Linux 2.6.28-rc5
[cris-mirror.git] / fs / xfs / xfs_inode_item.c
blob97c7452e2620ee56040c03a6b8bb09fdfb4cc854
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
46 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
49 * This returns the number of iovecs needed to log the given inode item.
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
55 STATIC uint
56 xfs_inode_item_size(
57 xfs_inode_log_item_t *iip)
59 uint nvecs;
60 xfs_inode_t *ip;
62 ip = iip->ili_inode;
63 nvecs = 2;
66 * Only log the data/extents/b-tree root if there is something
67 * left to log.
69 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
71 switch (ip->i_d.di_format) {
72 case XFS_DINODE_FMT_EXTENTS:
73 iip->ili_format.ilf_fields &=
74 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 XFS_ILOG_DEV | XFS_ILOG_UUID);
76 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 (ip->i_d.di_nextents > 0) &&
78 (ip->i_df.if_bytes > 0)) {
79 ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 nvecs++;
81 } else {
82 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
84 break;
86 case XFS_DINODE_FMT_BTREE:
87 ASSERT(ip->i_df.if_ext_max ==
88 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 iip->ili_format.ilf_fields &=
90 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 XFS_ILOG_DEV | XFS_ILOG_UUID);
92 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 (ip->i_df.if_broot_bytes > 0)) {
94 ASSERT(ip->i_df.if_broot != NULL);
95 nvecs++;
96 } else {
97 ASSERT(!(iip->ili_format.ilf_fields &
98 XFS_ILOG_DBROOT));
99 #ifdef XFS_TRANS_DEBUG
100 if (iip->ili_root_size > 0) {
101 ASSERT(iip->ili_root_size ==
102 ip->i_df.if_broot_bytes);
103 ASSERT(memcmp(iip->ili_orig_root,
104 ip->i_df.if_broot,
105 iip->ili_root_size) == 0);
106 } else {
107 ASSERT(ip->i_df.if_broot_bytes == 0);
109 #endif
110 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
112 break;
114 case XFS_DINODE_FMT_LOCAL:
115 iip->ili_format.ilf_fields &=
116 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 XFS_ILOG_DEV | XFS_ILOG_UUID);
118 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 (ip->i_df.if_bytes > 0)) {
120 ASSERT(ip->i_df.if_u1.if_data != NULL);
121 ASSERT(ip->i_d.di_size > 0);
122 nvecs++;
123 } else {
124 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
126 break;
128 case XFS_DINODE_FMT_DEV:
129 iip->ili_format.ilf_fields &=
130 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 break;
134 case XFS_DINODE_FMT_UUID:
135 iip->ili_format.ilf_fields &=
136 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 break;
140 default:
141 ASSERT(0);
142 break;
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
150 if (!XFS_IFORK_Q(ip)) {
151 iip->ili_format.ilf_fields &=
152 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 return nvecs;
157 * Log any necessary attribute data.
159 switch (ip->i_d.di_aformat) {
160 case XFS_DINODE_FMT_EXTENTS:
161 iip->ili_format.ilf_fields &=
162 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 (ip->i_d.di_anextents > 0) &&
165 (ip->i_afp->if_bytes > 0)) {
166 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 nvecs++;
168 } else {
169 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
171 break;
173 case XFS_DINODE_FMT_BTREE:
174 iip->ili_format.ilf_fields &=
175 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 (ip->i_afp->if_broot_bytes > 0)) {
178 ASSERT(ip->i_afp->if_broot != NULL);
179 nvecs++;
180 } else {
181 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
183 break;
185 case XFS_DINODE_FMT_LOCAL:
186 iip->ili_format.ilf_fields &=
187 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 (ip->i_afp->if_bytes > 0)) {
190 ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 nvecs++;
192 } else {
193 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
195 break;
197 default:
198 ASSERT(0);
199 break;
202 return nvecs;
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
212 STATIC void
213 xfs_inode_item_format(
214 xfs_inode_log_item_t *iip,
215 xfs_log_iovec_t *log_vector)
217 uint nvecs;
218 xfs_log_iovec_t *vecp;
219 xfs_inode_t *ip;
220 size_t data_bytes;
221 xfs_bmbt_rec_t *ext_buffer;
222 int nrecs;
223 xfs_mount_t *mp;
225 ip = iip->ili_inode;
226 vecp = log_vector;
228 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 vecp->i_len = sizeof(xfs_inode_log_format_t);
230 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
231 vecp++;
232 nvecs = 1;
235 * Clear i_update_core if the timestamps (or any other
236 * non-transactional modification) need flushing/logging
237 * and we're about to log them with the rest of the core.
