Linux 3.8-rc7
[cris-mirror.git] / fs / ext2 / inode.c
blob6363ac66fafa48c1c697d993a948fa1a5ff7cf78
1 /*
2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
38 static int __ext2_write_inode(struct inode *inode, int do_sync);
41 * Test whether an inode is a fast symlink.
43 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
45 int ea_blocks = EXT2_I(inode)->i_file_acl ?
46 (inode->i_sb->s_blocksize >> 9) : 0;
48 return (S_ISLNK(inode->i_mode) &&
49 inode->i_blocks - ea_blocks == 0);
52 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
54 static void ext2_write_failed(struct address_space *mapping, loff_t to)
56 struct inode *inode = mapping->host;
58 if (to > inode->i_size) {
59 truncate_pagecache(inode, to, inode->i_size);
60 ext2_truncate_blocks(inode, inode->i_size);
65 * Called at the last iput() if i_nlink is zero.
67 void ext2_evict_inode(struct inode * inode)
69 struct ext2_block_alloc_info *rsv;
70 int want_delete = 0;
72 if (!inode->i_nlink && !is_bad_inode(inode)) {
73 want_delete = 1;
74 dquot_initialize(inode);
75 } else {
76 dquot_drop(inode);
79 truncate_inode_pages(&inode->i_data, 0);
81 if (want_delete) {
82 sb_start_intwrite(inode->i_sb);
83 /* set dtime */
84 EXT2_I(inode)->i_dtime = get_seconds();
85 mark_inode_dirty(inode);
86 __ext2_write_inode(inode, inode_needs_sync(inode));
87 /* truncate to 0 */
88 inode->i_size = 0;
89 if (inode->i_blocks)
90 ext2_truncate_blocks(inode, 0);
93 invalidate_inode_buffers(inode);
94 clear_inode(inode);
96 ext2_discard_reservation(inode);
97 rsv = EXT2_I(inode)->i_block_alloc_info;
98 EXT2_I(inode)->i_block_alloc_info = NULL;
99 if (unlikely(rsv))
100 kfree(rsv);
102 if (want_delete) {
103 ext2_free_inode(inode);
104 sb_end_intwrite(inode->i_sb);
108 typedef struct {
109 __le32 *p;
110 __le32 key;
111 struct buffer_head *bh;
112 } Indirect;
114 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
116 p->key = *(p->p = v);
117 p->bh = bh;
120 static inline int verify_chain(Indirect *from, Indirect *to)
122 while (from <= to && from->key == *from->p)
123 from++;
124 return (from > to);
128 * ext2_block_to_path - parse the block number into array of offsets
129 * @inode: inode in question (we are only interested in its superblock)
130 * @i_block: block number to be parsed
131 * @offsets: array to store the offsets in
132 * @boundary: set this non-zero if the referred-to block is likely to be
133 * followed (on disk) by an indirect block.
134 * To store the locations of file's data ext2 uses a data structure common
135 * for UNIX filesystems - tree of pointers anchored in the inode, with
136 * data blocks at leaves and indirect blocks in intermediate nodes.
137 * This function translates the block number into path in that tree -
138 * return value is the path length and @offsets[n] is the offset of
139 * pointer to (n+1)th node in the nth one. If @block is out of range
140 * (negative or too large) warning is printed and zero returned.
142 * Note: function doesn't find node addresses, so no IO is needed. All
143 * we need to know is the capacity of indirect blocks (taken from the
144 * inode->i_sb).
148 * Portability note: the last comparison (check that we fit into triple
149 * indirect block) is spelled differently, because otherwise on an
150 * architecture with 32-bit longs and 8Kb pages we might get into trouble
151 * if our filesystem had 8Kb blocks. We might use long long, but that would
152 * kill us on x86. Oh, well, at least the sign propagation does not matter -
153 * i_block would have to be negative in the very beginning, so we would not
154 * get there at all.
157 static int ext2_block_to_path(struct inode *inode,
158 long i_block, int offsets[4], int *boundary)
160 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
161 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
162 const long direct_blocks = EXT2_NDIR_BLOCKS,
163 indirect_blocks = ptrs,
164 double_blocks = (1 << (ptrs_bits * 2));
165 int n = 0;
166 int final = 0;
168 if (i_block < 0) {
169 ext2_msg(inode->i_sb, KERN_WARNING,
170 "warning: %s: block < 0", __func__);
171 } else if (i_block < direct_blocks) {
172 offsets[n++] = i_block;
173 final = direct_blocks;
174 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
175 offsets[n++] = EXT2_IND_BLOCK;
176 offsets[n++] = i_block;
177 final = ptrs;
178 } else if ((i_block -= indirect_blocks) < double_blocks) {
179 offsets[n++] = EXT2_DIND_BLOCK;
180 offsets[n++] = i_block >> ptrs_bits;
181 offsets[n++] = i_block & (ptrs - 1);
182 final = ptrs;
183 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
184 offsets[n++] = EXT2_TIND_BLOCK;
185 offsets[n++] = i_block >> (ptrs_bits * 2);
186 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
187 offsets[n++] = i_block & (ptrs - 1);
188 final = ptrs;
189 } else {
190 ext2_msg(inode->i_sb, KERN_WARNING,
191 "warning: %s: block is too big", __func__);
193 if (boundary)
194 *boundary = final - 1 - (i_block & (ptrs - 1));
196 return n;
200 * ext2_get_branch - read the chain of indirect blocks leading to data
201 * @inode: inode in question
202 * @depth: depth of the chain (1 - direct pointer, etc.)
