2 * Low level x86 E820 memory map handling functions.
4 * The firmware and bootloader passes us the "E820 table", which is the primary
5 * physical memory layout description available about x86 systems.
7 * The kernel takes the E820 memory layout and optionally modifies it with
8 * quirks and other tweaks, and feeds that into the generic Linux memory
9 * allocation code routines via a platform independent interface (memblock, etc.).
11 #include <linux/crash_dump.h>
12 #include <linux/bootmem.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
23 * We organize the E820 table into three main data structures:
25 * - 'e820_table_firmware': the original firmware version passed to us by the
26 * bootloader - not modified by the kernel. It is composed of two parts:
27 * the first 128 E820 memory entries in boot_params.e820_table and the remaining
28 * (if any) entries of the SETUP_E820_EXT nodes. We use this to:
30 * - inform the user about the firmware's notion of memory layout
31 * via /sys/firmware/memmap
33 * - the hibernation code uses it to generate a kernel-independent MD5
34 * fingerprint of the physical memory layout of a system.
36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
37 * passed to us by the bootloader - the major difference between
38 * e820_table_firmware[] and this one is that, the latter marks the setup_data
39 * list created by the EFI boot stub as reserved, so that kexec can reuse the
40 * setup_data information in the second kernel. Besides, e820_table_kexec[]
41 * might also be modified by the kexec itself to fake a mptable.
44 * - kexec, which is a bootloader in disguise, uses the original E820
45 * layout to pass to the kexec-ed kernel. This way the original kernel
46 * can have a restricted E820 map while the kexec()-ed kexec-kernel
47 * can have access to full memory - etc.
49 * - 'e820_table': this is the main E820 table that is massaged by the
50 * low level x86 platform code, or modified by boot parameters, before
51 * passed on to higher level MM layers.
53 * Once the E820 map has been converted to the standard Linux memory layout
54 * information its role stops - modifying it has no effect and does not get
55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
56 * specific memory layout data during early bootup.
58 static struct e820_table e820_table_init __initdata
;
59 static struct e820_table e820_table_kexec_init __initdata
;
60 static struct e820_table e820_table_firmware_init __initdata
;
62 struct e820_table
*e820_table __refdata
= &e820_table_init
;
63 struct e820_table
*e820_table_kexec __refdata
= &e820_table_kexec_init
;
64 struct e820_table
*e820_table_firmware __refdata
= &e820_table_firmware_init
;
66 /* For PCI or other memory-mapped resources */
67 unsigned long pci_mem_start
= 0xaeedbabe;
69 EXPORT_SYMBOL(pci_mem_start
);
73 * This function checks if any part of the range <start,end> is mapped
76 bool e820__mapped_any(u64 start
, u64 end
, enum e820_type type
)
80 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
81 struct e820_entry
*entry
= &e820_table
->entries
[i
];
83 if (type
&& entry
->type
!= type
)
85 if (entry
->addr
>= end
|| entry
->addr
+ entry
->size
<= start
)
91 EXPORT_SYMBOL_GPL(e820__mapped_any
);
94 * This function checks if the entire <start,end> range is mapped with 'type'.
96 * Note: this function only works correctly once the E820 table is sorted and
97 * not-overlapping (at least for the range specified), which is the case normally.
99 static struct e820_entry
*__e820__mapped_all(u64 start
, u64 end
,
104 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
105 struct e820_entry
*entry
= &e820_table
->entries
[i
];
107 if (type
&& entry
->type
!= type
)
110 /* Is the region (part) in overlap with the current region? */
111 if (entry
->addr
>= end
|| entry
->addr
+ entry
->size
<= start
)
115 * If the region is at the beginning of <start,end> we move
116 * 'start' to the end of the region since it's ok until there
118 if (entry
->addr
<= start
)
119 start
= entry
->addr
+ entry
->size
;
122 * If 'start' is now at or beyond 'end', we're done, full
123 * coverage of the desired range exists:
133 * This function checks if the entire range <start,end> is mapped with type.
135 bool __init
e820__mapped_all(u64 start
, u64 end
, enum e820_type type
)
137 return __e820__mapped_all(start
, end
, type
);
141 * This function returns the type associated with the range <start,end>.
