Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / arm / net / bpf_jit_32.c
blobb5030e1a41d829fae51d93afdadd2597f99792db
1 /*
2 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
5 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
12 #include <linux/bpf.h>
13 #include <linux/bitops.h>
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/filter.h>
17 #include <linux/netdevice.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/if_vlan.h>
22 #include <asm/cacheflush.h>
23 #include <asm/hwcap.h>
24 #include <asm/opcodes.h>
26 #include "bpf_jit_32.h"
29 * eBPF prog stack layout:
31 * high
32 * original ARM_SP => +-----+
33 * | | callee saved registers
34 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
35 * | ... | eBPF JIT scratch space
36 * eBPF fp register => +-----+
37 * (BPF_FP) | ... | eBPF prog stack
38 * +-----+
39 * |RSVD | JIT scratchpad
40 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
41 * | |
42 * | ... | Function call stack
43 * | |
44 * +-----+
45 * low
47 * The callee saved registers depends on whether frame pointers are enabled.
48 * With frame pointers (to be compliant with the ABI):
50 * high
51 * original ARM_SP => +------------------+ \
52 * | pc | |
53 * current ARM_FP => +------------------+ } callee saved registers
54 * |r4-r8,r10,fp,ip,lr| |
55 * +------------------+ /
56 * low
58 * Without frame pointers:
60 * high
61 * original ARM_SP => +------------------+
62 * | r4-r8,r10,fp,lr | callee saved registers
63 * current ARM_FP => +------------------+
64 * low
66 * When popping registers off the stack at the end of a BPF function, we
67 * reference them via the current ARM_FP register.
69 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
70 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \
71 1 << ARM_FP)
72 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
73 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
75 #define STACK_OFFSET(k) (k)
76 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
77 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
78 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
80 #define FLAG_IMM_OVERFLOW (1 << 0)
83 * Map eBPF registers to ARM 32bit registers or stack scratch space.
85 * 1. First argument is passed using the arm 32bit registers and rest of the
86 * arguments are passed on stack scratch space.
87 * 2. First callee-saved arugument is mapped to arm 32 bit registers and rest
88 * arguments are mapped to scratch space on stack.
89 * 3. We need two 64 bit temp registers to do complex operations on eBPF
90 * registers.
92 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
93 * registers, we have to map each eBPF registers with two arm 32 bit regs or
94 * scratch memory space and we have to build eBPF 64 bit register from those.
97 static const u8 bpf2a32[][2] = {
98 /* return value from in-kernel function, and exit value from eBPF */
99 [BPF_REG_0] = {ARM_R1, ARM_R0},
100 /* arguments from eBPF program to in-kernel function */
101 [BPF_REG_1] = {ARM_R3, ARM_R2},
102 /* Stored on stack scratch space */
103 [BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
104 [BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
105 [BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
106 [BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
107 /* callee saved registers that in-kernel function will preserve */
108 [BPF_REG_6] = {ARM_R5, ARM_R4},
109 /* Stored on stack scratch space */
110 [BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
111 [BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
112 [BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
113 /* Read only Frame Pointer to access Stack */
114 [BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
115 /* Temporary Register for internal BPF JIT, can be used
116 * for constant blindings and others.
118 [TMP_REG_1] = {ARM_R7, ARM_R6},
119 [TMP_REG_2] = {ARM_R10, ARM_R8},
120 /* Tail call count. Stored on stack scratch space. */
121 [TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
122 /* temporary register for blinding constants.
123 * Stored on stack scratch space.
125 [BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
128 #define dst_lo dst[1]
129 #define dst_hi dst[0]
130 #define src_lo src[1]
131 #define src_hi src[0]
134 * JIT Context:
136 * prog : bpf_prog
137 * idx : index of current last JITed instruction.
138 * prologue_bytes : bytes used in prologue.
139 * epilogue_offset : offset of epilogue starting.
140 * offsets : array of eBPF instruction offsets in
141 * JITed code.
142 * target : final JITed code.
143 * epilogue_bytes : no of bytes used in epilogue.
144 * imm_count : no of immediate counts used for global
145 * variables.
146 * imms : array of global variable addresses.
149 struct jit_ctx {
150 const struct bpf_prog *prog;
151 unsigned int idx;
152 unsigned int prologue_bytes;
153 unsigned int epilogue_offset;
154 u32 flags;
155 u32 *offsets;
156 u32 *target;
157 u32 stack_size;
158 #if __LINUX_ARM_ARCH__ < 7
159 u16 epilogue_bytes;
160 u16 imm_count;
161 u32 *imms;
162 #endif
166 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
167 * (where the assembly routines like __aeabi_uidiv could cause problems).
169 static u32 jit_udiv32(u32 dividend, u32 divisor)
171 return dividend / divisor;
174 static u32 jit_mod32(u32 dividend, u32 divisor)
176 return dividend % divisor;
179 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
181 inst |= (cond << 28);
182 inst = __opcode_to_mem_arm(inst);
184 if (ctx->target != NULL)
185 ctx->target[ctx->idx] = inst;
187 ctx->idx++;
191 * Emit an instruction that will be executed unconditionally.
193 static inline void emit(u32 inst, struct jit_ctx *ctx)
195 _emit(ARM_COND_AL, inst, ctx);
199 * Checks if immediate value can be converted to imm12(12 bits) value.
201 static int16_t imm8m(u32 x)
203 u32 rot;
205 for (rot = 0; rot < 16; rot++)
206 if ((x & ~ror32(0xff, 2 * rot)) == 0)
207 return rol32(x, 2 * rot) | (rot << 8);
208 return -1;
212 * Initializes the JIT space with undefined instructions.
214 static void jit_fill_hole(void *area, unsigned int size)
216 u32 *ptr;
217 /* We are guaranteed to have aligned memory. */
218 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
219 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
222 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
223 /* EABI requires the stack to be aligned to 64-bit boundaries */
224 #define STACK_ALIGNMENT 8
225 #else
226 /* Stack must be aligned to 32-bit boundaries */
227 #define STACK_ALIGNMENT 4
228 #endif
230 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
231 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
232 * BPF_REG_FP and Tail call counts.
234 #define SCRATCH_SIZE 80
236 /* total stack size used in JITed code */
237 #define _STACK_SIZE \
238 (ctx->prog->aux->stack_depth + \
239 + SCRATCH_SIZE + \
240 + 4 /* extra for skb_copy_bits buffer */)
242 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
244 /* Get the offset of eBPF REGISTERs stored on scratch space. */
245 #define STACK_VAR(off) (STACK_SIZE-off-4)
247 /* Offset of skb_copy_bits buffer */
248 #define SKB_BUFFER STACK_VAR(SCRATCH_SIZE)
250 #if __LINUX_ARM_ARCH__ < 7
252 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
254 unsigned int i = 0, offset;
255 u16 imm;
257 /* on the "fake" run we just count them (duplicates included) */
258 if (ctx->target == NULL) {
259 ctx->imm_count++;
260 return 0;
263 while ((i < ctx->imm_count) && ctx->imms[i]) {
264 if (ctx->imms[i] == k)
265 break;
266 i++;
269 if (ctx->imms[i] == 0)
270 ctx->imms[i] = k;
272 /* constants go just after the epilogue */
273 offset = ctx->offsets[ctx->prog->len - 1] * 4;
274 offset += ctx->prologue_bytes;
275 offset += ctx->epilogue_bytes;
276 offset += i * 4;
278 ctx->target[offset / 4] = k;
280 /* PC in ARM mode == address of the instruction + 8 */
281 imm = offset - (8 + ctx->idx * 4);
283 if (imm & ~0xfff) {
285 * literal pool is too far, signal it into flags. we
286 * can only detect it on the second pass unfortunately.
