Linux 3.8-rc7
[cris-mirror.git] / mm / huge_memory.c
blobb5783d81eda90fc9a808478ac6dcea4f74b4424e
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
29 * By default transparent hugepage support is enabled for all mappings
30 * and khugepaged scans all mappings. Defrag is only invoked by
31 * khugepaged hugepage allocations and by page faults inside
32 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
33 * allocations.
35 unsigned long transparent_hugepage_flags __read_mostly =
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
37 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
38 #endif
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
40 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
41 #endif
42 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46 /* default scan 8*512 pte (or vmas) every 30 second */
47 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
48 static unsigned int khugepaged_pages_collapsed;
49 static unsigned int khugepaged_full_scans;
50 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
51 /* during fragmentation poll the hugepage allocator once every minute */
52 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
53 static struct task_struct *khugepaged_thread __read_mostly;
54 static DEFINE_MUTEX(khugepaged_mutex);
55 static DEFINE_SPINLOCK(khugepaged_mm_lock);
56 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 * default collapse hugepages if there is at least one pte mapped like
59 * it would have happened if the vma was large enough during page
60 * fault.
62 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64 static int khugepaged(void *none);
65 static int mm_slots_hash_init(void);
66 static int khugepaged_slab_init(void);
67 static void khugepaged_slab_free(void);
69 #define MM_SLOTS_HASH_HEADS 1024
70 static struct hlist_head *mm_slots_hash __read_mostly;
71 static struct kmem_cache *mm_slot_cache __read_mostly;
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
91 * There is only the one khugepaged_scan instance of this cursor structure.
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 static int set_recommended_min_free_kbytes(void)
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
108 extern int min_free_kbytes;
110 if (!khugepaged_enabled())
111 return 0;
113 for_each_populated_zone(zone)
114 nr_zones++;
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
138 late_initcall(set_recommended_min_free_kbytes);
140 static int start_khugepaged(void)
142 int err = 0;
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
163 return err;
166 static atomic_t huge_zero_refcount;
167 static unsigned long huge_zero_pfn __read_mostly;
169 static inline bool is_huge_zero_pfn(unsigned long pfn)
171 unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
172 return zero_pfn && pfn == zero_pfn;
175 static inline bool is_huge_zero_pmd(pmd_t pmd)
177 return is_huge_zero_pfn(pmd_pfn(pmd));
180 static unsigned long get_huge_zero_page(void)
182 struct page *zero_page;
183 retry:
184 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
185 return ACCESS_ONCE(huge_zero_pfn);
187 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
188 HPAGE_PMD_ORDER);
189 if (!zero_page) {
190 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
191 return 0;
193 count_vm_event(THP_ZERO_PAGE_ALLOC);
194 preempt_disable();
195 if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
196 preempt_enable();
197 __free_page(zero_page);
198 goto retry;
201 /* We take additional reference here. It will be put back by shrinker */
202 atomic_set(&huge_zero_refcount, 2);
203 preempt_enable();
204 return ACCESS_ONCE(huge_zero_pfn);
207 static void put_huge_zero_page(void)
210 * Counter should never go to zero here. Only shrinker can put
211 * last reference.
213 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
216 static int shrink_huge_zero_page(struct shrinker *shrink,
217 struct shrink_control *sc)
219 if (!sc->nr_to_scan)
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
223 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
224 unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
225 BUG_ON(zero_pfn == 0);
226 __free_page(__pfn_to_page(zero_pfn));
229 return 0;
232 static struct shrinker huge_zero_page_shrinker = {
233 .shrink = shrink_huge_zero_page,
234 .seeks = DEFAULT_SEEKS,
237 #ifdef CONFIG_SYSFS
239 static ssize_t double_flag_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf,
241 enum transparent_hugepage_flag enabled,
242 enum transparent_hugepage_flag req_madv)
244 if (test_bit(enabled, &transparent_hugepage_flags)) {
245 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
246 return sprintf(buf, "[always] madvise never\n");
247 } else if (test_bit(req_madv, &transparent_hugepage_flags))
248 return sprintf(buf, "always [madvise] never\n");
249 else
250 return sprintf(buf, "always madvise [never]\n");
252 static ssize_t double_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag enabled,
256 enum transparent_hugepage_flag req_madv)
258 if (!memcmp("always", buf,
259 min(sizeof("always")-1, count))) {
260 set_bit(enabled, &transparent_hugepage_flags);
261 clear_bit(req_madv, &transparent_hugepage_flags);
262 } else if (!memcmp("madvise", buf,
263 min(sizeof("madvise")-1, count))) {
264 clear_bit(enabled, &transparent_hugepage_flags);
265 set_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("never", buf,
267 min(sizeof("never")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 clear_bit(req_madv, &transparent_hugepage_flags);
270 } else
271 return -EINVAL;
273 return count;
276 static ssize_t enabled_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return double_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_FLAG,
281 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
283 static ssize_t enabled_store(struct kobject *kobj,
284 struct kobj_attribute *attr,
285 const char *buf, size_t count)
287 ssize_t ret;
289 ret = double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_FLAG,
291 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 if (ret > 0) {
294 int err;
296 mutex_lock(&khugepaged_mutex);
297 err = start_khugepaged();
298 mutex_unlock(&khugepaged_mutex);
300 if (err)
301 ret = err;
304 return ret;
306 static struct kobj_attribute enabled_attr =
307 __ATTR(enabled, 0644, enabled_show, enabled_store);
309 static ssize_t single_flag_show(struct kobject *kobj,
310 struct kobj_attribute *attr, char *buf,
311 enum transparent_hugepage_flag flag)
313 return sprintf(buf, "%d\n",
314 !!test_bit(flag, &transparent_hugepage_flags));
317 static ssize_t single_flag_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count,
320 enum transparent_hugepage_flag flag)
322 unsigned long value;
323 int ret;
325 ret = kstrtoul(buf, 10, &value);
326 if (ret < 0)
327 return ret;
328 if (value > 1)
329 return -EINVAL;
331 if (value)
332 set_bit(flag, &transparent_hugepage_flags);
333 else
334 clear_bit(flag, &transparent_hugepage_flags);
336 return count;
340 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
341 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
342 * memory just to allocate one more hugepage.
344 static ssize_t defrag_show(struct kobject *kobj,
345 struct kobj_attribute *attr, char *buf)
347 return double_flag_show(kobj, attr, buf,
348 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
349 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
351 static ssize_t defrag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
355 return double_flag_store(kobj, attr, buf, count,
356 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
357 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
359 static struct kobj_attribute defrag_attr =
360 __ATTR(defrag, 0644, defrag_show, defrag_store);
362 static ssize_t use_zero_page_show(struct kobject *kobj,
363 struct kobj_attribute *attr, char *buf)
365 return single_flag_show(kobj, attr, buf,
366 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
368 static ssize_t use_zero_page_store(struct kobject *kobj,
369 struct kobj_attribute *attr, const char *buf, size_t count)
371 return single_flag_store(kobj, attr, buf, count,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
374 static struct kobj_attribute use_zero_page_attr =
375 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
376 #ifdef CONFIG_DEBUG_VM
377 static ssize_t debug_cow_show(struct kobject *kobj,
378 struct kobj_attribute *attr, char *buf)
380 return single_flag_show(kobj, attr, buf,
381 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
383 static ssize_t debug_cow_store(struct kobject *kobj,
384 struct kobj_attribute *attr,
385 const char *buf, size_t count)
387 return single_flag_store(kobj, attr, buf, count,
388 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
390 static struct kobj_attribute debug_cow_attr =
391 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
392 #endif /* CONFIG_DEBUG_VM */
394 static struct attribute *hugepage_attr[] = {
395 &enabled_attr.attr,
396 &defrag_attr.attr,
397 &use_zero_page_attr.attr,
398 #ifdef CONFIG_DEBUG_VM
399 &debug_cow_attr.attr,
400 #endif
401 NULL,
404 static struct attribute_group hugepage_attr_group = {
405 .attrs = hugepage_attr,
408 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
409 struct kobj_attribute *attr,
410 char *buf)
412 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
415 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 const char *buf, size_t count)
419 unsigned long msecs;
420 int err;
422 err = strict_strtoul(buf, 10, &msecs);
423 if (err || msecs > UINT_MAX)
424 return -EINVAL;
426 khugepaged_scan_sleep_millisecs = msecs;
427 wake_up_interruptible(&khugepaged_wait);
429 return count;
431 static struct kobj_attribute scan_sleep_millisecs_attr =
432 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
433 scan_sleep_millisecs_store);
435 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
436 struct kobj_attribute *attr,
437 char *buf)
439 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
442 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 const char *buf, size_t count)
446 unsigned long msecs;
447 int err;
449 err = strict_strtoul(buf, 10, &msecs);
450 if (err || msecs > UINT_MAX)
451 return -EINVAL;
453 khugepaged_alloc_sleep_millisecs = msecs;
454 wake_up_interruptible(&khugepaged_wait);
456 return count;
458 static struct kobj_attribute alloc_sleep_millisecs_attr =
459 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
460 alloc_sleep_millisecs_store);
462 static ssize_t pages_to_scan_show(struct kobject *kobj,
463 struct kobj_attribute *attr,
464 char *buf)
466 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
468 static ssize_t pages_to_scan_store(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 const char *buf, size_t count)
472 int err;
473 unsigned long pages;
475 err = strict_strtoul(buf, 10, &pages);
476 if (err || !pages || pages > UINT_MAX)
477 return -EINVAL;
479 khugepaged_pages_to_scan = pages;
481 return count;
483 static struct kobj_attribute pages_to_scan_attr =
484 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
485 pages_to_scan_store);
487 static ssize_t pages_collapsed_show(struct kobject *kobj,
488 struct kobj_attribute *attr,
489 char *buf)
491 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
493 static struct kobj_attribute pages_collapsed_attr =
494 __ATTR_RO(pages_collapsed);
496 static ssize_t full_scans_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
500 return sprintf(buf, "%u\n", khugepaged_full_scans);
502 static struct kobj_attribute full_scans_attr =
503 __ATTR_RO(full_scans);
505 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
506 struct kobj_attribute *attr, char *buf)
508 return single_flag_show(kobj, attr, buf,
509 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
511 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
512 struct kobj_attribute *attr,
513 const char *buf, size_t count)
515 return single_flag_store(kobj, attr, buf, count,
516 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
518 static struct kobj_attribute khugepaged_defrag_attr =
519 __ATTR(defrag, 0644, khugepaged_defrag_show,
520 khugepaged_defrag_store);
523 * max_ptes_none controls if khugepaged should collapse hugepages over
524 * any unmapped ptes in turn potentially increasing the memory
525 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
526 * reduce the available free memory in the system as it
527 * runs. Increasing max_ptes_none will instead potentially reduce the
528 * free memory in the system during the khugepaged scan.