143 int e820__get_entry_type(u64 start
, u64 end
)
145 struct e820_entry
*entry
= __e820__mapped_all(start
, end
, 0);
147 return entry
? entry
->type
: -EINVAL
;
151 * Add a memory region to the kernel E820 map.
153 static void __init
__e820__range_add(struct e820_table
*table
, u64 start
, u64 size
, enum e820_type type
)
155 int x
= table
->nr_entries
;
157 if (x
>= ARRAY_SIZE(table
->entries
)) {
158 pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start
, start
+ size
- 1);
162 table
->entries
[x
].addr
= start
;
163 table
->entries
[x
].size
= size
;
164 table
->entries
[x
].type
= type
;
168 void __init
e820__range_add(u64 start
, u64 size
, enum e820_type type
)
170 __e820__range_add(e820_table
, start
, size
, type
);
173 static void __init
e820_print_type(enum e820_type type
)
176 case E820_TYPE_RAM
: /* Fall through: */
177 case E820_TYPE_RESERVED_KERN
: pr_cont("usable"); break;
178 case E820_TYPE_RESERVED
: pr_cont("reserved"); break;
179 case E820_TYPE_ACPI
: pr_cont("ACPI data"); break;
180 case E820_TYPE_NVS
: pr_cont("ACPI NVS"); break;
181 case E820_TYPE_UNUSABLE
: pr_cont("unusable"); break;
182 case E820_TYPE_PMEM
: /* Fall through: */
183 case E820_TYPE_PRAM
: pr_cont("persistent (type %u)", type
); break;
184 default: pr_cont("type %u", type
); break;
188 void __init
e820__print_table(char *who
)
192 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
193 pr_info("%s: [mem %#018Lx-%#018Lx] ", who
,
194 e820_table
->entries
[i
].addr
,
195 e820_table
->entries
[i
].addr
+ e820_table
->entries
[i
].size
- 1);
197 e820_print_type(e820_table
->entries
[i
].type
);
203 * Sanitize an E820 map.
205 * Some E820 layouts include overlapping entries. The following
206 * replaces the original E820 map with a new one, removing overlaps,
207 * and resolving conflicting memory types in favor of highest
210 * The input parameter 'entries' points to an array of 'struct
211 * e820_entry' which on entry has elements in the range [0, *nr_entries)
212 * valid, and which has space for up to max_nr_entries entries.
213 * On return, the resulting sanitized E820 map entries will be in
214 * overwritten in the same location, starting at 'entries'.
216 * The integer pointed to by nr_entries must be valid on entry (the
217 * current number of valid entries located at 'entries'). If the
218 * sanitizing succeeds the *nr_entries will be updated with the new
219 * number of valid entries (something no more than max_nr_entries).
221 * The return value from e820__update_table() is zero if it
222 * successfully 'sanitized' the map entries passed in, and is -1
223 * if it did nothing, which can happen if either of (1) it was
224 * only passed one map entry, or (2) any of the input map entries
225 * were invalid (start + size < start, meaning that the size was
226 * so big the described memory range wrapped around through zero.)
228 * Visually we're performing the following
229 * (1,2,3,4 = memory types)...
231 * Sample memory map (w/overlaps):
232 * ____22__________________
233 * ______________________4_
234 * ____1111________________
235 * _44_____________________
236 * 11111111________________
237 * ____________________33__
238 * ___________44___________
239 * __________33333_________
240 * ______________22________
241 * ___________________2222_
242 * _________111111111______
243 * _____________________11_
244 * _________________4______
246 * Sanitized equivalent (no overlap):
247 * 1_______________________
248 * _44_____________________
249 * ___1____________________
250 * ____22__________________
251 * ______11________________
252 * _________1______________
253 * __________3_____________
254 * ___________44___________
255 * _____________33_________
256 * _______________2________
257 * ________________1_______
258 * _________________4______
259 * ___________________2____
260 * ____________________33__
261 * ______________________4_
263 struct change_member
{
264 /* Pointer to the original entry: */
265 struct e820_entry
*entry
;
266 /* Address for this change point: */
267 unsigned long long addr
;
270 static struct change_member change_point_list
[2*E820_MAX_ENTRIES
] __initdata
;
271 static struct change_member
*change_point
[2*E820_MAX_ENTRIES
] __initdata
;
272 static struct e820_entry
*overlap_list
[E820_MAX_ENTRIES
] __initdata
;
273 static struct e820_entry new_entries
[E820_MAX_ENTRIES
] __initdata
;
275 static int __init
cpcompare(const void *a
, const void *b
)
277 struct change_member
* const *app
= a
, * const *bpp
= b
;
278 const struct change_member
*ap
= *app
, *bp
= *bpp
;
281 * Inputs are pointers to two elements of change_point[]. If their
282 * addresses are not equal, their difference dominates. If the addresses
283 * are equal, then consider one that represents the end of its region
284 * to be greater than one that does not.
