2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
43 static int ext2_update_inode(struct inode
* inode
, int do_sync
);
46 * Test whether an inode is a fast symlink.
48 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
50 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
51 (inode
->i_sb
->s_blocksize
>> 9) : 0;
53 return (S_ISLNK(inode
->i_mode
) &&
54 inode
->i_blocks
- ea_blocks
== 0);
58 * Called at the last iput() if i_nlink is zero.
60 void ext2_delete_inode (struct inode
* inode
)
62 truncate_inode_pages(&inode
->i_data
, 0);
64 if (is_bad_inode(inode
))
66 EXT2_I(inode
)->i_dtime
= get_seconds();
67 mark_inode_dirty(inode
);
68 ext2_update_inode(inode
, inode_needs_sync(inode
));
72 ext2_truncate (inode
);
73 ext2_free_inode (inode
);
77 clear_inode(inode
); /* We must guarantee clearing of inode... */
83 struct buffer_head
*bh
;
86 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
92 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
94 while (from
<= to
&& from
->key
== *from
->p
)
100 * ext2_block_to_path - parse the block number into array of offsets
101 * @inode: inode in question (we are only interested in its superblock)
102 * @i_block: block number to be parsed
103 * @offsets: array to store the offsets in
104 * @boundary: set this non-zero if the referred-to block is likely to be
105 * followed (on disk) by an indirect block.
106 * To store the locations of file's data ext2 uses a data structure common
107 * for UNIX filesystems - tree of pointers anchored in the inode, with
108 * data blocks at leaves and indirect blocks in intermediate nodes.
109 * This function translates the block number into path in that tree -
110 * return value is the path length and @offsets[n] is the offset of
111 * pointer to (n+1)th node in the nth one. If @block is out of range
112 * (negative or too large) warning is printed and zero returned.
114 * Note: function doesn't find node addresses, so no IO is needed. All
115 * we need to know is the capacity of indirect blocks (taken from the
120 * Portability note: the last comparison (check that we fit into triple
121 * indirect block) is spelled differently, because otherwise on an
122 * architecture with 32-bit longs and 8Kb pages we might get into trouble
123 * if our filesystem had 8Kb blocks. We might use long long, but that would
124 * kill us on x86. Oh, well, at least the sign propagation does not matter -
125 * i_block would have to be negative in the very beginning, so we would not
129 static int ext2_block_to_path(struct inode
*inode
,
130 long i_block
, int offsets
[4], int *boundary
)
132 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
133 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
134 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
135 indirect_blocks
= ptrs
,
136 double_blocks
= (1 << (ptrs_bits
* 2));
141 ext2_warning (inode
->i_sb
, "ext2_block_to_path", "block < 0");
142 } else if (i_block
< direct_blocks
) {
143 offsets
[n
++] = i_block
;
144 final
= direct_blocks
;
145 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
146 offsets
[n
++] = EXT2_IND_BLOCK
;
147 offsets
[n
++] = i_block
;
149 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
150 offsets
[n
++] = EXT2_DIND_BLOCK
;
151 offsets
[n
++] = i_block
>> ptrs_bits
;
152 offsets
[n
++] = i_block
& (ptrs
- 1);
154 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
155 offsets
[n
++] = EXT2_TIND_BLOCK
;
156 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
157 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
158 offsets
[n
++] = i_block
& (ptrs
- 1);
161 ext2_warning (inode
->i_sb
, "ext2_block_to_path", "block > big");
164 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
170 * ext2_get_branch - read the chain of indirect blocks leading to data
171 * @inode: inode in question
172 * @depth: depth of the chain (1 - direct pointer, etc.)
173 * @offsets: offsets of pointers in inode/indirect blocks
174 * @chain: place to store the result
175 * @err: here we store the error value
177 * Function fills the array of triples <key, p, bh> and returns %NULL
178 * if everything went OK or the pointer to the last filled triple
179 * (incomplete one) otherwise. Upon the return chain[i].key contains
180 * the number of (i+1)-th block in the chain (as it is stored in memory,
181 * i.e. little-endian 32-bit), chain[i].p contains the address of that
182 * number (it points into struct inode for i==0 and into the bh->b_data
183 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
184 * block for i>0 and NULL for i==0. In other words, it holds the block
185 * numbers of the chain, addresses they were taken from (and where we can
186 * verify that chain did not change) and buffer_heads hosting these
189 * Function stops when it stumbles upon zero pointer (absent block)
190 * (pointer to last triple returned, *@err == 0)
191 * or when it gets an IO error reading an indirect block
192 * (ditto, *@err == -EIO)
193 * or when it notices that chain had been changed while it was reading
194 * (ditto, *@err == -EAGAIN)
195 * or when it reads all @depth-1 indirect blocks successfully and finds
196 * the whole chain, all way to the data (returns %NULL, *err == 0).
