Linux 2.6.28-rc5
[cris-mirror.git] / arch / sh / kernel / setup.c
blobe7152cc6930e38bd4b3dc7bd36cd37ae1caf1cb4
1 /*
2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <asm/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/page.h>
35 #include <asm/elf.h>
36 #include <asm/sections.h>
37 #include <asm/irq.h>
38 #include <asm/setup.h>
39 #include <asm/clock.h>
40 #include <asm/mmu_context.h>
43 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
44 * This value will be used at the very early stage of serial setup.
45 * The bigger value means no problem.
47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
48 [0] = {
49 .type = CPU_SH_NONE,
50 .loops_per_jiffy = 10000000,
53 EXPORT_SYMBOL(cpu_data);
56 * The machine vector. First entry in .machvec.init, or clobbered by
57 * sh_mv= on the command line, prior to .machvec.init teardown.
59 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
60 EXPORT_SYMBOL(sh_mv);
62 #ifdef CONFIG_VT
63 struct screen_info screen_info;
64 #endif
66 extern int root_mountflags;
68 #define RAMDISK_IMAGE_START_MASK 0x07FF
69 #define RAMDISK_PROMPT_FLAG 0x8000
70 #define RAMDISK_LOAD_FLAG 0x4000
72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
74 static struct resource code_resource = {
75 .name = "Kernel code",
76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 static struct resource data_resource = {
80 .name = "Kernel data",
81 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
84 static struct resource bss_resource = {
85 .name = "Kernel bss",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91 unsigned long memory_end = 0;
92 EXPORT_SYMBOL(memory_end);
94 static struct resource mem_resources[MAX_NUMNODES];
96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
98 static int __init early_parse_mem(char *p)
100 unsigned long size;
102 memory_start = (unsigned long)__va(__MEMORY_START);
103 size = memparse(p, &p);
105 if (size > __MEMORY_SIZE) {
106 static char msg[] __initdata = KERN_ERR
107 "Using mem= to increase the size of kernel memory "
108 "is not allowed.\n"
109 " Recompile the kernel with the correct value for "
110 "CONFIG_MEMORY_SIZE.\n";
111 printk(msg);
112 return 0;
115 memory_end = memory_start + size;
117 return 0;
119 early_param("mem", early_parse_mem);
122 * Register fully available low RAM pages with the bootmem allocator.
124 static void __init register_bootmem_low_pages(void)
126 unsigned long curr_pfn, last_pfn, pages;
129 * We are rounding up the start address of usable memory:
131 curr_pfn = PFN_UP(__MEMORY_START);
134 * ... and at the end of the usable range downwards:
136 last_pfn = PFN_DOWN(__pa(memory_end));
138 if (last_pfn > max_low_pfn)
139 last_pfn = max_low_pfn;
141 pages = last_pfn - curr_pfn;
142 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
145 #ifdef CONFIG_KEXEC
146 static void __init reserve_crashkernel(void)
148 unsigned long long free_mem;
149 unsigned long long crash_size, crash_base;
150 void *vp;
151 int ret;
153 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
155 ret = parse_crashkernel(boot_command_line, free_mem,
156 &crash_size, &crash_base);
157 if (ret == 0 && crash_size) {
158 if (crash_base <= 0) {
159 vp = alloc_bootmem_nopanic(crash_size);
160 if (!vp) {
161 printk(KERN_INFO "crashkernel allocation "
162 "failed\n");
163 return;
165 crash_base = __pa(vp);
166 } else if (reserve_bootmem(crash_base, crash_size,
167 BOOTMEM_EXCLUSIVE) < 0) {
168 printk(KERN_INFO "crashkernel reservation failed - "
169 "memory is in use\n");
170 return;
173 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
174 "for crashkernel (System RAM: %ldMB)\n",
175 (unsigned long)(crash_size >> 20),
176 (unsigned long)(crash_base >> 20),
177 (unsigned long)(free_mem >> 20));
178 crashk_res.start = crash_base;
179 crashk_res.end = crash_base + crash_size - 1;
180 insert_resource(&iomem_resource, &crashk_res);
183 #else
184 static inline void __init reserve_crashkernel(void)
186 #endif
188 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
189 void __cpuinit calibrate_delay(void)
191 struct clk *clk = clk_get(NULL, "cpu_clk");
193 if (IS_ERR(clk))
194 panic("Need a sane CPU clock definition!");
196 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
198 printk(KERN_INFO "Calibrating delay loop (skipped)... "
199 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
200 loops_per_jiffy/(500000/HZ),
201 (loops_per_jiffy/(5000/HZ)) % 100,
202 loops_per_jiffy);
204 #endif
206 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
207 unsigned long end_pfn)
209 struct resource *res = &mem_resources[nid];
211 WARN_ON(res->name); /* max one active range per node for now */
213 res->name = "System RAM";
214 res->start = start_pfn << PAGE_SHIFT;
215 res->end = (end_pfn << PAGE_SHIFT) - 1;
216 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
217 if (request_resource(&iomem_resource, res)) {
218 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
219 start_pfn, end_pfn);
220 return;
224 * We don't know which RAM region contains kernel data,
225 * so we try it repeatedly and let the resource manager
226 * test it.