239 * This is the same logic as xfs_iflush() but this code can't
240 * run at the same time as xfs_iflush because we're in commit
241 * processing here and so we have the inode lock held in
242 * exclusive mode. Although it doesn't really matter
243 * for the timestamps if both routines were to grab the
244 * timestamps or not. That would be ok.
246 * We clear i_update_core before copying out the data.
247 * This is for coordination with our timestamp updates
248 * that don't hold the inode lock. They will always
249 * update the timestamps BEFORE setting i_update_core,
250 * so if we clear i_update_core after they set it we
251 * are guaranteed to see their updates to the timestamps
252 * either here. Likewise, if they set it after we clear it
253 * here, we'll see it either on the next commit of this
254 * inode or the next time the inode gets flushed via
255 * xfs_iflush(). This depends on strongly ordered memory
256 * semantics, but we have that. We use the SYNCHRONIZE
257 * macro to make sure that the compiler does not reorder
258 * the i_update_core access below the data copy below.
260 if (ip->i_update_core) {
261 ip->i_update_core = 0;
262 SYNCHRONIZE();
266 * We don't have to worry about re-ordering here because
267 * the update_size field is protected by the inode lock
268 * and we have that held in exclusive mode.
270 if (ip->i_update_size)
271 ip->i_update_size = 0;
274 * Make sure to get the latest atime from the Linux inode.
276 xfs_synchronize_atime(ip);
279 * make sure the linux inode is dirty
281 xfs_mark_inode_dirty_sync(ip);
283 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
284 vecp->i_len = sizeof(xfs_dinode_core_t);
285 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
286 vecp++;
287 nvecs++;
288 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
291 * If this is really an old format inode, then we need to
292 * log it as such. This means that we have to copy the link
293 * count from the new field to the old. We don't have to worry
294 * about the new fields, because nothing trusts them as long as
295 * the old inode version number is there. If the superblock already
296 * has a new version number, then we don't bother converting back.
298 mp = ip->i_mount;
299 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
300 xfs_sb_version_hasnlink(&mp->m_sb));
301 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
302 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
304 * Convert it back.
306 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
307 ip->i_d.di_onlink = ip->i_d.di_nlink;
308 } else {
310 * The superblock version has already been bumped,
311 * so just make the conversion to the new inode
312 * format permanent.
314 ip->i_d.di_version = XFS_DINODE_VERSION_2;
315 ip->i_d.di_onlink = 0;
316 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
320 switch (ip->i_d.di_format) {
321 case XFS_DINODE_FMT_EXTENTS:
322 ASSERT(!(iip->ili_format.ilf_fields &
323 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
324 XFS_ILOG_DEV | XFS_ILOG_UUID)));
325 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
326 ASSERT(ip->i_df.if_bytes > 0);
327 ASSERT(ip->i_df.if_u1.if_extents != NULL);
328 ASSERT(ip->i_d.di_nextents > 0);
329 ASSERT(iip->ili_extents_buf == NULL);
330 nrecs = ip->i_df.if_bytes /
331 (uint)sizeof(xfs_bmbt_rec_t);
332 ASSERT(nrecs > 0);
333 #ifdef XFS_NATIVE_HOST
334 if (nrecs == ip->i_d.di_nextents) {
336 * There are no delayed allocation
337 * extents, so just point to the
338 * real extents array.