203 * @offsets: offsets of pointers in inode/indirect blocks
204 * @chain: place to store the result
205 * @err: here we store the error value
207 * Function fills the array of triples <key, p, bh> and returns %NULL
208 * if everything went OK or the pointer to the last filled triple
209 * (incomplete one) otherwise. Upon the return chain[i].key contains
210 * the number of (i+1)-th block in the chain (as it is stored in memory,
211 * i.e. little-endian 32-bit), chain[i].p contains the address of that
212 * number (it points into struct inode for i==0 and into the bh->b_data
213 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
214 * block for i>0 and NULL for i==0. In other words, it holds the block
215 * numbers of the chain, addresses they were taken from (and where we can
216 * verify that chain did not change) and buffer_heads hosting these
217 * numbers.
219 * Function stops when it stumbles upon zero pointer (absent block)
220 * (pointer to last triple returned, *@err == 0)
221 * or when it gets an IO error reading an indirect block
222 * (ditto, *@err == -EIO)
223 * or when it notices that chain had been changed while it was reading
224 * (ditto, *@err == -EAGAIN)
225 * or when it reads all @depth-1 indirect blocks successfully and finds
226 * the whole chain, all way to the data (returns %NULL, *err == 0).
228 static Indirect *ext2_get_branch(struct inode *inode,
229 int depth,
230 int *offsets,
231 Indirect chain[4],
232 int *err)
234 struct super_block *sb = inode->i_sb;
235 Indirect *p = chain;
236 struct buffer_head *bh;
238 *err = 0;
239 /* i_data is not going away, no lock needed */
240 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
241 if (!p->key)
242 goto no_block;
243 while (--depth) {
244 bh = sb_bread(sb, le32_to_cpu(p->key));
245 if (!bh)
246 goto failure;
247 read_lock(&EXT2_I(inode)->i_meta_lock);
248 if (!verify_chain(chain, p))
249 goto changed;
250 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
251 read_unlock(&EXT2_I(inode)->i_meta_lock);
252 if (!p->key)
253 goto no_block;
255 return NULL;
257 changed:
258 read_unlock(&EXT2_I(inode)->i_meta_lock);
259 brelse(bh);
260 *err = -EAGAIN;
261 goto no_block;
262 failure:
263 *err = -EIO;
264 no_block:
265 return p;
269 * ext2_find_near - find a place for allocation with sufficient locality
270 * @inode: owner
271 * @ind: descriptor of indirect block.
273 * This function returns the preferred place for block allocation.
274 * It is used when heuristic for sequential allocation fails.
275 * Rules are:
276 * + if there is a block to the left of our position - allocate near it.
277 * + if pointer will live in indirect block - allocate near that block.
278 * + if pointer will live in inode - allocate in the same cylinder group.
280 * In the latter case we colour the starting block by the callers PID to
281 * prevent it from clashing with concurrent allocations for a different inode
282 * in the same block group. The PID is used here so that functionally related
283 * files will be close-by on-disk.
285 * Caller must make sure that @ind is valid and will stay that way.
288 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
290 struct ext2_inode_info *ei = EXT2_I(inode);
291 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
292 __le32 *p;
293 ext2_fsblk_t bg_start;
294 ext2_fsblk_t colour;
296 /* Try to find previous block */
297 for (p = ind->p - 1; p >= start; p--)
298 if (*p)
299 return le32_to_cpu(*p);
301 /* No such thing, so let's try location of indirect block */
302 if (ind->bh)
303 return ind->bh->b_blocknr;
306 * It is going to be referred from inode itself? OK, just put it into
307 * the same cylinder group then.
309 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
310 colour = (current->pid % 16) *
311 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
312 return bg_start + colour;
316 * ext2_find_goal - find a preferred place for allocation.
317 * @inode: owner
318 * @block: block we want
319 * @partial: pointer to the last triple within a chain
321 * Returns preferred place for a block (the goal).
324 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
325 Indirect *partial)
327 struct ext2_block_alloc_info *block_i;
329 block_i = EXT2_I(inode)->i_block_alloc_info;
332 * try the heuristic for sequential allocation,
333 * failing that at least try to get decent locality.
335 if (block_i && (block == block_i->last_alloc_logical_block + 1)
336 && (block_i->last_alloc_physical_block != 0)) {
337 return block_i->last_alloc_physical_block + 1;
340 return ext2_find_near(inode, partial);
344 * ext2_blks_to_allocate: Look up the block map and count the number
345 * of direct blocks need to be allocated for the given branch.
347 * @branch: chain of indirect blocks
348 * @k: number of blocks need for indirect blocks
349 * @blks: number of data blocks to be mapped.
350 * @blocks_to_boundary: the offset in the indirect block
352 * return the total number of blocks to be allocate, including the
353 * direct and indirect blocks.
355 static int
356 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
357 int blocks_to_boundary)
359 unsigned long count = 0;
362 * Simple case, [t,d]Indirect block(s) has not allocated yet
363 * then it's clear blocks on that path have not allocated
365 if (k > 0) {
366 /* right now don't hanel cross boundary allocation */
367 if (blks < blocks_to_boundary + 1)
368 count += blks;
369 else
370 count += blocks_to_boundary + 1;
371 return count;
374 count++;
375 while (count < blks && count <= blocks_to_boundary
376 && le32_to_cpu(*(branch[0].p + count)) == 0) {
377 count++;
379 return count;
383 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
384 * @indirect_blks: the number of blocks need to allocate for indirect
385 * blocks
387 * @new_blocks: on return it will store the new block numbers for
388 * the indirect blocks(if needed) and the first direct block,
389 * @blks: on return it will store the total number of allocated
390 * direct blocks
392 static int ext2_alloc_blocks(struct inode *inode,
393 ext2_fsblk_t goal, int indirect_blks, int blks,
394 ext2_fsblk_t new_blocks[4], int *err)
396 int target, i;
397 unsigned long count = 0;
398 int index = 0;
399 ext2_fsblk_t current_block = 0;
400 int ret = 0;
403 * Here we try to allocate the requested multiple blocks at once,
404 * on a best-effort basis.