286 if (ap
->addr
!= bp
->addr
)
287 return ap
->addr
> bp
->addr
? 1 : -1;
289 return (ap
->addr
!= ap
->entry
->addr
) - (bp
->addr
!= bp
->entry
->addr
);
292 int __init
e820__update_table(struct e820_table
*table
)
294 struct e820_entry
*entries
= table
->entries
;
295 u32 max_nr_entries
= ARRAY_SIZE(table
->entries
);
296 enum e820_type current_type
, last_type
;
297 unsigned long long last_addr
;
298 u32 new_nr_entries
, overlap_entries
;
299 u32 i
, chg_idx
, chg_nr
;
301 /* If there's only one memory region, don't bother: */
302 if (table
->nr_entries
< 2)
305 BUG_ON(table
->nr_entries
> max_nr_entries
);
307 /* Bail out if we find any unreasonable addresses in the map: */
308 for (i
= 0; i
< table
->nr_entries
; i
++) {
309 if (entries
[i
].addr
+ entries
[i
].size
< entries
[i
].addr
)
313 /* Create pointers for initial change-point information (for sorting): */
314 for (i
= 0; i
< 2 * table
->nr_entries
; i
++)
315 change_point
[i
] = &change_point_list
[i
];
318 * Record all known change-points (starting and ending addresses),
319 * omitting empty memory regions:
322 for (i
= 0; i
< table
->nr_entries
; i
++) {
323 if (entries
[i
].size
!= 0) {
324 change_point
[chg_idx
]->addr
= entries
[i
].addr
;
325 change_point
[chg_idx
++]->entry
= &entries
[i
];
326 change_point
[chg_idx
]->addr
= entries
[i
].addr
+ entries
[i
].size
;
327 change_point
[chg_idx
++]->entry
= &entries
[i
];
332 /* Sort change-point list by memory addresses (low -> high): */
333 sort(change_point
, chg_nr
, sizeof(*change_point
), cpcompare
, NULL
);
335 /* Create a new memory map, removing overlaps: */
336 overlap_entries
= 0; /* Number of entries in the overlap table */
337 new_nr_entries
= 0; /* Index for creating new map entries */
338 last_type
= 0; /* Start with undefined memory type */
339 last_addr
= 0; /* Start with 0 as last starting address */
341 /* Loop through change-points, determining effect on the new map: */
342 for (chg_idx
= 0; chg_idx
< chg_nr
; chg_idx
++) {
343 /* Keep track of all overlapping entries */
344 if (change_point
[chg_idx
]->addr
== change_point
[chg_idx
]->entry
->addr
) {
345 /* Add map entry to overlap list (> 1 entry implies an overlap) */
346 overlap_list
[overlap_entries
++] = change_point
[chg_idx
]->entry
;
348 /* Remove entry from list (order independent, so swap with last): */
349 for (i
= 0; i
< overlap_entries
; i
++) {
350 if (overlap_list
[i
] == change_point
[chg_idx
]->entry
)
351 overlap_list
[i
] = overlap_list
[overlap_entries
-1];
356 * If there are overlapping entries, decide which
357 * "type" to use (larger value takes precedence --
358 * 1=usable, 2,3,4,4+=unusable)
361 for (i
= 0; i
< overlap_entries
; i
++) {
362 if (overlap_list
[i
]->type
> current_type
)
363 current_type
= overlap_list
[i
]->type
;
366 /* Continue building up new map based on this information: */
367 if (current_type
!= last_type
|| current_type
== E820_TYPE_PRAM
) {
368 if (last_type
!= 0) {
369 new_entries
[new_nr_entries
].size
= change_point
[chg_idx
]->addr
- last_addr
;
370 /* Move forward only if the new size was non-zero: */
371 if (new_entries
[new_nr_entries
].size
!= 0)
372 /* No more space left for new entries? */
373 if (++new_nr_entries
>= max_nr_entries
)
376 if (current_type
!= 0) {
377 new_entries
[new_nr_entries
].addr
= change_point