340 vecp->i_addr =
341 (char *)(ip->i_df.if_u1.if_extents);
342 vecp->i_len = ip->i_df.if_bytes;
343 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
344 } else
345 #endif
348 * There are delayed allocation extents
349 * in the inode, or we need to convert
350 * the extents to on disk format.
351 * Use xfs_iextents_copy()
352 * to copy only the real extents into
353 * a separate buffer. We'll free the
354 * buffer in the unlock routine.
356 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
357 KM_SLEEP);
358 iip->ili_extents_buf = ext_buffer;
359 vecp->i_addr = (xfs_caddr_t)ext_buffer;
360 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
361 XFS_DATA_FORK);
362 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
364 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
365 iip->ili_format.ilf_dsize = vecp->i_len;
366 vecp++;
367 nvecs++;
369 break;
371 case XFS_DINODE_FMT_BTREE:
372 ASSERT(!(iip->ili_format.ilf_fields &
373 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
374 XFS_ILOG_DEV | XFS_ILOG_UUID)));
375 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
376 ASSERT(ip->i_df.if_broot_bytes > 0);
377 ASSERT(ip->i_df.if_broot != NULL);
378 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
379 vecp->i_len = ip->i_df.if_broot_bytes;
380 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
381 vecp++;
382 nvecs++;
383 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
385 break;
387 case XFS_DINODE_FMT_LOCAL:
388 ASSERT(!(iip->ili_format.ilf_fields &
389 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
390 XFS_ILOG_DEV | XFS_ILOG_UUID)));
391 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
392 ASSERT(ip->i_df.if_bytes > 0);
393 ASSERT(ip->i_df.if_u1.if_data != NULL);
394 ASSERT(ip->i_d.di_size > 0);
396 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
398 * Round i_bytes up to a word boundary.
399 * The underlying memory is guaranteed to
400 * to be there by xfs_idata_realloc().
402 data_bytes = roundup(ip->i_df.if_bytes, 4);
403 ASSERT((ip->i_df.if_real_bytes == 0) ||
404 (ip->i_df.if_real_bytes == data_bytes));
405 vecp->i_len = (int)data_bytes;
406 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
407 vecp++;
408 nvecs++;
409 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
411 break;
413 case XFS_DINODE_FMT_DEV:
414 ASSERT(!(iip->ili_format.ilf_fields &
415 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
416 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
417 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
418 iip->ili_format.ilf_u.ilfu_rdev =
419 ip->i_df.if_u2.if_rdev;
421 break;
423 case XFS_DINODE_FMT_UUID:
424 ASSERT(!(iip->ili_format.ilf_fields &
425 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
426 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
427 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
428 iip->ili_format.ilf_u.ilfu_uuid =
429 ip->i_df.if_u2.if_uuid;
431 break;
433 default:
434 ASSERT(0);
435 break;
439 * If there are no attributes associated with the file,
440 * then we're done.
441 * Assert that no attribute-related log flags are set.
443 if (!XFS_IFORK_Q(ip)) {
444 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
445 iip->ili_format.ilf_size = nvecs;
446 ASSERT(!(iip->ili_format.ilf_fields &
447 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
448 return;
451 switch (ip->i_d.di_aformat) {
452 case XFS_DINODE_FMT_EXTENTS:
453 ASSERT(!(iip->ili_format.ilf_fields &
454 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
455 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
456 ASSERT(ip->i_afp->if_bytes > 0);
457 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
458 ASSERT(ip->i_d.di_anextents > 0);
459 #ifdef DEBUG
460 nrecs = ip->i_afp->if_bytes /
461 (uint)sizeof(xfs_bmbt_rec_t);
462 #endif
463 ASSERT(nrecs > 0);
464 ASSERT(nrecs == ip->i_d.di_anextents);
465 #ifdef XFS_NATIVE_HOST
467 * There are not delayed allocation extents
468 * for attributes, so just point at the array.
