages
, unsigned nr_pages
)
781 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
785 ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
786 loff_t pos
, unsigned len
, unsigned flags
,
787 struct page
**pagep
, void **fsdata
)
791 ret
= block_write_begin(mapping
, pos
, len
, flags
, pagep
,
794 ext2_write_failed(mapping
, pos
+ len
);
798 static int ext2_write_end(struct file
*file
, struct address_space
*mapping
,
799 loff_t pos
, unsigned len
, unsigned copied
,
800 struct page
*page
, void *fsdata
)
804 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
806 ext2_write_failed(mapping
, pos
+ len
);
811 ext2_nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
812 loff_t pos
, unsigned len
, unsigned flags
,
813 struct page
**pagep
, void **fsdata
)
817 ret
= nobh_write_begin(mapping
, pos
, len
, flags
, pagep
, fsdata
,
820 ext2_write_failed(mapping
, pos
+ len
);
824 static int ext2_nobh_writepage(struct page
*page
,
825 struct writeback_control
*wbc
)
827 return nobh_writepage(page
, ext2_get_block
, wbc
);
830 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
832 return generic_block_bmap(mapping
,block
,ext2_get_block
);
836 ext2_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
837 loff_t offset
, unsigned long nr_segs
)
839 struct file
*file
= iocb
->ki_filp
;
840 struct address_space
*mapping
= file
->f_mapping
;
841 struct inode
*inode
= mapping
->host
;
844 ret
= blockdev_direct_IO(rw
, iocb
, inode
, iov
, offset
, nr_segs
,
846 if (ret
< 0 && (rw
& WRITE
))
847 ext2_write_failed(mapping
, offset
+ iov_length(iov
, nr_segs
));
852 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
854 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
857 const struct address_space_operations ext2_aops
= {
858 .readpage
= ext2_readpage
,
859 .readpages
= ext2_readpages
,
860 .writepage
= ext2_writepage
,
861 .write_begin
= ext2_write_begin
,
862 .write_end
= ext2_write_end
,
864 .direct_IO
= ext2_direct_IO
,
865 .writepages
= ext2_writepages
,
866 .migratepage
= buffer_migrate_page
,
867 .is_partially_uptodate
= block_is_partially_uptodate
,
868 .error_remove_page
= generic_error_remove_page
,
871 const struct address_space_operations ext2_aops_xip
= {
873 .get_xip_mem
= ext2_get_xip_mem
,
876 const struct address_space_operations ext2_nobh_aops
= {
877 .readpage
= ext2_readpage
,
878 .readpages
= ext2_readpages
,
879 .writepage
= ext2_nobh_writepage
,
880 .write_begin
= ext2_nobh_write_begin
,
881 .write_end
= nobh_write_end
,
883 .direct_IO
= ext2_direct_IO
,
884 .writepages
= ext2_writepages
,
885 .migratepage
= buffer_migrate_page
,
886 .error_remove_page
= generic_error_remove_page
,
890 * Probably it should be a library function... search for first non-zero word
891 * or memcmp with zero_page, whatever is better for particular architecture.
894 static inline int all_zeroes(__le32
*p
, __le32
*q
)
903 * ext2_find_shared - find the indirect blocks for partial truncation.
904 * @inode: inode in question
905 * @depth: depth of the affected branch
906 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
907 * @chain: place to store the pointers to partial indirect blocks
908 * @top: place to the (detached) top of branch
910 * This is a helper function used by ext2_truncate().
912 * When we do truncate() we may have to clean the ends of several indirect
913 * blocks but leave the blocks themselves alive. Block is partially
914 * truncated if some data below the new i_size is referred from it (and
915 * it is on the path to the first completely truncated data block, indeed).
916 * We have to free the top of that path along with everything to the right
917 * of the path. Since no allocation past the truncation point is possible
918 * until ext2_truncate() finishes, we may safely do the latter, but top
919 * of branch may require special attention - pageout below the truncation
920 * point might try to populate it.
922 * We atomically detach the top of branch from the tree, store the block
923 * number of its root in *@top, pointers to buffer_heads of partially
924 * truncated blocks - in @chain[].bh and pointers to their last elements
925 * that should not be removed - in @chain[].p. Return value is the pointer
926 * to last filled element of @chain.