198 static Indirect
*ext2_get_branch(struct inode
*inode
,
204 struct super_block
*sb
= inode
->i_sb
;
206 struct buffer_head
*bh
;
209 /* i_data is not going away, no lock needed */
210 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
214 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
217 read_lock(&EXT2_I(inode
)->i_meta_lock
);
218 if (!verify_chain(chain
, p
))
220 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
221 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
228 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
239 * ext2_find_near - find a place for allocation with sufficient locality
241 * @ind: descriptor of indirect block.
243 * This function returns the preferred place for block allocation.
244 * It is used when heuristic for sequential allocation fails.
246 * + if there is a block to the left of our position - allocate near it.
247 * + if pointer will live in indirect block - allocate near that block.
248 * + if pointer will live in inode - allocate in the same cylinder group.
250 * In the latter case we colour the starting block by the callers PID to
251 * prevent it from clashing with concurrent allocations for a different inode
252 * in the same block group. The PID is used here so that functionally related
253 * files will be close-by on-disk.
255 * Caller must make sure that @ind is valid and will stay that way.
258 static ext2_fsblk_t
ext2_find_near(struct inode
*inode
, Indirect
*ind
)
260 struct ext2_inode_info
*ei
= EXT2_I(inode
);
261 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
263 ext2_fsblk_t bg_start
;
266 /* Try to find previous block */
267 for (p
= ind
->p
- 1; p
>= start
; p
--)
269 return le32_to_cpu(*p
);
271 /* No such thing, so let's try location of indirect block */
273 return ind
->bh
->b_blocknr
;
276 * It is going to be refered from inode itself? OK, just put it into
277 * the same cylinder group then.
279 bg_start
= ext2_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
280 colour
= (current
->pid
% 16) *
281 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
282 return bg_start
+ colour
;
286 * ext2_find_goal - find a preferred place for allocation.
288 * @block: block we want
289 * @partial: pointer to the last triple within a chain
291 * Returns preferred place for a block (the goal).
294 static inline ext2_fsblk_t
ext2_find_goal(struct inode
*inode
, long block
,
297 struct ext2_block_alloc_info
*block_i
;
299 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
302 * try the heuristic for sequential allocation,
303 * failing that at least try to get decent locality.
305 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
306 && (block_i
->last_alloc_physical_block
!= 0)) {
307 return block_i
->last_alloc_physical_block
+ 1;
310 return ext2_find_near(inode
, partial
);
314 * ext2_blks_to_allocate: Look up the block map and count the number
315 * of direct blocks need to be allocated for the given branch.
317 * @branch: chain of indirect blocks
318 * @k: number of blocks need for indirect blocks
319 * @blks: number of data blocks to be mapped.
320 * @blocks_to_boundary: the offset in the indirect block
322 * return the total number of blocks to be allocate, including the
323 * direct and indirect blocks.
326 ext2_blks_to_allocate(Indirect
* branch
, int k
, unsigned long blks
,
327 int blocks_to_boundary
)
329 unsigned long count
= 0;
332 * Simple case, [t,d]Indirect block(s) has not allocated yet
333 * then it's clear blocks on that path have not allocated
336 /* right now don't hanel cross boundary allocation */
337 if (blks
< blocks_to_boundary
+ 1)
340 count
+= blocks_to_boundary
+ 1;
345 while (count
< blks
&& count
<= blocks_to_boundary
346 && le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
353 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
354 * @indirect_blks: the number of blocks need to allocate for indirect
357 * @new_blocks: on return it will store the new block numbers for
358 * the indirect blocks(if needed) and the first direct block,
359 * @blks: on return it will store the total number of allocated
362 static int ext2_alloc_blocks(struct inode
*inode
,
363 ext2_fsblk_t goal
, int indirect_blks
, int blks
,
364 ext2_fsblk_t new_blocks
[4], int *err
)
367 unsigned long count
= 0;
369 ext2_fsblk_t current_block
= 0;
373 * Here we try to allocate the requested multiple blocks at once,
374 * on a best-effort basis.