[chg_idx
]->addr
;
378 new_entries
[new_nr_entries
].type
= current_type
;
379 last_addr
= change_point
[chg_idx
]->addr
;
381 last_type
= current_type
;
385 /* Copy the new entries into the original location: */
386 memcpy(entries
, new_entries
, new_nr_entries
*sizeof(*entries
));
387 table
->nr_entries
= new_nr_entries
;
392 static int __init
__append_e820_table(struct boot_e820_entry
*entries
, u32 nr_entries
)
394 struct boot_e820_entry
*entry
= entries
;
397 u64 start
= entry
->addr
;
398 u64 size
= entry
->size
;
399 u64 end
= start
+ size
- 1;
400 u32 type
= entry
->type
;
402 /* Ignore the entry on 64-bit overflow: */
403 if (start
> end
&& likely(size
))
406 e820__range_add(start
, size
, type
);
415 * Copy the BIOS E820 map into a safe place.
417 * Sanity-check it while we're at it..
419 * If we're lucky and live on a modern system, the setup code
420 * will have given us a memory map that we can use to properly
421 * set up memory. If we aren't, we'll fake a memory map.
423 static int __init
append_e820_table(struct boot_e820_entry
*entries
, u32 nr_entries
)
425 /* Only one memory region (or negative)? Ignore it */
429 return __append_e820_table(entries
, nr_entries
);
433 __e820__range_update(struct e820_table
*table
, u64 start
, u64 size
, enum e820_type old_type
, enum e820_type new_type
)
437 u64 real_updated_size
= 0;
439 BUG_ON(old_type
== new_type
);
441 if (size
> (ULLONG_MAX
- start
))
442 size
= ULLONG_MAX
- start
;
445 printk(KERN_DEBUG
"e820: update [mem %#010Lx-%#010Lx] ", start
, end
- 1);
446 e820_print_type(old_type
);
448 e820_print_type(new_type
);
451 for (i
= 0; i
< table
->nr_entries
; i
++) {
452 struct e820_entry
*entry
= &table
->entries
[i
];
453 u64 final_start
, final_end
;
456 if (entry
->type
!= old_type
)
459 entry_end
= entry
->addr
+ entry
->size
;
461 /* Completely covered by new range? */
462 if (entry
->addr
>= start
&& entry_end
<= end
) {
463 entry
->type
= new_type
;
464 real_updated_size
+= entry
->size
;
468 /* New range is completely covered? */
469 if (entry
->addr
< start
&& entry_end
> end
) {
470 __e820__range_add(table
, start
, size
, new_type
);
471 __e820__range_add(table
, end
, entry_end
- end
, entry
->type
);
472 entry
->size
= start
- entry
->addr
;
473 real_updated_size
+= size
;
477 /* Partially covered: */
478 final_start
= max(start
, entry
->addr
);
479 final_end
= min(end
, entry_end
);
480 if (final_start
>= final_end
)
483 __e820__range_add(table
, final_start
, final_end
- final_start
, new_type
);
485 real_updated_size
+= final_end
- final_start
;
488 * Left range could be head or tail, so need to update
491 entry
->size
-= final_end
- final_start
;
492 if (entry
->addr
< final_start
)
495 entry
->addr
= final_end
;
497 return real_updated_size
;
500 u64 __init
e820__range_update(u64 start
, u64 size
, enum e820_type old_type
, enum e820_type new_type
)
502 return __e820__range_update(e820_table
, start
, size
, old_type
, new_type
);
505 static u64 __init
e820__range_update_kexec(u64 start
, u64 size
, enum e820_type old_type
, enum e820_type new_type
)
507 return __e820__range_update(e820_table_kexec
, start
, size
, old_type
, new_type
);
510 /* Remove a range of memory from the E820 table: */
511 u64 __init
e820__range_remove(u64 start
, u64 size
, enum e820_type old_type
, bool check_type