530 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
534 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
536 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 const char *buf, size_t count)
540 int err;
541 unsigned long max_ptes_none;
543 err = strict_strtoul(buf, 10, &max_ptes_none);
544 if (err || max_ptes_none > HPAGE_PMD_NR-1)
545 return -EINVAL;
547 khugepaged_max_ptes_none = max_ptes_none;
549 return count;
551 static struct kobj_attribute khugepaged_max_ptes_none_attr =
552 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
553 khugepaged_max_ptes_none_store);
555 static struct attribute *khugepaged_attr[] = {
556 &khugepaged_defrag_attr.attr,
557 &khugepaged_max_ptes_none_attr.attr,
558 &pages_to_scan_attr.attr,
559 &pages_collapsed_attr.attr,
560 &full_scans_attr.attr,
561 &scan_sleep_millisecs_attr.attr,
562 &alloc_sleep_millisecs_attr.attr,
563 NULL,
566 static struct attribute_group khugepaged_attr_group = {
567 .attrs = khugepaged_attr,
568 .name = "khugepaged",
571 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
573 int err;
575 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
576 if (unlikely(!*hugepage_kobj)) {
577 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
578 return -ENOMEM;
581 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
582 if (err) {
583 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
584 goto delete_obj;
587 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
588 if (err) {
589 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
590 goto remove_hp_group;
593 return 0;
595 remove_hp_group:
596 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
597 delete_obj:
598 kobject_put(*hugepage_kobj);
599 return err;
602 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
604 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
605 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
606 kobject_put(hugepage_kobj);
608 #else
609 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
611 return 0;
614 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
617 #endif /* CONFIG_SYSFS */
619 static int __init hugepage_init(void)
621 int err;
622 struct kobject *hugepage_kobj;
624 if (!has_transparent_hugepage()) {
625 transparent_hugepage_flags = 0;
626 return -EINVAL;
629 err = hugepage_init_sysfs(&hugepage_kobj);
630 if (err)
631 return err;
633 err = khugepaged_slab_init();
634 if (err)
635 goto out;
637 err = mm_slots_hash_init();
638 if (err) {
639 khugepaged_slab_free();
640 goto out;
643 register_shrinker(&huge_zero_page_shrinker);
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
653 start_khugepaged();
655 return 0;
656 out:
657 hugepage_exit_sysfs(hugepage_kobj);
658 return err;
660 module_init(hugepage_init)
662 static int __init setup_transparent_hugepage(char *str)
664 int ret = 0;
665 if (!str)
666 goto out;
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
672 ret = 1;
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
686 out:
687 if (!ret)
688 printk(KERN_WARNING
689 "transparent_hugepage= cannot parse, ignored\n");
690 return ret;
692 __setup("transparent_hugepage=", setup_transparent_hugepage);
694 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
696 if (likely(vma->vm_flags & VM_WRITE))
697 pmd = pmd_mkwrite(pmd);
698 return pmd;
701 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
703 pmd_t entry;
704 entry = mk_pmd(page, vma->vm_page_prot);
705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 entry = pmd_mkhuge(entry);
707 return entry;
710 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
711 struct vm_area_struct *vma,
712 unsigned long haddr, pmd_t *pmd,
713 struct page *page)
715 pgtable_t pgtable;
717 VM_BUG_ON(!PageCompound(page));
718 pgtable = pte_alloc_one(mm, haddr);
719 if (unlikely(!pgtable))
720 return VM_FAULT_OOM;
722 clear_huge_page(page, haddr, HPAGE_PMD_NR);
723 __SetPageUptodate(page);
725 spin_lock(&mm->page_table_lock);
726 if (unlikely(!pmd_none(*pmd))) {
727 spin_unlock(&mm->page_table_lock);
728 mem_cgroup_uncharge_page(page);
729 put_page(page);
730 pte_free(mm, pgtable);
731 } else {
732 pmd_t entry;
733 entry = mk_huge_pmd(page, vma);
735 * The spinlocking to take the lru_lock inside
736 * page_add_new_anon_rmap() acts as a full memory
737 * barrier to be sure clear_huge_page writes become
738 * visible after the set_pmd_at() write.
740 page_add_new_anon_rmap(page, vma, haddr);
741 set_pmd_at(mm, haddr, pmd, entry);
742 pgtable_trans_huge_deposit(mm, pgtable);
743 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
744 mm->nr_ptes++;
745 spin_unlock(&mm->page_table_lock);
748 return 0;
751 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
753 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
756 static inline struct page *alloc_hugepage_vma(int defrag,
757 struct vm_area_struct *vma,
758 unsigned long haddr, int nd,
759 gfp_t extra_gfp)
761 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
762 HPAGE_PMD_ORDER, vma, haddr, nd);
765 #ifndef CONFIG_NUMA
766 static inline struct page *alloc_hugepage(int defrag)
768 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
769 HPAGE_PMD_ORDER);
771 #endif
773 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
774 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
775 unsigned long zero_pfn)
777 pmd_t entry;
778 if (!pmd_none(*pmd))
779 return false;
780 entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
781 entry = pmd_wrprotect(entry);
782 entry = pmd_mkhuge(entry);
783 set_pmd_at(mm, haddr, pmd, entry);
784 pgtable_trans_huge_deposit(mm, pgtable);
785 mm->nr_ptes++;
786 return true;
789 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
790 unsigned long address, pmd_t *pmd,
791 unsigned int flags)
793 struct page *page;
794 unsigned long haddr = address & HPAGE_PMD_MASK;
795 pte_t *pte;
797 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
798 if (unlikely(anon_vma_prepare(vma)))
799 return VM_FAULT_OOM;
800 if (unlikely(khugepaged_enter(vma)))
801 return VM_FAULT_OOM;
802 if (!(flags & FAULT_FLAG_WRITE) &&
803 transparent_hugepage_use_zero_page()) {
804 pgtable_t pgtable;
805 unsigned long zero_pfn;
806 bool set;
807 pgtable = pte_alloc_one(mm, haddr);
808 if (unlikely(!pgtable))
809 return VM_FAULT_OOM;
810 zero_pfn = get_huge_zero_page();
811 if (unlikely(!zero_pfn)) {
812 pte_free(mm, pgtable);
813 count_vm_event(THP_FAULT_FALLBACK);
814 goto out;
816 spin_lock(&mm->page_table_lock);
817 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
818 zero_pfn);
819 spin_unlock(&mm->page_table_lock);
820 if (!set) {
821 pte_free(mm, pgtable);
822 put_huge_zero_page();
824 return 0;
826 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
827 vma, haddr, numa_node_id(), 0);
828 if (unlikely(!page)) {
829 count_vm_event(THP_FAULT_FALLBACK);
830 goto out;
832 count_vm_event(THP_FAULT_ALLOC);
833 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
834 put_page(page);
835 goto out;
837 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
838 page))) {
839 mem_cgroup_uncharge_page(page);
840 put_page(page);
841 goto out;
844 return 0;
846 out:
848 * Use __pte_alloc instead of pte_alloc_map, because we can't
849 * run pte_offset_map on the pmd, if an huge pmd could
850 * materialize from under us from a different thread.
852 if (unlikely(pmd_none(*pmd)) &&
853 unlikely(__pte_alloc(mm, vma, pmd, address)))
854 return VM_FAULT_OOM;
855 /* if an huge pmd materialized from under us just retry later */
856 if (unlikely(pmd_trans_huge(*pmd)))
857 return 0;
859 * A regular pmd is established and it can't morph into a huge pmd
860 * from under us anymore at this point because we hold the mmap_sem
861 * read mode and khugepaged takes it in write mode. So now it's
862 * safe to run pte_offset_map().
864 pte = pte_offset_map(pmd, address);
865 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
868 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
869 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
870 struct vm_area_struct *vma)
872 struct page *src_page;
873 pmd_t pmd;
874 pgtable_t pgtable;
875 int ret;
877 ret = -ENOMEM;
878 pgtable = pte_alloc_one(dst_mm, addr);
879 if (unlikely(!pgtable))
880 goto out;
882 spin_lock(&dst_mm->page_table_lock);
883 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
885 ret = -EAGAIN;
886 pmd = *src_pmd;
887 if (unlikely(!pmd_trans_huge(pmd))) {
888 pte_free(dst_mm, pgtable);
889 goto out_unlock;
892 * mm->page_table_lock is enough to be sure that huge zero pmd is not
893 * under splitting since we don't split the page itself, only pmd to
894 * a page table.
