Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / s390 / kernel / smp.c
bloba4a9fe1934e9f350765a68c7d517e242380023a4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <linux/kprobes.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/vdso.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/topology.h>
59 #include "entry.h"
61 enum {
62 ec_schedule = 0,
63 ec_call_function_single,
64 ec_stop_cpu,
67 enum {
68 CPU_STATE_STANDBY,
69 CPU_STATE_CONFIGURED,
72 static DEFINE_PER_CPU(struct cpu *, cpu_device);
74 struct pcpu {
75 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
76 unsigned long ec_mask; /* bit mask for ec_xxx functions */
77 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
78 signed char state; /* physical cpu state */
79 signed char polarization; /* physical polarization */
80 u16 address; /* physical cpu address */
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
96 static unsigned int smp_max_threads __initdata = -1U;
98 static int __init early_nosmt(char *s)
100 smp_max_threads = 1;
101 return 0;
103 early_param("nosmt", early_nosmt);
105 static int __init early_smt(char *s)
107 get_option(&s, &smp_max_threads);
108 return 0;
110 early_param("smt", early_smt);
113 * The smp_cpu_state_mutex must be held when changing the state or polarization
114 * member of a pcpu data structure within the pcpu_devices arreay.
116 DEFINE_MUTEX(smp_cpu_state_mutex);
119 * Signal processor helper functions.
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 int cc;
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, NULL);
127 if (cc != SIGP_CC_BUSY)
128 return cc;
129 cpu_relax();
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 int cc, retry;
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
139 if (cc != SIGP_CC_BUSY)
140 break;
141 if (retry >= 3)
142 udelay(10);
144 return cc;
147 static inline int pcpu_stopped(struct pcpu *pcpu)
149 u32 uninitialized_var(status);
151 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
152 0, &status) != SIGP_CC_STATUS_STORED)
153 return 0;
154 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 static inline int pcpu_running(struct pcpu *pcpu)
159 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
160 0, NULL) != SIGP_CC_STATUS_STORED)
161 return 1;
162 /* Status stored condition code is equivalent to cpu not running. */
163 return 0;
167 * Find struct pcpu by cpu address.
169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 int cpu;
173 for_each_cpu(cpu, mask)
174 if (pcpu_devices[cpu].address == address)
175 return pcpu_devices + cpu;
176 return NULL;
179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 int order;
183 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
184 return;
185 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
186 pcpu->ec_clk = get_tod_clock_fast();
187 pcpu_sigp_retry(pcpu, order, 0);
190 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
193 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195 unsigned long async_stack, panic_stack;
196 struct lowcore *lc;
198 if (pcpu != &pcpu_devices[0]) {
199 pcpu->lowcore = (struct lowcore *)
200 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
201 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
202 panic_stack = __get_free_page(GFP_KERNEL);
203 if (!pcpu->lowcore || !panic_stack || !async_stack)
204 goto out;
205 } else {
206 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
207 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
209 lc = pcpu->lowcore;
210 memcpy(lc, &S390_lowcore, 512);
211 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
212 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
213 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
214 lc->cpu_nr = cpu;
215 lc->spinlock_lockval = arch_spin_lockval(cpu);
216 lc->spinlock_index = 0;
217 lc->br_r1_trampoline = 0x07f1; /* br %r1 */
218 if (nmi_alloc_per_cpu(lc))
219 goto out;
220 if (vdso_alloc_per_cpu(lc))
221 goto out_mcesa;
222 lowcore_ptr[cpu] = lc;
223 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
224 return 0;
226 out_mcesa:
227 nmi_free_per_cpu(lc);
228 out:
229 if (pcpu != &pcpu_devices[0]) {
230 free_page(panic_stack);
231 free_pages(async_stack, ASYNC_ORDER);
232 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
234 return -ENOMEM;
237 #ifdef CONFIG_HOTPLUG_CPU
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
241 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
242 lowcore_ptr[pcpu - pcpu_devices] = NULL;
243 vdso_free_per_cpu(pcpu->lowcore);
244 nmi_free_per_cpu(pcpu->lowcore);
245 if (pcpu == &pcpu_devices[0])
246 return;
247 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
248 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
249 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