228 request_resource(res, &code_resource);
229 request_resource(res, &data_resource);
230 request_resource(res, &bss_resource);
232 add_active_range(nid, start_pfn, end_pfn);
235 void __init setup_bootmem_allocator(unsigned long free_pfn)
237 unsigned long bootmap_size;
240 * Find a proper area for the bootmem bitmap. After this
241 * bootstrap step all allocations (until the page allocator
242 * is intact) must be done via bootmem_alloc().
244 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
245 min_low_pfn, max_low_pfn);
247 __add_active_range(0, min_low_pfn, max_low_pfn);
248 register_bootmem_low_pages();
250 node_set_online(0);
253 * Reserve the kernel text and
254 * Reserve the bootmem bitmap. We do this in two steps (first step
255 * was init_bootmem()), because this catches the (definitely buggy)
256 * case of us accidentally initializing the bootmem allocator with
257 * an invalid RAM area.
259 reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
260 (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
261 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
262 BOOTMEM_DEFAULT);
265 * reserve physical page 0 - it's a special BIOS page on many boxes,
266 * enabling clean reboots, SMP operation, laptop functions.
268 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
269 BOOTMEM_DEFAULT);
271 sparse_memory_present_with_active_regions(0);
273 #ifdef CONFIG_BLK_DEV_INITRD
274 ROOT_DEV = Root_RAM0;
276 if (LOADER_TYPE && INITRD_START) {
277 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
279 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
280 reserve_bootmem(initrd_start_phys, INITRD_SIZE,
281 BOOTMEM_DEFAULT);
282 initrd_start = (unsigned long)__va(initrd_start_phys);
283 initrd_end = initrd_start + INITRD_SIZE;
284 } else {
285 printk("initrd extends beyond end of memory "
286 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
287 initrd_start_phys + INITRD_SIZE,
288 (unsigned long)PFN_PHYS(max_low_pfn));
289 initrd_start = 0;
292 #endif
294 reserve_crashkernel();
297 #ifndef CONFIG_NEED_MULTIPLE_NODES
298 static void __init setup_memory(void)
300 unsigned long start_pfn;
303 * Partially used pages are not usable - thus
304 * we are rounding upwards:
306 start_pfn = PFN_UP(__pa(_end));
307 setup_bootmem_allocator(start_pfn);
309 #else
310 extern void __init setup_memory(void);
311 #endif
314 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
315 * is_kdump_kernel() to determine if we are booting after a panic. Hence
316 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
318 #ifdef CONFIG_CRASH_DUMP
319 /* elfcorehdr= specifies the location of elf core header
320 * stored by the crashed kernel.
322 static int __init parse_elfcorehdr(char *arg)
324 if (!arg)
325 return -EINVAL;
326 elfcorehdr_addr = memparse(arg, &arg);
327 return 0;
329 early_param("elfcorehdr", parse_elfcorehdr);
330 #endif
332 void __init setup_arch(char **cmdline_p)
334 enable_mmu();
336 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
338 printk(KERN_NOTICE "Boot params:\n"
339 "... MOUNT_ROOT_RDONLY - %08lx\n"
340 "... RAMDISK_FLAGS - %08lx\n"
341 "... ORIG_ROOT_DEV - %08lx\n"
342 "... LOADER_TYPE - %08lx\n"
343 "... INITRD_START - %08lx\n"
344 "... INITRD_SIZE - %08lx\n",
345 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
346 ORIG_ROOT_DEV, LOADER_TYPE,
347 INITRD_START, INITRD_SIZE);
349 #ifdef CONFIG_BLK_DEV_RAM
350 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
351 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
352 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
353 #endif
355 if (!MOUNT_ROOT_RDONLY)
356 root_mountflags &= ~MS_RDONLY;
357 init_mm.start_code = (unsigned long) _text;
358 init_mm.end_code = (unsigned long) _etext;
359 init_mm.end_data = (unsigned long) _edata;
360 init_mm.brk = (unsigned long) _end;
362 code_resource.start = virt_to_phys(_text);
363 code_resource.end = virt_to_phys(_etext)-1;
364 data_resource.start = virt_to_phys(_etext);
365 data_resource.end = virt_to_phys(_edata)-1;
366 bss_resource.start = virt_to_phys(__bss_start);
367 bss_resource.end = virt_to_phys(_ebss)-1;
369 memory_start = (unsigned long)__va(__MEMORY_START);
370 if (!memory_end)
371 memory_end = memory_start + __MEMORY_SIZE;
373 #ifdef CONFIG_CMDLINE_BOOL
374 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
375 #else
376 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
377 #endif
379 /* Save unparsed command line copy for /proc/cmdline */
380 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
381 *cmdline_p = command_line;
383 parse_early_param();
385 sh_mv_setup();
388 * Find the highest page frame number we have available
390 max_pfn = PFN_DOWN(__pa(memory_end));