896 if (is_huge_zero_pmd(pmd)) {
897 unsigned long zero_pfn;
898 bool set;
900 * get_huge_zero_page() will never allocate a new page here,
901 * since we already have a zero page to copy. It just takes a
902 * reference.
904 zero_pfn = get_huge_zero_page();
905 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
906 zero_pfn);
907 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
908 ret = 0;
909 goto out_unlock;
911 if (unlikely(pmd_trans_splitting(pmd))) {
912 /* split huge page running from under us */
913 spin_unlock(&src_mm->page_table_lock);
914 spin_unlock(&dst_mm->page_table_lock);
915 pte_free(dst_mm, pgtable);
917 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
918 goto out;
920 src_page = pmd_page(pmd);
921 VM_BUG_ON(!PageHead(src_page));
922 get_page(src_page);
923 page_dup_rmap(src_page);
924 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
926 pmdp_set_wrprotect(src_mm, addr, src_pmd);
927 pmd = pmd_mkold(pmd_wrprotect(pmd));
928 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
929 pgtable_trans_huge_deposit(dst_mm, pgtable);
930 dst_mm->nr_ptes++;
932 ret = 0;
933 out_unlock:
934 spin_unlock(&src_mm->page_table_lock);
935 spin_unlock(&dst_mm->page_table_lock);
936 out:
937 return ret;
940 void huge_pmd_set_accessed(struct mm_struct *mm,
941 struct vm_area_struct *vma,
942 unsigned long address,
943 pmd_t *pmd, pmd_t orig_pmd,
944 int dirty)
946 pmd_t entry;
947 unsigned long haddr;
949 spin_lock(&mm->page_table_lock);
950 if (unlikely(!pmd_same(*pmd, orig_pmd)))
951 goto unlock;
953 entry = pmd_mkyoung(orig_pmd);
954 haddr = address & HPAGE_PMD_MASK;
955 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
956 update_mmu_cache_pmd(vma, address, pmd);
958 unlock:
959 spin_unlock(&mm->page_table_lock);
962 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
963 struct vm_area_struct *vma, unsigned long address,
964 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
966 pgtable_t pgtable;
967 pmd_t _pmd;
968 struct page *page;
969 int i, ret = 0;
970 unsigned long mmun_start; /* For mmu_notifiers */
971 unsigned long mmun_end; /* For mmu_notifiers */
973 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
974 if (!page) {
975 ret |= VM_FAULT_OOM;
976 goto out;
979 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
980 put_page(page);
981 ret |= VM_FAULT_OOM;
982 goto out;
985 clear_user_highpage(page, address);
986 __SetPageUptodate(page);
988 mmun_start = haddr;
989 mmun_end = haddr + HPAGE_PMD_SIZE;
990 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
992 spin_lock(&mm->page_table_lock);
993 if (unlikely(!pmd_same(*pmd, orig_pmd)))
994 goto out_free_page;
996 pmdp_clear_flush(vma, haddr, pmd);
997 /* leave pmd empty until pte is filled */
999 pgtable = pgtable_trans_huge_withdraw(mm);
1000 pmd_populate(mm, &_pmd, pgtable);
1002 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1003 pte_t *pte, entry;
1004 if (haddr == (address & PAGE_MASK)) {
1005 entry = mk_pte(page, vma->vm_page_prot);
1006 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1007 page_add_new_anon_rmap(page, vma, haddr);
1008 } else {
1009 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1010 entry = pte_mkspecial(entry);
1012 pte = pte_offset_map(&_pmd, haddr);
1013 VM_BUG_ON(!pte_none(*pte));
1014 set_pte_at(mm, haddr, pte, entry);
1015 pte_unmap(pte);
1017 smp_wmb(); /* make pte visible before pmd */
1018 pmd_populate(mm, pmd, pgtable);
1019 spin_unlock(&mm->page_table_lock);
1020 put_huge_zero_page();
1021 inc_mm_counter(mm, MM_ANONPAGES);
1023 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1025 ret |= VM_FAULT_WRITE;
1026 out:
1027 return ret;
1028 out_free_page:
1029 spin_unlock(&mm->page_table_lock);
1030 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1031 mem_cgroup_uncharge_page(page);
1032 put_page(page);
1033 goto out;
1036 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1037 struct vm_area_struct *vma,
1038 unsigned long address,
1039 pmd_t *pmd, pmd_t orig_pmd,
1040 struct page *page,
1041 unsigned long haddr)
1043 pgtable_t pgtable;
1044 pmd_t _pmd;
1045 int ret = 0, i;
1046 struct page **pages;
1047 unsigned long mmun_start; /* For mmu_notifiers */
1048 unsigned long mmun_end; /* For mmu_notifiers */
1050 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1051 GFP_KERNEL);
1052 if (unlikely(!pages)) {
1053 ret |= VM_FAULT_OOM;
1054 goto out;
1057 for (i = 0; i < HPAGE_PMD_NR; i++) {
1058 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1059 __GFP_OTHER_NODE,
1060 vma, address, page_to_nid(page));
1061 if (unlikely(!pages[i] ||
1062 mem_cgroup_newpage_charge(pages[i], mm,
1063 GFP_KERNEL))) {
1064 if (pages[i])
1065 put_page(pages[i]);
1066 mem_cgroup_uncharge_start();
1067 while (--i >= 0) {
1068 mem_cgroup_uncharge_page(pages[i]);
1069 put_page(pages[i]);
1071 mem_cgroup_uncharge_end();
1072 kfree(pages);
1073 ret |= VM_FAULT_OOM;
1074 goto out;
1078 for (i = 0; i < HPAGE_PMD_NR; i++) {
1079 copy_user_highpage(pages[i], page + i,
1080 haddr + PAGE_SIZE * i, vma);
1081 __SetPageUptodate(pages[i]);
1082 cond_resched();
1085 mmun_start = haddr;
1086 mmun_end = haddr + HPAGE_PMD_SIZE;
1087 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1089 spin_lock(&mm->page_table_lock);
1090 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 goto out_free_pages;
1092 VM_BUG_ON(!PageHead(page));
1094 pmdp_clear_flush(vma, haddr, pmd);
1095 /* leave pmd empty until pte is filled */
1097 pgtable = pgtable_trans_huge_withdraw(mm);
1098 pmd_populate(mm, &_pmd, pgtable);
1100 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1101 pte_t *pte, entry;
1102 entry = mk_pte(pages[i], vma->vm_page_prot);
1103 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1104 page_add_new_anon_rmap(pages[i], vma, haddr);
1105 pte = pte_offset_map(&_pmd, haddr);
1106 VM_BUG_ON(!pte_none(*pte));
1107 set_pte_at(mm, haddr, pte, entry);
1108 pte_unmap(pte);
1110 kfree(pages);
1112 smp_wmb(); /* make pte visible before pmd */
1113 pmd_populate(mm, pmd, pgtable);
1114 page_remove_rmap(page);
1115 spin_unlock(&mm->page_table_lock);
1117 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1119 ret |= VM_FAULT_WRITE;
1120 put_page(page);
1122 out:
1123 return ret;
1125 out_free_pages:
1126 spin_unlock(&mm->page_table_lock);
1127 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1128 mem_cgroup_uncharge_start();
1129 for (i = 0; i < HPAGE_PMD_NR; i++) {
1130 mem_cgroup_uncharge_page(pages[i]);
1131 put_page(pages[i]);
1133 mem_cgroup_uncharge_end();
1134 kfree(pages);
1135 goto out;
1138 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1139 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1141 int ret = 0;
1142 struct page *page = NULL, *new_page;
1143 unsigned long haddr;
1144 unsigned long mmun_start; /* For mmu_notifiers */
1145 unsigned long mmun_end; /* For mmu_notifiers */
1147 VM_BUG_ON(!vma->anon_vma);
1148 haddr = address & HPAGE_PMD_MASK;
1149 if (is_huge_zero_pmd(orig_pmd))
1150 goto alloc;
1151 spin_lock(&mm->page_table_lock);
1152 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1153 goto out_unlock;
1155 page = pmd_page(orig_pmd);
1156 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1157 if (page_mapcount(page) == 1) {
1158 pmd_t entry;
1159 entry = pmd_mkyoung(orig_pmd);
1160 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1161 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1162 update_mmu_cache_pmd(vma, address, pmd);
1163 ret |= VM_FAULT_WRITE;
1164 goto out_unlock;
1166 get_page(page);
1167 spin_unlock(&mm->page_table_lock);
1168 alloc:
1169 if (transparent_hugepage_enabled(vma) &&
1170 !transparent_hugepage_debug_cow())
1171 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1172 vma, haddr, numa_node_id(), 0);
1173 else
1174 new_page = NULL;
1176 if (unlikely(!new_page)) {
1177 count_vm_event(THP_FAULT_FALLBACK);
1178 if (is_huge_zero_pmd(orig_pmd)) {
1179 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1180 address, pmd, orig_pmd, haddr);
1181 } else {
1182 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1183 pmd, orig_pmd, page, haddr);
1184 if (ret & VM_FAULT_OOM)
1185 split_huge_page(page);
1186 put_page(page);
1188 goto out;
1190 count_vm_event(THP_FAULT_ALLOC);
1192 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1193 put_page(new_page);
1194 if (page) {
1195 split_huge_page(page);
1196 put_page(page);
1198 ret |= VM_FAULT_OOM;
1199 goto out;
1202 if (is_huge_zero_pmd(orig_pmd))
1203 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1204 else
1205 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1206 __SetPageUptodate(new_page);
1208 mmun_start = haddr;
1209 mmun_end = haddr + HPAGE_PMD_SIZE;
1210 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1212 spin_lock(&mm->page_table_lock);
1213 if (page)
1214 put_page(page);
1215 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1216 spin_unlock(&mm->page_table_lock);
1217 mem_cgroup_uncharge_page(new_page);
1218 put_page(new_page);
1219 goto out_mn;
1220 } else {
1221 pmd_t entry;
1222 entry = mk_huge_pmd(new_page, vma);
1223 pmdp_clear_flush(vma, haddr, pmd);
1224 page_add_new_anon_rmap(new_page, vma, haddr);
1225 set_pmd_at(mm, haddr, pmd, entry);
1226 update_mmu_cache_pmd(vma, address, pmd);
1227 if (is_huge_zero_pmd(orig_pmd)) {
1228 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1229 put_huge_zero_page();
1230 } else {
1231 VM_BUG_ON(!PageHead(page));
1232 page_remove_rmap(page);
1233 put_page(page);
1235 ret |= VM_FAULT_WRITE;
1237 spin_unlock(&mm->page_table_lock);
1238 out_mn:
1239 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1240 out:
1241 return ret;
1242 out_unlock:
1243 spin_unlock(&mm->page_table_lock);
1244 return ret;
1247 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1248 unsigned long addr,
1249 pmd_t *pmd,
1250 unsigned int flags)
1252 struct mm_struct *mm = vma->vm_mm;
1253 struct page *page = NULL;
1255 assert_spin_locked(&mm->page_table_lock);
1257 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1258 goto out;
1260 /* Avoid dumping huge zero page */
1261 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1262 return ERR_PTR(-EFAULT);
1264 page = pmd_page(*pmd);
1265 VM_BUG_ON(!PageHead(page));
1266 if (flags & FOLL_TOUCH) {
1267 pmd_t _pmd;
1269 * We should set the dirty bit only for FOLL_WRITE but
1270 * for now the dirty bit in the pmd is meaningless.