288 ctx->flags |= FLAG_IMM_OVERFLOW;
289 return 0;
292 return imm;
295 #endif /* __LINUX_ARM_ARCH__ */
297 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
298 const struct jit_ctx *ctx) {
299 int to, from;
301 if (ctx->target == NULL)
302 return 0;
303 to = ctx->offsets[bpf_to];
304 from = ctx->offsets[bpf_from];
306 return to - from - 1;
310 * Move an immediate that's not an imm8m to a core register.
312 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
314 #if __LINUX_ARM_ARCH__ < 7
315 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
316 #else
317 emit(ARM_MOVW(rd, val & 0xffff), ctx);
318 if (val > 0xffff)
319 emit(ARM_MOVT(rd, val >> 16), ctx);
320 #endif
323 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
325 int imm12 = imm8m(val);
327 if (imm12 >= 0)
328 emit(ARM_MOV_I(rd, imm12), ctx);
329 else
330 emit_mov_i_no8m(rd, val, ctx);
333 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
335 if (elf_hwcap & HWCAP_THUMB)
336 emit(ARM_BX(tgt_reg), ctx);
337 else
338 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
341 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
343 #if __LINUX_ARM_ARCH__ < 5
344 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
345 emit_bx_r(tgt_reg, ctx);
346 #else
347 emit(ARM_BLX_R(tgt_reg), ctx);
348 #endif
351 static inline int epilogue_offset(const struct jit_ctx *ctx)
353 int to, from;
354 /* No need for 1st dummy run */
355 if (ctx->target == NULL)
356 return 0;
357 to = ctx->epilogue_offset;
358 from = ctx->idx;
360 return to - from - 2;
363 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
365 const u8 *tmp = bpf2a32[TMP_REG_1];
367 #if __LINUX_ARM_ARCH__ == 7
368 if (elf_hwcap & HWCAP_IDIVA) {
369 if (op == BPF_DIV)
370 emit(ARM_UDIV(rd, rm, rn), ctx);
371 else {
372 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
373 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
375 return;
377 #endif
380 * For BPF_ALU | BPF_DIV | BPF_K instructions
381 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
382 * function, we need to save it on caller side to save
383 * it from getting destroyed within callee.
384 * After the return from the callee, we restore ARM_R0
385 * ARM_R1.
387 if (rn != ARM_R1) {
388 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
389 emit(ARM_MOV_R(ARM_R1, rn), ctx);
391 if (rm != ARM_R0) {
392 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
393 emit(ARM_MOV_R(ARM_R0, rm), ctx);
396 /* Call appropriate function */
397 emit_mov_i(ARM_IP, op == BPF_DIV ?
398 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
399 emit_blx_r(ARM_IP, ctx);
401 /* Save return value */
402 if (rd != ARM_R0)
403 emit(ARM_MOV_R(rd, ARM_R0), ctx);
405 /* Restore ARM_R0 and ARM_R1 */
406 if (rn != ARM_R1)
407 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
408 if (rm != ARM_R0)
409 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
412 /* Checks whether BPF register is on scratch stack space or not. */
413 static inline bool is_on_stack(u8 bpf_reg)
415 static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
416 BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
417 BPF_REG_2, BPF_REG_FP};
418 int i, reg_len = sizeof(stack_regs);
420 for (i = 0 ; i < reg_len ; i++) {
421 if (bpf_reg == stack_regs[i])
422 return true;
424 return false;
427 static inline void emit_a32_mov_i(const u8 dst, const u32 val,
428 bool dstk, struct jit_ctx *ctx)
430 const u8 *tmp = bpf2a32[TMP_REG_1];
432 if (dstk) {
433 emit_mov_i(tmp[1], val, ctx);
434 emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
435 } else {
436 emit_mov_i(dst, val, ctx);
440 /* Sign extended move */
441 static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
442 const u32 val, bool dstk,
443 struct jit_ctx *ctx) {
444 u32 hi = 0;
446 if (is64 && (val & (1<<31)))
447 hi = (u32)~0;
448 emit_a32_mov_i(dst_lo, val, dstk, ctx);
449 emit_a32_mov_i(dst_hi, hi, dstk, ctx);
452 static inline void emit_a32_add_r(const u8 dst, const u8 src,
453 const bool is64, const bool hi,
454 struct jit_ctx *ctx) {
455 /* 64 bit :
456 * adds dst_lo, dst_lo, src_lo
457 * adc dst_hi, dst_hi, src_hi
458 * 32 bit :
459 * add dst_lo, dst_lo, src_lo
461 if (!hi && is64)
462 emit(ARM_ADDS_R(dst, dst, src), ctx);
463 else if (hi && is64)
464 emit(ARM_ADC_R(dst, dst, src), ctx);
465 else
466 emit(ARM_ADD_R(dst, dst, src), ctx);
469 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
470 const bool is64, const bool hi,
471 struct jit_ctx *ctx) {
472 /* 64 bit :
473 * subs dst_lo, dst_lo, src_lo
474 * sbc dst_hi, dst_hi, src_hi
475 * 32 bit :
476 * sub dst_lo, dst_lo, src_lo
478 if (!hi && is64)
479 emit(ARM_SUBS_R(dst, dst, src), ctx);
480 else if (hi && is64)
481 emit(ARM_SBC_R(dst, dst, src), ctx);
482 else
483 emit(ARM_SUB_R(dst, dst, src), ctx);
486 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
487 const bool hi, const u8 op, struct jit_ctx *ctx){
488 switch (BPF_OP(op)) {
489 /* dst = dst + src */
490 case BPF_ADD:
491 emit_a32_add_r(dst, src, is64, hi, ctx);
492 break;
493 /* dst = dst - src */
494 case BPF_SUB:
495 emit_a32_sub_r(dst, src, is64, hi, ctx);
496 break;
497 /* dst = dst | src */
498 case BPF_OR:
499 emit(ARM_ORR_R(dst, dst, src), ctx);
500 break;
501 /* dst = dst & src */
502 case BPF_AND:
503 emit(ARM_AND_R(dst, dst, src), ctx);
504 break;
505 /* dst = dst ^ src */
506 case BPF_XOR:
507 emit(ARM_EOR_R(dst, dst, src), ctx);
508 break;
509 /* dst = dst * src */
510 case BPF_MUL:
511 emit(ARM_MUL(dst, dst, src), ctx);
512 break;
513 /* dst = dst << src */
514 case BPF_LSH:
515 emit(ARM_LSL_R(dst, dst, src), ctx);
516 break;
517 /* dst = dst >> src */
518 case BPF_RSH:
519 emit(ARM_LSR_R(dst, dst, src), ctx);
520 break;
521 /* dst = dst >> src (signed)*/
522 case BPF_ARSH:
523 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
524 break;
528 /* ALU operation (32 bit)
529 * dst = dst (op) src
531 static inline void emit_a32_alu_r(const u8 dst, const u8 src,
532 bool dstk, bool sstk,
533 struct jit_ctx *ctx, const bool is64,
534 const bool hi, const u8 op) {
535 const u8 *tmp = bpf2a32[TMP_REG_1];
536 u8 rn = sstk ? tmp[1] : src;
538 if (sstk)
539 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
541 /* ALU operation */
542 if (dstk) {
543 emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
544 emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
545 emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
546 } else {
547 emit_alu_r(dst, rn, is64, hi, op, ctx);
551 /* ALU operation (64 bit) */
552 static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
553 const u8 src[], bool dstk,
554 bool sstk, struct jit_ctx *ctx,
555 const u8 op) {
556 emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
557 if (is64)
558 emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
559 else
560 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
563 /* dst = imm (4 bytes)*/
564 static inline void emit_a32_mov_r(const u8 dst, const u8 src,
565 bool dstk, bool sstk,
566 struct jit_ctx *ctx) {
567 const u8 *tmp = bpf2a32[TMP_REG_1];
568 u8 rt = sstk ? tmp[0] : src;
570 if (sstk)
571 emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
572 if (dstk)
573 emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
574 else
575 emit(ARM_MOV_R(dst, rt), ctx);
578 /* dst = src */
579 static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
580 const u8 src[], bool dstk,
581 bool sstk, struct jit_ctx *ctx) {
