2 * Kernel probes (kprobes) for SuperH
4 * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
5 * Copyright (C) 2006 Lineo Solutions, Inc.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
11 #include <linux/kprobes.h>
12 #include <linux/module.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/kdebug.h>
16 #include <asm/cacheflush.h>
17 #include <asm/uaccess.h>
19 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
20 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
22 static struct kprobe saved_current_opcode
;
23 static struct kprobe saved_next_opcode
;
24 static struct kprobe saved_next_opcode2
;
26 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
27 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
28 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
29 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
30 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
31 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
33 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
34 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
36 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
37 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
39 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
40 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
42 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
44 kprobe_opcode_t opcode
= *(kprobe_opcode_t
*) (p
->addr
);
46 if (OPCODE_RTE(opcode
))
47 return -EFAULT
; /* Bad breakpoint */
54 void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
56 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
60 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
62 *p
->addr
= BREAKPOINT_INSTRUCTION
;
63 flush_icache_range((unsigned long)p
->addr
,
64 (unsigned long)p
->addr
+ sizeof(kprobe_opcode_t
));
67 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
70 flush_icache_range((unsigned long)p
->addr
,
71 (unsigned long)p
->addr
+ sizeof(kprobe_opcode_t
));
74 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
76 if (*p
->addr
== BREAKPOINT_INSTRUCTION
)
83 * If an illegal slot instruction exception occurs for an address
84 * containing a kprobe, remove the probe.
86 * Returns 0 if the exception was handled successfully, 1 otherwise.
88 int __kprobes
kprobe_handle_illslot(unsigned long pc
)
90 struct kprobe
*p
= get_kprobe((kprobe_opcode_t
*) pc
+ 1);
93 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
94 (unsigned int)pc
+ 2);
102 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
104 if (saved_next_opcode
.addr
!= 0x0) {
105 arch_disarm_kprobe(p
);
106 arch_disarm_kprobe(&saved_next_opcode
);
107 saved_next_opcode
.addr
= 0x0;
108 saved_next_opcode
.opcode
= 0x0;
110 if (saved_next_opcode2
.addr
!= 0x0) {
111 arch_disarm_kprobe(&saved_next_opcode2
);
112 saved_next_opcode2
.addr
= 0x0;
113 saved_next_opcode2
.opcode
= 0x0;
118 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
120 kcb
->prev_kprobe
.kp
= kprobe_running();
121 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
124 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
126 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
127 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
130 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
131 struct kprobe_ctlblk
*kcb
)
133 __get_cpu_var(current_kprobe
) = p
;
137 * Singlestep is implemented by disabling the current kprobe and setting one
138 * on the next instruction, following branches. Two probes are set if the
139 * branch is conditional.
141 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
143 kprobe_opcode_t
*addr
= NULL
;
144 saved_current_opcode
.addr
= (kprobe_opcode_t
*) (regs
->pc
);
145 addr
= saved_current_opcode
.addr
;
148 arch_disarm_kprobe(p
);
150 if (OPCODE_JSR(p
->opcode
) || OPCODE_JMP(p
->opcode
)) {
151 unsigned int reg_nr
= ((p
->opcode
>> 8) & 0x000F);
152 saved_next_opcode
.addr
=
153 (kprobe_opcode_t
*) regs
->regs
[reg_nr
];
154 } else if (OPCODE_BRA(p
->opcode
) || OPCODE_BSR(p
->opcode
)) {
155 unsigned long disp
= (p
->opcode
& 0x0FFF);
156 saved_next_opcode
.addr
=
157 (kprobe_opcode_t
*) (regs
->pc
+ 4 + disp
* 2);
159 } else if (OPCODE_BRAF(p
->opcode
) || OPCODE_BSRF(p
->opcode
)) {
160 unsigned int reg_nr
= ((p
->opcode
>> 8) & 0x000F);
161 saved_next_opcode
.addr
=
162 (kprobe_opcode_t
*) (regs
->pc
+ 4 +
165 } else if (OPCODE_RTS(p
->opcode
)) {
166 saved_next_opcode
.addr
= (kprobe_opcode_t
*) regs
->pr
;
168 } else if (OPCODE_BF(p
->opcode
) || OPCODE_BT(p
->opcode
)) {
169 unsigned long disp
= (p
->opcode
& 0x00FF);
171 saved_next_opcode
.addr
= p
->addr
+ 1;
173 saved_next_opcode2
.addr
=
174 (kprobe_opcode_t
*) (regs
->pc
+ 4 + disp
* 2);
175 saved_next_opcode2
.opcode
= *(saved_next_opcode2
.addr
);
176 arch_arm_kprobe(&saved_next_opcode2
);
178 } else if (OPCODE_BF_S(p
->opcode
) || OPCODE_BT_S(p
->opcode
)) {
179 unsigned long disp
= (p
->opcode
& 0x00FF);
181 saved_next_opcode
.addr
= p
->addr
+ 2;
183 saved_next_opcode2
.addr
=
184 (kprobe_opcode_t
*) (regs
->pc
+ 4 + disp
* 2);
185 saved_next_opcode2
.opcode
= *(saved_next_opcode2
.addr
);
186 arch_arm_kprobe(&saved_next_opcode2
);
189 saved_next_opcode
.addr
= p
->addr
+ 1;
192 saved_next_opcode
.opcode
= *(saved_next_opcode
.addr
);
193 arch_arm_kprobe(&saved_next_opcode
);
197 /* Called with kretprobe_lock held */
198 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
199 struct pt_regs
*regs
)
201 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->pr
;
203 /* Replace the return addr with trampoline addr */
204 regs
->pr
= (unsigned long)kretprobe_trampoline
;
207 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
211 kprobe_opcode_t
*addr
= NULL
;
212 struct kprobe_ctlblk
*kcb
;
215 * We don't want to be preempted for the entire
216 * duration of kprobe processing
219 kcb
= get_kprobe_ctlblk();
221 addr
= (kprobe_opcode_t
*) (regs
->pc
);
223 /* Check we're not actually recursing */
224 if (kprobe_running()) {
225 p
= get_kprobe(addr
);
227 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
228 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
231 /* We have reentered the kprobe_handler(), since
232 * another probe was hit while within the handler.
