1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This abstraction carries sctp events to the ULP (sockets).
11 * This SCTP implementation is free software;
12 * you can redistribute it and/or modify it under the terms of
13 * the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This SCTP implementation is distributed in the hope that it
18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19 * ************************
20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21 * See the GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with GNU CC; see the file COPYING. If not, write to
25 * the Free Software Foundation, 59 Temple Place - Suite 330,
26 * Boston, MA 02111-1307, USA.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 * Or submit a bug report through the following website:
33 * http://www.sf.net/projects/lksctp
35 * Written or modified by:
36 * Jon Grimm <jgrimm@us.ibm.com>
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Sridhar Samudrala <sri@us.ibm.com>
40 * Any bugs reported given to us we will try to fix... any fixes shared will
41 * be incorporated into the next SCTP release.
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <linux/skbuff.h>
48 #include <net/sctp/structs.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
52 /* Forward declarations for internal helpers. */
53 static struct sctp_ulpevent
* sctp_ulpq_reasm(struct sctp_ulpq
*ulpq
,
54 struct sctp_ulpevent
*);
55 static struct sctp_ulpevent
* sctp_ulpq_order(struct sctp_ulpq
*,
56 struct sctp_ulpevent
*);
57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq
*ulpq
);
59 /* 1st Level Abstractions */
61 /* Initialize a ULP queue from a block of memory. */
62 struct sctp_ulpq
*sctp_ulpq_init(struct sctp_ulpq
*ulpq
,
63 struct sctp_association
*asoc
)
65 memset(ulpq
, 0, sizeof(struct sctp_ulpq
));
68 skb_queue_head_init(&ulpq
->reasm
);
69 skb_queue_head_init(&ulpq
->lobby
);
77 /* Flush the reassembly and ordering queues. */
78 void sctp_ulpq_flush(struct sctp_ulpq
*ulpq
)
81 struct sctp_ulpevent
*event
;
83 while ((skb
= __skb_dequeue(&ulpq
->lobby
)) != NULL
) {
84 event
= sctp_skb2event(skb
);
85 sctp_ulpevent_free(event
);
88 while ((skb
= __skb_dequeue(&ulpq
->reasm
)) != NULL
) {
89 event
= sctp_skb2event(skb
);
90 sctp_ulpevent_free(event
);
95 /* Dispose of a ulpqueue. */
96 void sctp_ulpq_free(struct sctp_ulpq
*ulpq
)
98 sctp_ulpq_flush(ulpq
);
103 /* Process an incoming DATA chunk. */
104 int sctp_ulpq_tail_data(struct sctp_ulpq
*ulpq
, struct sctp_chunk
*chunk
,
107 struct sk_buff_head temp
;
108 struct sctp_ulpevent
*event
;
110 /* Create an event from the incoming chunk. */
111 event
= sctp_ulpevent_make_rcvmsg(chunk
->asoc
, chunk
, gfp
);
115 /* Do reassembly if needed. */
116 event
= sctp_ulpq_reasm(ulpq
, event
);
118 /* Do ordering if needed. */
119 if ((event
) && (event
->msg_flags
& MSG_EOR
)){
120 /* Create a temporary list to collect chunks on. */
121 skb_queue_head_init(&temp
);
122 __skb_queue_tail(&temp
, sctp_event2skb(event
));
124 event
= sctp_ulpq_order(ulpq
, event
);
127 /* Send event to the ULP. 'event' is the sctp_ulpevent for
128 * very first SKB on the 'temp' list.
131 sctp_ulpq_tail_event(ulpq
, event
);
136 /* Add a new event for propagation to the ULP. */
137 /* Clear the partial delivery mode for this socket. Note: This
138 * assumes that no association is currently in partial delivery mode.