470 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
471 vecp->i_len = ip->i_afp->if_bytes;
472 #else
473 ASSERT(iip->ili_aextents_buf == NULL);
475 * Need to endian flip before logging
477 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
478 KM_SLEEP);
479 iip->ili_aextents_buf = ext_buffer;
480 vecp->i_addr = (xfs_caddr_t)ext_buffer;
481 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
482 XFS_ATTR_FORK);
483 #endif
484 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
485 iip->ili_format.ilf_asize = vecp->i_len;
486 vecp++;
487 nvecs++;
489 break;
491 case XFS_DINODE_FMT_BTREE:
492 ASSERT(!(iip->ili_format.ilf_fields &
493 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
494 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
495 ASSERT(ip->i_afp->if_broot_bytes > 0);
496 ASSERT(ip->i_afp->if_broot != NULL);
497 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
498 vecp->i_len = ip->i_afp->if_broot_bytes;
499 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
500 vecp++;
501 nvecs++;
502 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
504 break;
506 case XFS_DINODE_FMT_LOCAL:
507 ASSERT(!(iip->ili_format.ilf_fields &
508 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
509 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
510 ASSERT(ip->i_afp->if_bytes > 0);
511 ASSERT(ip->i_afp->if_u1.if_data != NULL);
513 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
515 * Round i_bytes up to a word boundary.
516 * The underlying memory is guaranteed to
517 * to be there by xfs_idata_realloc().
519 data_bytes = roundup(ip->i_afp->if_bytes, 4);
520 ASSERT((ip->i_afp->if_real_bytes == 0) ||
521 (ip->i_afp->if_real_bytes == data_bytes));
522 vecp->i_len = (int)data_bytes;
523 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
524 vecp++;
525 nvecs++;
526 iip->ili_format.ilf_asize = (unsigned)data_bytes;
528 break;
530 default:
531 ASSERT(0);
532 break;
535 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
536 iip->ili_format.ilf_size = nvecs;
541 * This is called to pin the inode associated with the inode log
542 * item in memory so it cannot be written out. Do this by calling
543 * xfs_ipin() to bump the pin count in the inode while holding the
544 * inode pin lock.
546 STATIC void
547 xfs_inode_item_pin(
548 xfs_inode_log_item_t *iip)
550 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
551 xfs_ipin(iip->ili_inode);
556 * This is called to unpin the inode associated with the inode log
557 * item which was previously pinned with a call to xfs_inode_item_pin().
558 * Just call xfs_iunpin() on the inode to do this.
560 /* ARGSUSED */
561 STATIC void
562 xfs_inode_item_unpin(
563 xfs_inode_log_item_t *iip,
564 int stale)
566 xfs_iunpin(iip->ili_inode);
569 /* ARGSUSED */
570 STATIC void
571 xfs_inode_item_unpin_remove(
572 xfs_inode_log_item_t *iip,
573 xfs_trans_t *tp)
575 xfs_iunpin(iip->ili_inode);
579 * This is called to attempt to lock the inode associated with this
580 * inode log item, in preparation for the push routine which does the actual
581 * iflush. Don't sleep on the inode lock or the flush lock.
583 * If the flush lock is already held, indicating that the inode has
584 * been or is in the process of being flushed, then (ideally) we'd like to
585 * see if the inode's buffer is still incore, and if so give it a nudge.
586 * We delay doing so until the pushbuf routine, though, to avoid holding
587 * the AIL lock across a call to the blackhole which is the buffer cache.
588 * Also we don't want to sleep in any device strategy routines, which can happen
589 * if we do the subsequent bawrite in here.