233 * We here save the original kprobes variables and
234 * just single step on the instruction of the new probe
235 * without calling any user handlers.
237 save_previous_kprobe(kcb
);
238 set_current_kprobe(p
, regs
, kcb
);
239 kprobes_inc_nmissed_count(p
);
240 prepare_singlestep(p
, regs
);
241 kcb
->kprobe_status
= KPROBE_REENTER
;
244 p
= __get_cpu_var(current_kprobe
);
245 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
252 p
= get_kprobe(addr
);
254 /* Not one of ours: let kernel handle it */
255 if (*(kprobe_opcode_t
*)addr
!= BREAKPOINT_INSTRUCTION
) {
257 * The breakpoint instruction was removed right
258 * after we hit it. Another cpu has removed
259 * either a probepoint or a debugger breakpoint
260 * at this address. In either case, no further
261 * handling of this interrupt is appropriate.
269 set_current_kprobe(p
, regs
, kcb
);
270 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
272 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
273 /* handler has already set things up, so skip ss setup */
277 prepare_singlestep(p
, regs
);
278 kcb
->kprobe_status
= KPROBE_HIT_SS
;
282 preempt_enable_no_resched();
287 * For function-return probes, init_kprobes() establishes a probepoint
288 * here. When a retprobed function returns, this probe is hit and
289 * trampoline_probe_handler() runs, calling the kretprobe's handler.
291 static void __used
kretprobe_trampoline_holder(void)
293 asm volatile (".globl kretprobe_trampoline\n"
294 "kretprobe_trampoline:\n\t"
299 * Called when we hit the probe point at kretprobe_trampoline
301 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
303 struct kretprobe_instance
*ri
= NULL
;
304 struct hlist_head
*head
, empty_rp
;
305 struct hlist_node
*node
, *tmp
;
306 unsigned long flags
, orig_ret_address
= 0;
307 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
309 INIT_HLIST_HEAD(&empty_rp
);
310 kretprobe_hash_lock(current
, &head
, &flags
);
313 * It is possible to have multiple instances associated with a given
314 * task either because an multiple functions in the call path
315 * have a return probe installed on them, and/or more then one return
316 * return probe was registered for a target function.
318 * We can handle this because:
319 * - instances are always inserted at the head of the list
320 * - when multiple return probes are registered for the same
321 * function, the first instance's ret_addr will point to the
322 * real return address, and all the rest will point to
323 * kretprobe_trampoline
325 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
326 if (ri
->task
!= current
)
327 /* another task is sharing our hash bucket */
330 if (ri
->rp
&& ri
->rp
->handler
) {
331 __get_cpu_var(current_kprobe
) = &ri
->rp
->kp
;
332 ri
->rp
->handler(ri
, regs
);
333 __get_cpu_var(current_kprobe
) = NULL
;
336 orig_ret_address
= (unsigned long)ri
->ret_addr
;
337 recycle_rp_inst(ri
, &empty_rp
);
339 if (orig_ret_address
!= trampoline_address
)
341 * This is the real return address. Any other
342 * instances associated with this task are for
343 * other calls deeper on the call stack
348 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
350 regs
->pc
= orig_ret_address
;
351 kretprobe_hash_unlock(current
, &flags
);
353 preempt_enable_no_resched();
355 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
356 hlist_del(&ri
->hlist
);
360 return orig_ret_address
;
363 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
365 struct kprobe
*cur
= kprobe_running();
366 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
367 kprobe_opcode_t
*addr
= NULL
;
368 struct kprobe
*p
= NULL
;
373 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
374 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
375 cur
->post_handler(cur
, regs
, 0);
378 if (saved_next_opcode
.addr
!= 0x0) {
379 arch_disarm_kprobe(&saved_next_opcode
);
380 saved_next_opcode
.addr
= 0x0;
381 saved_next_opcode
.opcode
= 0x0;
383 addr
= saved_current_opcode
.addr
;
384 saved_current_opcode
.addr
= 0x0;
386 p
= get_kprobe(addr
);
389 if (saved_next_opcode2
.addr
!= 0x0) {
390 arch_disarm_kprobe(&saved_next_opcode2
);
391 saved_next_opcode2
.addr
= 0x0;
392 saved_next_opcode2
.opcode
= 0x0;
396 /* Restore back the original saved kprobes variables and continue. */
397 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
398 restore_previous_kprobe(kcb
);
402 reset_current_kprobe();
405 preempt_enable_no_resched();
410 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
412 struct kprobe
*cur
= kprobe_running();
413 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
414 const struct exception_table_entry
*entry
;
416 switch (kcb
->kprobe_status
) {
420 * We are here because the instruction being single
421 * stepped caused a page fault. We reset the current
422 * kprobe, point the pc back to the probe address
423 * and allow the page fault handler to continue as a
426 regs
->pc
= (unsigned long)cur
->addr
;
427 if (kcb
->kprobe_status
== KPROBE_REENTER
)
428 restore_previous_kprobe(kcb
);
430 reset_current_kprobe();
431 preempt_enable_no_resched();
433 case KPROBE_HIT_ACTIVE
:
434 case KPROBE_HIT_SSDONE
:
436 * We increment the nmissed count for accounting,
437 * we can also use npre/npostfault count for accounting
438 * these specific fault cases.