140 int sctp_clear_pd(struct sock
*sk
, struct sctp_association
*asoc
)
142 struct sctp_sock
*sp
= sctp_sk(sk
);
144 if (atomic_dec_and_test(&sp
->pd_mode
)) {
145 /* This means there are no other associations in PD, so
146 * we can go ahead and clear out the lobby in one shot
148 if (!skb_queue_empty(&sp
->pd_lobby
)) {
149 struct list_head
*list
;
150 sctp_skb_list_tail(&sp
->pd_lobby
, &sk
->sk_receive_queue
);
151 list
= (struct list_head
*)&sctp_sk(sk
)->pd_lobby
;
152 INIT_LIST_HEAD(list
);
156 /* There are other associations in PD, so we only need to
157 * pull stuff out of the lobby that belongs to the
158 * associations that is exiting PD (all of its notifications
161 if (!skb_queue_empty(&sp
->pd_lobby
) && asoc
) {
162 struct sk_buff
*skb
, *tmp
;
163 struct sctp_ulpevent
*event
;
165 sctp_skb_for_each(skb
, &sp
->pd_lobby
, tmp
) {
166 event
= sctp_skb2event(skb
);
167 if (event
->asoc
== asoc
) {
168 __skb_unlink(skb
, &sp
->pd_lobby
);
169 __skb_queue_tail(&sk
->sk_receive_queue
,
179 /* Set the pd_mode on the socket and ulpq */
180 static void sctp_ulpq_set_pd(struct sctp_ulpq
*ulpq
)
182 struct sctp_sock
*sp
= sctp_sk(ulpq
->asoc
->base
.sk
);
184 atomic_inc(&sp
->pd_mode
);
188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
189 static int sctp_ulpq_clear_pd(struct sctp_ulpq
*ulpq
)
192 sctp_ulpq_reasm_drain(ulpq
);
193 return sctp_clear_pd(ulpq
->asoc
->base
.sk
, ulpq
->asoc
);
196 /* If the SKB of 'event' is on a list, it is the first such member
199 int sctp_ulpq_tail_event(struct sctp_ulpq
*ulpq
, struct sctp_ulpevent
*event
)
201 struct sock
*sk
= ulpq
->asoc
->base
.sk
;
202 struct sk_buff_head
*queue
, *skb_list
;
203 struct sk_buff
*skb
= sctp_event2skb(event
);
206 skb_list
= (struct sk_buff_head
*) skb
->prev
;
208 /* If the socket is just going to throw this away, do not
209 * even try to deliver it.
211 if (sock_flag(sk
, SOCK_DEAD
) || (sk
->sk_shutdown
& RCV_SHUTDOWN
))
214 /* Check if the user wishes to receive this event. */
215 if (!sctp_ulpevent_is_enabled(event
, &sctp_sk(sk
)->subscribe
))
218 /* If we are in partial delivery mode, post to the lobby until
219 * partial delivery is cleared, unless, of course _this_ is
220 * the association the cause of the partial delivery.
223 if (atomic_read(&sctp_sk(sk
)->pd_mode
) == 0) {
224 queue
= &sk
->sk_receive_queue
;
227 /* If the association is in partial delivery, we
228 * need to finish delivering the partially processed
229 * packet before passing any other data. This is
230 * because we don't truly support stream interleaving.
232 if ((event
->msg_flags
& MSG_NOTIFICATION
) ||
233 (SCTP_DATA_NOT_FRAG
==
234 (event
->msg_flags
& SCTP_DATA_FRAG_MASK
)))
235 queue
= &sctp_sk(sk
)->pd_lobby
;
237 clear_pd
= event
->msg_flags
& MSG_EOR
;
238 queue
= &sk
->sk_receive_queue
;
242 * If fragment interleave is enabled, we
243 * can queue this to the receive queue instead
246 if (sctp_sk(sk
)->frag_interleave
)
247 queue
= &sk
->sk_receive_queue
;
249 queue
= &sctp_sk(sk
)->pd_lobby
;
253 /* If we are harvesting multiple skbs they will be
254 * collected on a list.