591 STATIC uint
592 xfs_inode_item_trylock(
593 xfs_inode_log_item_t *iip)
595 register xfs_inode_t *ip;
597 ip = iip->ili_inode;
599 if (xfs_ipincount(ip) > 0) {
600 return XFS_ITEM_PINNED;
603 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
604 return XFS_ITEM_LOCKED;
607 if (!xfs_iflock_nowait(ip)) {
609 * If someone else isn't already trying to push the inode
610 * buffer, we get to do it.
612 if (iip->ili_pushbuf_flag == 0) {
613 iip->ili_pushbuf_flag = 1;
614 #ifdef DEBUG
615 iip->ili_push_owner = current_pid();
616 #endif
618 * Inode is left locked in shared mode.
619 * Pushbuf routine gets to unlock it.
621 return XFS_ITEM_PUSHBUF;
622 } else {
624 * We hold the AIL lock, so we must specify the
625 * NONOTIFY flag so that we won't double trip.
627 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
628 return XFS_ITEM_FLUSHING;
630 /* NOTREACHED */
633 /* Stale items should force out the iclog */
634 if (ip->i_flags & XFS_ISTALE) {
635 xfs_ifunlock(ip);
636 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
637 return XFS_ITEM_PINNED;
640 #ifdef DEBUG
641 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
642 ASSERT(iip->ili_format.ilf_fields != 0);
643 ASSERT(iip->ili_logged == 0);
644 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
646 #endif
647 return XFS_ITEM_SUCCESS;
651 * Unlock the inode associated with the inode log item.
652 * Clear the fields of the inode and inode log item that
653 * are specific to the current transaction. If the
654 * hold flags is set, do not unlock the inode.
656 STATIC void
657 xfs_inode_item_unlock(
658 xfs_inode_log_item_t *iip)
660 uint hold;
661 uint iolocked;
662 uint lock_flags;
663 xfs_inode_t *ip;
665 ASSERT(iip != NULL);
666 ASSERT(iip->ili_inode->i_itemp != NULL);
667 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
668 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
669 XFS_ILI_IOLOCKED_EXCL)) ||
670 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
671 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
672 XFS_ILI_IOLOCKED_SHARED)) ||
673 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
675 * Clear the transaction pointer in the inode.
677 ip = iip->ili_inode;
678 ip->i_transp = NULL;
681 * If the inode needed a separate buffer with which to log
682 * its extents, then free it now.
684 if (iip->ili_extents_buf != NULL) {
685 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
686 ASSERT(ip->i_d.di_nextents > 0);
687 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
688 ASSERT(ip->i_df.if_bytes > 0);
689 kmem_free(iip->ili_extents_buf);
690 iip->ili_extents_buf = NULL;
692 if (iip->ili_aextents_buf != NULL) {
693 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
694 ASSERT(ip->i_d.di_anextents > 0);
695 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
696 ASSERT(ip->i_afp->if_bytes > 0);
697 kmem_free(iip->ili_aextents_buf);
698 iip->ili_aextents_buf = NULL;
702 * Figure out if we should unlock the inode or not.
704 hold = iip->ili_flags & XFS_ILI_HOLD;
707 * Before clearing out the flags, remember whether we
708 * are holding the inode's IO lock.
710 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
713 * Clear out the fields of the inode log item particular
714 * to the current transaction.
716 iip->ili_ilock_recur = 0;
717 iip->ili_iolock_recur = 0;
718 iip->ili_flags = 0;
721 * Unlock the inode if XFS_ILI_HOLD was not set.
723 if (!hold) {
724 lock_flags = XFS_ILOCK_EXCL;
725 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
726 lock_flags |= XFS_IOLOCK_EXCL;
727 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
728 lock_flags |= XFS_IOLOCK_SHARED;
730 xfs_iput(iip->ili_inode, lock_flags);
735 * This is called to find out where the oldest active copy of the
736 * inode log item in the on disk log resides now that the last log
737 * write of it completed at the given lsn. Since we always re-log
738 * all dirty data in an inode, the latest copy in the on disk log
739 * is the only one that matters. Therefore, simply return the
740 * given lsn.