252 #endif /* CONFIG_HOTPLUG_CPU */
254 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
256 struct lowcore *lc = pcpu->lowcore;
258 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
259 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
260 lc->cpu_nr = cpu;
261 lc->spinlock_lockval = arch_spin_lockval(cpu);
262 lc->spinlock_index = 0;
263 lc->percpu_offset = __per_cpu_offset[cpu];
264 lc->kernel_asce = S390_lowcore.kernel_asce;
265 lc->machine_flags = S390_lowcore.machine_flags;
266 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
267 __ctl_store(lc->cregs_save_area, 0, 15);
268 save_access_regs((unsigned int *) lc->access_regs_save_area);
269 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
270 sizeof(lc->stfle_fac_list));
271 memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
272 sizeof(lc->alt_stfle_fac_list));
273 arch_spin_lock_setup(cpu);
276 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
278 struct lowcore *lc = pcpu->lowcore;
280 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
281 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
282 lc->current_task = (unsigned long) tsk;
283 lc->lpp = LPP_MAGIC;
284 lc->current_pid = tsk->pid;
285 lc->user_timer = tsk->thread.user_timer;
286 lc->guest_timer = tsk->thread.guest_timer;
287 lc->system_timer = tsk->thread.system_timer;
288 lc->hardirq_timer = tsk->thread.hardirq_timer;
289 lc->softirq_timer = tsk->thread.softirq_timer;
290 lc->steal_timer = 0;
293 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
295 struct lowcore *lc = pcpu->lowcore;
297 lc->restart_stack = lc->kernel_stack;
298 lc->restart_fn = (unsigned long) func;
299 lc->restart_data = (unsigned long) data;
300 lc->restart_source = -1UL;
301 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
305 * Call function via PSW restart on pcpu and stop the current cpu.
307 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
308 void *data, unsigned long stack)
310 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
311 unsigned long source_cpu = stap();
313 __load_psw_mask(PSW_KERNEL_BITS);
314 if (pcpu->address == source_cpu)
315 func(data); /* should not return */
316 /* Stop target cpu (if func returns this stops the current cpu). */
317 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
318 /* Restart func on the target cpu and stop the current cpu. */
319 mem_assign_absolute(lc->restart_stack, stack);
320 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
321 mem_assign_absolute(lc->restart_data, (unsigned long) data);
322 mem_assign_absolute(lc->restart_source, source_cpu);
323 __bpon();
324 asm volatile(
325 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
326 " brc 2,0b # busy, try again\n"
327 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
328 " brc 2,1b # busy, try again\n"
329 : : "d" (pcpu->address), "d" (source_cpu),
330 "K" (SIGP_RESTART), "K" (SIGP_STOP)
331 : "0", "1", "cc");
332 for (;;) ;
336 * Enable additional logical cpus for multi-threading.
338 static int pcpu_set_smt(unsigned int mtid)
340 int cc;
342 if (smp_cpu_mtid == mtid)
343 return 0;
344 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
345 if (cc == 0) {
346 smp_cpu_mtid = mtid;
347 smp_cpu_mt_shift = 0;
348 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
349 smp_cpu_mt_shift++;
350 pcpu_devices[0].address = stap();
352 return cc;
356 * Call function on an online CPU.
358 void smp_call_online_cpu(void (*func)(void *), void *data)
360 struct pcpu *pcpu;
362 /* Use the current cpu if it is online. */
363 pcpu = pcpu_find_address(cpu_online_mask, stap());
364 if (!pcpu)
365 /* Use the first online cpu. */
366 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
367 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
371 * Call function on the ipl CPU.
373 void smp_call_ipl_cpu(void (*func)(void *), void *data)
375 pcpu_delegate(&pcpu_devices[0], func, data,
376 pcpu_devices->lowcore->panic_stack -
377 PANIC_FRAME_OFFSET + PAGE_SIZE);
380 int smp_find_processor_id(u16 address)
382 int cpu;
384 for_each_present_cpu(cpu)
385 if (pcpu_devices[cpu].address == address)
386 return cpu;
387 return -1;
390 bool arch_vcpu_is_preempted(int cpu)
392 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
393 return false;
394 if (pcpu_running(pcpu_devices + cpu))
395 return false;
396 return true;
398 EXPORT_SYMBOL(arch_vcpu_is_preempted);
400 void smp_yield_cpu(int cpu)
402 if (MACHINE_HAS_DIAG9C) {
403 diag_stat_inc_norecursion(DIAG_STAT_X09C);
404 asm volatile("diag %0,0,0x9c"
405 : : "d" (pcpu_devices[cpu].address));
406 } else if (MACHINE_HAS_DIAG44) {
407 diag_stat_inc_norecursion(DIAG_STAT_X044);
408 asm volatile("diag 0,0,0x44");
413 * Send cpus emergency shutdown signal. This gives the cpus the
414 * opportunity to complete outstanding interrupts.
