2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <asm/uaccess.h>
36 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/clock.h>
40 #include <asm/mmu_context.h>
43 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
44 * This value will be used at the very early stage of serial setup.
45 * The bigger value means no problem.
47 struct sh_cpuinfo cpu_data
[NR_CPUS
] __read_mostly
= {
50 .loops_per_jiffy
= 10000000,
53 EXPORT_SYMBOL(cpu_data
);
56 * The machine vector. First entry in .machvec.init, or clobbered by
57 * sh_mv= on the command line, prior to .machvec.init teardown.
59 struct sh_machine_vector sh_mv
= { .mv_name
= "generic", };
63 struct screen_info screen_info
;
66 extern int root_mountflags
;
68 #define RAMDISK_IMAGE_START_MASK 0x07FF
69 #define RAMDISK_PROMPT_FLAG 0x8000
70 #define RAMDISK_LOAD_FLAG 0x4000
72 static char __initdata command_line
[COMMAND_LINE_SIZE
] = { 0, };
74 static struct resource code_resource
= {
75 .name
= "Kernel code",
76 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
79 static struct resource data_resource
= {
80 .name
= "Kernel data",
81 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
84 static struct resource bss_resource
= {
86 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
89 unsigned long memory_start
;
90 EXPORT_SYMBOL(memory_start
);
91 unsigned long memory_end
= 0;
92 EXPORT_SYMBOL(memory_end
);
94 static struct resource mem_resources
[MAX_NUMNODES
];
96 int l1i_cache_shape
, l1d_cache_shape
, l2_cache_shape
;
98 static int __init
early_parse_mem(char *p
)
102 memory_start
= (unsigned long)__va(__MEMORY_START
);
103 size
= memparse(p
, &p
);
105 if (size
> __MEMORY_SIZE
) {
106 static char msg
[] __initdata
= KERN_ERR
107 "Using mem= to increase the size of kernel memory "
109 " Recompile the kernel with the correct value for "
110 "CONFIG_MEMORY_SIZE.\n";
115 memory_end
= memory_start
+ size
;
119 early_param("mem", early_parse_mem
);
122 * Register fully available low RAM pages with the bootmem allocator.
124 static void __init
register_bootmem_low_pages(void)
126 unsigned long curr_pfn
, last_pfn
, pages
;
129 * We are rounding up the start address of usable memory:
131 curr_pfn
= PFN_UP(__MEMORY_START
);
134 * ... and at the end of the usable range downwards:
136 last_pfn
= PFN_DOWN(__pa(memory_end
));
138 if (last_pfn
> max_low_pfn
)
139 last_pfn
= max_low_pfn
;
141 pages
= last_pfn
- curr_pfn
;
142 free_bootmem(PFN_PHYS(curr_pfn
), PFN_PHYS(pages
));
146 static void __init
reserve_crashkernel(void)
148 unsigned long long free_mem
;
149 unsigned long long crash_size
, crash_base
;
153 free_mem
= ((unsigned long long)max_low_pfn
- min_low_pfn
) << PAGE_SHIFT
;
155 ret
= parse_crashkernel(boot_command_line
, free_mem
,
156 &crash_size
, &crash_base
);
157 if (ret
== 0 && crash_size
) {
158 if (crash_base
<= 0) {
159 vp
= alloc_bootmem_nopanic(crash_size
);
161 printk(KERN_INFO
"crashkernel allocation "
165 crash_base
= __pa(vp
);
166 } else if (reserve_bootmem(crash_base
, crash_size
,
167 BOOTMEM_EXCLUSIVE
) < 0) {
168 printk(KERN_INFO
"crashkernel reservation failed - "
169 "memory is in use\n");
173 printk(KERN_INFO
"Reserving %ldMB of memory at %ldMB "
174 "for crashkernel (System RAM: %ldMB)\n",
175 (unsigned long)(crash_size
>> 20),
176 (unsigned long)(crash_base
>> 20),
177 (unsigned long)(free_mem
>> 20));
178 crashk_res
.start
= crash_base
;
179 crashk_res
.end
= crash_base
+ crash_size
- 1;
180 insert_resource(&iomem_resource
, &crashk_res
);
184 static inline void __init
reserve_crashkernel(void)
188 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