742 /*ARGSUSED*/
743 STATIC xfs_lsn_t
744 xfs_inode_item_committed(
745 xfs_inode_log_item_t *iip,
746 xfs_lsn_t lsn)
748 return (lsn);
752 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
753 * failed to get the inode flush lock but did get the inode locked SHARED.
754 * Here we're trying to see if the inode buffer is incore, and if so whether it's
755 * marked delayed write. If that's the case, we'll initiate a bawrite on that
756 * buffer to expedite the process.
758 * We aren't holding the AIL lock (or the flush lock) when this gets called,
759 * so it is inherently race-y.
761 STATIC void
762 xfs_inode_item_pushbuf(
763 xfs_inode_log_item_t *iip)
765 xfs_inode_t *ip;
766 xfs_mount_t *mp;
767 xfs_buf_t *bp;
768 uint dopush;
770 ip = iip->ili_inode;
772 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
775 * The ili_pushbuf_flag keeps others from
776 * trying to duplicate our effort.
778 ASSERT(iip->ili_pushbuf_flag != 0);
779 ASSERT(iip->ili_push_owner == current_pid());
782 * If a flush is not in progress anymore, chances are that the
783 * inode was taken off the AIL. So, just get out.
785 if (completion_done(&ip->i_flush) ||
786 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
787 iip->ili_pushbuf_flag = 0;
788 xfs_iunlock(ip, XFS_ILOCK_SHARED);
789 return;
792 mp = ip->i_mount;
793 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
794 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
796 if (bp != NULL) {
797 if (XFS_BUF_ISDELAYWRITE(bp)) {
799 * We were racing with iflush because we don't hold
800 * the AIL lock or the flush lock. However, at this point,
801 * we have the buffer, and we know that it's dirty.
802 * So, it's possible that iflush raced with us, and
803 * this item is already taken off the AIL.
804 * If not, we can flush it async.
806 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
807 !completion_done(&ip->i_flush));
808 iip->ili_pushbuf_flag = 0;
809 xfs_iunlock(ip, XFS_ILOCK_SHARED);
810 xfs_buftrace("INODE ITEM PUSH", bp);
811 if (XFS_BUF_ISPINNED(bp)) {
812 xfs_log_force(mp, (xfs_lsn_t)0,
813 XFS_LOG_FORCE);
815 if (dopush) {
816 int error;
817 error = xfs_bawrite(mp, bp);
818 if (error)
819 xfs_fs_cmn_err(CE_WARN, mp,
820 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
821 error, iip, bp);
822 } else {
823 xfs_buf_relse(bp);
825 } else {
826 iip->ili_pushbuf_flag = 0;
827 xfs_iunlock(ip, XFS_ILOCK_SHARED);
828 xfs_buf_relse(bp);
830 return;
833 * We have to be careful about resetting pushbuf flag too early (above).
834 * Even though in theory we can do it as soon as we have the buflock,
835 * we don't want others to be doing work needlessly. They'll come to
836 * this function thinking that pushing the buffer is their
837 * responsibility only to find that the buffer is still locked by
838 * another doing the same thing
840 iip->ili_pushbuf_flag = 0;
841 xfs_iunlock(ip, XFS_ILOCK_SHARED);
842 return;
847 * This is called to asynchronously write the inode associated with this
848 * inode log item out to disk. The inode will already have been locked by
849 * a successful call to xfs_inode_item_trylock().