928 * The work left to caller to do the actual freeing of subtrees:
929 * a) free the subtree starting from *@top
930 * b) free the subtrees whose roots are stored in
931 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
932 * c) free the subtrees growing from the inode past the @chain[0].p
933 * (no partially truncated stuff there).
936 static Indirect
*ext2_find_shared(struct inode
*inode
,
942 Indirect
*partial
, *p
;
946 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
948 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
950 partial
= chain
+ k
-1;
952 * If the branch acquired continuation since we've looked at it -
953 * fine, it should all survive and (new) top doesn't belong to us.
955 write_lock(&EXT2_I(inode
)->i_meta_lock
);
956 if (!partial
->key
&& *partial
->p
) {
957 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
960 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
963 * OK, we've found the last block that must survive. The rest of our
964 * branch should be detached before unlocking. However, if that rest
965 * of branch is all ours and does not grow immediately from the inode
966 * it's easier to cheat and just decrement partial->p.
968 if (p
== chain
+ k
- 1 && p
> chain
) {
974 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
986 * ext2_free_data - free a list of data blocks
987 * @inode: inode we are dealing with
988 * @p: array of block numbers
989 * @q: points immediately past the end of array
991 * We are freeing all blocks referred from that array (numbers are
992 * stored as little-endian 32-bit) and updating @inode->i_blocks
995 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
997 unsigned long block_to_free
= 0, count
= 0;
1000 for ( ; p
< q
; p
++) {
1001 nr
= le32_to_cpu(*p
);
1004 /* accumulate blocks to free if they're contiguous */
1007 else if (block_to_free
== nr
- count
)
1010 ext2_free_blocks (inode
, block_to_free
, count
);
1011 mark_inode_dirty(inode
);
1019 ext2_free_blocks (inode
, block_to_free
, count
);
1020 mark_inode_dirty(inode
);
1025 * ext2_free_branches - free an array of branches
1026 * @inode: inode we are dealing with
1027 * @p: array of block numbers
1028 * @q: pointer immediately past the end of array
1029 * @depth: depth of the branches to free
1031 * We are freeing all blocks referred from these branches (numbers are
1032 * stored as little-endian 32-bit) and updating @inode->i_blocks
1035 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
1037 struct buffer_head
* bh
;
1041 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1042 for ( ; p
< q
; p
++) {
1043 nr
= le32_to_cpu(*p
);
1047 bh
= sb_bread(inode
->i_sb
, nr
);
1049 * A read failure? Report error and clear slot
1053 ext2_error(inode
->i_sb
, "ext2_free_branches",
1054 "Read failure, inode=%ld, block=%ld",
1058 ext2_free_branches(inode
,
1059 (__le32
*)bh
->b_data
,
1060 (__le32
*)bh
->b_data
+ addr_per_block
,
1063 ext2_free_blocks(inode
, nr
, 1);
1064 mark_inode_dirty(inode
);
1067 ext2_free_data(inode
, p
, q
);
1070 static void __ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1072 __le32
*i_data
= EXT2_I(inode
)->i_data
;
1073 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1074 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1082 blocksize
= inode
->i_sb
->s_blocksize
;
1083 iblock
= (offset
+ blocksize
-1) >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
1085 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
1090 * From here we block out all ext2_get_block() callers who want to
1091 * modify the block allocation tree.