582 emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
583 if (is64) {
584 /* complete 8 byte move */
585 emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
586 } else {
587 /* Zero out high 4 bytes */
588 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
592 /* Shift operations */
593 static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
594 struct jit_ctx *ctx, const u8 op) {
595 const u8 *tmp = bpf2a32[TMP_REG_1];
596 u8 rd = dstk ? tmp[0] : dst;
598 if (dstk)
599 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
601 /* Do shift operation */
602 switch (op) {
603 case BPF_LSH:
604 emit(ARM_LSL_I(rd, rd, val), ctx);
605 break;
606 case BPF_RSH:
607 emit(ARM_LSR_I(rd, rd, val), ctx);
608 break;
609 case BPF_NEG:
610 emit(ARM_RSB_I(rd, rd, val), ctx);
611 break;
614 if (dstk)
615 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
618 /* dst = ~dst (64 bit) */
619 static inline void emit_a32_neg64(const u8 dst[], bool dstk,
620 struct jit_ctx *ctx){
621 const u8 *tmp = bpf2a32[TMP_REG_1];
622 u8 rd = dstk ? tmp[1] : dst[1];
623 u8 rm = dstk ? tmp[0] : dst[0];
625 /* Setup Operand */
626 if (dstk) {
627 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
628 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
631 /* Do Negate Operation */
632 emit(ARM_RSBS_I(rd, rd, 0), ctx);
633 emit(ARM_RSC_I(rm, rm, 0), ctx);
635 if (dstk) {
636 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
637 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
641 /* dst = dst << src */
642 static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
643 bool sstk, struct jit_ctx *ctx) {
644 const u8 *tmp = bpf2a32[TMP_REG_1];
645 const u8 *tmp2 = bpf2a32[TMP_REG_2];
647 /* Setup Operands */
648 u8 rt = sstk ? tmp2[1] : src_lo;
649 u8 rd = dstk ? tmp[1] : dst_lo;
650 u8 rm = dstk ? tmp[0] : dst_hi;
652 if (sstk)
653 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
654 if (dstk) {
655 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
656 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
659 /* Do LSH operation */
660 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
661 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
662 emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
663 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
664 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
665 emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
667 if (dstk) {
668 emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
669 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
670 } else {
671 emit(ARM_MOV_R(rd, ARM_LR), ctx);
672 emit(ARM_MOV_R(rm, ARM_IP), ctx);
676 /* dst = dst >> src (signed)*/
677 static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
678 bool sstk, struct jit_ctx *ctx) {
679 const u8 *tmp = bpf2a32[TMP_REG_1];
680 const u8 *tmp2 = bpf2a32[TMP_REG_2];
681 /* Setup Operands */
682 u8 rt = sstk ? tmp2[1] : src_lo;
683 u8 rd = dstk ? tmp[1] : dst_lo;
684 u8 rm = dstk ? tmp[0] : dst_hi;
686 if (sstk)
687 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
688 if (dstk) {
689 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
690 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
693 /* Do the ARSH operation */
694 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
695 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
696 emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
697 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
698 _emit(ARM_COND_MI, ARM_B(0), ctx);
699 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
700 emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
701 if (dstk) {
702 emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
703 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
704 } else {
705 emit(ARM_MOV_R(rd, ARM_LR), ctx);
706 emit(ARM_MOV_R(rm, ARM_IP), ctx);
710 /* dst = dst >> src */
711 static inline void emit_a32_lsr_r64(const u8 dst[], const u8 src[], bool dstk,
712 bool sstk, struct jit_ctx *ctx) {
713 const u8 *tmp = bpf2a32[TMP_REG_1];
714 const u8 *tmp2 = bpf2a32[TMP_REG_2];
715 /* Setup Operands */
716 u8 rt = sstk ? tmp2[1] : src_lo;
717 u8 rd = dstk ? tmp[1] : dst_lo;
718 u8 rm = dstk ? tmp[0] : dst_hi;
720 if (sstk)
721 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
722 if (dstk) {
723 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
724 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
727 /* Do LSH operation */
728 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
729 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
730 emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
731 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
732 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
733 emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
734 if (dstk) {
735 emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
736 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
737 } else {
738 emit(ARM_MOV_R(rd, ARM_LR), ctx);
739 emit(ARM_MOV_R(rm, ARM_IP), ctx);
743 /* dst = dst << val */
744 static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
745 const u32 val, struct jit_ctx *ctx){
746 const u8 *tmp = bpf2a32[TMP_REG_1];
747 const u8 *tmp2 = bpf2a32[TMP_REG_2];
748 /* Setup operands */
749 u8 rd = dstk ? tmp[1] : dst_lo;
750 u8 rm = dstk ? tmp[0] : dst_hi;
752 if (dstk) {
753 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
754 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
757 /* Do LSH operation */
758 if (val < 32) {
759 emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
760 emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
761 emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
762 } else {
763 if (val == 32)
764 emit(ARM_MOV_R(rm, rd), ctx);
765 else
766 emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
767 emit(ARM_EOR_R(rd, rd, rd), ctx);
770 if (dstk) {
771 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
772 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
776 /* dst = dst >> val */
777 static inline void emit_a32_lsr_i64(const u8 dst[], bool dstk,
778 const u32 val, struct jit_ctx *ctx) {
779 const u8 *tmp = bpf2a32[TMP_REG_1];
780 const u8 *tmp2 = bpf2a32[TMP_REG_2];
781 /* Setup operands */
782 u8 rd = dstk ? tmp[1] : dst_lo;
783 u8 rm = dstk ? tmp[0] : dst_hi;
785 if (dstk) {
786 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
787 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
790 /* Do LSR operation */
791 if (val < 32) {
792 emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
793 emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
794 emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
795 } else if (val == 32) {
796 emit(ARM_MOV_R(rd, rm), ctx);
797 emit(ARM_MOV_I(rm, 0), ctx);
798 } else {
799 emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
800 emit(ARM_MOV_I(rm, 0), ctx);
803 if (dstk) {
804 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
805 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
809 /* dst = dst >> val (signed) */
810 static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
811 const u32 val, struct jit_ctx *ctx){
812 const u8 *tmp = bpf2a32[TMP_REG_1];
813 const u8 *tmp2 = bpf2a32[TMP_REG_2];
814 /* Setup operands */
815 u8 rd = dstk ? tmp[1] : dst_lo;
816 u8 rm = dstk ? tmp[0] : dst_hi;
818 if (dstk) {
819 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