1271 * And if the dirty bit will become meaningful and
1272 * we'll only set it with FOLL_WRITE, an atomic
1273 * set_bit will be required on the pmd to set the
1274 * young bit, instead of the current set_pmd_at.
1276 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1277 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1279 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1280 if (page->mapping && trylock_page(page)) {
1281 lru_add_drain();
1282 if (page->mapping)
1283 mlock_vma_page(page);
1284 unlock_page(page);
1287 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1288 VM_BUG_ON(!PageCompound(page));
1289 if (flags & FOLL_GET)
1290 get_page_foll(page);
1292 out:
1293 return page;
1296 /* NUMA hinting page fault entry point for trans huge pmds */
1297 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1298 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1300 struct page *page;
1301 unsigned long haddr = addr & HPAGE_PMD_MASK;
1302 int target_nid;
1303 int current_nid = -1;
1304 bool migrated;
1305 bool page_locked = false;
1307 spin_lock(&mm->page_table_lock);
1308 if (unlikely(!pmd_same(pmd, *pmdp)))
1309 goto out_unlock;
1311 page = pmd_page(pmd);
1312 get_page(page);
1313 current_nid = page_to_nid(page);
1314 count_vm_numa_event(NUMA_HINT_FAULTS);
1315 if (current_nid == numa_node_id())
1316 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1318 target_nid = mpol_misplaced(page, vma, haddr);
1319 if (target_nid == -1) {
1320 put_page(page);
1321 goto clear_pmdnuma;
1324 /* Acquire the page lock to serialise THP migrations */
1325 spin_unlock(&mm->page_table_lock);
1326 lock_page(page);
1327 page_locked = true;
1329 /* Confirm the PTE did not while locked */
1330 spin_lock(&mm->page_table_lock);
1331 if (unlikely(!pmd_same(pmd, *pmdp))) {
1332 unlock_page(page);
1333 put_page(page);
1334 goto out_unlock;
1336 spin_unlock(&mm->page_table_lock);
1338 /* Migrate the THP to the requested node */
1339 migrated = migrate_misplaced_transhuge_page(mm, vma,
1340 pmdp, pmd, addr,
1341 page, target_nid);
1342 if (migrated)
1343 current_nid = target_nid;
1344 else {
1345 spin_lock(&mm->page_table_lock);
1346 if (unlikely(!pmd_same(pmd, *pmdp))) {
1347 unlock_page(page);
1348 goto out_unlock;
1350 goto clear_pmdnuma;
1353 task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
1354 return 0;
1356 clear_pmdnuma:
1357 pmd = pmd_mknonnuma(pmd);
1358 set_pmd_at(mm, haddr, pmdp, pmd);
1359 VM_BUG_ON(pmd_numa(*pmdp));
1360 update_mmu_cache_pmd(vma, addr, pmdp);
1361 if (page_locked)
1362 unlock_page(page);
1364 out_unlock:
1365 spin_unlock(&mm->page_table_lock);
1366 if (current_nid != -1)
1367 task_numa_fault(current_nid, HPAGE_PMD_NR, migrated);
1368 return 0;
1371 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1372 pmd_t *pmd, unsigned long addr)
1374 int ret = 0;
1376 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1377 struct page *page;
1378 pgtable_t pgtable;
1379 pmd_t orig_pmd;
1380 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1381 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1382 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1383 if (is_huge_zero_pmd(orig_pmd)) {
1384 tlb->mm->nr_ptes--;
1385 spin_unlock(&tlb->mm->page_table_lock);
1386 put_huge_zero_page();
1387 } else {
1388 page = pmd_page(orig_pmd);
1389 page_remove_rmap(page);
1390 VM_BUG_ON(page_mapcount(page) < 0);
1391 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1392 VM_BUG_ON(!PageHead(page));
1393 tlb->mm->nr_ptes--;
1394 spin_unlock(&tlb->mm->page_table_lock);
1395 tlb_remove_page(tlb, page);
1397 pte_free(tlb->mm, pgtable);
1398 ret = 1;
1400 return ret;
1403 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1404 unsigned long addr, unsigned long end,
1405 unsigned char *vec)
1407 int ret = 0;
1409 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1411 * All logical pages in the range are present
1412 * if backed by a huge page.
1414 spin_unlock(&vma->vm_mm->page_table_lock);
1415 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1416 ret = 1;
1419 return ret;
1422 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1423 unsigned long old_addr,
1424 unsigned long new_addr, unsigned long old_end,
1425 pmd_t *old_pmd, pmd_t *new_pmd)
1427 int ret = 0;
1428 pmd_t pmd;
1430 struct mm_struct *mm = vma->vm_mm;
1432 if ((old_addr & ~HPAGE_PMD_MASK) ||
1433 (new_addr & ~HPAGE_PMD_MASK) ||
1434 old_end - old_addr < HPAGE_PMD_SIZE ||
1435 (new_vma->vm_flags & VM_NOHUGEPAGE))
1436 goto out;
1439 * The destination pmd shouldn't be established, free_pgtables()
1440 * should have release it.
1442 if (WARN_ON(!pmd_none(*new_pmd))) {
1443 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1444 goto out;
1447 ret = __pmd_trans_huge_lock(old_pmd, vma);
1448 if (ret == 1) {
1449 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1450 VM_BUG_ON(!pmd_none(*new_pmd));
1451 set_pmd_at(mm, new_addr, new_pmd, pmd);
1452 spin_unlock(&mm->page_table_lock);
1454 out:
1455 return ret;
1458 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1459 unsigned long addr, pgprot_t newprot, int prot_numa)
1461 struct mm_struct *mm = vma->vm_mm;
1462 int ret = 0;
1464 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1465 pmd_t entry;
1466 entry = pmdp_get_and_clear(mm, addr, pmd);
1467 if (!prot_numa) {
1468 entry = pmd_modify(entry, newprot);
1469 BUG_ON(pmd_write(entry));
1470 } else {
1471 struct page *page = pmd_page(*pmd);
1473 /* only check non-shared pages */
1474 if (page_mapcount(page) == 1 &&
1475 !pmd_numa(*pmd)) {
1476 entry = pmd_mknuma(entry);
1479 set_pmd_at(mm, addr, pmd, entry);
1480 spin_unlock(&vma->vm_mm->page_table_lock);
1481 ret = 1;
1484 return ret;
1488 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1489 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1491 * Note that if it returns 1, this routine returns without unlocking page
1492 * table locks. So callers must unlock them.
1494 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1496 spin_lock(&vma->vm_mm->page_table_lock);
1497 if (likely(pmd_trans_huge(*pmd))) {
1498 if (unlikely(pmd_trans_splitting(*pmd))) {
1499 spin_unlock(&vma->vm_mm->page_table_lock);
1500 wait_split_huge_page(vma->anon_vma, pmd);
1501 return -1;
1502 } else {
1503 /* Thp mapped by 'pmd' is stable, so we can
1504 * handle it as it is. */
1505 return 1;
1508 spin_unlock(&vma->vm_mm->page_table_lock);
1509 return 0;
1512 pmd_t *page_check_address_pmd(struct page *page,
1513 struct mm_struct *mm,
1514 unsigned long address,
1515 enum page_check_address_pmd_flag flag)
1517 pmd_t *pmd, *ret = NULL;
1519 if (address & ~HPAGE_PMD_MASK)
1520 goto out;
1522 pmd = mm_find_pmd(mm, address);
1523 if (!pmd)
1524 goto out;
1525 if (pmd_none(*pmd))
1526 goto out;
1527 if (pmd_page(*pmd) != page)
1528 goto out;
1530 * split_vma() may create temporary aliased mappings. There is
1531 * no risk as long as all huge pmd are found and have their
1532 * splitting bit set before __split_huge_page_refcount
1533 * runs. Finding the same huge pmd more than once during the
1534 * same rmap walk is not a problem.