257 sctp_skb_list_tail(skb_list
, queue
);
259 __skb_queue_tail(queue
, skb
);
261 /* Did we just complete partial delivery and need to get
262 * rolling again? Move pending data to the receive
266 sctp_ulpq_clear_pd(ulpq
);
268 if (queue
== &sk
->sk_receive_queue
)
269 sk
->sk_data_ready(sk
, 0);
274 sctp_queue_purge_ulpevents(skb_list
);
276 sctp_ulpevent_free(event
);
281 /* 2nd Level Abstractions */
283 /* Helper function to store chunks that need to be reassembled. */
284 static void sctp_ulpq_store_reasm(struct sctp_ulpq
*ulpq
,
285 struct sctp_ulpevent
*event
)
288 struct sctp_ulpevent
*cevent
;
293 /* See if it belongs at the end. */
294 pos
= skb_peek_tail(&ulpq
->reasm
);
296 __skb_queue_tail(&ulpq
->reasm
, sctp_event2skb(event
));
300 /* Short circuit just dropping it at the end. */
301 cevent
= sctp_skb2event(pos
);
303 if (TSN_lt(ctsn
, tsn
)) {
304 __skb_queue_tail(&ulpq
->reasm
, sctp_event2skb(event
));
308 /* Find the right place in this list. We store them by TSN. */
309 skb_queue_walk(&ulpq
->reasm
, pos
) {
310 cevent
= sctp_skb2event(pos
);
313 if (TSN_lt(tsn
, ctsn
))
317 /* Insert before pos. */
318 __skb_queue_before(&ulpq
->reasm
, pos
, sctp_event2skb(event
));
322 /* Helper function to return an event corresponding to the reassembled
324 * This routine creates a re-assembled skb given the first and last skb's
325 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
326 * payload was fragmented on the way and ip had to reassemble them.
327 * We add the rest of skb's to the first skb's fraglist.
329 static struct sctp_ulpevent
*sctp_make_reassembled_event(struct net
*net
,
330 struct sk_buff_head
*queue
, struct sk_buff
*f_frag
,
331 struct sk_buff
*l_frag
)
334 struct sk_buff
*new = NULL
;
335 struct sctp_ulpevent
*event
;
336 struct sk_buff
*pnext
, *last
;
337 struct sk_buff
*list
= skb_shinfo(f_frag
)->frag_list
;
339 /* Store the pointer to the 2nd skb */
340 if (f_frag
== l_frag
)
345 /* Get the last skb in the f_frag's frag_list if present. */
346 for (last
= list
; list
; last
= list
, list
= list
->next
);
348 /* Add the list of remaining fragments to the first fragments
354 if (skb_cloned(f_frag
)) {
355 /* This is a cloned skb, we can't just modify
356 * the frag_list. We need a new skb to do that.
357 * Instead of calling skb_unshare(), we'll do it
358 * ourselves since we need to delay the free.
360 new = skb_copy(f_frag
, GFP_ATOMIC
);
362 return NULL
; /* try again later */
364 sctp_skb_set_owner_r(new, f_frag
->sk
);
366 skb_shinfo(new)->frag_list
= pos
;
368 skb_shinfo(f_frag
)->frag_list
= pos
;
371 /* Remove the first fragment from the reassembly queue. */
372 __skb_unlink(f_frag
, queue
);
374 /* if we did unshare, then free the old skb and re-assign */
384 /* Update the len and data_len fields of the first fragment. */
385 f_frag
->len
+= pos
->len
;
386 f_frag
->data_len
+= pos
->len
;
388 /* Remove the fragment from the reassembly queue. */
389 __skb_unlink(pos
, queue
);
391 /* Break if we have reached the last fragment. */
398 event
= sctp_skb2event(f_frag
);
399 SCTP_INC_STATS(net
, SCTP_MIB_REASMUSRMSGS
);
405 /* Helper function to check if an incoming chunk has filled up the last
406 * missing fragment in a SCTP datagram and return the corresponding event.