820 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
823 /* Do ARSH operation */
824 if (val < 32) {
825 emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
826 emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
827 emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
828 } else if (val == 32) {
829 emit(ARM_MOV_R(rd, rm), ctx);
830 emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
831 } else {
832 emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
833 emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
836 if (dstk) {
837 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
838 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
842 static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
843 bool sstk, struct jit_ctx *ctx) {
844 const u8 *tmp = bpf2a32[TMP_REG_1];
845 const u8 *tmp2 = bpf2a32[TMP_REG_2];
846 /* Setup operands for multiplication */
847 u8 rd = dstk ? tmp[1] : dst_lo;
848 u8 rm = dstk ? tmp[0] : dst_hi;
849 u8 rt = sstk ? tmp2[1] : src_lo;
850 u8 rn = sstk ? tmp2[0] : src_hi;
852 if (dstk) {
853 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
854 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
856 if (sstk) {
857 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
858 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
861 /* Do Multiplication */
862 emit(ARM_MUL(ARM_IP, rd, rn), ctx);
863 emit(ARM_MUL(ARM_LR, rm, rt), ctx);
864 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
866 emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
867 emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
868 if (dstk) {
869 emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
870 emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
871 } else {
872 emit(ARM_MOV_R(rd, ARM_IP), ctx);
876 /* *(size *)(dst + off) = src */
877 static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
878 const s32 off, struct jit_ctx *ctx, const u8 sz){
879 const u8 *tmp = bpf2a32[TMP_REG_1];
880 u8 rd = dstk ? tmp[1] : dst;
882 if (dstk)
883 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
884 if (off) {
885 emit_a32_mov_i(tmp[0], off, false, ctx);
886 emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
887 rd = tmp[0];
889 switch (sz) {
890 case BPF_W:
891 /* Store a Word */
892 emit(ARM_STR_I(src, rd, 0), ctx);
893 break;
894 case BPF_H:
895 /* Store a HalfWord */
896 emit(ARM_STRH_I(src, rd, 0), ctx);
897 break;
898 case BPF_B:
899 /* Store a Byte */
900 emit(ARM_STRB_I(src, rd, 0), ctx);
901 break;
905 /* dst = *(size*)(src + off) */
906 static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
907 s32 off, struct jit_ctx *ctx, const u8 sz){
908 const u8 *tmp = bpf2a32[TMP_REG_1];
909 const u8 *rd = dstk ? tmp : dst;
910 u8 rm = src;
911 s32 off_max;
913 if (sz == BPF_H)
914 off_max = 0xff;
915 else
916 off_max = 0xfff;
918 if (off < 0 || off > off_max) {
919 emit_a32_mov_i(tmp[0], off, false, ctx);
920 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
921 rm = tmp[0];
922 off = 0;
923 } else if (rd[1] == rm) {
924 emit(ARM_MOV_R(tmp[0], rm), ctx);
925 rm = tmp[0];
927 switch (sz) {
928 case BPF_B:
929 /* Load a Byte */
930 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
931 emit_a32_mov_i(dst[0], 0, dstk, ctx);
932 break;
933 case BPF_H:
934 /* Load a HalfWord */
935 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
936 emit_a32_mov_i(dst[0], 0, dstk, ctx);
937 break;
938 case BPF_W:
939 /* Load a Word */
940 emit(ARM_LDR_I(rd[1], rm, off), ctx);
941 emit_a32_mov_i(dst[0], 0, dstk, ctx);
942 break;
943 case BPF_DW:
944 /* Load a Double Word */
945 emit(ARM_LDR_I(rd[1], rm, off), ctx);
946 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
947 break;
949 if (dstk)
950 emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
951 if (dstk && sz == BPF_DW)
952 emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
955 /* Arithmatic Operation */
956 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
957 const u8 rn, struct jit_ctx *ctx, u8 op) {
958 switch (op) {
959 case BPF_JSET:
960 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
961 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
962 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
963 break;
964 case BPF_JEQ:
965 case BPF_JNE:
966 case BPF_JGT:
967 case BPF_JGE:
968 case BPF_JLE:
969 case BPF_JLT:
970 emit(ARM_CMP_R(rd, rm), ctx);
971 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
972 break;
973 case BPF_JSLE:
974 case BPF_JSGT:
975 emit(ARM_CMP_R(rn, rt), ctx);
976 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
977 break;
978 case BPF_JSLT:
979 case BPF_JSGE:
980 emit(ARM_CMP_R(rt, rn), ctx);
981 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
982 break;
986 static int out_offset = -1; /* initialized on the first pass of build_body() */
987 static int emit_bpf_tail_call(struct jit_ctx *ctx)
990 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
991 const u8 *r2 = bpf2a32[BPF_REG_2];
992 const u8 *r3 = bpf2a32[BPF_REG_3];
993 const u8 *tmp = bpf2a32[TMP_REG_1];
994 const u8 *tmp2 = bpf2a32[TMP_REG_2];
995 const u8 *tcc = bpf2a32[TCALL_CNT];
996 const int idx0 = ctx->idx;
997 #define cur_offset (ctx->idx - idx0)
998 #define jmp_offset (out_offset - (cur_offset) - 2)
999 u32 off, lo, hi;
1001 /* if (index >= array->map.max_entries)
1002 * goto out;
1004 off = offsetof(struct bpf_array, map.max_entries);
1005 /* array->map.max_entries */
1006 emit_a32_mov_i(tmp[1], off, false, ctx);
1007 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1008 emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
1009 /* index is 32-bit for arrays */
1010 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1011 /* index >= array->map.max_entries */
1012 emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
1013 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1015 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1016 * goto out;
1017 * tail_call_cnt++;
1019 lo = (u32)MAX_TAIL_CALL_CNT;
1020 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1021 emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1022 emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1023 emit(ARM_CMP_I(tmp[0], hi), ctx);
1024 _emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
1025 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1026 emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
1027 emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
1028 emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1029 emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1031 /* prog = array->ptrs[index]
1032 * if (prog == NULL)
1033 * goto out;
1035 off = offsetof(struct bpf_array, ptrs);
1036 emit_a32_mov_i(tmp[1], off, false, ctx);
1037 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1038 emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
1039 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1040 emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
1041 emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
1042 emit(ARM_CMP_I(tmp[1], 0), ctx);
1043 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1045 /* goto *(prog->bpf_func + prologue_size); */
1046 off = offsetof(struct bpf_prog, bpf_func);
1047 emit_a32_mov_i(tmp2[1], off, false, ctx);
1048 emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
1049 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1050 emit_bx_r(tmp[1], ctx);