1093 mutex_lock(&ei
->truncate_mutex
);
1096 ext2_free_data(inode
, i_data
+offsets
[0],
1097 i_data
+ EXT2_NDIR_BLOCKS
);
1101 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
1102 /* Kill the top of shared branch (already detached) */
1104 if (partial
== chain
)
1105 mark_inode_dirty(inode
);
1107 mark_buffer_dirty_inode(partial
->bh
, inode
);
1108 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
1110 /* Clear the ends of indirect blocks on the shared branch */
1111 while (partial
> chain
) {
1112 ext2_free_branches(inode
,
1114 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
1115 (chain
+n
-1) - partial
);
1116 mark_buffer_dirty_inode(partial
->bh
, inode
);
1117 brelse (partial
->bh
);
1121 /* Kill the remaining (whole) subtrees */
1122 switch (offsets
[0]) {
1124 nr
= i_data
[EXT2_IND_BLOCK
];
1126 i_data
[EXT2_IND_BLOCK
] = 0;
1127 mark_inode_dirty(inode
);
1128 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
1130 case EXT2_IND_BLOCK
:
1131 nr
= i_data
[EXT2_DIND_BLOCK
];
1133 i_data
[EXT2_DIND_BLOCK
] = 0;
1134 mark_inode_dirty(inode
);
1135 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
1137 case EXT2_DIND_BLOCK
:
1138 nr
= i_data
[EXT2_TIND_BLOCK
];
1140 i_data
[EXT2_TIND_BLOCK
] = 0;
1141 mark_inode_dirty(inode
);
1142 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
1144 case EXT2_TIND_BLOCK
:
1148 ext2_discard_reservation(inode
);
1150 mutex_unlock(&ei
->truncate_mutex
);
1153 static void ext2_truncate_blocks(struct inode
*inode
, loff_t offset
)
1156 * XXX: it seems like a bug here that we don't allow
1157 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1158 * review and fix this.
1160 * Also would be nice to be able to handle IO errors and such,
1161 * but that's probably too much to ask.
1163 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1164 S_ISLNK(inode
->i_mode
)))
1166 if (ext2_inode_is_fast_symlink(inode
))
1168 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1170 __ext2_truncate_blocks(inode
, offset
);
1173 static int ext2_setsize(struct inode
*inode
, loff_t newsize
)
1177 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1178 S_ISLNK(inode
->i_mode
)))
1180 if (ext2_inode_is_fast_symlink(inode
))
1182 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1185 inode_dio_wait(inode
);
1187 if (mapping_is_xip(inode
->i_mapping
))
1188 error
= xip_truncate_page(inode
->i_mapping
, newsize
);
1189 else if (test_opt(inode
->i_sb
, NOBH
))
1190 error
= nobh_truncate_page(inode
->i_mapping
,
1191 newsize
, ext2_get_block
);
1193 error
= block_truncate_page(inode
->i_mapping
,
1194 newsize
, ext2_get_block
);
1198 truncate_setsize(inode
, newsize
);
1199 __ext2_truncate_blocks(inode
, newsize
);
1201 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
1202 if (inode_needs_sync(inode
)) {
1203 sync_mapping_buffers(inode
->i_mapping
);
1204 sync_inode_metadata(inode
, 1);
1206 mark_inode_dirty(inode
);
1212 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
1213 struct buffer_head
**p
)
1215 struct buffer_head
* bh
;
1216 unsigned long block_group
;
1217 unsigned long block
;
1218 unsigned long offset
;
1219 struct ext2_group_desc
* gdp
;
1222 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
1223 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
1226 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
1227 gdp
= ext2_get_group_desc(sb
, block_group
, NULL
);
1231 * Figure out the offset within the block group inode table
1233 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1234 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1235 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1236 if (!(bh
= sb_bread(sb
, block
)))
1240 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1241 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1244 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1245 (unsigned long) ino
);
1246 return ERR_PTR(-EINVAL
);
1248 ext2_error(sb
, "ext2_get_inode",
1249 "unable to read inode block - inode=%lu, block=%lu",
1250 (unsigned long) ino
, block
);
1252 return ERR_PTR(-EIO
);
1255 void ext2_set_inode_flags(struct inode
*inode
)
1257 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1259 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
1260 if (flags
& EXT2_SYNC_FL
)
1261 inode
->i_flags
|= S_SYNC
;
1262 if (flags
& EXT2_APPEND_FL
)
1263 inode
->i_flags
|= S_APPEND
;
1264 if (flags
& EXT2_IMMUTABLE_FL
)
1265 inode
->i_flags
|= S_IMMUTABLE
;
1266 if (flags
& EXT2_NOATIME_FL
)
1267 inode
->i_flags
|= S_NOATIME
;
1268 if (flags
& EXT2_DIRSYNC_FL
)
1269 inode