408 static struct sctp_ulpevent
*sctp_ulpq_retrieve_reassembled(struct sctp_ulpq
*ulpq
)
411 struct sctp_ulpevent
*cevent
;
412 struct sk_buff
*first_frag
= NULL
;
413 __u32 ctsn
, next_tsn
;
414 struct sctp_ulpevent
*retval
= NULL
;
415 struct sk_buff
*pd_first
= NULL
;
416 struct sk_buff
*pd_last
= NULL
;
418 struct sctp_association
*asoc
;
421 /* Initialized to 0 just to avoid compiler warning message. Will
422 * never be used with this value. It is referenced only after it
423 * is set when we find the first fragment of a message.
427 /* The chunks are held in the reasm queue sorted by TSN.
428 * Walk through the queue sequentially and look for a sequence of
429 * fragmented chunks that complete a datagram.
430 * 'first_frag' and next_tsn are reset when we find a chunk which
431 * is the first fragment of a datagram. Once these 2 fields are set
432 * we expect to find the remaining middle fragments and the last
433 * fragment in order. If not, first_frag is reset to NULL and we
434 * start the next pass when we find another first fragment.
436 * There is a potential to do partial delivery if user sets
437 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
438 * to see if can do PD.
440 skb_queue_walk(&ulpq
->reasm
, pos
) {
441 cevent
= sctp_skb2event(pos
);
444 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
445 case SCTP_DATA_FIRST_FRAG
:
446 /* If this "FIRST_FRAG" is the first
447 * element in the queue, then count it towards
450 if (pos
== ulpq
->reasm
.next
) {
464 case SCTP_DATA_MIDDLE_FRAG
:
465 if ((first_frag
) && (ctsn
== next_tsn
)) {
475 case SCTP_DATA_LAST_FRAG
:
476 if (first_frag
&& (ctsn
== next_tsn
))
486 /* Make sure we can enter partial deliver.
487 * We can trigger partial delivery only if framgent
488 * interleave is set, or the socket is not already
489 * in partial delivery.
491 if (!sctp_sk(asoc
->base
.sk
)->frag_interleave
&&
492 atomic_read(&sctp_sk(asoc
->base
.sk
)->pd_mode
))
495 cevent
= sctp_skb2event(pd_first
);
496 pd_point
= sctp_sk(asoc
->base
.sk
)->pd_point
;
497 if (pd_point
&& pd_point
<= pd_len
) {
498 retval
= sctp_make_reassembled_event(sock_net(asoc
->base
.sk
),
503 sctp_ulpq_set_pd(ulpq
);
509 retval
= sctp_make_reassembled_event(sock_net(ulpq
->asoc
->base
.sk
),
510 &ulpq
->reasm
, first_frag
, pos
);
512 retval
->msg_flags
|= MSG_EOR
;
516 /* Retrieve the next set of fragments of a partial message. */
517 static struct sctp_ulpevent
*sctp_ulpq_retrieve_partial(struct sctp_ulpq
*ulpq
)
519 struct sk_buff
*pos
, *last_frag
, *first_frag
;
520 struct sctp_ulpevent
*cevent
;
521 __u32 ctsn
, next_tsn
;
523 struct sctp_ulpevent
*retval
;
525 /* The chunks are held in the reasm queue sorted by TSN.
526 * Walk through the queue sequentially and look for the first
527 * sequence of fragmented chunks.