)
515 u64 real_removed_size
= 0;
517 if (size
> (ULLONG_MAX
- start
))
518 size
= ULLONG_MAX
- start
;
521 printk(KERN_DEBUG
"e820: remove [mem %#010Lx-%#010Lx] ", start
, end
- 1);
523 e820_print_type(old_type
);
526 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
527 struct e820_entry
*entry
= &e820_table
->entries
[i
];
528 u64 final_start
, final_end
;
531 if (check_type
&& entry
->type
!= old_type
)
534 entry_end
= entry
->addr
+ entry
->size
;
536 /* Completely covered? */
537 if (entry
->addr
>= start
&& entry_end
<= end
) {
538 real_removed_size
+= entry
->size
;
539 memset(entry
, 0, sizeof(*entry
));
543 /* Is the new range completely covered? */
544 if (entry
->addr
< start
&& entry_end
> end
) {
545 e820__range_add(end
, entry_end
- end
, entry
->type
);
546 entry
->size
= start
- entry
->addr
;
547 real_removed_size
+= size
;
551 /* Partially covered: */
552 final_start
= max(start
, entry
->addr
);
553 final_end
= min(end
, entry_end
);
554 if (final_start
>= final_end
)
557 real_removed_size
+= final_end
- final_start
;
560 * Left range could be head or tail, so need to update
563 entry
->size
-= final_end
- final_start
;
564 if (entry
->addr
< final_start
)
567 entry
->addr
= final_end
;
569 return real_removed_size
;
572 void __init
e820__update_table_print(void)
574 if (e820__update_table(e820_table
))
577 pr_info("e820: modified physical RAM map:\n");
578 e820__print_table("modified");
581 static void __init
e820__update_table_kexec(void)
583 e820__update_table(e820_table_kexec
);
586 #define MAX_GAP_END 0x100000000ull
589 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
591 static int __init
e820_search_gap(unsigned long *gapstart
, unsigned long *gapsize
)
593 unsigned long long last
= MAX_GAP_END
;
594 int i
= e820_table
->nr_entries
;
598 unsigned long long start
= e820_table
->entries
[i
].addr
;
599 unsigned long long end
= start
+ e820_table
->entries
[i
].size
;
602 * Since "last" is at most 4GB, we know we'll
603 * fit in 32 bits if this condition is true:
606 unsigned long gap
= last
- end
;
608 if (gap
>= *gapsize
) {
621 * Search for the biggest gap in the low 32 bits of the E820
622 * memory space. We pass this space to the PCI subsystem, so
623 * that it can assign MMIO resources for hotplug or
624 * unconfigured devices in.
626 * Hopefully the BIOS let enough space left.
628 __init
void e820__setup_pci_gap(void)
630 unsigned long gapstart
, gapsize
;
634 found
= e820_search_gap(&gapstart
, &gapsize
);
638 gapstart
= (max_pfn
<< PAGE_SHIFT
) + 1024*1024;
640 "e820: Cannot find an available gap in the 32-bit address range\n"
641 "e820: PCI devices with unassigned 32-bit BARs may not work!\n");
643 gapstart
= 0x10000000;
648 * e820__reserve_resources_late() protects stolen RAM already:
650 pci_mem_start
= gapstart
;
652 pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart
, gapstart
+ gapsize
- 1);
656 * Called late during init, in free_initmem().
658 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
660 * Copy them to a (usually much smaller) dynamically allocated area that is
661 * sized precisely after the number of e820 entries.
663 * This is done after we've performed all the fixes and tweaks to the tables.
664 * All functions which modify them are __init functions, which won't exist
665 * after free_initmem().