416 void notrace smp_emergency_stop(void)
418 cpumask_t cpumask;
419 u64 end;
420 int cpu;
422 cpumask_copy(&cpumask, cpu_online_mask);
423 cpumask_clear_cpu(smp_processor_id(), &cpumask);
425 end = get_tod_clock() + (1000000UL << 12);
426 for_each_cpu(cpu, &cpumask) {
427 struct pcpu *pcpu = pcpu_devices + cpu;
428 set_bit(ec_stop_cpu, &pcpu->ec_mask);
429 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
430 0, NULL) == SIGP_CC_BUSY &&
431 get_tod_clock() < end)
432 cpu_relax();
434 while (get_tod_clock() < end) {
435 for_each_cpu(cpu, &cpumask)
436 if (pcpu_stopped(pcpu_devices + cpu))
437 cpumask_clear_cpu(cpu, &cpumask);
438 if (cpumask_empty(&cpumask))
439 break;
440 cpu_relax();
443 NOKPROBE_SYMBOL(smp_emergency_stop);
446 * Stop all cpus but the current one.
448 void smp_send_stop(void)
450 int cpu;
452 /* Disable all interrupts/machine checks */
453 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
454 trace_hardirqs_off();
456 debug_set_critical();
458 if (oops_in_progress)
459 smp_emergency_stop();
461 /* stop all processors */
462 for_each_online_cpu(cpu) {
463 if (cpu == smp_processor_id())
464 continue;
465 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
466 while (!pcpu_stopped(pcpu_devices + cpu))
467 cpu_relax();
472 * This is the main routine where commands issued by other
473 * cpus are handled.
475 static void smp_handle_ext_call(void)
477 unsigned long bits;
479 /* handle bit signal external calls */
480 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
481 if (test_bit(ec_stop_cpu, &bits))
482 smp_stop_cpu();
483 if (test_bit(ec_schedule, &bits))
484 scheduler_ipi();
485 if (test_bit(ec_call_function_single, &bits))
486 generic_smp_call_function_single_interrupt();
489 static void do_ext_call_interrupt(struct ext_code ext_code,
490 unsigned int param32, unsigned long param64)
492 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
493 smp_handle_ext_call();
496 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
498 int cpu;
500 for_each_cpu(cpu, mask)
501 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
504 void arch_send_call_function_single_ipi(int cpu)
506 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
510 * this function sends a 'reschedule' IPI to another CPU.
511 * it goes straight through and wastes no time serializing
512 * anything. Worst case is that we lose a reschedule ...
514 void smp_send_reschedule(int cpu)
516 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
520 * parameter area for the set/clear control bit callbacks
522 struct ec_creg_mask_parms {
523 unsigned long orval;
524 unsigned long andval;
525 int cr;
529 * callback for setting/clearing control bits
531 static void smp_ctl_bit_callback(void *info)
533 struct ec_creg_mask_parms *pp = info;
534 unsigned long cregs[16];
536 __ctl_store(cregs, 0, 15);
537 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
538 __ctl_load(cregs, 0, 15);
542 * Set a bit in a control register of all cpus
544 void smp_ctl_set_bit(int cr, int bit)
546 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
548 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
550 EXPORT_SYMBOL(smp_ctl_set_bit);
553 * Clear a bit in a control register of all cpus
555 void smp_ctl_clear_bit(int cr, int bit)
557 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
559 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
561 EXPORT_SYMBOL(smp_ctl_clear_bit);
563 #ifdef CONFIG_CRASH_DUMP
565 int smp_store_status(int cpu)
567 struct pcpu *pcpu = pcpu_devices + cpu;
568 unsigned long pa;
570 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
571 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
572 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
573 return -EIO;
574 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
575 return 0;
576 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
577 if (MACHINE_HAS_GS)
578 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
579 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
580 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
581 return -EIO;
582 return 0;
586 * Collect CPU state of the previous, crashed system.