405 * To build a branch, we should allocate blocks for
406 * the indirect blocks(if not allocated yet), and at least
407 * the first direct block of this branch. That's the
408 * minimum number of blocks need to allocate(required)
410 target = blks + indirect_blks;
412 while (1) {
413 count = target;
414 /* allocating blocks for indirect blocks and direct blocks */
415 current_block = ext2_new_blocks(inode,goal,&count,err);
416 if (*err)
417 goto failed_out;
419 target -= count;
420 /* allocate blocks for indirect blocks */
421 while (index < indirect_blks && count) {
422 new_blocks[index++] = current_block++;
423 count--;
426 if (count > 0)
427 break;
430 /* save the new block number for the first direct block */
431 new_blocks[index] = current_block;
433 /* total number of blocks allocated for direct blocks */
434 ret = count;
435 *err = 0;
436 return ret;
437 failed_out:
438 for (i = 0; i <index; i++)
439 ext2_free_blocks(inode, new_blocks[i], 1);
440 if (index)
441 mark_inode_dirty(inode);
442 return ret;
446 * ext2_alloc_branch - allocate and set up a chain of blocks.
447 * @inode: owner
448 * @num: depth of the chain (number of blocks to allocate)
449 * @offsets: offsets (in the blocks) to store the pointers to next.
450 * @branch: place to store the chain in.
452 * This function allocates @num blocks, zeroes out all but the last one,
453 * links them into chain and (if we are synchronous) writes them to disk.
454 * In other words, it prepares a branch that can be spliced onto the
455 * inode. It stores the information about that chain in the branch[], in
456 * the same format as ext2_get_branch() would do. We are calling it after
457 * we had read the existing part of chain and partial points to the last
458 * triple of that (one with zero ->key). Upon the exit we have the same
459 * picture as after the successful ext2_get_block(), except that in one
460 * place chain is disconnected - *branch->p is still zero (we did not
461 * set the last link), but branch->key contains the number that should
462 * be placed into *branch->p to fill that gap.
464 * If allocation fails we free all blocks we've allocated (and forget
465 * their buffer_heads) and return the error value the from failed
466 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
467 * as described above and return 0.
470 static int ext2_alloc_branch(struct inode *inode,
471 int indirect_blks, int *blks, ext2_fsblk_t goal,
472 int *offsets, Indirect *branch)
474 int blocksize = inode->i_sb->s_blocksize;
475 int i, n = 0;
476 int err = 0;
477 struct buffer_head *bh;
478 int num;
479 ext2_fsblk_t new_blocks[4];
480 ext2_fsblk_t current_block;
482 num = ext2_alloc_blocks(inode, goal, indirect_blks,
483 *blks, new_blocks, &err);
484 if (err)
485 return err;
487 branch[0].key = cpu_to_le32(new_blocks[0]);
489 * metadata blocks and data blocks are allocated.
491 for (n = 1; n <= indirect_blks; n++) {
493 * Get buffer_head for parent block, zero it out
494 * and set the pointer to new one, then send
495 * parent to disk.
497 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
498 branch[n].bh = bh;
499 lock_buffer(bh);
500 memset(bh->b_data, 0, blocksize);
501 branch[n].p = (__le32 *) bh->b_data + offsets[n];
502 branch[n].key = cpu_to_le32(new_blocks[n]);
503 *branch[n].p = branch[n].key;
504 if ( n == indirect_blks) {
505 current_block = new_blocks[n];
507 * End of chain, update the last new metablock of
508 * the chain to point to the new allocated
509 * data blocks numbers
511 for (i=1; i < num; i++)
512 *(branch[n].p + i) = cpu_to_le32(++current_block);
514 set_buffer_uptodate(bh);
515 unlock_buffer(bh);
516 mark_buffer_dirty_inode(bh, inode);
517 /* We used to sync bh here if IS_SYNC(inode).
518 * But we now rely upon generic_write_sync()
519 * and b_inode_buffers. But not for directories.
521 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
522 sync_dirty_buffer(bh);
524 *blks = num;
525 return err;
529 * ext2_splice_branch - splice the allocated branch onto inode.
530 * @inode: owner
531 * @block: (logical) number of block we are adding
532 * @where: location of missing link
533 * @num: number of indirect blocks we are adding
534 * @blks: number of direct blocks we are adding
536 * This function fills the missing link and does all housekeeping needed in
537 * inode (->i_blocks, etc.). In case of success we end up with the full
538 * chain to new block and return 0.
540 static void ext2_splice_branch(struct inode *inode,
541 long block, Indirect *where, int num, int blks)
543 int i;
544 struct ext2_block_alloc_info *block_i;
545 ext2_fsblk_t current_block;
547 block_i = EXT2_I(inode)->i_block_alloc_info;
549 /* XXX LOCKING probably should have i_meta_lock ?*/
550 /* That's it */
552 *where->p = where->key;
555 * Update the host buffer_head or inode to point to more just allocated
556 * direct blocks blocks
558 if (num == 0 && blks > 1) {
559 current_block = le32_to_cpu(where->key) + 1;
560 for (i = 1; i < blks; i++)
561 *(where->p + i ) = cpu_to_le32(current_block++);
565 * update the most recently allocated logical & physical block
566 * in i_block_alloc_info, to assist find the proper goal block for next
567 * allocation
569 if (block_i) {
570 block_i->last_alloc_logical_block = block + blks - 1;
571 block_i->last_alloc_physical_block =
572 le32_to_cpu(where[num].key) + blks - 1;
575 /* We are done with atomic stuff, now do the rest of housekeeping */
577 /* had we spliced it onto indirect block? */
578 if (where->bh)
579 mark_buffer_dirty_inode(where->bh, inode);
581 inode->i_ctime = CURRENT_TIME_SEC;
582 mark_inode_dirty(inode);
586 * Allocation strategy is simple: if we have to allocate something, we will
587 * have to go the whole way to leaf. So let's do it before attaching anything
588 * to tree, set linkage between the newborn blocks, write them if sync is
589 * required, recheck the path, free and repeat if check fails, otherwise
590 * set the last missing link (that will protect us from any truncate-generated
591 * removals - all blocks on the path are immune now) and possibly force the
592 * write on the parent block.