1536 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1537 pmd_trans_splitting(*pmd))
1538 goto out;
1539 if (pmd_trans_huge(*pmd)) {
1540 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1541 !pmd_trans_splitting(*pmd));
1542 ret = pmd;
1544 out:
1545 return ret;
1548 static int __split_huge_page_splitting(struct page *page,
1549 struct vm_area_struct *vma,
1550 unsigned long address)
1552 struct mm_struct *mm = vma->vm_mm;
1553 pmd_t *pmd;
1554 int ret = 0;
1555 /* For mmu_notifiers */
1556 const unsigned long mmun_start = address;
1557 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1559 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1560 spin_lock(&mm->page_table_lock);
1561 pmd = page_check_address_pmd(page, mm, address,
1562 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1563 if (pmd) {
1565 * We can't temporarily set the pmd to null in order
1566 * to split it, the pmd must remain marked huge at all
1567 * times or the VM won't take the pmd_trans_huge paths
1568 * and it won't wait on the anon_vma->root->rwsem to
1569 * serialize against split_huge_page*.
1571 pmdp_splitting_flush(vma, address, pmd);
1572 ret = 1;
1574 spin_unlock(&mm->page_table_lock);
1575 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1577 return ret;
1580 static void __split_huge_page_refcount(struct page *page)
1582 int i;
1583 struct zone *zone = page_zone(page);
1584 struct lruvec *lruvec;
1585 int tail_count = 0;
1587 /* prevent PageLRU to go away from under us, and freeze lru stats */
1588 spin_lock_irq(&zone->lru_lock);
1589 lruvec = mem_cgroup_page_lruvec(page, zone);
1591 compound_lock(page);
1592 /* complete memcg works before add pages to LRU */
1593 mem_cgroup_split_huge_fixup(page);
1595 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1596 struct page *page_tail = page + i;
1598 /* tail_page->_mapcount cannot change */
1599 BUG_ON(page_mapcount(page_tail) < 0);
1600 tail_count += page_mapcount(page_tail);
1601 /* check for overflow */
1602 BUG_ON(tail_count < 0);
1603 BUG_ON(atomic_read(&page_tail->_count) != 0);
1605 * tail_page->_count is zero and not changing from
1606 * under us. But get_page_unless_zero() may be running
1607 * from under us on the tail_page. If we used
1608 * atomic_set() below instead of atomic_add(), we
1609 * would then run atomic_set() concurrently with
1610 * get_page_unless_zero(), and atomic_set() is
1611 * implemented in C not using locked ops. spin_unlock
1612 * on x86 sometime uses locked ops because of PPro
1613 * errata 66, 92, so unless somebody can guarantee
1614 * atomic_set() here would be safe on all archs (and
1615 * not only on x86), it's safer to use atomic_add().
1617 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1618 &page_tail->_count);
1620 /* after clearing PageTail the gup refcount can be released */
1621 smp_mb();
1624 * retain hwpoison flag of the poisoned tail page:
1625 * fix for the unsuitable process killed on Guest Machine(KVM)
1626 * by the memory-failure.
1628 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1629 page_tail->flags |= (page->flags &
1630 ((1L << PG_referenced) |
1631 (1L << PG_swapbacked) |
1632 (1L << PG_mlocked) |
1633 (1L << PG_uptodate)));
1634 page_tail->flags |= (1L << PG_dirty);
1636 /* clear PageTail before overwriting first_page */
1637 smp_wmb();
1640 * __split_huge_page_splitting() already set the
1641 * splitting bit in all pmd that could map this
1642 * hugepage, that will ensure no CPU can alter the
1643 * mapcount on the head page. The mapcount is only
1644 * accounted in the head page and it has to be
1645 * transferred to all tail pages in the below code. So
1646 * for this code to be safe, the split the mapcount
1647 * can't change. But that doesn't mean userland can't
1648 * keep changing and reading the page contents while
1649 * we transfer the mapcount, so the pmd splitting
1650 * status is achieved setting a reserved bit in the
1651 * pmd, not by clearing the present bit.
1653 page_tail->_mapcount = page->_mapcount;
1655 BUG_ON(page_tail->mapping);
1656 page_tail->mapping = page->mapping;
1658 page_tail->index = page->index + i;
1659 page_xchg_last_nid(page_tail, page_last_nid(page));
1661 BUG_ON(!PageAnon(page_tail));
1662 BUG_ON(!PageUptodate(page_tail));
1663 BUG_ON(!PageDirty(page_tail));
1664 BUG_ON(!PageSwapBacked(page_tail));
1666 lru_add_page_tail(page, page_tail, lruvec);
1668 atomic_sub(tail_count, &page->_count);
1669 BUG_ON(atomic_read(&page->_count) <= 0);
1671 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1672 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1674 ClearPageCompound(page);
1675 compound_unlock(page);
1676 spin_unlock_irq(&zone->lru_lock);
1678 for (i = 1; i < HPAGE_PMD_NR; i++) {
1679 struct page *page_tail = page + i;
1680 BUG_ON(page_count(page_tail) <= 0);
1682 * Tail pages may be freed if there wasn't any mapping
1683 * like if add_to_swap() is running on a lru page that
1684 * had its mapping zapped. And freeing these pages
1685 * requires taking the lru_lock so we do the put_page
1686 * of the tail pages after the split is complete.
1688 put_page(page_tail);
1692 * Only the head page (now become a regular page) is required
1693 * to be pinned by the caller.
1695 BUG_ON(page_count(page) <= 0);
1698 static int __split_huge_page_map(struct page *page,
1699 struct vm_area_struct *vma,
1700 unsigned long address)
1702 struct mm_struct *mm = vma->vm_mm;
1703 pmd_t *pmd, _pmd;
1704 int ret = 0, i;
1705 pgtable_t pgtable;
1706 unsigned long haddr;
1708 spin_lock(&mm->page_table_lock);
1709 pmd = page_check_address_pmd(page, mm, address,
1710 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1711 if (pmd) {
1712 pgtable = pgtable_trans_huge_withdraw(mm);
1713 pmd_populate(mm, &_pmd, pgtable);
1715 haddr = address;
1716 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1717 pte_t *pte, entry;
1718 BUG_ON(PageCompound(page+i));
1719 entry = mk_pte(page + i, vma->vm_page_prot);
1720 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1721 if (!pmd_write(*pmd))
1722 entry = pte_wrprotect(entry);
1723 else
1724 BUG_ON(page_mapcount(page) != 1);
1725 if (!pmd_young(*pmd))
1726 entry = pte_mkold(entry);
1727 if (pmd_numa(*pmd))
1728 entry = pte_mknuma(entry);
1729 pte = pte_offset_map(&_pmd, haddr);
1730 BUG_ON(!pte_none(*pte));
1731 set_pte_at(mm, haddr, pte, entry);
1732 pte_unmap(pte);
1735 smp_wmb(); /* make pte visible before pmd */
1737 * Up to this point the pmd is present and huge and
1738 * userland has the whole access to the hugepage
1739 * during the split (which happens in place). If we
1740 * overwrite the pmd with the not-huge version
1741 * pointing to the pte here (which of course we could
1742 * if all CPUs were bug free), userland could trigger
1743 * a small page size TLB miss on the small sized TLB
1744 * while the hugepage TLB entry is still established
1745 * in the huge TLB. Some CPU doesn't like that. See
1746 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1747 * Erratum 383 on page 93. Intel should be safe but is
1748 * also warns that it's only safe if the permission
1749 * and cache attributes of the two entries loaded in
1750 * the two TLB is identical (which should be the case
1751 * here). But it is generally safer to never allow
1752 * small and huge TLB entries for the same virtual
1753 * address to be loaded simultaneously. So instead of
1754 * doing "pmd_populate(); flush_tlb_range();" we first
1755 * mark the current pmd notpresent (atomically because
1756 * here the pmd_trans_huge and pmd_trans_splitting
1757 * must remain set at all times on the pmd until the
1758 * split is complete for this pmd), then we flush the
1759 * SMP TLB and finally we write the non-huge version
1760 * of the pmd entry with pmd_populate.
1762 pmdp_invalidate(vma, address, pmd);
1763 pmd_populate(mm, pmd, pgtable);
1764 ret = 1;
1766 spin_unlock(&mm->page_table_lock);
1768 return ret;
1771 /* must be called with anon_vma->root->rwsem held */
1772 static void __split_huge_page(struct page *page,
1773 struct anon_vma *anon_vma)
1775 int mapcount, mapcount2;
1776 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1777 struct anon_vma_chain *avc;
1779 BUG_ON(!PageHead(page));
1780 BUG_ON(PageTail(page));
1782 mapcount = 0;
1783 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1784 struct vm_area_struct *vma = avc->vma;
1785 unsigned long addr = vma_address(page, vma);
1786 BUG_ON(is_vma_temporary_stack(vma));
1787 mapcount += __split_huge_page_splitting(page, vma, addr);
1790 * It is critical that new vmas are added to the tail of the
1791 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1792 * and establishes a child pmd before
1793 * __split_huge_page_splitting() freezes the parent pmd (so if
1794 * we fail to prevent copy_huge_pmd() from running until the
1795 * whole __split_huge_page() is complete), we will still see
1796 * the newly established pmd of the child later during the
1797 * walk, to be able to set it as pmd_trans_splitting too.