587 * There are four cases:
588 * 1) standard zfcp dump
589 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
590 * The state for all CPUs except the boot CPU needs to be collected
591 * with sigp stop-and-store-status. The boot CPU state is located in
592 * the absolute lowcore of the memory stored in the HSA. The zcore code
593 * will copy the boot CPU state from the HSA.
594 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
595 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
596 * The state for all CPUs except the boot CPU needs to be collected
597 * with sigp stop-and-store-status. The firmware or the boot-loader
598 * stored the registers of the boot CPU in the absolute lowcore in the
599 * memory of the old system.
600 * 3) kdump and the old kernel did not store the CPU state,
601 * or stand-alone kdump for DASD
602 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
603 * The state for all CPUs except the boot CPU needs to be collected
604 * with sigp stop-and-store-status. The kexec code or the boot-loader
605 * stored the registers of the boot CPU in the memory of the old system.
606 * 4) kdump and the old kernel stored the CPU state
607 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
608 * This case does not exist for s390 anymore, setup_arch explicitly
609 * deactivates the elfcorehdr= kernel parameter
611 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
612 bool is_boot_cpu, unsigned long page)
614 __vector128 *vxrs = (__vector128 *) page;
616 if (is_boot_cpu)
617 vxrs = boot_cpu_vector_save_area;
618 else
619 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
620 save_area_add_vxrs(sa, vxrs);
623 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
624 bool is_boot_cpu, unsigned long page)
626 void *regs = (void *) page;
628 if (is_boot_cpu)
629 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
630 else
631 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
632 save_area_add_regs(sa, regs);
635 void __init smp_save_dump_cpus(void)
637 int addr, boot_cpu_addr, max_cpu_addr;
638 struct save_area *sa;
639 unsigned long page;
640 bool is_boot_cpu;
642 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
643 /* No previous system present, normal boot. */
644 return;
645 /* Allocate a page as dumping area for the store status sigps */
646 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
647 /* Set multi-threading state to the previous system. */
648 pcpu_set_smt(sclp.mtid_prev);
649 boot_cpu_addr = stap();
650 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
651 for (addr = 0; addr <= max_cpu_addr; addr++) {
652 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
653 SIGP_CC_NOT_OPERATIONAL)
654 continue;
655 is_boot_cpu = (addr == boot_cpu_addr);
656 /* Allocate save area */
657 sa = save_area_alloc(is_boot_cpu);
658 if (!sa)
659 panic("could not allocate memory for save area\n");
660 if (MACHINE_HAS_VX)
661 /* Get the vector registers */
662 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
664 * For a zfcp dump OLDMEM_BASE == NULL and the registers
665 * of the boot CPU are stored in the HSA. To retrieve
666 * these registers an SCLP request is required which is
667 * done by drivers/s390/char/zcore.c:init_cpu_info()
669 if (!is_boot_cpu || OLDMEM_BASE)
670 /* Get the CPU registers */
671 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
673 memblock_free(page, PAGE_SIZE);
674 diag308_reset();
675 pcpu_set_smt(0);
677 #endif /* CONFIG_CRASH_DUMP */
679 void smp_cpu_set_polarization(int cpu, int val)
681 pcpu_devices[cpu].polarization = val;
684 int smp_cpu_get_polarization(int cpu)
686 return pcpu_devices[cpu].polarization;
689 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
691 static int use_sigp_detection;
692 int address;
694 if (use_sigp_detection || sclp_get_core_info(info, early)) {
695 use_sigp_detection = 1;
696 for (address = 0;
697 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
698 address += (1U << smp_cpu_mt_shift)) {
699 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