530 if (skb_queue_empty(&ulpq
->reasm
))
533 last_frag
= first_frag
= NULL
;
538 skb_queue_walk(&ulpq
->reasm
, pos
) {
539 cevent
= sctp_skb2event(pos
);
542 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
543 case SCTP_DATA_MIDDLE_FRAG
:
548 } else if (next_tsn
== ctsn
)
553 case SCTP_DATA_LAST_FRAG
:
556 else if (ctsn
!= next_tsn
)
566 /* We have the reassembled event. There is no need to look
570 retval
= sctp_make_reassembled_event(sock_net(ulpq
->asoc
->base
.sk
),
571 &ulpq
->reasm
, first_frag
, last_frag
);
572 if (retval
&& is_last
)
573 retval
->msg_flags
|= MSG_EOR
;
579 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that
582 static struct sctp_ulpevent
*sctp_ulpq_reasm(struct sctp_ulpq
*ulpq
,
583 struct sctp_ulpevent
*event
)
585 struct sctp_ulpevent
*retval
= NULL
;
587 /* Check if this is part of a fragmented message. */
588 if (SCTP_DATA_NOT_FRAG
== (event
->msg_flags
& SCTP_DATA_FRAG_MASK
)) {
589 event
->msg_flags
|= MSG_EOR
;
593 sctp_ulpq_store_reasm(ulpq
, event
);
595 retval
= sctp_ulpq_retrieve_reassembled(ulpq
);
599 /* Do not even bother unless this is the next tsn to
603 ctsnap
= sctp_tsnmap_get_ctsn(&ulpq
->asoc
->peer
.tsn_map
);
604 if (TSN_lte(ctsn
, ctsnap
))
605 retval
= sctp_ulpq_retrieve_partial(ulpq
);
611 /* Retrieve the first part (sequential fragments) for partial delivery. */
612 static struct sctp_ulpevent
*sctp_ulpq_retrieve_first(struct sctp_ulpq
*ulpq
)
614 struct sk_buff
*pos
, *last_frag
, *first_frag
;
615 struct sctp_ulpevent
*cevent
;
616 __u32 ctsn
, next_tsn
;
617 struct sctp_ulpevent
*retval
;
619 /* The chunks are held in the reasm queue sorted by TSN.
620 * Walk through the queue sequentially and look for a sequence of
621 * fragmented chunks that start a datagram.
624 if (skb_queue_empty(&ulpq
->reasm
))
627 last_frag
= first_frag
= NULL
;
631 skb_queue_walk(&ulpq
->reasm
, pos
) {
632 cevent
= sctp_skb2event(pos
);
635 switch (cevent
->msg_flags
& SCTP_DATA_FRAG_MASK
) {
636 case SCTP_DATA_FIRST_FRAG
:
645 case SCTP_DATA_MIDDLE_FRAG
:
648 if (ctsn
== next_tsn
) {
659 /* We have the reassembled event. There is no need to look
663 retval
= sctp_make_reassembled_event(sock_net(ulpq
->asoc
->base
.sk
),
664 &ulpq
->reasm
, first_frag
, last_frag
);
669 * Flush out stale fragments from the reassembly queue when processing
672 * RFC 3758, Section 3.6
674 * After receiving and processing a FORWARD TSN, the data receiver MUST
675 * take cautions in updating its re-assembly queue. The receiver MUST
676 * remove any partially reassembled message, which is still missing one
677 * or more TSNs earlier than or equal to the new cumulative TSN point.
678 * In the event that the receiver has invoked the partial delivery API,
679 * a notification SHOULD also be generated to inform the upper layer API
680 * that the message being partially delivered will NOT be completed.
682 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq
*ulpq
, __u32 fwd_tsn
)
684 struct sk_buff
*pos
, *tmp
;
685 struct sctp_ulpevent
*event
;
688 if (skb_queue_empty(&ulpq
->reasm
))
691 skb_queue_walk_safe(&ulpq
->reasm
, pos
, tmp
) {
692 event
= sctp_skb2event(pos
);
695 /* Since the entire message must be abandoned by the
696 * sender (item A3 in Section 3.5, RFC 3758), we can
697 * free all fragments on the list that are less then
698 * or equal to ctsn_point
700 if (TSN_lte(tsn
, fwd_tsn
)) {
701 __skb_unlink(pos
, &ulpq
->reasm
);
702 sctp_ulpevent_free(event
);
709 * Drain the reassembly queue. If we just cleared parted delivery, it
710 * is possible that the reassembly queue will contain already reassembled
711 * messages. Retrieve any such messages and give them to the user.