393 * Determine low and high memory ranges:
395 max_low_pfn = max_pfn;
396 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
398 nodes_clear(node_online_map);
400 /* Setup bootmem with available RAM */
401 setup_memory();
402 sparse_init();
404 #ifdef CONFIG_DUMMY_CONSOLE
405 conswitchp = &dummy_con;
406 #endif
408 /* Perform the machine specific initialisation */
409 if (likely(sh_mv.mv_setup))
410 sh_mv.mv_setup(cmdline_p);
412 paging_init();
414 #ifdef CONFIG_SMP
415 plat_smp_setup();
416 #endif
419 static const char *cpu_name[] = {
420 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
421 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
422 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
423 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
424 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
425 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
426 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
427 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
428 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
429 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
430 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
431 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
432 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
433 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
434 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
435 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
436 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
437 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown"
440 const char *get_cpu_subtype(struct sh_cpuinfo *c)
442 return cpu_name[c->type];
444 EXPORT_SYMBOL(get_cpu_subtype);
446 #ifdef CONFIG_PROC_FS
447 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
448 static const char *cpu_flags[] = {
449 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
450 "ptea", "llsc", "l2", "op32", NULL
453 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
455 unsigned long i;
457 seq_printf(m, "cpu flags\t:");
459 if (!c->flags) {
460 seq_printf(m, " %s\n", cpu_flags[0]);
461 return;
464 for (i = 0; cpu_flags[i]; i++)
465 if ((c->flags & (1 << i)))
466 seq_printf(m, " %s", cpu_flags[i+1]);
468 seq_printf(m, "\n");
471 static void show_cacheinfo(struct seq_file *m, const char *type,
472 struct cache_info info)
474 unsigned int cache_size;
476 cache_size = info.ways * info.sets * info.linesz;
478 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
479 type, cache_size >> 10, info.ways);
483 * Get CPU information for use by the procfs.
485 static int show_cpuinfo(struct seq_file *m, void *v)
487 struct sh_cpuinfo *c = v;
488 unsigned int cpu = c - cpu_data;
490 if (!cpu_online(cpu))
491 return 0;
493 if (cpu == 0)
494 seq_printf(m, "machine\t\t: %s\n", get_system_type());
496 seq_printf(m, "processor\t: %d\n", cpu);
497 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
498 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
499 if (c->cut_major == -1)
500 seq_printf(m, "cut\t\t: unknown\n");
501 else if (c->cut_minor == -1)
502 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
503 else
504 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
506 show_cpuflags(m, c);
508 seq_printf(m, "cache type\t: ");
511 * Check for what type of cache we have, we support both the
512 * unified cache on the SH-2 and SH-3, as well as the harvard
513 * style cache on the SH-4.
515 if (c->icache.flags & SH_CACHE_COMBINED) {
516 seq_printf(m, "unified\n");
517 show_cacheinfo(m, "cache", c->icache);
518 } else {
519 seq_printf(m, "split (harvard)\n");
520 show_cacheinfo(m, "icache", c->icache);
521 show_cacheinfo(m, "dcache", c->dcache);
524 /* Optional secondary cache */
525 if (c->flags & CPU_HAS_L2_CACHE)
526 show_cacheinfo(m, "scache", c->scache);
528 seq_printf(m, "bogomips\t: %lu.%02lu\n",
529 c->loops_per_jiffy/(500000/HZ),
530 (c->loops_per_jiffy/(5000/HZ)) % 100);
532 return 0;
535 static void *c_start(struct seq_file *m, loff_t *pos)
537 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
539 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
541 ++*pos;
542 return c_start(m, pos);
544 static void c_stop(struct seq_file *m, void *v)
547 const struct seq_operations cpuinfo_op = {
548 .start = c_start,
549 .next = c_next,
550 .stop = c_stop,
551 .show = show_cpuinfo,
553 #endif /* CONFIG_PROC_FS */
555 struct dentry *sh_debugfs_root;
557 static int __init sh_debugfs_init(void)
559 sh_debugfs_root = debugfs_create_dir("sh", NULL);
560 if (!sh_debugfs_root)
561 return -ENOMEM;
562 if (IS_ERR(sh_debugfs_root))
563 return PTR_ERR(sh_debugfs_root);
565 return 0;
567 arch_initcall(sh_debugfs_init);