593 * That has a nice additional property: no special recovery from the failed
594 * allocations is needed - we simply release blocks and do not touch anything
595 * reachable from inode.
597 * `handle' can be NULL if create == 0.
599 * return > 0, # of blocks mapped or allocated.
600 * return = 0, if plain lookup failed.
601 * return < 0, error case.
603 static int ext2_get_blocks(struct inode *inode,
604 sector_t iblock, unsigned long maxblocks,
605 struct buffer_head *bh_result,
606 int create)
608 int err = -EIO;
609 int offsets[4];
610 Indirect chain[4];
611 Indirect *partial;
612 ext2_fsblk_t goal;
613 int indirect_blks;
614 int blocks_to_boundary = 0;
615 int depth;
616 struct ext2_inode_info *ei = EXT2_I(inode);
617 int count = 0;
618 ext2_fsblk_t first_block = 0;
620 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
622 if (depth == 0)
623 return (err);
625 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
626 /* Simplest case - block found, no allocation needed */
627 if (!partial) {
628 first_block = le32_to_cpu(chain[depth - 1].key);
629 clear_buffer_new(bh_result); /* What's this do? */
630 count++;
631 /*map more blocks*/
632 while (count < maxblocks && count <= blocks_to_boundary) {
633 ext2_fsblk_t blk;
635 if (!verify_chain(chain, chain + depth - 1)) {
637 * Indirect block might be removed by
638 * truncate while we were reading it.
639 * Handling of that case: forget what we've
640 * got now, go to reread.
642 err = -EAGAIN;
643 count = 0;
644 break;
646 blk = le32_to_cpu(*(chain[depth-1].p + count));
647 if (blk == first_block + count)
648 count++;
649 else
650 break;
652 if (err != -EAGAIN)
653 goto got_it;
656 /* Next simple case - plain lookup or failed read of indirect block */
657 if (!create || err == -EIO)
658 goto cleanup;
660 mutex_lock(&ei->truncate_mutex);
662 * If the indirect block is missing while we are reading
663 * the chain(ext2_get_branch() returns -EAGAIN err), or
664 * if the chain has been changed after we grab the semaphore,
665 * (either because another process truncated this branch, or
666 * another get_block allocated this branch) re-grab the chain to see if
667 * the request block has been allocated or not.
669 * Since we already block the truncate/other get_block
670 * at this point, we will have the current copy of the chain when we
671 * splice the branch into the tree.
673 if (err == -EAGAIN || !verify_chain(chain, partial)) {
674 while (partial > chain) {
675 brelse(partial->bh);
676 partial--;
678 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
679 if (!partial) {
680 count++;
681 mutex_unlock(&ei->truncate_mutex);
682 if (err)
683 goto cleanup;
684 clear_buffer_new(bh_result);
685 goto got_it;
690 * Okay, we need to do block allocation. Lazily initialize the block
691 * allocation info here if necessary
693 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
694 ext2_init_block_alloc_info(inode);
696 goal = ext2_find_goal(inode, iblock, partial);
698 /* the number of blocks need to allocate for [d,t]indirect blocks */
699 indirect_blks = (chain + depth) - partial - 1;
701 * Next look up the indirect map to count the totoal number of
702 * direct blocks to allocate for this branch.
704 count = ext2_blks_to_allocate(partial, indirect_blks,
705 maxblocks, blocks_to_boundary);
707 * XXX ???? Block out ext2_truncate while we alter the tree
709 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
710 offsets + (partial - chain), partial);
712 if (err) {
713 mutex_unlock(&ei->truncate_mutex);
714 goto cleanup;
717 if (ext2_use_xip(inode->i_sb)) {
719 * we need to clear the block
721 err = ext2_clear_xip_target (inode,
722 le32_to_cpu(chain[depth-1].key));
723 if (err) {
724 mutex_unlock(&ei->truncate_mutex);
725 goto cleanup;
729 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
730 mutex_unlock(&ei->truncate_mutex);
731 set_buffer_new(bh_result);
732 got_it:
733 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
734 if (count > blocks_to_boundary)
735 set_buffer_boundary(bh_result);
736 err = count;
737 /* Clean up and exit */
738 partial = chain + depth - 1; /* the whole chain */
739 cleanup:
740 while (partial > chain) {
741 brelse(partial->bh);
742 partial--;
744 return err;
747 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
749 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
750 int ret = ext2_get_blocks(inode, iblock, max_blocks,
751 bh_result, create);
752 if (ret > 0) {
753 bh_result->b_size = (ret << inode->i_blkbits);
754 ret = 0;
756 return ret;
760 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
761 u64 start, u64 len)
763 return generic_block_fiemap(inode, fieinfo, start, len,
764 ext2_get_block);
767 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
769 return block_write_full_page(page, ext2_get_block, wbc);
772 static int ext2_readpage(struct file *file, struct page *page)
774 return mpage_readpage(page, ext2_get_block);
777 static int
778 ext2_readpages(struct file *file, struct address_space *mapping,
779 struct list_head *pages, unsigned nr_pages)
781 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
784 static int
785 ext2_write_begin(struct file *file, struct address_space *mapping,
786 loff_t pos, unsigned len, unsigned flags,
787 struct page **pagep, void **fsdata)
789 int ret;
791 ret = block_write_begin(mapping, pos, len, flags, pagep,
792 ext2_get_block);
793 if (ret < 0)
794 ext2_write_failed(mapping, pos + len);
795 return ret;
798 static int ext2_write_end(struct file *file, struct address_space *mapping,
799 loff_t pos, unsigned len, unsigned copied,
800 struct page *page, void *fsdata)
802 int ret;
804 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
805 if (ret < len)
806 ext2_write_failed(mapping, pos + len);