713 static void sctp_ulpq_reasm_drain(struct sctp_ulpq
*ulpq
)
715 struct sctp_ulpevent
*event
= NULL
;
716 struct sk_buff_head temp
;
718 if (skb_queue_empty(&ulpq
->reasm
))
721 while ((event
= sctp_ulpq_retrieve_reassembled(ulpq
)) != NULL
) {
722 /* Do ordering if needed. */
723 if ((event
) && (event
->msg_flags
& MSG_EOR
)){
724 skb_queue_head_init(&temp
);
725 __skb_queue_tail(&temp
, sctp_event2skb(event
));
727 event
= sctp_ulpq_order(ulpq
, event
);
730 /* Send event to the ULP. 'event' is the
731 * sctp_ulpevent for very first SKB on the temp' list.
734 sctp_ulpq_tail_event(ulpq
, event
);
739 /* Helper function to gather skbs that have possibly become
740 * ordered by an an incoming chunk.
742 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq
*ulpq
,
743 struct sctp_ulpevent
*event
)
745 struct sk_buff_head
*event_list
;
746 struct sk_buff
*pos
, *tmp
;
747 struct sctp_ulpevent
*cevent
;
748 struct sctp_stream
*in
;
749 __u16 sid
, csid
, cssn
;
752 in
= &ulpq
->asoc
->ssnmap
->in
;
754 event_list
= (struct sk_buff_head
*) sctp_event2skb(event
)->prev
;
756 /* We are holding the chunks by stream, by SSN. */
757 sctp_skb_for_each(pos
, &ulpq
->lobby
, tmp
) {
758 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
759 csid
= cevent
->stream
;
762 /* Have we gone too far? */
766 /* Have we not gone far enough? */
770 if (cssn
!= sctp_ssn_peek(in
, sid
))
773 /* Found it, so mark in the ssnmap. */
774 sctp_ssn_next(in
, sid
);
776 __skb_unlink(pos
, &ulpq
->lobby
);
778 /* Attach all gathered skbs to the event. */
779 __skb_queue_tail(event_list
, pos
);
783 /* Helper function to store chunks needing ordering. */
784 static void sctp_ulpq_store_ordered(struct sctp_ulpq
*ulpq
,
785 struct sctp_ulpevent
*event
)
788 struct sctp_ulpevent
*cevent
;
792 pos
= skb_peek_tail(&ulpq
->lobby
);
794 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
801 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
802 csid
= cevent
->stream
;
805 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
809 if ((sid
== csid
) && SSN_lt(cssn
, ssn
)) {
810 __skb_queue_tail(&ulpq
->lobby
, sctp_event2skb(event
));
814 /* Find the right place in this list. We store them by
815 * stream ID and then by SSN.
817 skb_queue_walk(&ulpq
->lobby
, pos
) {
818 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
819 csid
= cevent
->stream
;
824 if (csid
== sid
&& SSN_lt(ssn
, cssn
))
829 /* Insert before pos. */
830 __skb_queue_before(&ulpq
->lobby
, pos
, sctp_event2skb(event
));
833 static struct sctp_ulpevent
*sctp_ulpq_order(struct sctp_ulpq
*ulpq
,
834 struct sctp_ulpevent
*event
)
837 struct sctp_stream
*in
;
839 /* Check if this message needs ordering. */
840 if (SCTP_DATA_UNORDERED
& event
->msg_flags
)
843 /* Note: The stream ID must be verified before this routine. */
846 in
= &ulpq
->asoc
->ssnmap
->in
;
848 /* Is this the expected SSN for this stream ID? */
849 if (ssn
!= sctp_ssn_peek(in
, sid
)) {
850 /* We've received something out of order, so find where it
851 * needs to be placed. We order by stream and then by SSN.