667 __init
void e820__reallocate_tables(void)
669 struct e820_table
*n
;
672 size
= offsetof(struct e820_table
, entries
) + sizeof(struct e820_entry
)*e820_table
->nr_entries
;
673 n
= kmalloc(size
, GFP_KERNEL
);
675 memcpy(n
, e820_table
, size
);
678 size
= offsetof(struct e820_table
, entries
) + sizeof(struct e820_entry
)*e820_table_kexec
->nr_entries
;
679 n
= kmalloc(size
, GFP_KERNEL
);
681 memcpy(n
, e820_table_kexec
, size
);
682 e820_table_kexec
= n
;
684 size
= offsetof(struct e820_table
, entries
) + sizeof(struct e820_entry
)*e820_table_firmware
->nr_entries
;
685 n
= kmalloc(size
, GFP_KERNEL
);
687 memcpy(n
, e820_table_firmware
, size
);
688 e820_table_firmware
= n
;
692 * Because of the small fixed size of struct boot_params, only the first
693 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
694 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
695 * struct setup_data, which is parsed here.
697 void __init
e820__memory_setup_extended(u64 phys_addr
, u32 data_len
)
700 struct boot_e820_entry
*extmap
;
701 struct setup_data
*sdata
;
703 sdata
= early_memremap(phys_addr
, data_len
);
704 entries
= sdata
->len
/ sizeof(*extmap
);
705 extmap
= (struct boot_e820_entry
*)(sdata
->data
);
707 __append_e820_table(extmap
, entries
);
708 e820__update_table(e820_table
);
710 memcpy(e820_table_kexec
, e820_table
, sizeof(*e820_table_kexec
));
711 memcpy(e820_table_firmware
, e820_table
, sizeof(*e820_table_firmware
));
713 early_memunmap(sdata
, data_len
);
714 pr_info("e820: extended physical RAM map:\n");
715 e820__print_table("extended");
719 * Find the ranges of physical addresses that do not correspond to
720 * E820 RAM areas and register the corresponding pages as 'nosave' for
721 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
723 * This function requires the E820 map to be sorted and without any
724 * overlapping entries.
726 void __init
e820__register_nosave_regions(unsigned long limit_pfn
)
729 unsigned long pfn
= 0;
731 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
732 struct e820_entry
*entry
= &e820_table
->entries
[i
];
734 if (pfn
< PFN_UP(entry
->addr
))
735 register_nosave_region(pfn
, PFN_UP(entry
->addr
));
737 pfn
= PFN_DOWN(entry
->addr
+ entry
->size
);
739 if (entry
->type
!= E820_TYPE_RAM
&& entry
->type
!= E820_TYPE_RESERVED_KERN
)
740 register_nosave_region(PFN_UP(entry
->addr
), pfn
);
742 if (pfn
>= limit_pfn
)
749 * Register ACPI NVS memory regions, so that we can save/restore them during
750 * hibernation and the subsequent resume:
752 static int __init
e820__register_nvs_regions(void)
756 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
757 struct e820_entry
*entry
= &e820_table
->entries
[i
];
759 if (entry
->type
== E820_TYPE_NVS
)
760 acpi_nvs_register(entry
->addr
, entry
->size
);
765 core_initcall(e820__register_nvs_regions
);
769 * Allocate the requested number of bytes with the requsted alignment
770 * and return (the physical address) to the caller. Also register this
771 * range in the 'kexec' E820 table as a reserved range.