807 return ret;
810 static int
811 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
812 loff_t pos, unsigned len, unsigned flags,
813 struct page **pagep, void **fsdata)
815 int ret;
817 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
818 ext2_get_block);
819 if (ret < 0)
820 ext2_write_failed(mapping, pos + len);
821 return ret;
824 static int ext2_nobh_writepage(struct page *page,
825 struct writeback_control *wbc)
827 return nobh_writepage(page, ext2_get_block, wbc);
830 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
832 return generic_block_bmap(mapping,block,ext2_get_block);
835 static ssize_t
836 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
837 loff_t offset, unsigned long nr_segs)
839 struct file *file = iocb->ki_filp;
840 struct address_space *mapping = file->f_mapping;
841 struct inode *inode = mapping->host;
842 ssize_t ret;
844 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
845 ext2_get_block);
846 if (ret < 0 && (rw & WRITE))
847 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
848 return ret;
851 static int
852 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
854 return mpage_writepages(mapping, wbc, ext2_get_block);
857 const struct address_space_operations ext2_aops = {
858 .readpage = ext2_readpage,
859 .readpages = ext2_readpages,
860 .writepage = ext2_writepage,
861 .write_begin = ext2_write_begin,
862 .write_end = ext2_write_end,
863 .bmap = ext2_bmap,
864 .direct_IO = ext2_direct_IO,
865 .writepages = ext2_writepages,
866 .migratepage = buffer_migrate_page,
867 .is_partially_uptodate = block_is_partially_uptodate,
868 .error_remove_page = generic_error_remove_page,
871 const struct address_space_operations ext2_aops_xip = {
872 .bmap = ext2_bmap,
873 .get_xip_mem = ext2_get_xip_mem,
876 const struct address_space_operations ext2_nobh_aops = {
877 .readpage = ext2_readpage,
878 .readpages = ext2_readpages,
879 .writepage = ext2_nobh_writepage,
880 .write_begin = ext2_nobh_write_begin,
881 .write_end = nobh_write_end,
882 .bmap = ext2_bmap,
883 .direct_IO = ext2_direct_IO,
884 .writepages = ext2_writepages,
885 .migratepage = buffer_migrate_page,
886 .error_remove_page = generic_error_remove_page,
890 * Probably it should be a library function... search for first non-zero word
891 * or memcmp with zero_page, whatever is better for particular architecture.
892 * Linus?
894 static inline int all_zeroes(__le32 *p, __le32 *q)
896 while (p < q)
897 if (*p++)
898 return 0;
899 return 1;
903 * ext2_find_shared - find the indirect blocks for partial truncation.
904 * @inode: inode in question
905 * @depth: depth of the affected branch
906 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
907 * @chain: place to store the pointers to partial indirect blocks
908 * @top: place to the (detached) top of branch
910 * This is a helper function used by ext2_truncate().
912 * When we do truncate() we may have to clean the ends of several indirect
913 * blocks but leave the blocks themselves alive. Block is partially
914 * truncated if some data below the new i_size is referred from it (and
915 * it is on the path to the first completely truncated data block, indeed).
916 * We have to free the top of that path along with everything to the right
917 * of the path. Since no allocation past the truncation point is possible
918 * until ext2_truncate() finishes, we may safely do the latter, but top
919 * of branch may require special attention - pageout below the truncation
920 * point might try to populate it.
922 * We atomically detach the top of branch from the tree, store the block
923 * number of its root in *@top, pointers to buffer_heads of partially
924 * truncated blocks - in @chain[].bh and pointers to their last elements
925 * that should not be removed - in @chain[].p. Return value is the pointer
926 * to last filled element of @chain.
928 * The work left to caller to do the actual freeing of subtrees:
929 * a) free the subtree starting from *@top
930 * b) free the subtrees whose roots are stored in
931 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
932 * c) free the subtrees growing from the inode past the @chain[0].p
933 * (no partially truncated stuff there).
936 static Indirect *ext2_find_shared(struct inode *inode,
937 int depth,
938 int offsets[4],
939 Indirect chain[4],
940 __le32 *top)
942 Indirect *partial, *p;
943 int k, err;
945 *top = 0;
946 for (k = depth; k > 1 && !offsets[k-1]; k--)
948 partial = ext2_get_branch(inode, k, offsets, chain, &err);
949 if (!partial)
950 partial = chain + k-1;
952 * If the branch acquired continuation since we've looked at it -
953 * fine, it should all survive and (new) top doesn't belong to us.
955 write_lock(&EXT2_I(inode)->i_meta_lock);
956 if (!partial->key && *partial->p) {
957 write_unlock(&EXT2_I(inode)->i_meta_lock);
958 goto no_top;
960 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
963 * OK, we've found the last block that must survive. The rest of our
964 * branch should be detached before unlocking. However, if that rest
965 * of branch is all ours and does not grow immediately from the inode
966 * it's easier to cheat and just decrement partial->p.
968 if (p == chain + k - 1 && p > chain) {
969 p->p--;
970 } else {
971 *top = *p->p;
972 *p->p = 0;
974 write_unlock(&EXT2_I(inode)->i_meta_lock);
976 while(partial > p)
978 brelse(partial->bh);
979 partial--;
981 no_top:
982 return partial;
986 * ext2_free_data - free a list of data blocks
987 * @inode: inode we are dealing with
988 * @p: array of block numbers
989 * @q: points immediately past the end of array
991 * We are freeing all blocks referred from that array (numbers are
992 * stored as little-endian 32-bit) and updating @inode->i_blocks
993 * appropriately.