853 sctp_ulpq_store_ordered(ulpq
, event
);
857 /* Mark that the next chunk has been found. */
858 sctp_ssn_next(in
, sid
);
860 /* Go find any other chunks that were waiting for
863 sctp_ulpq_retrieve_ordered(ulpq
, event
);
868 /* Helper function to gather skbs that have possibly become
869 * ordered by forward tsn skipping their dependencies.
871 static void sctp_ulpq_reap_ordered(struct sctp_ulpq
*ulpq
, __u16 sid
)
873 struct sk_buff
*pos
, *tmp
;
874 struct sctp_ulpevent
*cevent
;
875 struct sctp_ulpevent
*event
;
876 struct sctp_stream
*in
;
877 struct sk_buff_head temp
;
878 struct sk_buff_head
*lobby
= &ulpq
->lobby
;
881 in
= &ulpq
->asoc
->ssnmap
->in
;
883 /* We are holding the chunks by stream, by SSN. */
884 skb_queue_head_init(&temp
);
886 sctp_skb_for_each(pos
, lobby
, tmp
) {
887 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
888 csid
= cevent
->stream
;
891 /* Have we gone too far? */
895 /* Have we not gone far enough? */
899 /* see if this ssn has been marked by skipping */
900 if (!SSN_lt(cssn
, sctp_ssn_peek(in
, csid
)))
903 __skb_unlink(pos
, lobby
);
905 /* Create a temporary list to collect chunks on. */
906 event
= sctp_skb2event(pos
);
908 /* Attach all gathered skbs to the event. */
909 __skb_queue_tail(&temp
, pos
);
912 /* If we didn't reap any data, see if the next expected SSN
913 * is next on the queue and if so, use that.
915 if (event
== NULL
&& pos
!= (struct sk_buff
*)lobby
) {
916 cevent
= (struct sctp_ulpevent
*) pos
->cb
;
917 csid
= cevent
->stream
;
920 if (csid
== sid
&& cssn
== sctp_ssn_peek(in
, csid
)) {
921 sctp_ssn_next(in
, csid
);
922 __skb_unlink(pos
, lobby
);
923 __skb_queue_tail(&temp
, pos
);
924 event
= sctp_skb2event(pos
);
928 /* Send event to the ULP. 'event' is the sctp_ulpevent for
929 * very first SKB on the 'temp' list.
932 /* see if we have more ordered that we can deliver */
933 sctp_ulpq_retrieve_ordered(ulpq
, event
);
934 sctp_ulpq_tail_event(ulpq
, event
);
938 /* Skip over an SSN. This is used during the processing of
939 * Forwared TSN chunk to skip over the abandoned ordered data
941 void sctp_ulpq_skip(struct sctp_ulpq
*ulpq
, __u16 sid
, __u16 ssn
)
943 struct sctp_stream
*in
;
945 /* Note: The stream ID must be verified before this routine. */
946 in
= &ulpq
->asoc
->ssnmap
->in
;
948 /* Is this an old SSN? If so ignore. */
949 if (SSN_lt(ssn
, sctp_ssn_peek(in
, sid
)))
952 /* Mark that we are no longer expecting this SSN or lower. */
953 sctp_ssn_skip(in
, sid
, ssn
);
955 /* Go find any other chunks that were waiting for
956 * ordering and deliver them if needed.