773 * This allows kexec to fake a new mptable, as if it came from the real
776 u64 __init
e820__memblock_alloc_reserved(u64 size
, u64 align
)
780 addr
= __memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
782 e820__range_update_kexec(addr
, size
, E820_TYPE_RAM
, E820_TYPE_RESERVED
);
783 pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
784 e820__update_table_kexec();
791 # ifdef CONFIG_X86_PAE
792 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
794 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
796 #else /* CONFIG_X86_32 */
797 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
801 * Find the highest page frame number we have available
803 static unsigned long __init
e820_end_pfn(unsigned long limit_pfn
, enum e820_type type
)
806 unsigned long last_pfn
= 0;
807 unsigned long max_arch_pfn
= MAX_ARCH_PFN
;
809 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
810 struct e820_entry
*entry
= &e820_table
->entries
[i
];
811 unsigned long start_pfn
;
812 unsigned long end_pfn
;
814 if (entry
->type
!= type
)
817 start_pfn
= entry
->addr
>> PAGE_SHIFT
;
818 end_pfn
= (entry
->addr
+ entry
->size
) >> PAGE_SHIFT
;
820 if (start_pfn
>= limit_pfn
)
822 if (end_pfn
> limit_pfn
) {
823 last_pfn
= limit_pfn
;
826 if (end_pfn
> last_pfn
)
830 if (last_pfn
> max_arch_pfn
)
831 last_pfn
= max_arch_pfn
;
833 pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
834 last_pfn
, max_arch_pfn
);
838 unsigned long __init
e820__end_of_ram_pfn(void)
840 return e820_end_pfn(MAX_ARCH_PFN
, E820_TYPE_RAM
);
843 unsigned long __init
e820__end_of_low_ram_pfn(void)
845 return e820_end_pfn(1UL << (32 - PAGE_SHIFT
), E820_TYPE_RAM
);
848 static void __init
early_panic(char *msg
)
854 static int userdef __initdata
;
856 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
857 static int __init
parse_memopt(char *p
)
864 if (!strcmp(p
, "nopentium")) {
866 setup_clear_cpu_cap(X86_FEATURE_PSE
);
869 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
875 mem_size
= memparse(p
, &p
);
877 /* Don't remove all memory when getting "mem={invalid}" parameter: */
881 e820__range_remove(mem_size
, ULLONG_MAX
- mem_size
, E820_TYPE_RAM
, 1);
885 early_param("mem", parse_memopt
);
887 static int __init
parse_memmap_one(char *p
)
890 u64 start_at
, mem_size
;
895 if (!strncmp(p
, "exactmap", 8)) {
896 #ifdef CONFIG_CRASH_DUMP
898 * If we are doing a crash dump, we still need to know
899 * the real memory size before the original memory map is
902 saved_max_pfn
= e820__end_of_ram_pfn();
904 e820_table
->nr_entries
= 0;
910 mem_size
= memparse(p
, &p
);
916 start_at
= memparse(p
+1, &p
);
917 e820__range_add(start_at
, mem_size
, E820_TYPE_RAM
);
918 } else if (*p
== '#') {
919 start_at
= memparse(p
+1, &p
);
920 e820__range_add(start_at
, mem_size
, E820_TYPE_ACPI
);
921 } else if (*p
== '$') {
922 start_at
= memparse(p
+1, &p
);
923 e820__range_add(start_at
, mem_size
, E820_TYPE_RESERVED
);
924 } else if (*p
== '!') {
925 start_at
= memparse(p
+1, &p
);
926 e820__range_add(start_at
, mem_size
, E820_TYPE_PRAM
);
928 e820__range_remove(mem_size
, ULLONG_MAX
- mem_size
, E820_TYPE_RAM
, 1);
931 return *p
== '\0' ? 0 : -EINVAL
;
934 static int __init
parse_memmap_opt(char *str
)
937 char *k
= strchr(str
, ',');
942 parse_memmap_one(str
);
948 early_param("memmap", parse_memmap_opt
);
951 * Reserve all entries from the bootloader's extensible data nodes list,
952 * because if present we are going to use it later on to fetch e820
955 void __init
e820__reserve_setup_data(void)
957 struct setup_data
*data
;
960 pa_data
= boot_params
.hdr
.setup_data
;
965 data
= early_memremap(pa_data
, sizeof(*data
));
966 e820__range_update(pa_data
, sizeof(*data
)+data
->len
, E820_TYPE_RAM
, E820_TYPE_RESERVED_KERN
);