1052 /* out: */
1053 if (out_offset == -1)
1054 out_offset = cur_offset;
1055 if (cur_offset != out_offset) {
1056 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1057 cur_offset, out_offset);
1058 return -1;
1060 return 0;
1061 #undef cur_offset
1062 #undef jmp_offset
1065 /* 0xabcd => 0xcdab */
1066 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1068 #if __LINUX_ARM_ARCH__ < 6
1069 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1071 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1072 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1073 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1074 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1075 #else /* ARMv6+ */
1076 emit(ARM_REV16(rd, rn), ctx);
1077 #endif
1080 /* 0xabcdefgh => 0xghefcdab */
1081 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1083 #if __LINUX_ARM_ARCH__ < 6
1084 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1086 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1087 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1088 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1090 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1091 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1092 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1093 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1094 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1095 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1096 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1098 #else /* ARMv6+ */
1099 emit(ARM_REV(rd, rn), ctx);
1100 #endif
1103 // push the scratch stack register on top of the stack
1104 static inline void emit_push_r64(const u8 src[], const u8 shift,
1105 struct jit_ctx *ctx)
1107 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1108 u16 reg_set = 0;
1110 emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
1111 emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
1113 reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
1114 emit(ARM_PUSH(reg_set), ctx);
1117 static void build_prologue(struct jit_ctx *ctx)
1119 const u8 r0 = bpf2a32[BPF_REG_0][1];
1120 const u8 r2 = bpf2a32[BPF_REG_1][1];
1121 const u8 r3 = bpf2a32[BPF_REG_1][0];
1122 const u8 r4 = bpf2a32[BPF_REG_6][1];
1123 const u8 fplo = bpf2a32[BPF_REG_FP][1];
1124 const u8 fphi = bpf2a32[BPF_REG_FP][0];
1125 const u8 *tcc = bpf2a32[TCALL_CNT];
1127 /* Save callee saved registers. */
1128 #ifdef CONFIG_FRAME_POINTER
1129 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1130 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1131 emit(ARM_PUSH(reg_set), ctx);
1132 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1133 #else
1134 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1135 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1136 #endif
1137 /* Save frame pointer for later */
1138 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1140 ctx->stack_size = imm8m(STACK_SIZE);
1142 /* Set up function call stack */
1143 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1145 /* Set up BPF prog stack base register */
1146 emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
1147 emit_a32_mov_i(fphi, 0, true, ctx);
1149 /* mov r4, 0 */
1150 emit(ARM_MOV_I(r4, 0), ctx);
1152 /* Move BPF_CTX to BPF_R1 */
1153 emit(ARM_MOV_R(r3, r4), ctx);
1154 emit(ARM_MOV_R(r2, r0), ctx);
1155 /* Initialize Tail Count */
1156 emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
1157 emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
1158 /* end of prologue */
1161 /* restore callee saved registers. */
1162 static void build_epilogue(struct jit_ctx *ctx)
1164 #ifdef CONFIG_FRAME_POINTER
1165 /* When using frame pointers, some additional registers need to
1166 * be loaded. */
1167 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1168 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1169 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1170 #else
1171 /* Restore callee saved registers. */
1172 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1173 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1174 #endif
1178 * Convert an eBPF instruction to native instruction, i.e
1179 * JITs an eBPF instruction.
1180 * Returns :
1181 * 0 - Successfully JITed an 8-byte eBPF instruction
1182 * >0 - Successfully JITed a 16-byte eBPF instruction
1183 * <0 - Failed to JIT.
1185 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1187 const u8 code = insn->code;
1188 const u8 *dst = bpf2a32[insn->dst_reg];
1189 const u8 *src = bpf2a32[insn->src_reg];
1190 const u8 *tmp = bpf2a32[TMP_REG_1];
1191 const u8 *tmp2 = bpf2a32[TMP_REG_2];
1192 const s16 off = insn->off;
1193 const s32 imm = insn->imm;
1194 const int i = insn - ctx->prog->insnsi;
1195 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1196 const bool dstk = is_on_stack(insn->dst_reg);
1197 const bool sstk = is_on_stack(insn->src_reg);
1198 u8 rd, rt, rm, rn;
1199 s32 jmp_offset;
1201 #define check_imm(bits, imm) do { \
1202 if ((((imm) > 0) && ((imm) >> (bits))) || \
1203 (((imm) < 0) && (~(imm) >> (bits)))) { \
1204 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1205 i, imm, imm); \
1206 return -EINVAL; \
1208 } while (0)
1209 #define check_imm24(imm) check_imm(24, imm)
1211 switch (code) {
1212 /* ALU operations */
1214 /* dst = src */
1215 case BPF_ALU | BPF_MOV | BPF_K:
1216 case BPF_ALU | BPF_MOV | BPF_X:
1217 case BPF_ALU64 | BPF_MOV | BPF_K:
1218 case BPF_ALU64 | BPF_MOV | BPF_X:
1219 switch (BPF_SRC(code)) {
1220 case BPF_X:
1221 emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
1222 break;
1223 case BPF_K:
1224 /* Sign-extend immediate value to destination reg */
1225 emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
1226 break;
1228 break;
1229 /* dst = dst + src/imm */
1230 /* dst = dst - src/imm */
1231 /* dst = dst | src/imm */
1232 /* dst = dst & src/imm */
1233 /* dst = dst ^ src/imm */
1234 /* dst = dst * src/imm */
1235 /* dst = dst << src */
1236 /* dst = dst >> src */
1237 case BPF_ALU | BPF_ADD | BPF_K:
1238 case BPF_ALU | BPF_ADD | BPF_X:
1239 case BPF_ALU | BPF_SUB | BPF_K:
1240 case BPF_ALU | BPF_SUB | BPF_X:
1241 case BPF_ALU | BPF_OR | BPF_K:
1242 case BPF_ALU | BPF_OR | BPF_X:
1243 case BPF_ALU | BPF_AND | BPF_K:
1244 case BPF_ALU | BPF_AND | BPF_X:
1245 case BPF_ALU | BPF_XOR | BPF_K:
1246 case BPF_ALU | BPF_XOR | BPF_X:
1247 case BPF_ALU | BPF_MUL | BPF_K:
1248 case BPF_ALU | BPF_MUL | BPF_X:
1249 case BPF_ALU | BPF_LSH | BPF_X:
1250 case BPF_ALU | BPF_RSH | BPF_X:
1251 case BPF_ALU | BPF_ARSH | BPF_K:
1252 case BPF_ALU | BPF_ARSH | BPF_X:
1253 case BPF_ALU64 | BPF_ADD | BPF_K:
1254 case BPF_ALU64 | BPF_ADD | BPF_X:
1255 case BPF_ALU64 | BPF_SUB | BPF_K:
1256 case BPF_ALU64 | BPF_SUB | BPF_X:
1257 case BPF_ALU64 | BPF_OR | BPF_K:
1258 case BPF_ALU64 | BPF_OR | BPF_X:
1259 case BPF_ALU64 | BPF_AND | BPF_K:
1260 case BPF_ALU64 | BPF_AND | BPF_X:
1261 case BPF_ALU64 | BPF_XOR | BPF_K:
1262 case BPF_ALU64 | BPF_XOR | BPF_X:
1263 switch (BPF_SRC(code)) {
1264 case BPF_X:
1265 emit_a32_alu_r64(is64, dst, src, dstk, sstk,
1266 ctx, BPF_OP(code));
1267 break;
1268 case BPF_K:
1269 /* Move immediate value to the temporary register
1270 * and then do the ALU operation on the temporary
1271 * register as this will sign-extend the immediate
1272 * value into temporary reg and then it would be
1273 * safe to do the operation on it.