851 STATIC void
852 xfs_inode_item_push(
853 xfs_inode_log_item_t *iip)
855 xfs_inode_t *ip;
857 ip = iip->ili_inode;
859 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
860 ASSERT(!completion_done(&ip->i_flush));
862 * Since we were able to lock the inode's flush lock and
863 * we found it on the AIL, the inode must be dirty. This
864 * is because the inode is removed from the AIL while still
865 * holding the flush lock in xfs_iflush_done(). Thus, if
866 * we found it in the AIL and were able to obtain the flush
867 * lock without sleeping, then there must not have been
868 * anyone in the process of flushing the inode.
870 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
871 iip->ili_format.ilf_fields != 0);
874 * Write out the inode. The completion routine ('iflush_done') will
875 * pull it from the AIL, mark it clean, unlock the flush lock.
877 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
878 xfs_iunlock(ip, XFS_ILOCK_SHARED);
880 return;
884 * XXX rcc - this one really has to do something. Probably needs
885 * to stamp in a new field in the incore inode.
887 /* ARGSUSED */
888 STATIC void
889 xfs_inode_item_committing(
890 xfs_inode_log_item_t *iip,
891 xfs_lsn_t lsn)
893 iip->ili_last_lsn = lsn;
894 return;
898 * This is the ops vector shared by all buf log items.
900 static struct xfs_item_ops xfs_inode_item_ops = {
901 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
902 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
903 xfs_inode_item_format,
904 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
905 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
906 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
907 xfs_inode_item_unpin_remove,
908 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
909 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
910 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
911 xfs_inode_item_committed,
912 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
913 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
914 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
915 xfs_inode_item_committing
920 * Initialize the inode log item for a newly allocated (in-core) inode.
922 void
923 xfs_inode_item_init(
924 xfs_inode_t *ip,
925 xfs_mount_t *mp)
927 xfs_inode_log_item_t *iip;
929 ASSERT(ip->i_itemp == NULL);
930 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
932 iip->ili_item.li_type = XFS_LI_INODE;
933 iip->ili_item.li_ops = &xfs_inode_item_ops;
934 iip->ili_item.li_mountp = mp;
935 iip->ili_inode = ip;
938 We have zeroed memory. No need ...
939 iip->ili_extents_buf = NULL;
940 iip->ili_pushbuf_flag = 0;
943 iip->ili_format.ilf_type = XFS_LI_INODE;
944 iip->ili_format.ilf_ino = ip->i_ino;
945 iip->ili_format.ilf_blkno = ip->i_blkno;
946 iip->ili_format.ilf_len = ip->i_len;
947 iip->ili_format.ilf_boffset = ip->i_boffset;
951 * Free the inode log item and any memory hanging off of it.
953 void
954 xfs_inode_item_destroy(
955 xfs_inode_t *ip)
957 #ifdef XFS_TRANS_DEBUG
958 if (ip->i_itemp->ili_root_size != 0) {
959 kmem_free(ip->i_itemp->ili_orig_root);
961 #endif
962 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
967 * This is the inode flushing I/O completion routine. It is called
968 * from interrupt level when the buffer containing the inode is
969 * flushed to disk. It is responsible for removing the inode item
970 * from the AIL if it has not been re-logged, and unlocking the inode's
971 * flush lock.
973 /*ARGSUSED*/
974 void
975 xfs_iflush_done(
976 xfs_buf_t *bp,
977 xfs_inode_log_item_t *iip)
979 xfs_inode_t *ip;
981 ip = iip->ili_inode;
984 * We only want to pull the item from the AIL if it is
985 * actually there and its location in the log has not
986 * changed since we started the flush. Thus, we only bother
987 * if the ili_logged flag is set and the inode's lsn has not
988 * changed. First we check the lsn outside
989 * the lock since it's cheaper, and then we recheck while
990 * holding the lock before removing the inode from the AIL.
992 if (iip->ili_logged &&
993 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
994 spin_lock(&ip->i_mount->m_ail_lock);
995 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
997 * xfs_trans_delete_ail() drops the AIL lock.