958 sctp_ulpq_reap_ordered(ulpq
, sid
);
961 static __u16
sctp_ulpq_renege_list(struct sctp_ulpq
*ulpq
,
962 struct sk_buff_head
*list
, __u16 needed
)
967 struct sctp_ulpevent
*event
;
968 struct sctp_tsnmap
*tsnmap
;
970 tsnmap
= &ulpq
->asoc
->peer
.tsn_map
;
972 while ((skb
= __skb_dequeue_tail(list
)) != NULL
) {
973 freed
+= skb_headlen(skb
);
974 event
= sctp_skb2event(skb
);
977 sctp_ulpevent_free(event
);
978 sctp_tsnmap_renege(tsnmap
, tsn
);
986 /* Renege 'needed' bytes from the ordering queue. */
987 static __u16
sctp_ulpq_renege_order(struct sctp_ulpq
*ulpq
, __u16 needed
)
989 return sctp_ulpq_renege_list(ulpq
, &ulpq
->lobby
, needed
);
992 /* Renege 'needed' bytes from the reassembly queue. */
993 static __u16
sctp_ulpq_renege_frags(struct sctp_ulpq
*ulpq
, __u16 needed
)
995 return sctp_ulpq_renege_list(ulpq
, &ulpq
->reasm
, needed
);
998 /* Partial deliver the first message as there is pressure on rwnd. */
999 void sctp_ulpq_partial_delivery(struct sctp_ulpq
*ulpq
,
1002 struct sctp_ulpevent
*event
;
1003 struct sctp_association
*asoc
;
1004 struct sctp_sock
*sp
;
1007 sp
= sctp_sk(asoc
->base
.sk
);
1009 /* If the association is already in Partial Delivery mode
1010 * we have noting to do.
1015 /* If the user enabled fragment interleave socket option,
1016 * multiple associations can enter partial delivery.
1017 * Otherwise, we can only enter partial delivery if the
1018 * socket is not in partial deliver mode.
1020 if (sp
->frag_interleave
|| atomic_read(&sp
->pd_mode
) == 0) {
1021 /* Is partial delivery possible? */
1022 event
= sctp_ulpq_retrieve_first(ulpq
);
1023 /* Send event to the ULP. */
1025 sctp_ulpq_tail_event(ulpq
, event
);
1026 sctp_ulpq_set_pd(ulpq
);
1032 /* Renege some packets to make room for an incoming chunk. */
1033 void sctp_ulpq_renege(struct sctp_ulpq
*ulpq
, struct sctp_chunk
*chunk
,
1036 struct sctp_association
*asoc
;
1037 __u16 needed
, freed
;
1042 needed
= ntohs(chunk
->chunk_hdr
->length
);
1043 needed
-= sizeof(sctp_data_chunk_t
);
1045 needed
= SCTP_DEFAULT_MAXWINDOW
;
1049 if (skb_queue_empty(&asoc
->base
.sk
->sk_receive_queue
)) {
1050 freed
= sctp_ulpq_renege_order(ulpq
, needed
);
1051 if (freed
< needed
) {
1052 freed
+= sctp_ulpq_renege_frags(ulpq
, needed
- freed
);
1055 /* If able to free enough room, accept this chunk. */
1056 if (chunk
&& (freed
>= needed
)) {
1058 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1059 sctp_tsnmap_mark(&asoc
->peer
.tsn_map
, tsn
, chunk
->transport
);
1060 sctp_ulpq_tail_data(ulpq
, chunk
, gfp
);
1062 sctp_ulpq_partial_delivery(ulpq
, gfp
);
1065 sk_mem_reclaim(asoc
->base
.sk
);
1070 /* Notify the application if an association is aborted and in
1071 * partial delivery mode. Send up any pending received messages.
1073 void sctp_ulpq_abort_pd(struct sctp_ulpq
*ulpq
, gfp_t gfp
)
1075 struct sctp_ulpevent
*ev
= NULL
;
1081 sk
= ulpq
->asoc
->base
.sk
;
1082 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT
,
1083 &sctp_sk(sk
)->subscribe
))
1084 ev
= sctp_ulpevent_make_pdapi(ulpq
->asoc
,
1085 SCTP_PARTIAL_DELIVERY_ABORTED
,
1088 __skb_queue_tail(&sk
->sk_receive_queue
, sctp_event2skb(ev
));
1090 /* If there is data waiting, send it up the socket now. */
1091 if (sctp_ulpq_clear_pd(ulpq
) || ev
)
1092 sk
->sk_data_ready(sk
, 0);