700 SIGP_CC_NOT_OPERATIONAL)
701 continue;
702 info->core[info->configured].core_id =
703 address >> smp_cpu_mt_shift;
704 info->configured++;
706 info->combined = info->configured;
710 static int smp_add_present_cpu(int cpu);
712 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
714 struct pcpu *pcpu;
715 cpumask_t avail;
716 int cpu, nr, i, j;
717 u16 address;
719 nr = 0;
720 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
721 cpu = cpumask_first(&avail);
722 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
723 if (sclp.has_core_type && info->core[i].type != boot_core_type)
724 continue;
725 address = info->core[i].core_id << smp_cpu_mt_shift;
726 for (j = 0; j <= smp_cpu_mtid; j++) {
727 if (pcpu_find_address(cpu_present_mask, address + j))
728 continue;
729 pcpu = pcpu_devices + cpu;
730 pcpu->address = address + j;
731 pcpu->state =
732 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
733 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
734 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
735 set_cpu_present(cpu, true);
736 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
737 set_cpu_present(cpu, false);
738 else
739 nr++;
740 cpu = cpumask_next(cpu, &avail);
741 if (cpu >= nr_cpu_ids)
742 break;
745 return nr;
748 void __init smp_detect_cpus(void)
750 unsigned int cpu, mtid, c_cpus, s_cpus;
751 struct sclp_core_info *info;
752 u16 address;
754 /* Get CPU information */
755 info = memblock_virt_alloc(sizeof(*info), 8);
756 smp_get_core_info(info, 1);
757 /* Find boot CPU type */
758 if (sclp.has_core_type) {
759 address = stap();
760 for (cpu = 0; cpu < info->combined; cpu++)
761 if (info->core[cpu].core_id == address) {
762 /* The boot cpu dictates the cpu type. */
763 boot_core_type = info->core[cpu].type;
764 break;
766 if (cpu >= info->combined)
767 panic("Could not find boot CPU type");
770 /* Set multi-threading state for the current system */
771 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
772 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
773 pcpu_set_smt(mtid);
775 /* Print number of CPUs */
776 c_cpus = s_cpus = 0;
777 for (cpu = 0; cpu < info->combined; cpu++) {
778 if (sclp.has_core_type &&
779 info->core[cpu].type != boot_core_type)
780 continue;
781 if (cpu < info->configured)
782 c_cpus += smp_cpu_mtid + 1;
783 else
784 s_cpus += smp_cpu_mtid + 1;
786 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
788 /* Add CPUs present at boot */
789 get_online_cpus();
790 __smp_rescan_cpus(info, 0);
791 put_online_cpus();
792 memblock_free_early((unsigned long)info, sizeof(*info));
796 * Activate a secondary processor.
798 static void smp_start_secondary(void *cpuvoid)
800 int cpu = smp_processor_id();
802 S390_lowcore.last_update_clock = get_tod_clock();
803 S390_lowcore.restart_stack = (unsigned long) restart_stack;
804 S390_lowcore.restart_fn = (unsigned long) do_restart;
805 S390_lowcore.restart_data = 0;
806 S390_lowcore.restart_source = -1UL;
807 restore_access_regs(S390_lowcore.access_regs_save_area);
808 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
809 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
810 cpu_init();
811 preempt_disable();
812 init_cpu_timer();
813 vtime_init();
814 pfault_init();
815 notify_cpu_starting(cpu);
816 if (topology_cpu_dedicated(cpu))
817 set_cpu_flag(CIF_DEDICATED_CPU);
818 else
819 clear_cpu_flag(CIF_DEDICATED_CPU);
820 set_cpu_online(cpu, true);
821 inc_irq_stat(CPU_RST);
822 local_irq_enable();
823 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
826 /* Upping and downing of CPUs */
827 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
829 struct pcpu *pcpu;
830 int base, i, rc;
832 pcpu = pcpu_devices + cpu;
833 if (pcpu->state != CPU_STATE_CONFIGURED)
834 return -EIO;
835 base = smp_get_base_cpu(cpu);
836 for (i = 0; i <= smp_cpu_mtid; i++) {
837 if (base + i < nr_cpu_ids)
838 if (cpu_online(base + i))
839 break;
842 * If this is the first CPU of the core to get online
843 * do an initial CPU reset.