375 * To build a branch, we should allocate blocks for
376 * the indirect blocks(if not allocated yet), and at least
377 * the first direct block of this branch. That's the
378 * minimum number of blocks need to allocate(required)
380 target
= blks
+ indirect_blks
;
384 /* allocating blocks for indirect blocks and direct blocks */
385 current_block
= ext2_new_blocks(inode
,goal
,&count
,err
);
390 /* allocate blocks for indirect blocks */
391 while (index
< indirect_blks
&& count
) {
392 new_blocks
[index
++] = current_block
++;
400 /* save the new block number for the first direct block */
401 new_blocks
[index
] = current_block
;
403 /* total number of blocks allocated for direct blocks */
408 for (i
= 0; i
<index
; i
++)
409 ext2_free_blocks(inode
, new_blocks
[i
], 1);
414 * ext2_alloc_branch - allocate and set up a chain of blocks.
416 * @num: depth of the chain (number of blocks to allocate)
417 * @offsets: offsets (in the blocks) to store the pointers to next.
418 * @branch: place to store the chain in.
420 * This function allocates @num blocks, zeroes out all but the last one,
421 * links them into chain and (if we are synchronous) writes them to disk.
422 * In other words, it prepares a branch that can be spliced onto the
423 * inode. It stores the information about that chain in the branch[], in
424 * the same format as ext2_get_branch() would do. We are calling it after
425 * we had read the existing part of chain and partial points to the last
426 * triple of that (one with zero ->key). Upon the exit we have the same
427 * picture as after the successful ext2_get_block(), excpet that in one
428 * place chain is disconnected - *branch->p is still zero (we did not
429 * set the last link), but branch->key contains the number that should
430 * be placed into *branch->p to fill that gap.
432 * If allocation fails we free all blocks we've allocated (and forget
433 * their buffer_heads) and return the error value the from failed
434 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
435 * as described above and return 0.
438 static int ext2_alloc_branch(struct inode
*inode
,
439 int indirect_blks
, int *blks
, ext2_fsblk_t goal
,
440 int *offsets
, Indirect
*branch
)
442 int blocksize
= inode
->i_sb
->s_blocksize
;
445 struct buffer_head
*bh
;
447 ext2_fsblk_t new_blocks
[4];
448 ext2_fsblk_t current_block
;
450 num
= ext2_alloc_blocks(inode
, goal
, indirect_blks
,
451 *blks
, new_blocks
, &err
);
455 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
457 * metadata blocks and data blocks are allocated.
459 for (n
= 1; n
<= indirect_blks
; n
++) {
461 * Get buffer_head for parent block, zero it out
462 * and set the pointer to new one, then send
465 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
468 memset(bh
->b_data
, 0, blocksize
);
469 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
470 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
471 *branch
[n
].p
= branch
[n
].key
;
472 if ( n
== indirect_blks
) {
473 current_block
= new_blocks
[n
];
475 * End of chain, update the last new metablock of
476 * the chain to point to the new allocated
477 * data blocks numbers
479 for (i
=1; i
< num
; i
++)
480 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
482 set_buffer_uptodate(bh
);
484 mark_buffer_dirty_inode(bh
, inode
);
485 /* We used to sync bh here if IS_SYNC(inode).
486 * But we now rely upon generic_osync_inode()
487 * and b_inode_buffers. But not for directories.
489 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
490 sync_dirty_buffer(bh
);
497 * ext2_splice_branch - splice the allocated branch onto inode.
499 * @block: (logical) number of block we are adding
500 * @chain: chain of indirect blocks (with a missing link - see
502 * @where: location of missing link
503 * @num: number of indirect blocks we are adding
504 * @blks: number of direct blocks we are adding
506 * This function fills the missing link and does all housekeeping needed in
507 * inode (->i_blocks, etc.). In case of success we end up with the full
508 * chain to new block and return 0.
510 static void ext2_splice_branch(struct inode
*inode
,
511 long block
, Indirect
*where
, int num
, int blks
)
514 struct ext2_block_alloc_info
*block_i
;
515 ext2_fsblk_t current_block
;
517 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
519 /* XXX LOCKING probably should have i_meta_lock ?*/
522 *where
->p
= where
->key
;
525 * Update the host buffer_head or inode to point to more just allocated
526 * direct blocks blocks
528 if (num
== 0 && blks
> 1) {
529 current_block
= le32_to_cpu(where
->key
) + 1;
530 for (i
= 1; i
< blks
; i
++)
531 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
535 * update the most recently allocated logical & physical block
536 * in i_block_alloc_info, to assist find the proper goal block for next
540 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
541 block_i
->last_alloc_physical_block
=
542 le32_to_cpu(where
[num
].key
) + blks
- 1;
545 /* We are done with atomic stuff, now do the rest of housekeeping */
547 /* had we spliced it onto indirect block? */
549 mark_buffer_dirty_inode(where
->bh
, inode
);
551 inode
->i_ctime
= CURRENT_TIME_SEC
;
552 mark_inode_dirty(inode
);
556 * Allocation strategy is simple: if we have to allocate something, we will
557 * have to go the whole way to leaf. So let's do it before attaching anything
558 * to tree, set linkage between the newborn blocks, write them if sync is
559 * required, recheck the path, free and repeat if check fails, otherwise
560 * set the last missing link (that will protect us from any truncate-generated
561 * removals - all blocks on the path are immune now) and possibly force the
562 * write on the parent block.