->i_flags
|= S_DIRSYNC
;
1272 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1273 void ext2_get_inode_flags(struct ext2_inode_info
*ei
)
1275 unsigned int flags
= ei
->vfs_inode
.i_flags
;
1277 ei
->i_flags
&= ~(EXT2_SYNC_FL
|EXT2_APPEND_FL
|
1278 EXT2_IMMUTABLE_FL
|EXT2_NOATIME_FL
|EXT2_DIRSYNC_FL
);
1280 ei
->i_flags
|= EXT2_SYNC_FL
;
1281 if (flags
& S_APPEND
)
1282 ei
->i_flags
|= EXT2_APPEND_FL
;
1283 if (flags
& S_IMMUTABLE
)
1284 ei
->i_flags
|= EXT2_IMMUTABLE_FL
;
1285 if (flags
& S_NOATIME
)
1286 ei
->i_flags
|= EXT2_NOATIME_FL
;
1287 if (flags
& S_DIRSYNC
)
1288 ei
->i_flags
|= EXT2_DIRSYNC_FL
;
1291 struct inode
*ext2_iget (struct super_block
*sb
, unsigned long ino
)
1293 struct ext2_inode_info
*ei
;
1294 struct buffer_head
* bh
;
1295 struct ext2_inode
*raw_inode
;
1296 struct inode
*inode
;
1302 inode
= iget_locked(sb
, ino
);
1304 return ERR_PTR(-ENOMEM
);
1305 if (!(inode
->i_state
& I_NEW
))
1309 ei
->i_block_alloc_info
= NULL
;
1311 raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1312 if (IS_ERR(raw_inode
)) {
1313 ret
= PTR_ERR(raw_inode
);
1317 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1318 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1319 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1320 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1321 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1322 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1324 i_uid_write(inode
, i_uid
);
1325 i_gid_write(inode
, i_gid
);
1326 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
1327 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1328 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
1329 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
1330 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
1331 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1332 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1333 /* We now have enough fields to check if the inode was active or not.
1334 * This is needed because nfsd might try to access dead inodes
1335 * the test is that same one that e2fsck uses
1336 * NeilBrown 1999oct15
1338 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1339 /* this inode is deleted */
1344 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1345 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1346 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1347 ei
->i_frag_no
= raw_inode
->i_frag
;
1348 ei
->i_frag_size
= raw_inode
->i_fsize
;
1349 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1351 if (S_ISREG(inode
->i_mode
))
1352 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1354 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1356 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1358 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1359 ei
->i_dir_start_lookup
= 0;
1362 * NOTE! The in-memory inode i_data array is in little-endian order
1363 * even on big-endian machines: we do NOT byteswap the block numbers!
1365 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1366 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1368 if (S_ISREG(inode
->i_mode
)) {
1369 inode
->i_op
= &ext2_file_inode_operations
;
1370 if (ext2_use_xip(inode
->i_sb
)) {
1371 inode
->i_mapping
->a_ops
= &ext2_aops_xip
;
1372 inode
->i_fop
= &ext2_xip_file_operations
;
1373 } else if (test_opt(inode
->i_sb
, NOBH
)) {
1374 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1375 inode
->i_fop
= &ext2_file_operations
;
1377 inode
->i_mapping
->a_ops
= &ext2_aops
;
1378 inode
->i_fop
= &ext2_file_operations
;
1380 } else if (S_ISDIR(inode
->i_mode
)) {
1381 inode
->i_op
= &ext2_dir_inode_operations
;
1382 inode
->i_fop
= &ext2_dir_operations
;
1383 if (test_opt(inode
->i_sb
, NOBH
))
1384 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1386 inode
->i_mapping
->a_ops
= &ext2_aops
;
1387 } else if (S_ISLNK(inode
->i_mode
)) {
1388 if (ext2_inode_is_fast_symlink(inode
)) {
1389 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1390 nd_terminate_link(ei
->i_data
, inode
->i_size
,
1391 sizeof(ei
->i_data
) - 1);
1393 inode
->i_op
= &ext2_symlink_inode_operations
;
1394 if (test_opt(inode
->i_sb
, NOBH
))
1395 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1397 inode
->i_mapping
->a_ops
= &ext2_aops
;
1400 inode
->i_op
= &ext2_special_inode_operations
;
1401 if (raw_inode
->i_block
[0])
1402 init_special_inode(inode
, inode
->i_mode
,
1403 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1405 init_special_inode(inode
, inode
->i_mode
,