845 if (i > smp_cpu_mtid &&
846 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
847 SIGP_CC_ORDER_CODE_ACCEPTED)
848 return -EIO;
850 rc = pcpu_alloc_lowcore(pcpu, cpu);
851 if (rc)
852 return rc;
853 pcpu_prepare_secondary(pcpu, cpu);
854 pcpu_attach_task(pcpu, tidle);
855 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
856 /* Wait until cpu puts itself in the online & active maps */
857 while (!cpu_online(cpu))
858 cpu_relax();
859 return 0;
862 static unsigned int setup_possible_cpus __initdata;
864 static int __init _setup_possible_cpus(char *s)
866 get_option(&s, &setup_possible_cpus);
867 return 0;
869 early_param("possible_cpus", _setup_possible_cpus);
871 #ifdef CONFIG_HOTPLUG_CPU
873 int __cpu_disable(void)
875 unsigned long cregs[16];
877 /* Handle possible pending IPIs */
878 smp_handle_ext_call();
879 set_cpu_online(smp_processor_id(), false);
880 /* Disable pseudo page faults on this cpu. */
881 pfault_fini();
882 /* Disable interrupt sources via control register. */
883 __ctl_store(cregs, 0, 15);
884 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
885 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
886 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
887 __ctl_load(cregs, 0, 15);
888 clear_cpu_flag(CIF_NOHZ_DELAY);
889 return 0;
892 void __cpu_die(unsigned int cpu)
894 struct pcpu *pcpu;
896 /* Wait until target cpu is down */
897 pcpu = pcpu_devices + cpu;
898 while (!pcpu_stopped(pcpu))
899 cpu_relax();
900 pcpu_free_lowcore(pcpu);
901 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
902 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
905 void __noreturn cpu_die(void)
907 idle_task_exit();
908 __bpon();
909 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
910 for (;;) ;
913 #endif /* CONFIG_HOTPLUG_CPU */
915 void __init smp_fill_possible_mask(void)
917 unsigned int possible, sclp_max, cpu;
919 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
920 sclp_max = min(smp_max_threads, sclp_max);
921 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
922 possible = setup_possible_cpus ?: nr_cpu_ids;
923 possible = min(possible, sclp_max);
924 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
925 set_cpu_possible(cpu, true);
928 void __init smp_prepare_cpus(unsigned int max_cpus)
930 /* request the 0x1201 emergency signal external interrupt */
931 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
932 panic("Couldn't request external interrupt 0x1201");
933 /* request the 0x1202 external call external interrupt */
934 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
935 panic("Couldn't request external interrupt 0x1202");
938 void __init smp_prepare_boot_cpu(void)
940 struct pcpu *pcpu = pcpu_devices;
942 WARN_ON(!cpu_present(0) || !cpu_online(0));
943 pcpu->state = CPU_STATE_CONFIGURED;
944 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
945 S390_lowcore.percpu_offset = __per_cpu_offset[0];
946 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
949 void __init smp_cpus_done(unsigned int max_cpus)
953 void __init smp_setup_processor_id(void)
955 pcpu_devices[0].address = stap();
956 S390_lowcore.cpu_nr = 0;
957 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
958 S390_lowcore.spinlock_index = 0;
962 * the frequency of the profiling timer can be changed
963 * by writing a multiplier value into /proc/profile.
965 * usually you want to run this on all CPUs ;)
967 int setup_profiling_timer(unsigned int multiplier)
969 return 0;
972 #ifdef CONFIG_HOTPLUG_CPU
973 static ssize_t cpu_configure_show(struct device *dev,
974 struct device_attribute *attr, char *buf)
976 ssize_t count;
978 mutex_lock(&smp_cpu_state_mutex);
979 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
980 mutex_unlock(&smp_cpu_state_mutex);
981 return count;
984 static ssize_t cpu_configure_store(struct device *dev,
985 struct device_attribute *attr,
986 const char *buf, size_t count)
988 struct pcpu *pcpu;
989 int cpu, val, rc, i;
990 char delim;
992 if (sscanf(buf, "%d %c", &val, &delim) != 1)
993 return -EINVAL;
994 if (val != 0 && val != 1)
995 return -EINVAL;
996 get_online_cpus();
997 mutex_lock(&smp_cpu_state_mutex);
998 rc = -EBUSY;
999 /* disallow configuration changes of online cpus and cpu 0 */
1000 cpu = dev->id;