189 void __cpuinit
calibrate_delay(void)
191 struct clk
*clk
= clk_get(NULL
, "cpu_clk");
194 panic("Need a sane CPU clock definition!");
196 loops_per_jiffy
= (clk_get_rate(clk
) >> 1) / HZ
;
198 printk(KERN_INFO
"Calibrating delay loop (skipped)... "
199 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
200 loops_per_jiffy
/(500000/HZ
),
201 (loops_per_jiffy
/(5000/HZ
)) % 100,
206 void __init
__add_active_range(unsigned int nid
, unsigned long start_pfn
,
207 unsigned long end_pfn
)
209 struct resource
*res
= &mem_resources
[nid
];
211 WARN_ON(res
->name
); /* max one active range per node for now */
213 res
->name
= "System RAM";
214 res
->start
= start_pfn
<< PAGE_SHIFT
;
215 res
->end
= (end_pfn
<< PAGE_SHIFT
) - 1;
216 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
217 if (request_resource(&iomem_resource
, res
)) {
218 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
224 * We don't know which RAM region contains kernel data,
225 * so we try it repeatedly and let the resource manager
228 request_resource(res
, &code_resource
);
229 request_resource(res
, &data_resource
);
230 request_resource(res
, &bss_resource
);
232 add_active_range(nid
, start_pfn
, end_pfn
);
235 void __init
setup_bootmem_allocator(unsigned long free_pfn
)
237 unsigned long bootmap_size
;
240 * Find a proper area for the bootmem bitmap. After this
241 * bootstrap step all allocations (until the page allocator
242 * is intact) must be done via bootmem_alloc().
244 bootmap_size
= init_bootmem_node(NODE_DATA(0), free_pfn
,
245 min_low_pfn
, max_low_pfn
);
247 __add_active_range(0, min_low_pfn
, max_low_pfn
);
248 register_bootmem_low_pages();
253 * Reserve the kernel text and
254 * Reserve the bootmem bitmap. We do this in two steps (first step
255 * was init_bootmem()), because this catches the (definitely buggy)
256 * case of us accidentally initializing the bootmem allocator with
257 * an invalid RAM area.
259 reserve_bootmem(__MEMORY_START
+ CONFIG_ZERO_PAGE_OFFSET
,
260 (PFN_PHYS(free_pfn
) + bootmap_size
+ PAGE_SIZE
- 1) -
261 (__MEMORY_START
+ CONFIG_ZERO_PAGE_OFFSET
),
265 * reserve physical page 0 - it's a special BIOS page on many boxes,
266 * enabling clean reboots, SMP operation, laptop functions.
268 reserve_bootmem(__MEMORY_START
, CONFIG_ZERO_PAGE_OFFSET
,
271 sparse_memory_present_with_active_regions(0);
273 #ifdef CONFIG_BLK_DEV_INITRD
274 ROOT_DEV
= Root_RAM0
;
276 if (LOADER_TYPE
&& INITRD_START
) {
277 unsigned long initrd_start_phys
= INITRD_START
+ __MEMORY_START
;
279 if (initrd_start_phys
+ INITRD_SIZE
<= PFN_PHYS(max_low_pfn
)) {
280 reserve_bootmem(initrd_start_phys
, INITRD_SIZE
,
282 initrd_start
= (unsigned long)__va(initrd_start_phys
);
283 initrd_end
= initrd_start
+ INITRD_SIZE
;
285 printk("initrd extends beyond end of memory "
286 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
287 initrd_start_phys
+ INITRD_SIZE
,
288 (unsigned long)PFN_PHYS(max_low_pfn
));
294 reserve_crashkernel();
297 #ifndef CONFIG_NEED_MULTIPLE_NODES
298 static void __init
setup_memory(void)
300 unsigned long start_pfn
;
303 * Partially used pages are not usable - thus
304 * we are rounding upwards:
306 start_pfn
= PFN_UP(__pa(_end
));
307 setup_bootmem_allocator(start_pfn
);
310 extern void __init
setup_memory(void);
314 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
315 * is_kdump_kernel() to determine if we are booting after a panic. Hence
316 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
318 #ifdef CONFIG_CRASH_DUMP
319 /* elfcorehdr= specifies the location of elf core header
320 * stored by the crashed kernel.