440 kprobes_inc_nmissed_count(cur
);
443 * We come here because instructions in the pre/post
444 * handler caused the page_fault, this could happen
445 * if handler tries to access user space by
446 * copy_from_user(), get_user() etc. Let the
447 * user-specified handler try to fix it first.
449 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
453 * In case the user-specified fault handler returned
454 * zero, try to fix up.
456 if ((entry
= search_exception_tables(regs
->pc
)) != NULL
) {
457 regs
->pc
= entry
->fixup
;
462 * fixup_exception() could not handle it,
463 * Let do_page_fault() fix it.
474 * Wrapper routine to for handling exceptions.
476 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
477 unsigned long val
, void *data
)
479 struct kprobe
*p
= NULL
;
480 struct die_args
*args
= (struct die_args
*)data
;
481 int ret
= NOTIFY_DONE
;
482 kprobe_opcode_t
*addr
= NULL
;
483 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
485 addr
= (kprobe_opcode_t
*) (args
->regs
->pc
);
486 if (val
== DIE_TRAP
) {
487 if (!kprobe_running()) {
488 if (kprobe_handler(args
->regs
)) {
491 /* Not a kprobe trap */
495 p
= get_kprobe(addr
);
496 if ((kcb
->kprobe_status
== KPROBE_HIT_SS
) ||
497 (kcb
->kprobe_status
== KPROBE_REENTER
)) {
498 if (post_kprobe_handler(args
->regs
))
501 if (kprobe_handler(args
->regs
)) {
504 p
= __get_cpu_var(current_kprobe
);
505 if (p
->break_handler
&&
506 p
->break_handler(p
, args
->regs
))
516 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
518 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
520 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
522 kcb
->jprobe_saved_regs
= *regs
;
523 kcb
->jprobe_saved_r15
= regs
->regs
[15];
524 addr
= kcb
->jprobe_saved_r15
;
527 * TBD: As Linus pointed out, gcc assumes that the callee
528 * owns the argument space and could overwrite it, e.g.
529 * tailcall optimization. So, to be absolutely safe
530 * we also save and restore enough stack bytes to cover
533 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*) addr
,
534 MIN_STACK_SIZE(addr
));
536 regs
->pc
= (unsigned long)(jp
->entry
);
541 void __kprobes
jprobe_return(void)
543 asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
546 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
548 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
549 unsigned long stack_addr
= kcb
->jprobe_saved_r15
;
550 u8
*addr
= (u8
*)regs
->pc
;
552 if ((addr
>= (u8
*)jprobe_return
) &&
553 (addr
<= (u8
*)jprobe_return_end
)) {
554 *regs
= kcb
->jprobe_saved_regs
;
556 memcpy((kprobe_opcode_t
*)stack_addr
, kcb
->jprobes_stack
,
557 MIN_STACK_SIZE(stack_addr
));
559 kcb
->kprobe_status
= KPROBE_HIT_SS
;
560 preempt_enable_no_resched();
567 static struct kprobe trampoline_p
= {
568 .addr
= (kprobe_opcode_t
*)&kretprobe_trampoline
,
569 .pre_handler
= trampoline_probe_handler
572 int __init
arch_init_kprobes(void)
574 saved_next_opcode
.addr
= 0x0;
575 saved_next_opcode
.opcode
= 0x0;
577 saved_current_opcode
.addr
= 0x0;
578 saved_current_opcode
.opcode
= 0x0;
580 saved_next_opcode2
.addr
= 0x0;
581 saved_next_opcode2
.opcode
= 0x0;
583 return register_kprobe(&trampoline_p
);