995 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
997 unsigned long block_to_free = 0, count = 0;
998 unsigned long nr;
1000 for ( ; p < q ; p++) {
1001 nr = le32_to_cpu(*p);
1002 if (nr) {
1003 *p = 0;
1004 /* accumulate blocks to free if they're contiguous */
1005 if (count == 0)
1006 goto free_this;
1007 else if (block_to_free == nr - count)
1008 count++;
1009 else {
1010 ext2_free_blocks (inode, block_to_free, count);
1011 mark_inode_dirty(inode);
1012 free_this:
1013 block_to_free = nr;
1014 count = 1;
1018 if (count > 0) {
1019 ext2_free_blocks (inode, block_to_free, count);
1020 mark_inode_dirty(inode);
1025 * ext2_free_branches - free an array of branches
1026 * @inode: inode we are dealing with
1027 * @p: array of block numbers
1028 * @q: pointer immediately past the end of array
1029 * @depth: depth of the branches to free
1031 * We are freeing all blocks referred from these branches (numbers are
1032 * stored as little-endian 32-bit) and updating @inode->i_blocks
1033 * appropriately.
1035 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1037 struct buffer_head * bh;
1038 unsigned long nr;
1040 if (depth--) {
1041 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1042 for ( ; p < q ; p++) {
1043 nr = le32_to_cpu(*p);
1044 if (!nr)
1045 continue;
1046 *p = 0;
1047 bh = sb_bread(inode->i_sb, nr);
1049 * A read failure? Report error and clear slot
1050 * (should be rare).
1052 if (!bh) {
1053 ext2_error(inode->i_sb, "ext2_free_branches",
1054 "Read failure, inode=%ld, block=%ld",
1055 inode->i_ino, nr);
1056 continue;
1058 ext2_free_branches(inode,
1059 (__le32*)bh->b_data,
1060 (__le32*)bh->b_data + addr_per_block,
1061 depth);
1062 bforget(bh);
1063 ext2_free_blocks(inode, nr, 1);
1064 mark_inode_dirty(inode);
1066 } else
1067 ext2_free_data(inode, p, q);
1070 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1072 __le32 *i_data = EXT2_I(inode)->i_data;
1073 struct ext2_inode_info *ei = EXT2_I(inode);
1074 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1075 int offsets[4];
1076 Indirect chain[4];
1077 Indirect *partial;
1078 __le32 nr = 0;
1079 int n;
1080 long iblock;
1081 unsigned blocksize;
1082 blocksize = inode->i_sb->s_blocksize;
1083 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1085 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1086 if (n == 0)
1087 return;
1090 * From here we block out all ext2_get_block() callers who want to
1091 * modify the block allocation tree.
1093 mutex_lock(&ei->truncate_mutex);
1095 if (n == 1) {
1096 ext2_free_data(inode, i_data+offsets[0],
1097 i_data + EXT2_NDIR_BLOCKS);
1098 goto do_indirects;
1101 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1102 /* Kill the top of shared branch (already detached) */
1103 if (nr) {
1104 if (partial == chain)
1105 mark_inode_dirty(inode);
1106 else
1107 mark_buffer_dirty_inode(partial->bh, inode);
1108 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1110 /* Clear the ends of indirect blocks on the shared branch */
1111 while (partial > chain) {
1112 ext2_free_branches(inode,
1113 partial->p + 1,
1114 (__le32*)partial->bh->b_data+addr_per_block,
1115 (chain+n-1) - partial);
1116 mark_buffer_dirty_inode(partial->bh, inode);
1117 brelse (partial->bh);
1118 partial--;
1120 do_indirects:
1121 /* Kill the remaining (whole) subtrees */
1122 switch (offsets[0]) {
1123 default:
1124 nr = i_data[EXT2_IND_BLOCK];
1125 if (nr) {
1126 i_data[EXT2_IND_BLOCK] = 0;
1127 mark_inode_dirty(inode);
1128 ext2_free_branches(inode, &nr, &nr+1, 1);
1130 case EXT2_IND_BLOCK:
1131 nr = i_data[EXT2_DIND_BLOCK];
1132 if (nr) {
1133 i_data[EXT2_DIND_BLOCK] = 0;
1134 mark_inode_dirty(inode);
1135 ext2_free_branches(inode, &nr, &nr+1, 2);
1137 case EXT2_DIND_BLOCK:
1138 nr = i_data[EXT2_TIND_BLOCK];
1139 if (nr) {
1140 i_data[EXT2_TIND_BLOCK] = 0;
1141 mark_inode_dirty(inode);
1142 ext2_free_branches(inode, &nr, &nr+1, 3);
1144 case EXT2_TIND_BLOCK:
1148 ext2_discard_reservation(inode);
1150 mutex_unlock(&ei->truncate_mutex);
1153 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1156 * XXX: it seems like a bug here that we don't allow
1157 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1158 * review and fix this.
1160 * Also would be nice to be able to handle IO errors and such,
1161 * but that's probably too much to ask.