563 * That has a nice additional property: no special recovery from the failed
564 * allocations is needed - we simply release blocks and do not touch anything
565 * reachable from inode.
567 * `handle' can be NULL if create == 0.
569 * return > 0, # of blocks mapped or allocated.
570 * return = 0, if plain lookup failed.
571 * return < 0, error case.
573 static int ext2_get_blocks(struct inode
*inode
,
574 sector_t iblock
, unsigned long maxblocks
,
575 struct buffer_head
*bh_result
,
584 int blocks_to_boundary
= 0;
586 struct ext2_inode_info
*ei
= EXT2_I(inode
);
588 ext2_fsblk_t first_block
= 0;
590 depth
= ext2_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
595 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
597 /* Simplest case - block found, no allocation needed */
599 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
600 clear_buffer_new(bh_result
); /* What's this do? */
603 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
606 if (!verify_chain(chain
, partial
)) {
608 * Indirect block might be removed by
609 * truncate while we were reading it.
610 * Handling of that case: forget what we've
611 * got now, go to reread.
616 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
617 if (blk
== first_block
+ count
)
625 /* Next simple case - plain lookup or failed read of indirect block */
626 if (!create
|| err
== -EIO
)
629 mutex_lock(&ei
->truncate_mutex
);
632 * Okay, we need to do block allocation. Lazily initialize the block
633 * allocation info here if necessary
635 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
636 ext2_init_block_alloc_info(inode
);
638 goal
= ext2_find_goal(inode
, iblock
, partial
);
640 /* the number of blocks need to allocate for [d,t]indirect blocks */
641 indirect_blks
= (chain
+ depth
) - partial
- 1;
643 * Next look up the indirect map to count the totoal number of
644 * direct blocks to allocate for this branch.
646 count
= ext2_blks_to_allocate(partial
, indirect_blks
,
647 maxblocks
, blocks_to_boundary
);
649 * XXX ???? Block out ext2_truncate while we alter the tree
651 err
= ext2_alloc_branch(inode
, indirect_blks
, &count
, goal
,
652 offsets
+ (partial
- chain
), partial
);
655 mutex_unlock(&ei
->truncate_mutex
);
659 if (ext2_use_xip(inode
->i_sb
)) {
661 * we need to clear the block
663 err
= ext2_clear_xip_target (inode
,
664 le32_to_cpu(chain
[depth
-1].key
));
666 mutex_unlock(&ei
->truncate_mutex
);
671 ext2_splice_branch(inode
, iblock
, partial
, indirect_blks
, count
);
672 mutex_unlock(&ei
->truncate_mutex
);
673 set_buffer_new(bh_result
);
675 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
676 if (count
> blocks_to_boundary
)
677 set_buffer_boundary(bh_result
);
679 /* Clean up and exit */
680 partial
= chain
+ depth
- 1; /* the whole chain */
682 while (partial
> chain
) {
688 while (partial
> chain
) {
695 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
697 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
698 int ret
= ext2_get_blocks(inode
, iblock
, max_blocks
,
701 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
708 int ext2_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
711 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
715 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
717 return block_write_full_page(page
, ext2_get_block
, wbc
);
720 static int ext2_readpage(struct file
*file
, struct page
*page
)
722 return mpage_readpage(page
, ext2_get_block
);
726 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
727 struct list_head
*pages
, unsigned nr_pages
)
729 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
732 int __ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
733 loff_t pos
, unsigned len
, unsigned flags
,
734 struct page
**pagep
, void **fsdata
)
736 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
741 ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
742 loff_t pos
, unsigned len
, unsigned flags
,
743 struct page
**pagep
, void **fsdata
)
746 return __ext2_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,fsdata
);
750 ext2_nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
751 loff_t pos
, unsigned len
, unsigned flags
,
752 struct page
**pagep
, void **fsdata
)
755 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
756 * directory handling code to pass around offsets rather than struct
757 * pages in order to make this work easily.