999 xfs_trans_delete_ail(ip->i_mount,
1000 (xfs_log_item_t*)iip);
1001 } else {
1002 spin_unlock(&ip->i_mount->m_ail_lock);
1006 iip->ili_logged = 0;
1009 * Clear the ili_last_fields bits now that we know that the
1010 * data corresponding to them is safely on disk.
1012 iip->ili_last_fields = 0;
1015 * Release the inode's flush lock since we're done with it.
1017 xfs_ifunlock(ip);
1019 return;
1023 * This is the inode flushing abort routine. It is called
1024 * from xfs_iflush when the filesystem is shutting down to clean
1025 * up the inode state.
1026 * It is responsible for removing the inode item
1027 * from the AIL if it has not been re-logged, and unlocking the inode's
1028 * flush lock.
1030 void
1031 xfs_iflush_abort(
1032 xfs_inode_t *ip)
1034 xfs_inode_log_item_t *iip;
1035 xfs_mount_t *mp;
1037 iip = ip->i_itemp;
1038 mp = ip->i_mount;
1039 if (iip) {
1040 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1041 spin_lock(&mp->m_ail_lock);
1042 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1044 * xfs_trans_delete_ail() drops the AIL lock.
1046 xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip);
1047 } else
1048 spin_unlock(&mp->m_ail_lock);
1050 iip->ili_logged = 0;
1052 * Clear the ili_last_fields bits now that we know that the
1053 * data corresponding to them is safely on disk.
1055 iip->ili_last_fields = 0;
1057 * Clear the inode logging fields so no more flushes are
1058 * attempted.
1060 iip->ili_format.ilf_fields = 0;
1063 * Release the inode's flush lock since we're done with it.
1065 xfs_ifunlock(ip);
1068 void
1069 xfs_istale_done(
1070 xfs_buf_t *bp,
1071 xfs_inode_log_item_t *iip)
1073 xfs_iflush_abort(iip->ili_inode);
1077 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1078 * (which can have different field alignments) to the native version
1081 xfs_inode_item_format_convert(
1082 xfs_log_iovec_t *buf,
1083 xfs_inode_log_format_t *in_f)
1085 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1086 xfs_inode_log_format_32_t *in_f32;
1088 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1089 in_f->ilf_type = in_f32->ilf_type;
1090 in_f->ilf_size = in_f32->ilf_size;
1091 in_f->ilf_fields = in_f32->ilf_fields;
1092 in_f->ilf_asize = in_f32->ilf_asize;
1093 in_f->ilf_dsize = in_f32->ilf_dsize;
1094 in_f->ilf_ino = in_f32->ilf_ino;
1095 /* copy biggest field of ilf_u */
1096 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1097 in_f32->ilf_u.ilfu_uuid.__u_bits,
1098 sizeof(uuid_t));
1099 in_f->ilf_blkno = in_f32->ilf_blkno;
1100 in_f->ilf_len = in_f32->ilf_len;
1101 in_f->ilf_boffset = in_f32->ilf_boffset;
1102 return 0;
1103 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1104 xfs_inode_log_format_64_t *in_f64;
1106 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1107 in_f->ilf_type = in_f64->ilf_type;
1108 in_f->ilf_size = in_f64->ilf_size;
1109 in_f->ilf_fields = in_f64->ilf_fields;
1110 in_f->ilf_asize = in_f64->ilf_asize;
1111 in_f->ilf_dsize = in_f64->ilf_dsize;
1112 in_f->ilf_ino = in_f64->ilf_ino;
1113 /* copy biggest field of ilf_u */
1114 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1115 in_f64->ilf_u.ilfu_uuid.__u_bits,
1116 sizeof(uuid_t));
1117 in_f->ilf_blkno = in_f64->ilf_blkno;
1118 in_f->ilf_len = in_f64->ilf_len;
1119 in_f->ilf_boffset = in_f64->ilf_boffset;
1120 return 0;
1122 return EFSCORRUPTED;