1001 cpu = smp_get_base_cpu(cpu);
1002 if (cpu == 0)
1003 goto out;
1004 for (i = 0; i <= smp_cpu_mtid; i++)
1005 if (cpu_online(cpu + i))
1006 goto out;
1007 pcpu = pcpu_devices + cpu;
1008 rc = 0;
1009 switch (val) {
1010 case 0:
1011 if (pcpu->state != CPU_STATE_CONFIGURED)
1012 break;
1013 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1014 if (rc)
1015 break;
1016 for (i = 0; i <= smp_cpu_mtid; i++) {
1017 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1018 continue;
1019 pcpu[i].state = CPU_STATE_STANDBY;
1020 smp_cpu_set_polarization(cpu + i,
1021 POLARIZATION_UNKNOWN);
1023 topology_expect_change();
1024 break;
1025 case 1:
1026 if (pcpu->state != CPU_STATE_STANDBY)
1027 break;
1028 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1029 if (rc)
1030 break;
1031 for (i = 0; i <= smp_cpu_mtid; i++) {
1032 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1033 continue;
1034 pcpu[i].state = CPU_STATE_CONFIGURED;
1035 smp_cpu_set_polarization(cpu + i,
1036 POLARIZATION_UNKNOWN);
1038 topology_expect_change();
1039 break;
1040 default:
1041 break;
1043 out:
1044 mutex_unlock(&smp_cpu_state_mutex);
1045 put_online_cpus();
1046 return rc ? rc : count;
1048 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1049 #endif /* CONFIG_HOTPLUG_CPU */
1051 static ssize_t show_cpu_address(struct device *dev,
1052 struct device_attribute *attr, char *buf)
1054 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1056 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1058 static struct attribute *cpu_common_attrs[] = {
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 &dev_attr_configure.attr,
1061 #endif
1062 &dev_attr_address.attr,
1063 NULL,
1066 static struct attribute_group cpu_common_attr_group = {
1067 .attrs = cpu_common_attrs,
1070 static struct attribute *cpu_online_attrs[] = {
1071 &dev_attr_idle_count.attr,
1072 &dev_attr_idle_time_us.attr,
1073 NULL,
1076 static struct attribute_group cpu_online_attr_group = {
1077 .attrs = cpu_online_attrs,
1080 static int smp_cpu_online(unsigned int cpu)
1082 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1084 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1086 static int smp_cpu_pre_down(unsigned int cpu)
1088 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1090 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1091 return 0;
1094 static int smp_add_present_cpu(int cpu)
1096 struct device *s;
1097 struct cpu *c;
1098 int rc;
1100 c = kzalloc(sizeof(*c), GFP_KERNEL);
1101 if (!c)
1102 return -ENOMEM;
1103 per_cpu(cpu_device, cpu) = c;
1104 s = &c->dev;
1105 c->hotpluggable = 1;
1106 rc = register_cpu(c, cpu);
1107 if (rc)
1108 goto out;
1109 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1110 if (rc)
1111 goto out_cpu;
1112 rc = topology_cpu_init(c);
1113 if (rc)
1114 goto out_topology;
1115 return 0;
1117 out_topology:
1118 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1119 out_cpu:
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 unregister_cpu(c);
1122 #endif
1123 out:
1124 return rc;
1127 #ifdef CONFIG_HOTPLUG_CPU
1129 int __ref smp_rescan_cpus(void)
1131 struct sclp_core_info *info;
1132 int nr;
1134 info = kzalloc(sizeof(*info), GFP_KERNEL);
1135 if (!info)
1136 return -ENOMEM;
1137 smp_get_core_info(info, 0);
1138 get_online_cpus();
1139 mutex_lock(&smp_cpu_state_mutex);
1140 nr = __smp_rescan_cpus(info, 1);
1141 mutex_unlock(&smp_cpu_state_mutex);
1142 put_online_cpus();
1143 kfree(info);
1144 if (nr)
1145 topology_schedule_update();
1146 return 0;
1149 static ssize_t __ref rescan_store(struct device *dev,
1150 struct device_attribute *attr,
1151 const char *buf,
1152 size_t count)
1154 int rc;
1156 rc = smp_rescan_cpus();
1157 return rc ? rc : count;
1159 static DEVICE_ATTR_WO(rescan);
1160 #endif /* CONFIG_HOTPLUG_CPU */
1162 static int __init s390_smp_init(void)
1164 int cpu, rc = 0;
1166 #ifdef CONFIG_HOTPLUG_CPU
1167 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1168 if (rc)
1169 return rc;
1170 #endif
1171 for_each_present_cpu(cpu) {
1172 rc = smp_add_present_cpu(cpu);
1173 if (rc)
1174 goto out;
1177 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1178 smp_cpu_online, smp_cpu_pre_down);
1179 rc = rc <= 0 ? rc : 0;
1180 out:
1181 return rc;
1183 subsys_initcall(s390_smp_init);