759 return nobh_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
763 static int ext2_nobh_writepage(struct page
*page
,
764 struct writeback_control
*wbc
)
766 return nobh_writepage(page
, ext2_get_block
, wbc
);
769 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
771 return generic_block_bmap(mapping
,block
,ext2_get_block
);
775 ext2_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
776 loff_t offset
, unsigned long nr_segs
)
778 struct file
*file
= iocb
->ki_filp
;
779 struct inode
*inode
= file
->f_mapping
->host
;
781 return blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
782 offset
, nr_segs
, ext2_get_block
, NULL
);
786 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
788 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
791 const struct address_space_operations ext2_aops
= {
792 .readpage
= ext2_readpage
,
793 .readpages
= ext2_readpages
,
794 .writepage
= ext2_writepage
,
795 .sync_page
= block_sync_page
,
796 .write_begin
= ext2_write_begin
,
797 .write_end
= generic_write_end
,
799 .direct_IO
= ext2_direct_IO
,
800 .writepages
= ext2_writepages
,
801 .migratepage
= buffer_migrate_page
,
802 .is_partially_uptodate
= block_is_partially_uptodate
,
805 const struct address_space_operations ext2_aops_xip
= {
807 .get_xip_mem
= ext2_get_xip_mem
,
810 const struct address_space_operations ext2_nobh_aops
= {
811 .readpage
= ext2_readpage
,
812 .readpages
= ext2_readpages
,
813 .writepage
= ext2_nobh_writepage
,
814 .sync_page
= block_sync_page
,
815 .write_begin
= ext2_nobh_write_begin
,
816 .write_end
= nobh_write_end
,
818 .direct_IO
= ext2_direct_IO
,
819 .writepages
= ext2_writepages
,
820 .migratepage
= buffer_migrate_page
,
824 * Probably it should be a library function... search for first non-zero word
825 * or memcmp with zero_page, whatever is better for particular architecture.
828 static inline int all_zeroes(__le32
*p
, __le32
*q
)
837 * ext2_find_shared - find the indirect blocks for partial truncation.
838 * @inode: inode in question
839 * @depth: depth of the affected branch
840 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
841 * @chain: place to store the pointers to partial indirect blocks
842 * @top: place to the (detached) top of branch
844 * This is a helper function used by ext2_truncate().
846 * When we do truncate() we may have to clean the ends of several indirect
847 * blocks but leave the blocks themselves alive. Block is partially
848 * truncated if some data below the new i_size is refered from it (and
849 * it is on the path to the first completely truncated data block, indeed).
850 * We have to free the top of that path along with everything to the right
851 * of the path. Since no allocation past the truncation point is possible
852 * until ext2_truncate() finishes, we may safely do the latter, but top
853 * of branch may require special attention - pageout below the truncation
854 * point might try to populate it.
856 * We atomically detach the top of branch from the tree, store the block
857 * number of its root in *@top, pointers to buffer_heads of partially
858 * truncated blocks - in @chain[].bh and pointers to their last elements
859 * that should not be removed - in @chain[].p. Return value is the pointer
860 * to last filled element of @chain.
862 * The work left to caller to do the actual freeing of subtrees:
863 * a) free the subtree starting from *@top
864 * b) free the subtrees whose roots are stored in
865 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
866 * c) free the subtrees growing from the inode past the @chain[0].p
867 * (no partially truncated stuff there).
870 static Indirect
*ext2_find_shared(struct inode
*inode
,
876 Indirect
*partial
, *p
;
880 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
882 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
884 partial
= chain
+ k
-1;
886 * If the branch acquired continuation since we've looked at it -
887 * fine, it should all survive and (new) top doesn't belong to us.
889 write_lock(&EXT2_I(inode
)->i_meta_lock
);
890 if (!partial
->key
&& *partial
->p
) {
891 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
894 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
897 * OK, we've found the last block that must survive. The rest of our
898 * branch should be detached before unlocking. However, if that rest
899 * of branch is all ours and does not grow immediately from the inode
900 * it's easier to cheat and just decrement partial->p.