1275 emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1276 emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
1277 ctx, BPF_OP(code));
1278 break;
1280 break;
1281 /* dst = dst / src(imm) */
1282 /* dst = dst % src(imm) */
1283 case BPF_ALU | BPF_DIV | BPF_K:
1284 case BPF_ALU | BPF_DIV | BPF_X:
1285 case BPF_ALU | BPF_MOD | BPF_K:
1286 case BPF_ALU | BPF_MOD | BPF_X:
1287 rt = src_lo;
1288 rd = dstk ? tmp2[1] : dst_lo;
1289 if (dstk)
1290 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1291 switch (BPF_SRC(code)) {
1292 case BPF_X:
1293 rt = sstk ? tmp2[0] : rt;
1294 if (sstk)
1295 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
1296 ctx);
1297 break;
1298 case BPF_K:
1299 rt = tmp2[0];
1300 emit_a32_mov_i(rt, imm, false, ctx);
1301 break;
1303 emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
1304 if (dstk)
1305 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1306 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1307 break;
1308 case BPF_ALU64 | BPF_DIV | BPF_K:
1309 case BPF_ALU64 | BPF_DIV | BPF_X:
1310 case BPF_ALU64 | BPF_MOD | BPF_K:
1311 case BPF_ALU64 | BPF_MOD | BPF_X:
1312 goto notyet;
1313 /* dst = dst >> imm */
1314 /* dst = dst << imm */
1315 case BPF_ALU | BPF_RSH | BPF_K:
1316 case BPF_ALU | BPF_LSH | BPF_K:
1317 if (unlikely(imm > 31))
1318 return -EINVAL;
1319 if (imm)
1320 emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
1321 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1322 break;
1323 /* dst = dst << imm */
1324 case BPF_ALU64 | BPF_LSH | BPF_K:
1325 if (unlikely(imm > 63))
1326 return -EINVAL;
1327 emit_a32_lsh_i64(dst, dstk, imm, ctx);
1328 break;
1329 /* dst = dst >> imm */
1330 case BPF_ALU64 | BPF_RSH | BPF_K:
1331 if (unlikely(imm > 63))
1332 return -EINVAL;
1333 emit_a32_lsr_i64(dst, dstk, imm, ctx);
1334 break;
1335 /* dst = dst << src */
1336 case BPF_ALU64 | BPF_LSH | BPF_X:
1337 emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
1338 break;
1339 /* dst = dst >> src */
1340 case BPF_ALU64 | BPF_RSH | BPF_X:
1341 emit_a32_lsr_r64(dst, src, dstk, sstk, ctx);
1342 break;
1343 /* dst = dst >> src (signed) */
1344 case BPF_ALU64 | BPF_ARSH | BPF_X:
1345 emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
1346 break;
1347 /* dst = dst >> imm (signed) */
1348 case BPF_ALU64 | BPF_ARSH | BPF_K:
1349 if (unlikely(imm > 63))
1350 return -EINVAL;
1351 emit_a32_arsh_i64(dst, dstk, imm, ctx);
1352 break;
1353 /* dst = ~dst */
1354 case BPF_ALU | BPF_NEG:
1355 emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
1356 emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1357 break;
1358 /* dst = ~dst (64 bit) */
1359 case BPF_ALU64 | BPF_NEG:
1360 emit_a32_neg64(dst, dstk, ctx);
1361 break;
1362 /* dst = dst * src/imm */
1363 case BPF_ALU64 | BPF_MUL | BPF_X:
1364 case BPF_ALU64 | BPF_MUL | BPF_K:
1365 switch (BPF_SRC(code)) {
1366 case BPF_X:
1367 emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
1368 break;
1369 case BPF_K:
1370 /* Move immediate value to the temporary register
1371 * and then do the multiplication on it as this
1372 * will sign-extend the immediate value into temp
1373 * reg then it would be safe to do the operation
1374 * on it.
1376 emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1377 emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
1378 break;
1380 break;
1381 /* dst = htole(dst) */
1382 /* dst = htobe(dst) */
1383 case BPF_ALU | BPF_END | BPF_FROM_LE:
1384 case BPF_ALU | BPF_END | BPF_FROM_BE:
1385 rd = dstk ? tmp[0] : dst_hi;
1386 rt = dstk ? tmp[1] : dst_lo;
1387 if (dstk) {
1388 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1389 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1391 if (BPF_SRC(code) == BPF_FROM_LE)
1392 goto emit_bswap_uxt;
1393 switch (imm) {
1394 case 16:
1395 emit_rev16(rt, rt, ctx);
1396 goto emit_bswap_uxt;
1397 case 32:
1398 emit_rev32(rt, rt, ctx);
1399 goto emit_bswap_uxt;
1400 case 64:
1401 emit_rev32(ARM_LR, rt, ctx);
1402 emit_rev32(rt, rd, ctx);
1403 emit(ARM_MOV_R(rd, ARM_LR), ctx);
1404 break;
1406 goto exit;
1407 emit_bswap_uxt:
1408 switch (imm) {
1409 case 16:
1410 /* zero-extend 16 bits into 64 bits */
1411 #if __LINUX_ARM_ARCH__ < 6
1412 emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
1413 emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
1414 #else /* ARMv6+ */
1415 emit(ARM_UXTH(rt, rt), ctx);
1416 #endif
1417 emit(ARM_EOR_R(rd, rd, rd), ctx);
1418 break;
1419 case 32:
1420 /* zero-extend 32 bits into 64 bits */
1421 emit(ARM_EOR_R(rd, rd, rd), ctx);
1422 break;
1423 case 64:
1424 /* nop */
1425 break;
1427 exit:
1428 if (dstk) {
1429 emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1430 emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1432 break;
1433 /* dst = imm64 */
1434 case BPF_LD | BPF_IMM | BPF_DW:
1436 const struct bpf_insn insn1 = insn[1];
1437 u32 hi, lo = imm;
1439 hi = insn1.imm;
1440 emit_a32_mov_i(dst_lo, lo, dstk, ctx);
1441 emit_a32_mov_i(dst_hi, hi, dstk, ctx);
1443 return 1;
1445 /* LDX: dst = *(size *)(src + off) */
1446 case BPF_LDX | BPF_MEM | BPF_W:
1447 case BPF_LDX | BPF_MEM | BPF_H:
1448 case BPF_LDX | BPF_MEM | BPF_B:
1449 case BPF_LDX | BPF_MEM | BPF_DW:
1450 rn = sstk ? tmp2[1] : src_lo;
1451 if (sstk)
1452 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1453 emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
1454 break;
1455 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1456 case BPF_LD | BPF_ABS | BPF_W:
1457 case BPF_LD | BPF_ABS | BPF_H:
1458 case BPF_LD | BPF_ABS | BPF_B:
1459 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1460 case BPF_LD | BPF_IND | BPF_W:
1461 case BPF_LD | BPF_IND | BPF_H:
1462 case BPF_LD | BPF_IND | BPF_B:
1464 const u8 r4 = bpf2a32[BPF_REG_6][1]; /* r4 = ptr to sk_buff */
1465 const u8 r0 = bpf2a32[BPF_REG_0][1]; /*r0: struct sk_buff *skb*/
1466 /* rtn value */
1467 const u8 r1 = bpf2a32[BPF_REG_0][0]; /* r1: int k */
1468 const u8 r2 = bpf2a32[BPF_REG_1][1]; /* r2: unsigned int size */
1469 const u8 r3 = bpf2a32[BPF_REG_1][0]; /* r3: void *buffer */
1470 const u8 r6 = bpf2a32[TMP_REG_1][1]; /* r6: void *(*func)(..) */
1471 int size;
1473 /* Setting up first argument */
1474 emit(ARM_MOV_R(r0, r4), ctx);
1476 /* Setting up second argument */
1477 emit_a32_mov_i(r1, imm, false, ctx);
1478 if (BPF_MODE(code) == BPF_IND)
1479 emit_a32_alu_r(r1, src_lo, false, sstk, ctx,
1480 false, false, BPF_ADD);
1482 /* Setting up third argument */
1483 switch (BPF_SIZE(code)) {
1484 case BPF_W:
1485 size = 4;
1486 break;
1487 case BPF_H:
1488 size = 2;
1489 break;
1490 case BPF_B:
1491 size = 1;
1492 break;
1493 default:
1494 return -EINVAL;
1496 emit_a32_mov_i(r2, size, false, ctx);
1498 /* Setting up fourth argument */
1499 emit(ARM_ADD_I(r3, ARM_SP, imm8m(SKB_BUFFER)), ctx);
1501 /* Setting up function pointer to call */
1502 emit_a32_mov_i(r6, (unsigned int)bpf_load_pointer, false, ctx);
1503 emit_blx_r(r6, ctx);
1505 emit(ARM_EOR_R(r1, r1, r1), ctx);
1506 /* Check if return address is NULL or not.