1163 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1164 S_ISLNK(inode->i_mode)))
1165 return;
1166 if (ext2_inode_is_fast_symlink(inode))
1167 return;
1168 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1169 return;
1170 __ext2_truncate_blocks(inode, offset);
1173 static int ext2_setsize(struct inode *inode, loff_t newsize)
1175 int error;
1177 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178 S_ISLNK(inode->i_mode)))
1179 return -EINVAL;
1180 if (ext2_inode_is_fast_symlink(inode))
1181 return -EINVAL;
1182 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1183 return -EPERM;
1185 inode_dio_wait(inode);
1187 if (mapping_is_xip(inode->i_mapping))
1188 error = xip_truncate_page(inode->i_mapping, newsize);
1189 else if (test_opt(inode->i_sb, NOBH))
1190 error = nobh_truncate_page(inode->i_mapping,
1191 newsize, ext2_get_block);
1192 else
1193 error = block_truncate_page(inode->i_mapping,
1194 newsize, ext2_get_block);
1195 if (error)
1196 return error;
1198 truncate_setsize(inode, newsize);
1199 __ext2_truncate_blocks(inode, newsize);
1201 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1202 if (inode_needs_sync(inode)) {
1203 sync_mapping_buffers(inode->i_mapping);
1204 sync_inode_metadata(inode, 1);
1205 } else {
1206 mark_inode_dirty(inode);
1209 return 0;
1212 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1213 struct buffer_head **p)
1215 struct buffer_head * bh;
1216 unsigned long block_group;
1217 unsigned long block;
1218 unsigned long offset;
1219 struct ext2_group_desc * gdp;
1221 *p = NULL;
1222 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1223 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1224 goto Einval;
1226 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1227 gdp = ext2_get_group_desc(sb, block_group, NULL);
1228 if (!gdp)
1229 goto Egdp;
1231 * Figure out the offset within the block group inode table
1233 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1234 block = le32_to_cpu(gdp->bg_inode_table) +
1235 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1236 if (!(bh = sb_bread(sb, block)))
1237 goto Eio;
1239 *p = bh;
1240 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1241 return (struct ext2_inode *) (bh->b_data + offset);
1243 Einval:
1244 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1245 (unsigned long) ino);
1246 return ERR_PTR(-EINVAL);
1247 Eio:
1248 ext2_error(sb, "ext2_get_inode",
1249 "unable to read inode block - inode=%lu, block=%lu",
1250 (unsigned long) ino, block);
1251 Egdp:
1252 return ERR_PTR(-EIO);
1255 void ext2_set_inode_flags(struct inode *inode)
1257 unsigned int flags = EXT2_I(inode)->i_flags;
1259 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1260 if (flags & EXT2_SYNC_FL)
1261 inode->i_flags |= S_SYNC;
1262 if (flags & EXT2_APPEND_FL)
1263 inode->i_flags |= S_APPEND;
1264 if (flags & EXT2_IMMUTABLE_FL)
1265 inode->i_flags |= S_IMMUTABLE;
1266 if (flags & EXT2_NOATIME_FL)
1267 inode->i_flags |= S_NOATIME;
1268 if (flags & EXT2_DIRSYNC_FL)
1269 inode->i_flags |= S_DIRSYNC;
1272 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1273 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1275 unsigned int flags = ei->vfs_inode.i_flags;
1277 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1278 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1279 if (flags & S_SYNC)
1280 ei->i_flags |= EXT2_SYNC_FL;
1281 if (flags & S_APPEND)
1282 ei->i_flags |= EXT2_APPEND_FL;
1283 if (flags & S_IMMUTABLE)
1284 ei->i_flags |= EXT2_IMMUTABLE_FL;
1285 if (flags & S_NOATIME)
1286 ei->i_flags |= EXT2_NOATIME_FL;
1287 if (flags & S_DIRSYNC)
1288 ei->i_flags |= EXT2_DIRSYNC_FL;
1291 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1293 struct ext2_inode_info *ei;
1294 struct buffer_head * bh;
1295 struct ext2_inode *raw_inode;
1296 struct inode *inode;
1297 long ret = -EIO;
1298 int n;
1299 uid_t i_uid;
1300 gid_t i_gid;
1302 inode = iget_locked(sb, ino);
1303 if (!inode)
1304 return ERR_PTR(-ENOMEM);
1305 if (!(inode->i_state & I_NEW))
1306 return inode;
1308 ei = EXT2_I(inode);
1309 ei->i_block_alloc_info = NULL;
1311 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312 if (IS_ERR(raw_inode)) {
1313 ret = PTR_ERR(raw_inode);
1314 goto bad_inode;
1317 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320 if (!(test_opt (inode->i_sb, NO_UID32))) {
1321 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1324 i_uid_write(inode, i_uid);
1325 i_gid_write(inode, i_gid);
1326 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1327 inode->i_size = le32_to_cpu(raw_inode->i_size);
1328 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1329 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1330 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1331 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1332 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1333 /* We now have enough fields to check if the inode was active or not.
1334 * This is needed because nfsd might try to access dead inodes
1335 * the test is that same one that e2fsck uses
1336 * NeilBrown 1999oct15
1338 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1339 /* this inode is deleted */
1340 brelse (bh);
1341 ret = -ESTALE;
1342 goto bad_inode;
1344 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1345 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1346 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1347 ei->i_frag_no = raw_inode->i_frag;
1348 ei->i_frag_size = raw_inode->i_fsize;
1349 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1350 ei->i_dir_acl = 0;
1351 if (S_ISREG(inode->i_mode))
1352 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1353 else
1354 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1355 ei->i_dtime = 0;
1356 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1357 ei->i_state = 0;
1358 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1359 ei->i_dir_start_lookup = 0;
1362 * NOTE! The in-memory inode i_data array is in little-endian order
1363 * even on big-endian machines: we do NOT byteswap the block numbers!