322 static int __init
parse_elfcorehdr(char *arg
)
326 elfcorehdr_addr
= memparse(arg
, &arg
);
329 early_param("elfcorehdr", parse_elfcorehdr
);
332 void __init
setup_arch(char **cmdline_p
)
336 ROOT_DEV
= old_decode_dev(ORIG_ROOT_DEV
);
338 printk(KERN_NOTICE
"Boot params:\n"
339 "... MOUNT_ROOT_RDONLY - %08lx\n"
340 "... RAMDISK_FLAGS - %08lx\n"
341 "... ORIG_ROOT_DEV - %08lx\n"
342 "... LOADER_TYPE - %08lx\n"
343 "... INITRD_START - %08lx\n"
344 "... INITRD_SIZE - %08lx\n",
345 MOUNT_ROOT_RDONLY
, RAMDISK_FLAGS
,
346 ORIG_ROOT_DEV
, LOADER_TYPE
,
347 INITRD_START
, INITRD_SIZE
);
349 #ifdef CONFIG_BLK_DEV_RAM
350 rd_image_start
= RAMDISK_FLAGS
& RAMDISK_IMAGE_START_MASK
;
351 rd_prompt
= ((RAMDISK_FLAGS
& RAMDISK_PROMPT_FLAG
) != 0);
352 rd_doload
= ((RAMDISK_FLAGS
& RAMDISK_LOAD_FLAG
) != 0);
355 if (!MOUNT_ROOT_RDONLY
)
356 root_mountflags
&= ~MS_RDONLY
;
357 init_mm
.start_code
= (unsigned long) _text
;
358 init_mm
.end_code
= (unsigned long) _etext
;
359 init_mm
.end_data
= (unsigned long) _edata
;
360 init_mm
.brk
= (unsigned long) _end
;
362 code_resource
.start
= virt_to_phys(_text
);
363 code_resource
.end
= virt_to_phys(_etext
)-1;
364 data_resource
.start
= virt_to_phys(_etext
);
365 data_resource
.end
= virt_to_phys(_edata
)-1;
366 bss_resource
.start
= virt_to_phys(__bss_start
);
367 bss_resource
.end
= virt_to_phys(_ebss
)-1;
369 memory_start
= (unsigned long)__va(__MEMORY_START
);
371 memory_end
= memory_start
+ __MEMORY_SIZE
;
373 #ifdef CONFIG_CMDLINE_BOOL
374 strlcpy(command_line
, CONFIG_CMDLINE
, sizeof(command_line
));
376 strlcpy(command_line
, COMMAND_LINE
, sizeof(command_line
));
379 /* Save unparsed command line copy for /proc/cmdline */
380 memcpy(boot_command_line
, command_line
, COMMAND_LINE_SIZE
);
381 *cmdline_p
= command_line
;
388 * Find the highest page frame number we have available
390 max_pfn
= PFN_DOWN(__pa(memory_end
));
393 * Determine low and high memory ranges:
395 max_low_pfn
= max_pfn
;
396 min_low_pfn
= __MEMORY_START
>> PAGE_SHIFT
;
398 nodes_clear(node_online_map
);
400 /* Setup bootmem with available RAM */
404 #ifdef CONFIG_DUMMY_CONSOLE
405 conswitchp
= &dummy_con
;
408 /* Perform the machine specific initialisation */
409 if (likely(sh_mv
.mv_setup
))
410 sh_mv
.mv_setup(cmdline_p
);
419 static const char *cpu_name
[] = {
420 [CPU_SH7203
] = "SH7203", [CPU_SH7263
] = "SH7263",
421 [CPU_SH7206
] = "SH7206", [CPU_SH7619
] = "SH7619",
422 [CPU_SH7705
] = "SH7705", [CPU_SH7706
] = "SH7706",
423 [CPU_SH7707
] = "SH7707", [CPU_SH7708
] = "SH7708",
424 [CPU_SH7709
] = "SH7709", [CPU_SH7710
] = "SH7710",
425 [CPU_SH7712
] = "SH7712", [CPU_SH7720
] = "SH7720",
426 [CPU_SH7721
] = "SH7721", [CPU_SH7729
] = "SH7729",
427 [CPU_SH7750
] = "SH7750", [CPU_SH7750S
] = "SH7750S",
428 [CPU_SH7750R
] = "SH7750R", [CPU_SH7751
] = "SH7751",
429 [CPU_SH7751R
] = "SH7751R", [CPU_SH7760
] = "SH7760",
430 [CPU_SH4_202
] = "SH4-202", [CPU_SH4_501
] = "SH4-501",
431 [CPU_SH7763
] = "SH7763", [CPU_SH7770
] = "SH7770",
432 [CPU_SH7780
] = "SH7780", [CPU_SH7781
] = "SH7781",
433 [CPU_SH7343
] = "SH7343", [CPU_SH7785
] = "SH7785",
434 [CPU_SH7722