902 if (p
== chain
+ k
- 1 && p
> chain
) {
908 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
920 * ext2_free_data - free a list of data blocks
921 * @inode: inode we are dealing with
922 * @p: array of block numbers
923 * @q: points immediately past the end of array
925 * We are freeing all blocks refered from that array (numbers are
926 * stored as little-endian 32-bit) and updating @inode->i_blocks
929 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
931 unsigned long block_to_free
= 0, count
= 0;
934 for ( ; p
< q
; p
++) {
935 nr
= le32_to_cpu(*p
);
938 /* accumulate blocks to free if they're contiguous */
941 else if (block_to_free
== nr
- count
)
944 mark_inode_dirty(inode
);
945 ext2_free_blocks (inode
, block_to_free
, count
);
953 mark_inode_dirty(inode
);
954 ext2_free_blocks (inode
, block_to_free
, count
);
959 * ext2_free_branches - free an array of branches
960 * @inode: inode we are dealing with
961 * @p: array of block numbers
962 * @q: pointer immediately past the end of array
963 * @depth: depth of the branches to free
965 * We are freeing all blocks refered from these branches (numbers are
966 * stored as little-endian 32-bit) and updating @inode->i_blocks
969 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
971 struct buffer_head
* bh
;
975 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
976 for ( ; p
< q
; p
++) {
977 nr
= le32_to_cpu(*p
);
981 bh
= sb_bread(inode
->i_sb
, nr
);
983 * A read failure? Report error and clear slot
987 ext2_error(inode
->i_sb
, "ext2_free_branches",
988 "Read failure, inode=%ld, block=%ld",
992 ext2_free_branches(inode
,
994 (__le32
*)bh
->b_data
+ addr_per_block
,
997 ext2_free_blocks(inode
, nr
, 1);
998 mark_inode_dirty(inode
);
1001 ext2_free_data(inode
, p
, q
);
1004 void ext2_truncate(struct inode
*inode
)
1006 __le32
*i_data
= EXT2_I(inode
)->i_data
;
1007 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1008 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1017 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1018 S_ISLNK(inode
->i_mode
)))
1020 if (ext2_inode_is_fast_symlink(inode
))
1022 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1025 blocksize
= inode
->i_sb
->s_blocksize
;
1026 iblock
= (inode
->i_size
+ blocksize
-1)
1027 >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
1029 if (mapping_is_xip(inode
->i_mapping
))
1030 xip_truncate_page(inode
->i_mapping
, inode
->i_size
);
1031 else if (test_opt(inode
->i_sb
, NOBH
))
1032 nobh_truncate_page(inode
->i_mapping
,
1033 inode
->i_size
, ext2_get_block
);
1035 block_truncate_page(inode
->i_mapping
,
1036 inode
->i_size
, ext2_get_block
);
1038 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
1043 * From here we block out all ext2_get_block() callers who want to
1044 * modify the block allocation tree.
1046 mutex_lock(&ei
->truncate_mutex
);
1049 ext2_free_data(inode
, i_data
+offsets
[0],
1050 i_data
+ EXT2_NDIR_BLOCKS
);
1054 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
1055 /* Kill the top of shared branch (already detached) */
1057 if (partial
== chain
)
1058 mark_inode_dirty(inode
);
1060 mark_buffer_dirty_inode(partial
->bh
, inode
);
1061 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
1063 /* Clear the ends of indirect blocks on the shared branch */
1064 while (partial
> chain
) {
1065 ext2_free_branches(inode
,
1067 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
1068 (chain
+n
-1) - partial
);
1069 mark_buffer_dirty_inode(partial
->bh
, inode
);
1070 brelse (partial
->bh
);
1074 /* Kill the remaining (whole) subtrees */
1075 switch (offsets
[0]) {
1077 nr
= i_data
[EXT2_IND_BLOCK
];
1079 i_data
[EXT2_IND_BLOCK
] = 0;
1080 mark_inode_dirty(inode
);
1081 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
1083 case EXT2_IND_BLOCK
:
1084 nr
= i_data
[EXT2_DIND_BLOCK
];
1086 i_data
[EXT2_DIND_BLOCK
] = 0;
1087 mark_inode_dirty(inode
);
1088 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
1090 case EXT2_DIND_BLOCK
:
1091 nr
= i_data
[EXT2_TIND_BLOCK
];
1093 i_data
[EXT2_TIND_BLOCK
] = 0;
1094 mark_inode_dirty(inode
);
1095 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
1097 case EXT2_TIND_BLOCK
:
1101 ext2_discard_reservation(inode
);
1103 mutex_unlock(&ei
->truncate_mutex
);
1104 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
1105 if (inode_needs_sync(inode
)) {
1106 sync_mapping_buffers(inode
->i_mapping
);
1107 ext2_sync_inode (inode
);
1109 mark_inode_dirty(inode
);
1113 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
1114 struct buffer_head
**p
)
1116 struct buffer_head
* bh
;