1799 if (mapcount != page_mapcount(page))
1800 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1801 mapcount, page_mapcount(page));
1802 BUG_ON(mapcount != page_mapcount(page));
1804 __split_huge_page_refcount(page);
1806 mapcount2 = 0;
1807 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1808 struct vm_area_struct *vma = avc->vma;
1809 unsigned long addr = vma_address(page, vma);
1810 BUG_ON(is_vma_temporary_stack(vma));
1811 mapcount2 += __split_huge_page_map(page, vma, addr);
1813 if (mapcount != mapcount2)
1814 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1815 mapcount, mapcount2, page_mapcount(page));
1816 BUG_ON(mapcount != mapcount2);
1819 int split_huge_page(struct page *page)
1821 struct anon_vma *anon_vma;
1822 int ret = 1;
1824 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
1825 BUG_ON(!PageAnon(page));
1828 * The caller does not necessarily hold an mmap_sem that would prevent
1829 * the anon_vma disappearing so we first we take a reference to it
1830 * and then lock the anon_vma for write. This is similar to
1831 * page_lock_anon_vma_read except the write lock is taken to serialise
1832 * against parallel split or collapse operations.
1834 anon_vma = page_get_anon_vma(page);
1835 if (!anon_vma)
1836 goto out;
1837 anon_vma_lock_write(anon_vma);
1839 ret = 0;
1840 if (!PageCompound(page))
1841 goto out_unlock;
1843 BUG_ON(!PageSwapBacked(page));
1844 __split_huge_page(page, anon_vma);
1845 count_vm_event(THP_SPLIT);
1847 BUG_ON(PageCompound(page));
1848 out_unlock:
1849 anon_vma_unlock(anon_vma);
1850 put_anon_vma(anon_vma);
1851 out:
1852 return ret;
1855 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1857 int hugepage_madvise(struct vm_area_struct *vma,
1858 unsigned long *vm_flags, int advice)
1860 struct mm_struct *mm = vma->vm_mm;
1862 switch (advice) {
1863 case MADV_HUGEPAGE:
1865 * Be somewhat over-protective like KSM for now!
1867 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1868 return -EINVAL;
1869 if (mm->def_flags & VM_NOHUGEPAGE)
1870 return -EINVAL;
1871 *vm_flags &= ~VM_NOHUGEPAGE;
1872 *vm_flags |= VM_HUGEPAGE;
1874 * If the vma become good for khugepaged to scan,
1875 * register it here without waiting a page fault that
1876 * may not happen any time soon.
1878 if (unlikely(khugepaged_enter_vma_merge(vma)))
1879 return -ENOMEM;
1880 break;
1881 case MADV_NOHUGEPAGE:
1883 * Be somewhat over-protective like KSM for now!
1885 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1886 return -EINVAL;
1887 *vm_flags &= ~VM_HUGEPAGE;
1888 *vm_flags |= VM_NOHUGEPAGE;
1890 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1891 * this vma even if we leave the mm registered in khugepaged if
1892 * it got registered before VM_NOHUGEPAGE was set.
1894 break;
1897 return 0;
1900 static int __init khugepaged_slab_init(void)
1902 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1903 sizeof(struct mm_slot),
1904 __alignof__(struct mm_slot), 0, NULL);
1905 if (!mm_slot_cache)
1906 return -ENOMEM;
1908 return 0;
1911 static void __init khugepaged_slab_free(void)
1913 kmem_cache_destroy(mm_slot_cache);
1914 mm_slot_cache = NULL;
1917 static inline struct mm_slot *alloc_mm_slot(void)
1919 if (!mm_slot_cache) /* initialization failed */
1920 return NULL;
1921 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1924 static inline void free_mm_slot(struct mm_slot *mm_slot)
1926 kmem_cache_free(mm_slot_cache, mm_slot);
1929 static int __init mm_slots_hash_init(void)
1931 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1932 GFP_KERNEL);
1933 if (!mm_slots_hash)
1934 return -ENOMEM;
1935 return 0;
1938 #if 0
1939 static void __init mm_slots_hash_free(void)
1941 kfree(mm_slots_hash);
1942 mm_slots_hash = NULL;
1944 #endif
1946 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1948 struct mm_slot *mm_slot;
1949 struct hlist_head *bucket;
1950 struct hlist_node *node;
1952 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1953 % MM_SLOTS_HASH_HEADS];
1954 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1955 if (mm == mm_slot->mm)
1956 return mm_slot;
1958 return NULL;
1961 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1962 struct mm_slot *mm_slot)
1964 struct hlist_head *bucket;
1966 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1967 % MM_SLOTS_HASH_HEADS];
1968 mm_slot->mm = mm;
1969 hlist_add_head(&mm_slot->hash, bucket);
1972 static inline int khugepaged_test_exit(struct mm_struct *mm)
1974 return atomic_read(&mm->mm_users) == 0;
1977 int __khugepaged_enter(struct mm_struct *mm)
1979 struct mm_slot *mm_slot;
1980 int wakeup;
1982 mm_slot = alloc_mm_slot();
1983 if (!mm_slot)
1984 return -ENOMEM;
1986 /* __khugepaged_exit() must not run from under us */
1987 VM_BUG_ON(khugepaged_test_exit(mm));
1988 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1989 free_mm_slot(mm_slot);
1990 return 0;
1993 spin_lock(&khugepaged_mm_lock);
1994 insert_to_mm_slots_hash(mm, mm_slot);
1996 * Insert just behind the scanning cursor, to let the area settle
1997 * down a little.
1999 wakeup = list_empty(&khugepaged_scan.mm_head);
2000 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2001 spin_unlock(&khugepaged_mm_lock);
2003 atomic_inc(&mm->mm_count);
2004 if (wakeup)
2005 wake_up_interruptible(&khugepaged_wait);
2007 return 0;
2010 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2012 unsigned long hstart, hend;
2013 if (!vma->anon_vma)
2015 * Not yet faulted in so we will register later in the
2016 * page fault if needed.
2018 return 0;
2019 if (vma->vm_ops)
2020 /* khugepaged not yet working on file or special mappings */
2021 return 0;
2022 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2023 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2024 hend = vma->vm_end & HPAGE_PMD_MASK;
2025 if (hstart < hend)
2026 return khugepaged_enter(vma);
2027 return 0;
2030 void __khugepaged_exit(struct mm_struct *mm)
2032 struct mm_slot *mm_slot;
2033 int free = 0;
2035 spin_lock(&khugepaged_mm_lock);
2036 mm_slot = get_mm_slot(mm);
2037 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2038 hlist_del(&mm_slot->hash);
2039 list_del(&mm_slot->mm_node);
2040 free = 1;
2042 spin_unlock(&khugepaged_mm_lock);
2044 if (free) {
2045 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2046 free_mm_slot(mm_slot);
2047 mmdrop(mm);
2048 } else if (mm_slot) {
2050 * This is required to serialize against
2051 * khugepaged_test_exit() (which is guaranteed to run
2052 * under mmap sem read mode). Stop here (after we
2053 * return all pagetables will be destroyed) until
2054 * khugepaged has finished working on the pagetables
2055 * under the mmap_sem.
2057 down_write(&mm->mmap_sem);
2058 up_write(&mm->mmap_sem);
2062 static void release_pte_page(struct page *page)
2064 /* 0 stands for page_is_file_cache(page) == false */
2065 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2066 unlock_page(page);
2067 putback_lru_page(page);
2070 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2072 while (--_pte >= pte) {
2073 pte_t pteval = *_pte;
2074 if (!pte_none(pteval))
2075 release_pte_page(pte_page(pteval));
2079 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2080 unsigned long address,
2081 pte_t *pte)
2083 struct page *page;
2084 pte_t *_pte;
2085 int referenced = 0, none = 0;
2086 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2087 _pte++, address += PAGE_SIZE) {
2088 pte_t pteval = *_pte;
2089 if (pte_none(pteval)) {
2090 if (++none <= khugepaged_max_ptes_none)
2091 continue;
2092 else
2093 goto out;
2095 if (!pte_present(pteval) || !pte_write(pteval))
2096 goto out;
2097 page = vm_normal_page(vma, address, pteval);
2098 if (unlikely(!page))
2099 goto out;
2101 VM_BUG_ON(PageCompound(page));
2102 BUG_ON(!PageAnon(page));
2103 VM_BUG_ON(!PageSwapBacked(page));
2105 /* cannot use mapcount: can't collapse if there's a gup pin */
2106 if (page_count(page) != 1)
2107 goto out;
2109 * We can do it before isolate_lru_page because the
2110 * page can't be freed from under us. NOTE: PG_lock
2111 * is needed to serialize against split_huge_page
2112 * when invoked from the VM.
2114 if (!trylock_page(page))
2115 goto out;
2117 * Isolate the page to avoid collapsing an hugepage
2118 * currently in use by the VM.
2120 if (isolate_lru_page(page)) {
2121 unlock_page(page);
2122 goto out;
2124 /* 0 stands for page_is_file_cache(page) == false */
2125 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2126 VM_BUG_ON(!PageLocked(page));
2127 VM_BUG_ON(PageLRU(page));
2129 /* If there is no mapped pte young don't collapse the page */
2130 if (pte_young(pteval) || PageReferenced(page) ||
2131 mmu_notifier_test_young(vma->vm_mm, address))
2132 referenced = 1;
2134 if (likely(referenced))
2135 return 1;
2136 out:
2137 release_pte_pages(pte, _pte);
2138 return 0;
2141 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2142 struct vm_area_struct *vma,
2143 unsigned long address,
2144 spinlock_t *ptl)
2146 pte_t *_pte;
2147 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2148 pte_t pteval = *_pte;
2149 struct page *src_page;
2151 if (pte_none(pteval)) {
2152 clear_user_highpage(page, address);
2153 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2154 } else {
2155 src_page = pte_page(pteval);
2156 copy_user_highpage(page, src_page, address, vma);
2157 VM_BUG_ON(page_mapcount(src_page) != 1);
2158 release_pte_page(src_page);
2160 * ptl mostly unnecessary, but preempt has to
2161 * be disabled to update the per-cpu stats
2162 * inside page_remove_rmap().