1365 for (n = 0; n < EXT2_N_BLOCKS; n++)
1366 ei->i_data[n] = raw_inode->i_block[n];
1368 if (S_ISREG(inode->i_mode)) {
1369 inode->i_op = &ext2_file_inode_operations;
1370 if (ext2_use_xip(inode->i_sb)) {
1371 inode->i_mapping->a_ops = &ext2_aops_xip;
1372 inode->i_fop = &ext2_xip_file_operations;
1373 } else if (test_opt(inode->i_sb, NOBH)) {
1374 inode->i_mapping->a_ops = &ext2_nobh_aops;
1375 inode->i_fop = &ext2_file_operations;
1376 } else {
1377 inode->i_mapping->a_ops = &ext2_aops;
1378 inode->i_fop = &ext2_file_operations;
1380 } else if (S_ISDIR(inode->i_mode)) {
1381 inode->i_op = &ext2_dir_inode_operations;
1382 inode->i_fop = &ext2_dir_operations;
1383 if (test_opt(inode->i_sb, NOBH))
1384 inode->i_mapping->a_ops = &ext2_nobh_aops;
1385 else
1386 inode->i_mapping->a_ops = &ext2_aops;
1387 } else if (S_ISLNK(inode->i_mode)) {
1388 if (ext2_inode_is_fast_symlink(inode)) {
1389 inode->i_op = &ext2_fast_symlink_inode_operations;
1390 nd_terminate_link(ei->i_data, inode->i_size,
1391 sizeof(ei->i_data) - 1);
1392 } else {
1393 inode->i_op = &ext2_symlink_inode_operations;
1394 if (test_opt(inode->i_sb, NOBH))
1395 inode->i_mapping->a_ops = &ext2_nobh_aops;
1396 else
1397 inode->i_mapping->a_ops = &ext2_aops;
1399 } else {
1400 inode->i_op = &ext2_special_inode_operations;
1401 if (raw_inode->i_block[0])
1402 init_special_inode(inode, inode->i_mode,
1403 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1404 else
1405 init_special_inode(inode, inode->i_mode,
1406 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1408 brelse (bh);
1409 ext2_set_inode_flags(inode);
1410 unlock_new_inode(inode);
1411 return inode;
1413 bad_inode:
1414 iget_failed(inode);
1415 return ERR_PTR(ret);
1418 static int __ext2_write_inode(struct inode *inode, int do_sync)
1420 struct ext2_inode_info *ei = EXT2_I(inode);
1421 struct super_block *sb = inode->i_sb;
1422 ino_t ino = inode->i_ino;
1423 uid_t uid = i_uid_read(inode);
1424 gid_t gid = i_gid_read(inode);
1425 struct buffer_head * bh;
1426 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1427 int n;
1428 int err = 0;
1430 if (IS_ERR(raw_inode))
1431 return -EIO;
1433 /* For fields not not tracking in the in-memory inode,
1434 * initialise them to zero for new inodes. */
1435 if (ei->i_state & EXT2_STATE_NEW)
1436 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1438 ext2_get_inode_flags(ei);
1439 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1440 if (!(test_opt(sb, NO_UID32))) {
1441 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1442 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1444 * Fix up interoperability with old kernels. Otherwise, old inodes get
1445 * re-used with the upper 16 bits of the uid/gid intact
1447 if (!ei->i_dtime) {
1448 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1449 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1450 } else {
1451 raw_inode->i_uid_high = 0;
1452 raw_inode->i_gid_high = 0;
1454 } else {
1455 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1456 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1457 raw_inode->i_uid_high = 0;
1458 raw_inode->i_gid_high = 0;
1460 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1461 raw_inode->i_size = cpu_to_le32(inode->i_size);
1462 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1463 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1464 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1466 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1467 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1468 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1469 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1470 raw_inode->i_frag = ei->i_frag_no;
1471 raw_inode->i_fsize = ei->i_frag_size;
1472 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1473 if (!S_ISREG(inode->i_mode))
1474 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1475 else {
1476 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1477 if (inode->i_size > 0x7fffffffULL) {
1478 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1479 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1480 EXT2_SB(sb)->s_es->s_rev_level ==
1481 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1482 /* If this is the first large file
1483 * created, add a flag to the superblock.
1485 spin_lock(&EXT2_SB(sb)->s_lock);
1486 ext2_update_dynamic_rev(sb);
1487 EXT2_SET_RO_COMPAT_FEATURE(sb,
1488 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1489 spin_unlock(&EXT2_SB(sb)->s_lock);
1490 ext2_write_super(sb);
1495 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1496 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1497 if (old_valid_dev(inode->i_rdev)) {
1498 raw_inode->i_block[0] =
1499 cpu_to_le32(old_encode_dev(inode->i_rdev));
1500 raw_inode->i_block[1] = 0;
1501 } else {
1502 raw_inode->i_block[0] = 0;
1503 raw_inode->i_block[1] =
1504 cpu_to_le32(new_encode_dev(inode->i_rdev));
1505 raw_inode->i_block[2] = 0;
1507 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1508 raw_inode->i_block[n] = ei->i_data[n];
1509 mark_buffer_dirty(bh);
1510 if (do_sync) {
1511 sync_dirty_buffer(bh);
1512 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1513 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1514 sb->s_id, (unsigned long) ino);
1515 err = -EIO;
1518 ei->i_state &= ~EXT2_STATE_NEW;
1519 brelse (bh);
1520 return err;
1523 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1525 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1528 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1530 struct inode *inode = dentry->d_inode;
1531 int error;
1533 error = inode_change_ok(inode, iattr);
1534 if (error)
1535 return error;
1537 if (is_quota_modification(inode, iattr))
1538 dquot_initialize(inode);
1539 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1540 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1541 error = dquot_transfer(inode, iattr);
1542 if (error)
1543 return error;
1545 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1546 error = ext2_setsize(inode, iattr->ia_size);
1547 if (error)
1548 return error;
1550 setattr_copy(inode, iattr);
1551 if (iattr->ia_valid & ATTR_MODE)
1552 error = ext2_acl_chmod(inode);
1553 mark_inode_dirty(inode);
1555 return error;