1507 * if NULL then jump to epilogue
1508 * else continue to load the value from retn address
1510 emit(ARM_CMP_I(r0, 0), ctx);
1511 jmp_offset = epilogue_offset(ctx);
1512 check_imm24(jmp_offset);
1513 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1515 /* Load value from the address */
1516 switch (BPF_SIZE(code)) {
1517 case BPF_W:
1518 emit(ARM_LDR_I(r0, r0, 0), ctx);
1519 emit_rev32(r0, r0, ctx);
1520 break;
1521 case BPF_H:
1522 emit(ARM_LDRH_I(r0, r0, 0), ctx);
1523 emit_rev16(r0, r0, ctx);
1524 break;
1525 case BPF_B:
1526 emit(ARM_LDRB_I(r0, r0, 0), ctx);
1527 /* No need to reverse */
1528 break;
1530 break;
1532 /* ST: *(size *)(dst + off) = imm */
1533 case BPF_ST | BPF_MEM | BPF_W:
1534 case BPF_ST | BPF_MEM | BPF_H:
1535 case BPF_ST | BPF_MEM | BPF_B:
1536 case BPF_ST | BPF_MEM | BPF_DW:
1537 switch (BPF_SIZE(code)) {
1538 case BPF_DW:
1539 /* Sign-extend immediate value into temp reg */
1540 emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1541 emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
1542 emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
1543 break;
1544 case BPF_W:
1545 case BPF_H:
1546 case BPF_B:
1547 emit_a32_mov_i(tmp2[1], imm, false, ctx);
1548 emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
1549 BPF_SIZE(code));
1550 break;
1552 break;
1553 /* STX XADD: lock *(u32 *)(dst + off) += src */
1554 case BPF_STX | BPF_XADD | BPF_W:
1555 /* STX XADD: lock *(u64 *)(dst + off) += src */
1556 case BPF_STX | BPF_XADD | BPF_DW:
1557 goto notyet;
1558 /* STX: *(size *)(dst + off) = src */
1559 case BPF_STX | BPF_MEM | BPF_W:
1560 case BPF_STX | BPF_MEM | BPF_H:
1561 case BPF_STX | BPF_MEM | BPF_B:
1562 case BPF_STX | BPF_MEM | BPF_DW:
1564 u8 sz = BPF_SIZE(code);
1566 rn = sstk ? tmp2[1] : src_lo;
1567 rm = sstk ? tmp2[0] : src_hi;
1568 if (sstk) {
1569 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1570 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1573 /* Store the value */
1574 if (BPF_SIZE(code) == BPF_DW) {
1575 emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
1576 emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
1577 } else {
1578 emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
1580 break;
1582 /* PC += off if dst == src */
1583 /* PC += off if dst > src */
1584 /* PC += off if dst >= src */
1585 /* PC += off if dst < src */
1586 /* PC += off if dst <= src */
1587 /* PC += off if dst != src */
1588 /* PC += off if dst > src (signed) */
1589 /* PC += off if dst >= src (signed) */
1590 /* PC += off if dst < src (signed) */
1591 /* PC += off if dst <= src (signed) */
1592 /* PC += off if dst & src */
1593 case BPF_JMP | BPF_JEQ | BPF_X:
1594 case BPF_JMP | BPF_JGT | BPF_X:
1595 case BPF_JMP | BPF_JGE | BPF_X:
1596 case BPF_JMP | BPF_JNE | BPF_X:
1597 case BPF_JMP | BPF_JSGT | BPF_X:
1598 case BPF_JMP | BPF_JSGE | BPF_X:
1599 case BPF_JMP | BPF_JSET | BPF_X:
1600 case BPF_JMP | BPF_JLE | BPF_X:
1601 case BPF_JMP | BPF_JLT | BPF_X:
1602 case BPF_JMP | BPF_JSLT | BPF_X:
1603 case BPF_JMP | BPF_JSLE | BPF_X:
1604 /* Setup source registers */
1605 rm = sstk ? tmp2[0] : src_hi;
1606 rn = sstk ? tmp2[1] : src_lo;
1607 if (sstk) {
1608 emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1609 emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1611 goto go_jmp;
1612 /* PC += off if dst == imm */
1613 /* PC += off if dst > imm */
1614 /* PC += off if dst >= imm */
1615 /* PC += off if dst < imm */
1616 /* PC += off if dst <= imm */
1617 /* PC += off if dst != imm */
1618 /* PC += off if dst > imm (signed) */
1619 /* PC += off if dst >= imm (signed) */
1620 /* PC += off if dst < imm (signed) */
1621 /* PC += off if dst <= imm (signed) */
1622 /* PC += off if dst & imm */
1623 case BPF_JMP | BPF_JEQ | BPF_K:
1624 case BPF_JMP | BPF_JGT | BPF_K:
1625 case BPF_JMP | BPF_JGE | BPF_K:
1626 case BPF_JMP | BPF_JNE | BPF_K:
1627 case BPF_JMP | BPF_JSGT | BPF_K:
1628 case BPF_JMP | BPF_JSGE | BPF_K:
1629 case BPF_JMP | BPF_JSET | BPF_K:
1630 case BPF_JMP | BPF_JLT | BPF_K:
1631 case BPF_JMP | BPF_JLE | BPF_K:
1632 case BPF_JMP | BPF_JSLT | BPF_K:
1633 case BPF_JMP | BPF_JSLE | BPF_K:
1634 if (off == 0)
1635 break;
1636 rm = tmp2[0];
1637 rn = tmp2[1];
1638 /* Sign-extend immediate value */
1639 emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1640 go_jmp:
1641 /* Setup destination register */
1642 rd = dstk ? tmp[0] : dst_hi;
1643 rt = dstk ? tmp[1] : dst_lo;
1644 if (dstk) {
1645 emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1646 emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1649 /* Check for the condition */
1650 emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
1652 /* Setup JUMP instruction */
1653 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1654 switch (BPF_OP(code)) {
1655 case BPF_JNE:
1656 case BPF_JSET:
1657 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1658 break;
1659 case BPF_JEQ:
1660 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1661 break;
1662 case BPF_JGT:
1663 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1664 break;
1665 case BPF_JGE:
1666 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1667 break;
1668 case BPF_JSGT:
1669 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1670 break;
1671 case BPF_JSGE:
1672 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1673 break;
1674 case BPF_JLE:
1675 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1676 break;
1677 case BPF_JLT:
1678 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1679 break;
1680 case BPF_JSLT:
1681 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1682 break;
1683 case BPF_JSLE:
1684 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1685 break;
1687 break;
1688 /* JMP OFF */
1689 case BPF_JMP | BPF_JA:
1691 if (off == 0)
1692 break;
1693 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1694 check_imm24(jmp_offset);
1695 emit(ARM_B(jmp_offset), ctx);
1696 break;
1698 /* tail call */
1699 case BPF_JMP | BPF_TAIL_CALL:
1700 if (emit_bpf_tail_call(ctx))
1701 return -EFAULT;
1702 break;
1703 /* function call */
1704 case BPF_JMP | BPF_CALL:
1706 const u8 *r0 = bpf2a32[BPF_REG_0];
1707 const u8 *r1 = bpf2a32[BPF_REG_1];
1708 const u8 *r2 = bpf2a32[BPF_REG_2];
1709 const u8 *r3 = bpf2a32[BPF_REG_3];
1710 const u8 *r4 = bpf2a32[BPF_REG_4];
1711 const u8 *r5 = bpf2a32[BPF_REG_5];
1712 const u32 func = (u32)__bpf_call_base + (u32)imm;
1714 emit_a32_mov_r64(true, r0, r1, false, false, ctx);
1715 emit_a32_mov_r64(true, r1, r2, false, true, ctx);
1716 emit_push_r64(r5, 0, ctx);
1717 emit_push_r64(r4, 8, ctx);
1718 emit_push_r64(r3, 16, ctx);
1720 emit_a32_mov_i(tmp[1], func, false, ctx);
1721 emit_blx_r(tmp[1], ctx);
1723 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1724 break;
1726 /* function return */
1727 case BPF_JMP | BPF_EXIT:
1728 /* Optimization: when last instruction is EXIT
1729 * simply fallthrough to epilogue.