2164 spin_lock(ptl);
2166 * paravirt calls inside pte_clear here are
2167 * superfluous.
2169 pte_clear(vma->vm_mm, address, _pte);
2170 page_remove_rmap(src_page);
2171 spin_unlock(ptl);
2172 free_page_and_swap_cache(src_page);
2175 address += PAGE_SIZE;
2176 page++;
2180 static void khugepaged_alloc_sleep(void)
2182 wait_event_freezable_timeout(khugepaged_wait, false,
2183 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2186 #ifdef CONFIG_NUMA
2187 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2189 if (IS_ERR(*hpage)) {
2190 if (!*wait)
2191 return false;
2193 *wait = false;
2194 *hpage = NULL;
2195 khugepaged_alloc_sleep();
2196 } else if (*hpage) {
2197 put_page(*hpage);
2198 *hpage = NULL;
2201 return true;
2204 static struct page
2205 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2206 struct vm_area_struct *vma, unsigned long address,
2207 int node)
2209 VM_BUG_ON(*hpage);
2211 * Allocate the page while the vma is still valid and under
2212 * the mmap_sem read mode so there is no memory allocation
2213 * later when we take the mmap_sem in write mode. This is more
2214 * friendly behavior (OTOH it may actually hide bugs) to
2215 * filesystems in userland with daemons allocating memory in
2216 * the userland I/O paths. Allocating memory with the
2217 * mmap_sem in read mode is good idea also to allow greater
2218 * scalability.
2220 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2221 node, __GFP_OTHER_NODE);
2224 * After allocating the hugepage, release the mmap_sem read lock in
2225 * preparation for taking it in write mode.
2227 up_read(&mm->mmap_sem);
2228 if (unlikely(!*hpage)) {
2229 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2230 *hpage = ERR_PTR(-ENOMEM);
2231 return NULL;
2234 count_vm_event(THP_COLLAPSE_ALLOC);
2235 return *hpage;
2237 #else
2238 static struct page *khugepaged_alloc_hugepage(bool *wait)
2240 struct page *hpage;
2242 do {
2243 hpage = alloc_hugepage(khugepaged_defrag());
2244 if (!hpage) {
2245 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2246 if (!*wait)
2247 return NULL;
2249 *wait = false;
2250 khugepaged_alloc_sleep();
2251 } else
2252 count_vm_event(THP_COLLAPSE_ALLOC);
2253 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2255 return hpage;
2258 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2260 if (!*hpage)
2261 *hpage = khugepaged_alloc_hugepage(wait);
2263 if (unlikely(!*hpage))
2264 return false;
2266 return true;
2269 static struct page
2270 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2271 struct vm_area_struct *vma, unsigned long address,
2272 int node)
2274 up_read(&mm->mmap_sem);
2275 VM_BUG_ON(!*hpage);
2276 return *hpage;
2278 #endif
2280 static bool hugepage_vma_check(struct vm_area_struct *vma)
2282 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2283 (vma->vm_flags & VM_NOHUGEPAGE))
2284 return false;
2286 if (!vma->anon_vma || vma->vm_ops)
2287 return false;
2288 if (is_vma_temporary_stack(vma))
2289 return false;
2290 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2291 return true;
2294 static void collapse_huge_page(struct mm_struct *mm,
2295 unsigned long address,
2296 struct page **hpage,
2297 struct vm_area_struct *vma,
2298 int node)
2300 pmd_t *pmd, _pmd;
2301 pte_t *pte;
2302 pgtable_t pgtable;
2303 struct page *new_page;
2304 spinlock_t *ptl;
2305 int isolated;
2306 unsigned long hstart, hend;
2307 unsigned long mmun_start; /* For mmu_notifiers */
2308 unsigned long mmun_end; /* For mmu_notifiers */
2310 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2312 /* release the mmap_sem read lock. */
2313 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2314 if (!new_page)
2315 return;
2317 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2318 return;
2321 * Prevent all access to pagetables with the exception of
2322 * gup_fast later hanlded by the ptep_clear_flush and the VM
2323 * handled by the anon_vma lock + PG_lock.
2325 down_write(&mm->mmap_sem);
2326 if (unlikely(khugepaged_test_exit(mm)))
2327 goto out;
2329 vma = find_vma(mm, address);
2330 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2331 hend = vma->vm_end & HPAGE_PMD_MASK;
2332 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2333 goto out;
2334 if (!hugepage_vma_check(vma))
2335 goto out;
2336 pmd = mm_find_pmd(mm, address);
2337 if (!pmd)
2338 goto out;
2339 if (pmd_trans_huge(*pmd))
2340 goto out;
2342 anon_vma_lock_write(vma->anon_vma);
2344 pte = pte_offset_map(pmd, address);
2345 ptl = pte_lockptr(mm, pmd);
2347 mmun_start = address;
2348 mmun_end = address + HPAGE_PMD_SIZE;
2349 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2350 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2352 * After this gup_fast can't run anymore. This also removes
2353 * any huge TLB entry from the CPU so we won't allow
2354 * huge and small TLB entries for the same virtual address
2355 * to avoid the risk of CPU bugs in that area.
2357 _pmd = pmdp_clear_flush(vma, address, pmd);
2358 spin_unlock(&mm->page_table_lock);
2359 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2361 spin_lock(ptl);
2362 isolated = __collapse_huge_page_isolate(vma, address, pte);
2363 spin_unlock(ptl);
2365 if (unlikely(!isolated)) {
2366 pte_unmap(pte);
2367 spin_lock(&mm->page_table_lock);
2368 BUG_ON(!pmd_none(*pmd));
2369 set_pmd_at(mm, address, pmd, _pmd);
2370 spin_unlock(&mm->page_table_lock);
2371 anon_vma_unlock(vma->anon_vma);
2372 goto out;
2376 * All pages are isolated and locked so anon_vma rmap
2377 * can't run anymore.
2379 anon_vma_unlock(vma->anon_vma);
2381 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2382 pte_unmap(pte);
2383 __SetPageUptodate(new_page);
2384 pgtable = pmd_pgtable(_pmd);
2386 _pmd = mk_huge_pmd(new_page, vma);
2389 * spin_lock() below is not the equivalent of smp_wmb(), so
2390 * this is needed to avoid the copy_huge_page writes to become
2391 * visible after the set_pmd_at() write.
2393 smp_wmb();
2395 spin_lock(&mm->page_table_lock);
2396 BUG_ON(!pmd_none(*pmd));
2397 page_add_new_anon_rmap(new_page, vma, address);
2398 set_pmd_at(mm, address, pmd, _pmd);
2399 update_mmu_cache_pmd(vma, address, pmd);
2400 pgtable_trans_huge_deposit(mm, pgtable);
2401 spin_unlock(&mm->page_table_lock);
2403 *hpage = NULL;
2405 khugepaged_pages_collapsed++;
2406 out_up_write:
2407 up_write(&mm->mmap_sem);
2408 return;
2410 out:
2411 mem_cgroup_uncharge_page(new_page);
2412 goto out_up_write;
2415 static int khugepaged_scan_pmd(struct mm_struct *mm,
2416 struct vm_area_struct *vma,
2417 unsigned long address,
2418 struct page **hpage)
2420 pmd_t *pmd;
2421 pte_t *pte, *_pte;
2422 int ret = 0, referenced = 0, none = 0;
2423 struct page *page;
2424 unsigned long _address;
2425 spinlock_t *ptl;
2426 int node = -1;
2428 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2430 pmd = mm_find_pmd(mm, address);
2431 if (!pmd)
2432 goto out;
2433 if (pmd_trans_huge(*pmd))
2434 goto out;
2436 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2437 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2438 _pte++, _address += PAGE_SIZE) {
2439 pte_t pteval = *_pte;
2440 if (pte_none(pteval)) {
2441 if (++none <= khugepaged_max_ptes_none)
2442 continue;
2443 else
2444 goto out_unmap;
2446 if (!pte_present(pteval) || !pte_write(pteval))
2447 goto out_unmap;
2448 page = vm_normal_page(vma, _address, pteval);
2449 if (unlikely(!page))
2450 goto out_unmap;
2452 * Chose the node of the first page. This could
2453 * be more sophisticated and look at more pages,
2454 * but isn't for now.
2456 if (node == -1)
2457 node = page_to_nid(page);
2458 VM_BUG_ON(PageCompound(page));
2459 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2460 goto out_unmap;
2461 /* cannot use mapcount: can't collapse if there's a gup pin */
2462 if (page_count(page) != 1)
2463 goto out_unmap;
2464 if (pte_young(pteval) || PageReferenced(page) ||
2465 mmu_notifier_test_young(vma->vm_mm, address))
2466 referenced = 1;
2468 if (referenced)
2469 ret = 1;
2470 out_unmap:
2471 pte_unmap_unlock(pte, ptl);
2472 if (ret)
2473 /* collapse_huge_page will return with the mmap_sem released */
2474 collapse_huge_page(mm, address, hpage, vma, node);
2475 out:
2476 return ret;
2479 static void collect_mm_slot(struct mm_slot *mm_slot)
2481 struct mm_struct *mm = mm_slot->mm;
2483 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2485 if (khugepaged_test_exit(mm)) {
2486 /* free mm_slot */
2487 hlist_del(&mm_slot->hash);
2488 list_del(&mm_slot->mm_node);
2491 * Not strictly needed because the mm exited already.