] = "SH7722", [CPU_SHX3
] = "SH-X3",
435 [CPU_SH5_101
] = "SH5-101", [CPU_SH5_103
] = "SH5-103",
436 [CPU_MXG
] = "MX-G", [CPU_SH7723
] = "SH7723",
437 [CPU_SH7366
] = "SH7366", [CPU_SH_NONE
] = "Unknown"
440 const char *get_cpu_subtype(struct sh_cpuinfo
*c
)
442 return cpu_name
[c
->type
];
444 EXPORT_SYMBOL(get_cpu_subtype
);
446 #ifdef CONFIG_PROC_FS
447 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
448 static const char *cpu_flags
[] = {
449 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
450 "ptea", "llsc", "l2", "op32", NULL
453 static void show_cpuflags(struct seq_file
*m
, struct sh_cpuinfo
*c
)
457 seq_printf(m
, "cpu flags\t:");
460 seq_printf(m
, " %s\n", cpu_flags
[0]);
464 for (i
= 0; cpu_flags
[i
]; i
++)
465 if ((c
->flags
& (1 << i
)))
466 seq_printf(m
, " %s", cpu_flags
[i
+1]);
471 static void show_cacheinfo(struct seq_file
*m
, const char *type
,
472 struct cache_info info
)
474 unsigned int cache_size
;
476 cache_size
= info
.ways
* info
.sets
* info
.linesz
;
478 seq_printf(m
, "%s size\t: %2dKiB (%d-way)\n",
479 type
, cache_size
>> 10, info
.ways
);
483 * Get CPU information for use by the procfs.
485 static int show_cpuinfo(struct seq_file
*m
, void *v
)
487 struct sh_cpuinfo
*c
= v
;
488 unsigned int cpu
= c
- cpu_data
;
490 if (!cpu_online(cpu
))
494 seq_printf(m
, "machine\t\t: %s\n", get_system_type());
496 seq_printf(m
, "processor\t: %d\n", cpu
);
497 seq_printf(m
, "cpu family\t: %s\n", init_utsname()->machine
);
498 seq_printf(m
, "cpu type\t: %s\n", get_cpu_subtype(c
));
499 if (c
->cut_major
== -1)
500 seq_printf(m
, "cut\t\t: unknown\n");
501 else if (c
->cut_minor
== -1)
502 seq_printf(m
, "cut\t\t: %d.x\n", c
->cut_major
);
504 seq_printf(m
, "cut\t\t: %d.%d\n", c
->cut_major
, c
->cut_minor
);
508 seq_printf(m
, "cache type\t: ");
511 * Check for what type of cache we have, we support both the
512 * unified cache on the SH-2 and SH-3, as well as the harvard
513 * style cache on the SH-4.
515 if (c
->icache
.flags
& SH_CACHE_COMBINED
) {
516 seq_printf(m
, "unified\n");
517 show_cacheinfo(m
, "cache", c
->icache
);
519 seq_printf(m
, "split (harvard)\n");
520 show_cacheinfo(m
, "icache", c
->icache
);
521 show_cacheinfo(m
, "dcache", c
->dcache
);
524 /* Optional secondary cache */
525 if (c
->flags
& CPU_HAS_L2_CACHE
)
526 show_cacheinfo(m
, "scache", c
->scache
);
528 seq_printf(m
, "bogomips\t: %lu.%02lu\n",
529 c
->loops_per_jiffy
/(500000/HZ
),
530 (c
->loops_per_jiffy
/(5000/HZ
)) % 100);
535 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
537 return *pos
< NR_CPUS
? cpu_data
+ *pos
: NULL
;
539 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
542 return c_start(m
, pos
);
544 static void c_stop(struct seq_file
*m
, void *v
)
547 const struct seq_operations cpuinfo_op
= {
551 .show
= show_cpuinfo
,
553 #endif /* CONFIG_PROC_FS */
555 struct dentry
*sh_debugfs_root
;
557 static int __init
sh_debugfs_init(void)
559 sh_debugfs_root
= debugfs_create_dir("sh", NULL
);
560 if (!sh_debugfs_root
)
562 if (IS_ERR(sh_debugfs_root
))
563 return PTR_ERR(sh_debugfs_root
);
567 arch_initcall(sh_debugfs_init
);