1117 unsigned long block_group
;
1118 unsigned long block
;
1119 unsigned long offset
;
1120 struct ext2_group_desc
* gdp
;
1123 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
1124 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
1127 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
1128 gdp
= ext2_get_group_desc(sb
, block_group
, NULL
);
1132 * Figure out the offset within the block group inode table
1134 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1135 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1136 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1137 if (!(bh
= sb_bread(sb
, block
)))
1141 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1142 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1145 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1146 (unsigned long) ino
);
1147 return ERR_PTR(-EINVAL
);
1149 ext2_error(sb
, "ext2_get_inode",
1150 "unable to read inode block - inode=%lu, block=%lu",
1151 (unsigned long) ino
, block
);
1153 return ERR_PTR(-EIO
);
1156 void ext2_set_inode_flags(struct inode
*inode
)
1158 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1160 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
1161 if (flags
& EXT2_SYNC_FL
)
1162 inode
->i_flags
|= S_SYNC
;
1163 if (flags
& EXT2_APPEND_FL
)
1164 inode
->i_flags
|= S_APPEND
;
1165 if (flags
& EXT2_IMMUTABLE_FL
)
1166 inode
->i_flags
|= S_IMMUTABLE
;
1167 if (flags
& EXT2_NOATIME_FL
)
1168 inode
->i_flags
|= S_NOATIME
;
1169 if (flags
& EXT2_DIRSYNC_FL
)
1170 inode
->i_flags
|= S_DIRSYNC
;
1173 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1174 void ext2_get_inode_flags(struct ext2_inode_info
*ei
)
1176 unsigned int flags
= ei
->vfs_inode
.i_flags
;
1178 ei
->i_flags
&= ~(EXT2_SYNC_FL
|EXT2_APPEND_FL
|
1179 EXT2_IMMUTABLE_FL
|EXT2_NOATIME_FL
|EXT2_DIRSYNC_FL
);
1181 ei
->i_flags
|= EXT2_SYNC_FL
;
1182 if (flags
& S_APPEND
)
1183 ei
->i_flags
|= EXT2_APPEND_FL
;
1184 if (flags
& S_IMMUTABLE
)
1185 ei
->i_flags
|= EXT2_IMMUTABLE_FL
;
1186 if (flags
& S_NOATIME
)
1187 ei
->i_flags
|= EXT2_NOATIME_FL
;
1188 if (flags
& S_DIRSYNC
)
1189 ei
->i_flags
|= EXT2_DIRSYNC_FL
;
1192 struct inode
*ext2_iget (struct super_block
*sb
, unsigned long ino
)
1194 struct ext2_inode_info
*ei
;
1195 struct buffer_head
* bh
;
1196 struct ext2_inode
*raw_inode
;
1197 struct inode
*inode
;
1201 inode
= iget_locked(sb
, ino
);
1203 return ERR_PTR(-ENOMEM
);
1204 if (!(inode
->i_state
& I_NEW
))
1208 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1209 ei
->i_acl
= EXT2_ACL_NOT_CACHED
;
1210 ei
->i_default_acl
= EXT2_ACL_NOT_CACHED
;
1212 ei
->i_block_alloc_info
= NULL
;
1214 raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1215 if (IS_ERR(raw_inode
)) {
1216 ret
= PTR_ERR(raw_inode
);
1220 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1221 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1222 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1223 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1224 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1225 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1227 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
1228 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1229 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
1230 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
1231 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
1232 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1233 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1234 /* We now have enough fields to check if the inode was active or not.
1235 * This is needed because nfsd might try to access dead inodes
1236 * the test is that same one that e2fsck uses
1237 * NeilBrown 1999oct15
1239 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1240 /* this inode is deleted */
1245 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1246 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1247 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1248 ei
->i_frag_no
= raw_inode
->i_frag
;
1249 ei
->i_frag_size
= raw_inode
->i_fsize
;
1250 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1252 if (S_ISREG(inode
->i_mode
))
1253 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1255 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1257 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1259 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1260 ei
->i_dir_start_lookup
= 0;
1263 * NOTE! The in-memory inode i_data array is in little-endian order
1264 * even on big-endian machines: we do NOT byteswap the block numbers!