2493 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2496 /* khugepaged_mm_lock actually not necessary for the below */
2497 free_mm_slot(mm_slot);
2498 mmdrop(mm);
2502 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2503 struct page **hpage)
2504 __releases(&khugepaged_mm_lock)
2505 __acquires(&khugepaged_mm_lock)
2507 struct mm_slot *mm_slot;
2508 struct mm_struct *mm;
2509 struct vm_area_struct *vma;
2510 int progress = 0;
2512 VM_BUG_ON(!pages);
2513 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2515 if (khugepaged_scan.mm_slot)
2516 mm_slot = khugepaged_scan.mm_slot;
2517 else {
2518 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2519 struct mm_slot, mm_node);
2520 khugepaged_scan.address = 0;
2521 khugepaged_scan.mm_slot = mm_slot;
2523 spin_unlock(&khugepaged_mm_lock);
2525 mm = mm_slot->mm;
2526 down_read(&mm->mmap_sem);
2527 if (unlikely(khugepaged_test_exit(mm)))
2528 vma = NULL;
2529 else
2530 vma = find_vma(mm, khugepaged_scan.address);
2532 progress++;
2533 for (; vma; vma = vma->vm_next) {
2534 unsigned long hstart, hend;
2536 cond_resched();
2537 if (unlikely(khugepaged_test_exit(mm))) {
2538 progress++;
2539 break;
2541 if (!hugepage_vma_check(vma)) {
2542 skip:
2543 progress++;
2544 continue;
2546 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2547 hend = vma->vm_end & HPAGE_PMD_MASK;
2548 if (hstart >= hend)
2549 goto skip;
2550 if (khugepaged_scan.address > hend)
2551 goto skip;
2552 if (khugepaged_scan.address < hstart)
2553 khugepaged_scan.address = hstart;
2554 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2556 while (khugepaged_scan.address < hend) {
2557 int ret;
2558 cond_resched();
2559 if (unlikely(khugepaged_test_exit(mm)))
2560 goto breakouterloop;
2562 VM_BUG_ON(khugepaged_scan.address < hstart ||
2563 khugepaged_scan.address + HPAGE_PMD_SIZE >
2564 hend);
2565 ret = khugepaged_scan_pmd(mm, vma,
2566 khugepaged_scan.address,
2567 hpage);
2568 /* move to next address */
2569 khugepaged_scan.address += HPAGE_PMD_SIZE;
2570 progress += HPAGE_PMD_NR;
2571 if (ret)
2572 /* we released mmap_sem so break loop */
2573 goto breakouterloop_mmap_sem;
2574 if (progress >= pages)
2575 goto breakouterloop;
2578 breakouterloop:
2579 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2580 breakouterloop_mmap_sem:
2582 spin_lock(&khugepaged_mm_lock);
2583 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2585 * Release the current mm_slot if this mm is about to die, or
2586 * if we scanned all vmas of this mm.
2588 if (khugepaged_test_exit(mm) || !vma) {
2590 * Make sure that if mm_users is reaching zero while
2591 * khugepaged runs here, khugepaged_exit will find
2592 * mm_slot not pointing to the exiting mm.
2594 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2595 khugepaged_scan.mm_slot = list_entry(
2596 mm_slot->mm_node.next,
2597 struct mm_slot, mm_node);
2598 khugepaged_scan.address = 0;
2599 } else {
2600 khugepaged_scan.mm_slot = NULL;
2601 khugepaged_full_scans++;
2604 collect_mm_slot(mm_slot);
2607 return progress;
2610 static int khugepaged_has_work(void)
2612 return !list_empty(&khugepaged_scan.mm_head) &&
2613 khugepaged_enabled();
2616 static int khugepaged_wait_event(void)
2618 return !list_empty(&khugepaged_scan.mm_head) ||
2619 kthread_should_stop();
2622 static void khugepaged_do_scan(void)
2624 struct page *hpage = NULL;
2625 unsigned int progress = 0, pass_through_head = 0;
2626 unsigned int pages = khugepaged_pages_to_scan;
2627 bool wait = true;
2629 barrier(); /* write khugepaged_pages_to_scan to local stack */
2631 while (progress < pages) {
2632 if (!khugepaged_prealloc_page(&hpage, &wait))
2633 break;
2635 cond_resched();
2637 if (unlikely(kthread_should_stop() || freezing(current)))
2638 break;
2640 spin_lock(&khugepaged_mm_lock);
2641 if (!khugepaged_scan.mm_slot)
2642 pass_through_head++;
2643 if (khugepaged_has_work() &&
2644 pass_through_head < 2)
2645 progress += khugepaged_scan_mm_slot(pages - progress,
2646 &hpage);
2647 else
2648 progress = pages;
2649 spin_unlock(&khugepaged_mm_lock);
2652 if (!IS_ERR_OR_NULL(hpage))
2653 put_page(hpage);
2656 static void khugepaged_wait_work(void)
2658 try_to_freeze();
2660 if (khugepaged_has_work()) {
2661 if (!khugepaged_scan_sleep_millisecs)
2662 return;
2664 wait_event_freezable_timeout(khugepaged_wait,
2665 kthread_should_stop(),
2666 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2667 return;
2670 if (khugepaged_enabled())
2671 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2674 static int khugepaged(void *none)
2676 struct mm_slot *mm_slot;
2678 set_freezable();
2679 set_user_nice(current, 19);
2681 while (!kthread_should_stop()) {
2682 khugepaged_do_scan();
2683 khugepaged_wait_work();
2686 spin_lock(&khugepaged_mm_lock);
2687 mm_slot = khugepaged_scan.mm_slot;
2688 khugepaged_scan.mm_slot = NULL;
2689 if (mm_slot)
2690 collect_mm_slot(mm_slot);
2691 spin_unlock(&khugepaged_mm_lock);
2692 return 0;
2695 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2696 unsigned long haddr, pmd_t *pmd)
2698 struct mm_struct *mm = vma->vm_mm;
2699 pgtable_t pgtable;
2700 pmd_t _pmd;
2701 int i;
2703 pmdp_clear_flush(vma, haddr, pmd);
2704 /* leave pmd empty until pte is filled */
2706 pgtable = pgtable_trans_huge_withdraw(mm);
2707 pmd_populate(mm, &_pmd, pgtable);
2709 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2710 pte_t *pte, entry;
2711 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2712 entry = pte_mkspecial(entry);
2713 pte = pte_offset_map(&_pmd, haddr);
2714 VM_BUG_ON(!pte_none(*pte));
2715 set_pte_at(mm, haddr, pte, entry);
2716 pte_unmap(pte);
2718 smp_wmb(); /* make pte visible before pmd */
2719 pmd_populate(mm, pmd, pgtable);
2720 put_huge_zero_page();
2723 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2724 pmd_t *pmd)
2726 struct page *page;
2727 struct mm_struct *mm = vma->vm_mm;
2728 unsigned long haddr = address & HPAGE_PMD_MASK;
2729 unsigned long mmun_start; /* For mmu_notifiers */
2730 unsigned long mmun_end; /* For mmu_notifiers */
2732 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2734 mmun_start = haddr;
2735 mmun_end = haddr + HPAGE_PMD_SIZE;
2736 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2737 spin_lock(&mm->page_table_lock);
2738 if (unlikely(!pmd_trans_huge(*pmd))) {
2739 spin_unlock(&mm->page_table_lock);
2740 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2741 return;
2743 if (is_huge_zero_pmd(*pmd)) {
2744 __split_huge_zero_page_pmd(vma, haddr, pmd);
2745 spin_unlock(&mm->page_table_lock);
2746 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2747 return;
2749 page = pmd_page(*pmd);
2750 VM_BUG_ON(!page_count(page));
2751 get_page(page);
2752 spin_unlock(&mm->page_table_lock);
2753 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2755 split_huge_page(page);
2757 put_page(page);
2758 BUG_ON(pmd_trans_huge(*pmd));
2761 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2762 pmd_t *pmd)
2764 struct vm_area_struct *vma;
2766 vma = find_vma(mm, address);
2767 BUG_ON(vma == NULL);
2768 split_huge_page_pmd(vma, address, pmd);
2771 static void split_huge_page_address(struct mm_struct *mm,
2772 unsigned long address)
2774 pmd_t *pmd;
2776 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2778 pmd = mm_find_pmd(mm, address);
2779 if (!pmd)
2780 return;
2782 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2783 * materialize from under us.
2785 split_huge_page_pmd_mm(mm, address, pmd);
2788 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2789 unsigned long start,
2790 unsigned long end,
2791 long adjust_next)
2794 * If the new start address isn't hpage aligned and it could
2795 * previously contain an hugepage: check if we need to split
2796 * an huge pmd.
2798 if (start & ~HPAGE_PMD_MASK &&
2799 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2800 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2801 split_huge_page_address(vma->vm_mm, start);
2804 * If the new end address isn't hpage aligned and it could
2805 * previously contain an hugepage: check if we need to split
2806 * an huge pmd.
2808 if (end & ~HPAGE_PMD_MASK &&
2809 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2810 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2811 split_huge_page_address(vma->vm_mm, end);
2814 * If we're also updating the vma->vm_next->vm_start, if the new
2815 * vm_next->vm_start isn't page aligned and it could previously
2816 * contain an hugepage: check if we need to split an huge pmd.
2818 if (adjust_next > 0) {
2819 struct vm_area_struct *next = vma->vm_next;
2820 unsigned long nstart = next->vm_start;
2821 nstart += adjust_next << PAGE_SHIFT;
2822 if (nstart & ~HPAGE_PMD_MASK &&
2823 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2824 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2825 split_huge_page_address(next->vm_mm, nstart);