1731 if (i == ctx->prog->len - 1)
1732 break;
1733 jmp_offset = epilogue_offset(ctx);
1734 check_imm24(jmp_offset);
1735 emit(ARM_B(jmp_offset), ctx);
1736 break;
1737 notyet:
1738 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1739 return -EFAULT;
1740 default:
1741 pr_err_once("unknown opcode %02x\n", code);
1742 return -EINVAL;
1745 if (ctx->flags & FLAG_IMM_OVERFLOW)
1747 * this instruction generated an overflow when
1748 * trying to access the literal pool, so
1749 * delegate this filter to the kernel interpreter.
1751 return -1;
1752 return 0;
1755 static int build_body(struct jit_ctx *ctx)
1757 const struct bpf_prog *prog = ctx->prog;
1758 unsigned int i;
1760 for (i = 0; i < prog->len; i++) {
1761 const struct bpf_insn *insn = &(prog->insnsi[i]);
1762 int ret;
1764 ret = build_insn(insn, ctx);
1766 /* It's used with loading the 64 bit immediate value. */
1767 if (ret > 0) {
1768 i++;
1769 if (ctx->target == NULL)
1770 ctx->offsets[i] = ctx->idx;
1771 continue;
1774 if (ctx->target == NULL)
1775 ctx->offsets[i] = ctx->idx;
1777 /* If unsuccesfull, return with error code */
1778 if (ret)
1779 return ret;
1781 return 0;
1784 static int validate_code(struct jit_ctx *ctx)
1786 int i;
1788 for (i = 0; i < ctx->idx; i++) {
1789 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1790 return -1;
1793 return 0;
1796 void bpf_jit_compile(struct bpf_prog *prog)
1798 /* Nothing to do here. We support Internal BPF. */
1801 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1803 struct bpf_prog *tmp, *orig_prog = prog;
1804 struct bpf_binary_header *header;
1805 bool tmp_blinded = false;
1806 struct jit_ctx ctx;
1807 unsigned int tmp_idx;
1808 unsigned int image_size;
1809 u8 *image_ptr;
1811 /* If BPF JIT was not enabled then we must fall back to
1812 * the interpreter.
1814 if (!prog->jit_requested)
1815 return orig_prog;
1817 /* If constant blinding was enabled and we failed during blinding
1818 * then we must fall back to the interpreter. Otherwise, we save
1819 * the new JITed code.
1821 tmp = bpf_jit_blind_constants(prog);
1823 if (IS_ERR(tmp))
1824 return orig_prog;
1825 if (tmp != prog) {
1826 tmp_blinded = true;
1827 prog = tmp;
1830 memset(&ctx, 0, sizeof(ctx));
1831 ctx.prog = prog;
1833 /* Not able to allocate memory for offsets[] , then
1834 * we must fall back to the interpreter
1836 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1837 if (ctx.offsets == NULL) {
1838 prog = orig_prog;
1839 goto out;
1842 /* 1) fake pass to find in the length of the JITed code,
1843 * to compute ctx->offsets and other context variables
1844 * needed to compute final JITed code.
1845 * Also, calculate random starting pointer/start of JITed code
1846 * which is prefixed by random number of fault instructions.
1848 * If the first pass fails then there is no chance of it
1849 * being successful in the second pass, so just fall back
1850 * to the interpreter.
1852 if (build_body(&ctx)) {
1853 prog = orig_prog;
1854 goto out_off;
1857 tmp_idx = ctx.idx;
1858 build_prologue(&ctx);
1859 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1861 ctx.epilogue_offset = ctx.idx;
1863 #if __LINUX_ARM_ARCH__ < 7
1864 tmp_idx = ctx.idx;
1865 build_epilogue(&ctx);
1866 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1868 ctx.idx += ctx.imm_count;
1869 if (ctx.imm_count) {
1870 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1871 if (ctx.imms == NULL) {
1872 prog = orig_prog;
1873 goto out_off;
1876 #else
1877 /* there's nothing about the epilogue on ARMv7 */
1878 build_epilogue(&ctx);
1879 #endif
1880 /* Now we can get the actual image size of the JITed arm code.
1881 * Currently, we are not considering the THUMB-2 instructions
1882 * for jit, although it can decrease the size of the image.
1884 * As each arm instruction is of length 32bit, we are translating
1885 * number of JITed intructions into the size required to store these
1886 * JITed code.
1888 image_size = sizeof(u32) * ctx.idx;
1890 /* Now we know the size of the structure to make */
1891 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1892 sizeof(u32), jit_fill_hole);
1893 /* Not able to allocate memory for the structure then
1894 * we must fall back to the interpretation
1896 if (header == NULL) {
1897 prog = orig_prog;
1898 goto out_imms;
1901 /* 2.) Actual pass to generate final JIT code */
1902 ctx.target = (u32 *) image_ptr;
1903 ctx.idx = 0;
1905 build_prologue(&ctx);
1907 /* If building the body of the JITed code fails somehow,
1908 * we fall back to the interpretation.
1910 if (build_body(&ctx) < 0) {
1911 image_ptr = NULL;
1912 bpf_jit_binary_free(header);
1913 prog = orig_prog;
1914 goto out_imms;
1916 build_epilogue(&ctx);
1918 /* 3.) Extra pass to validate JITed Code */
1919 if (validate_code(&ctx)) {
1920 image_ptr = NULL;
1921 bpf_jit_binary_free(header);
1922 prog = orig_prog;
1923 goto out_imms;
1925 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1927 if (bpf_jit_enable > 1)
1928 /* there are 2 passes here */
1929 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1931 set_memory_ro((unsigned long)header, header->pages);
1932 prog->bpf_func = (void *)ctx.target;
1933 prog->jited = 1;
1934 prog->jited_len = image_size;
1936 out_imms:
1937 #if __LINUX_ARM_ARCH__ < 7
1938 if (ctx.imm_count)
1939 kfree(ctx.imms);
1940 #endif
1941 out_off:
1942 kfree(ctx.offsets);
1943 out:
1944 if (tmp_blinded)
1945 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1946 tmp : orig_prog);
1947 return prog;