1266 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1267 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1269 if (S_ISREG(inode
->i_mode
)) {
1270 inode
->i_op
= &ext2_file_inode_operations
;
1271 if (ext2_use_xip(inode
->i_sb
)) {
1272 inode
->i_mapping
->a_ops
= &ext2_aops_xip
;
1273 inode
->i_fop
= &ext2_xip_file_operations
;
1274 } else if (test_opt(inode
->i_sb
, NOBH
)) {
1275 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1276 inode
->i_fop
= &ext2_file_operations
;
1278 inode
->i_mapping
->a_ops
= &ext2_aops
;
1279 inode
->i_fop
= &ext2_file_operations
;
1281 } else if (S_ISDIR(inode
->i_mode
)) {
1282 inode
->i_op
= &ext2_dir_inode_operations
;
1283 inode
->i_fop
= &ext2_dir_operations
;
1284 if (test_opt(inode
->i_sb
, NOBH
))
1285 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1287 inode
->i_mapping
->a_ops
= &ext2_aops
;
1288 } else if (S_ISLNK(inode
->i_mode
)) {
1289 if (ext2_inode_is_fast_symlink(inode
))
1290 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1292 inode
->i_op
= &ext2_symlink_inode_operations
;
1293 if (test_opt(inode
->i_sb
, NOBH
))
1294 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1296 inode
->i_mapping
->a_ops
= &ext2_aops
;
1299 inode
->i_op
= &ext2_special_inode_operations
;
1300 if (raw_inode
->i_block
[0])
1301 init_special_inode(inode
, inode
->i_mode
,
1302 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1304 init_special_inode(inode
, inode
->i_mode
,
1305 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1308 ext2_set_inode_flags(inode
);
1309 unlock_new_inode(inode
);
1314 return ERR_PTR(ret
);
1317 static int ext2_update_inode(struct inode
* inode
, int do_sync
)
1319 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1320 struct super_block
*sb
= inode
->i_sb
;
1321 ino_t ino
= inode
->i_ino
;
1322 uid_t uid
= inode
->i_uid
;
1323 gid_t gid
= inode
->i_gid
;
1324 struct buffer_head
* bh
;
1325 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1329 if (IS_ERR(raw_inode
))
1332 /* For fields not not tracking in the in-memory inode,
1333 * initialise them to zero for new inodes. */
1334 if (ei
->i_state
& EXT2_STATE_NEW
)
1335 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1337 ext2_get_inode_flags(ei
);
1338 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1339 if (!(test_opt(sb
, NO_UID32
))) {
1340 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1341 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1343 * Fix up interoperability with old kernels. Otherwise, old inodes get
1344 * re-used with the upper 16 bits of the uid/gid intact
1347 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1348 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1350 raw_inode
->i_uid_high
= 0;
1351 raw_inode
->i_gid_high
= 0;
1354 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1355 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1356 raw_inode
->i_uid_high
= 0;
1357 raw_inode
->i_gid_high
= 0;
1359 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1360 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1361 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1362 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1363 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1365 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1366 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1367 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1368 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1369 raw_inode
->i_frag
= ei
->i_frag_no
;
1370 raw_inode
->i_fsize
= ei
->i_frag_size
;
1371 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1372 if (!S_ISREG(inode
->i_mode
))
1373 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1375 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1376 if (inode
->i_size
> 0x7fffffffULL
) {
1377 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1378 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1379 EXT2_SB(sb
)->s_es
->s_rev_level
==
1380 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1381 /* If this is the first large file
1382 * created, add a flag to the superblock.
1385 ext2_update_dynamic_rev(sb
);
1386 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1387 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1389 ext2_write_super(sb
);
1394 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1395 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1396 if (old_valid_dev(inode
->i_rdev
)) {
1397 raw_inode
->i_block
[0] =
1398 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1399 raw_inode
->i_block
[1] = 0;
1401 raw_inode
->i_block
[0] = 0;
1402 raw_inode
->i_block
[1] =
1403 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1404 raw_inode
->i_block
[2] = 0;
1406 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1407 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1408 mark_buffer_dirty(bh
);
1410 sync_dirty_buffer(bh
);
1411 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1412 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1413 sb
->s_id
, (unsigned long) ino
);
1417 ei
->i_state
&= ~EXT2_STATE_NEW
;
1422 int ext2_write_inode(struct inode
*inode
, int wait
)
1424 return ext2_update_inode(inode
, wait
);
1427 int ext2_sync_inode(struct inode
*inode
)
1429 struct writeback_control wbc
= {
1430 .sync_mode
= WB_SYNC_ALL
,
1431 .nr_to_write
= 0, /* sys_fsync did this */
1433 return sync_inode(inode
, &wbc
);
1436 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1438 struct inode
*inode
= dentry
->d_inode
;
1441 error
= inode_change_ok(inode
, iattr
);
1444 if ((iattr
->ia_valid
& ATTR_UID
&& iattr
->ia_uid
!= inode
->i_uid
) ||
1445 (iattr
->ia_valid
& ATTR_GID
&& iattr
->ia_gid
!= inode
->i_gid
)) {
1446 error
= DQUOT_TRANSFER(inode
, iattr
) ? -EDQUOT
: 0;
1450 error
= inode_setattr(inode
, iattr
);
1451 if (!error
&& (iattr
->ia_valid
& ATTR_MODE
))
1452 error
= ext2_acl_chmod(inode
);