1406 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1409 ext2_set_inode_flags(inode
);
1410 unlock_new_inode(inode
);
1415 return ERR_PTR(ret
);
1418 static int __ext2_write_inode(struct inode
*inode
, int do_sync
)
1420 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1421 struct super_block
*sb
= inode
->i_sb
;
1422 ino_t ino
= inode
->i_ino
;
1423 uid_t uid
= i_uid_read(inode
);
1424 gid_t gid
= i_gid_read(inode
);
1425 struct buffer_head
* bh
;
1426 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1430 if (IS_ERR(raw_inode
))
1433 /* For fields not not tracking in the in-memory inode,
1434 * initialise them to zero for new inodes. */
1435 if (ei
->i_state
& EXT2_STATE_NEW
)
1436 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1438 ext2_get_inode_flags(ei
);
1439 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1440 if (!(test_opt(sb
, NO_UID32
))) {
1441 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1442 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1444 * Fix up interoperability with old kernels. Otherwise, old inodes get
1445 * re-used with the upper 16 bits of the uid/gid intact
1448 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1449 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1451 raw_inode
->i_uid_high
= 0;
1452 raw_inode
->i_gid_high
= 0;
1455 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1456 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1457 raw_inode
->i_uid_high
= 0;
1458 raw_inode
->i_gid_high
= 0;
1460 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1461 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1462 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1463 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1464 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1466 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1467 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1468 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1469 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1470 raw_inode
->i_frag
= ei
->i_frag_no
;
1471 raw_inode
->i_fsize
= ei
->i_frag_size
;
1472 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1473 if (!S_ISREG(inode
->i_mode
))
1474 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1476 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1477 if (inode
->i_size
> 0x7fffffffULL
) {
1478 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1479 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1480 EXT2_SB(sb
)->s_es
->s_rev_level
==
1481 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1482 /* If this is the first large file
1483 * created, add a flag to the superblock.
1485 spin_lock(&EXT2_SB(sb
)->s_lock
);
1486 ext2_update_dynamic_rev(sb
);
1487 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1488 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1489 spin_unlock(&EXT2_SB(sb
)->s_lock
);
1490 ext2_write_super(sb
);
1495 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1496 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1497 if (old_valid_dev(inode
->i_rdev
)) {
1498 raw_inode
->i_block
[0] =
1499 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1500 raw_inode
->i_block
[1] = 0;
1502 raw_inode
->i_block
[0] = 0;
1503 raw_inode
->i_block
[1] =
1504 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1505 raw_inode
->i_block
[2] = 0;
1507 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1508 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1509 mark_buffer_dirty(bh
);
1511 sync_dirty_buffer(bh
);
1512 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1513 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1514 sb
->s_id
, (unsigned long) ino
);
1518 ei
->i_state
&= ~EXT2_STATE_NEW
;
1523 int ext2_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1525 return __ext2_write_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1528 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1530 struct inode
*inode
= dentry
->d_inode
;
1533 error
= inode_change_ok(inode
, iattr
);
1537 if (is_quota_modification(inode
, iattr
))
1538 dquot_initialize(inode
);
1539 if ((iattr
->ia_valid
& ATTR_UID
&& !uid_eq(iattr
->ia_uid
, inode
->i_uid
)) ||
1540 (iattr
->ia_valid
& ATTR_GID
&& !gid_eq(iattr
->ia_gid
, inode
->i_gid
))) {
1541 error
= dquot_transfer(inode
, iattr
);
1545 if (iattr
->ia_valid
& ATTR_SIZE
&& iattr
->ia_size
!= inode
->i_size
) {
1546 error
= ext2_setsize(inode
, iattr
->ia_size
);
1550 setattr_copy(inode
, iattr
);
1551 if (iattr
->ia_valid
& ATTR_MODE
)
1552 error
= ext2_acl_chmod(inode
);
1553 mark_inode_dirty(inode
);