967 e820__range_update_kexec(pa_data
, sizeof(*data
)+data
->len
, E820_TYPE_RAM
, E820_TYPE_RESERVED_KERN
);
968 pa_data
= data
->next
;
969 early_memunmap(data
, sizeof(*data
));
972 e820__update_table(e820_table
);
973 e820__update_table(e820_table_kexec
);
975 pr_info("extended physical RAM map:\n");
976 e820__print_table("reserve setup_data");
980 * Called after parse_early_param(), after early parameters (such as mem=)
981 * have been processed, in which case we already have an E820 table filled in
982 * via the parameter callback function(s), but it's not sorted and printed yet:
984 void __init
e820__finish_early_params(void)
987 if (e820__update_table(e820_table
) < 0)
988 early_panic("Invalid user supplied memory map");
990 pr_info("e820: user-defined physical RAM map:\n");
991 e820__print_table("user");
995 static const char *__init
e820_type_to_string(struct e820_entry
*entry
)
997 switch (entry
->type
) {
998 case E820_TYPE_RESERVED_KERN
: /* Fall-through: */
999 case E820_TYPE_RAM
: return "System RAM";
1000 case E820_TYPE_ACPI
: return "ACPI Tables";
1001 case E820_TYPE_NVS
: return "ACPI Non-volatile Storage";
1002 case E820_TYPE_UNUSABLE
: return "Unusable memory";
1003 case E820_TYPE_PRAM
: return "Persistent Memory (legacy)";
1004 case E820_TYPE_PMEM
: return "Persistent Memory";
1005 case E820_TYPE_RESERVED
: return "Reserved";
1006 default: return "Unknown E820 type";
1010 static unsigned long __init
e820_type_to_iomem_type(struct e820_entry
*entry
)
1012 switch (entry
->type
) {
1013 case E820_TYPE_RESERVED_KERN
: /* Fall-through: */
1014 case E820_TYPE_RAM
: return IORESOURCE_SYSTEM_RAM
;
1015 case E820_TYPE_ACPI
: /* Fall-through: */
1016 case E820_TYPE_NVS
: /* Fall-through: */
1017 case E820_TYPE_UNUSABLE
: /* Fall-through: */
1018 case E820_TYPE_PRAM
: /* Fall-through: */
1019 case E820_TYPE_PMEM
: /* Fall-through: */
1020 case E820_TYPE_RESERVED
: /* Fall-through: */
1021 default: return IORESOURCE_MEM
;
1025 static unsigned long __init
e820_type_to_iores_desc(struct e820_entry
*entry
)
1027 switch (entry
->type
) {
1028 case E820_TYPE_ACPI
: return IORES_DESC_ACPI_TABLES
;
1029 case E820_TYPE_NVS
: return IORES_DESC_ACPI_NV_STORAGE
;
1030 case E820_TYPE_PMEM
: return IORES_DESC_PERSISTENT_MEMORY
;
1031 case E820_TYPE_PRAM
: return IORES_DESC_PERSISTENT_MEMORY_LEGACY
;
1032 case E820_TYPE_RESERVED_KERN
: /* Fall-through: */
1033 case E820_TYPE_RAM
: /* Fall-through: */
1034 case E820_TYPE_UNUSABLE
: /* Fall-through: */
1035 case E820_TYPE_RESERVED
: /* Fall-through: */
1036 default: return IORES_DESC_NONE
;
1040 static bool __init
do_mark_busy(enum e820_type type
, struct resource
*res
)
1042 /* this is the legacy bios/dos rom-shadow + mmio region */
1043 if (res
->start
< (1ULL<<20))
1047 * Treat persistent memory like device memory, i.e. reserve it
1048 * for exclusive use of a driver
1051 case E820_TYPE_RESERVED
:
1052 case E820_TYPE_PRAM
:
1053 case E820_TYPE_PMEM
:
1055 case E820_TYPE_RESERVED_KERN
:
1057 case E820_TYPE_ACPI
:
1059 case E820_TYPE_UNUSABLE
:
1066 * Mark E820 reserved areas as busy for the resource manager:
1069 static struct resource __initdata
*e820_res
;
1071 void __init
e820__reserve_resources(void)
1074 struct resource
*res
;
1077 res
= alloc_bootmem(sizeof(*res
) * e820_table
->nr_entries
);
1080 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
1081 struct e820_entry
*entry
= e820_table
->entries
+ i
;
1083 end
= entry
->addr
+ entry
->size
- 1;
1084 if (end
!= (resource_size_t
)end
) {
1088 res
->start
= entry
->addr
;
1090 res
->name
= e820_type_to_string(entry
);
1091 res
->flags
= e820_type_to_iomem_type(entry
);
1092 res
->desc
= e820_type_to_iores_desc(entry
);
1095 * Don't register the region that could be conflicted with
1096 * PCI device BAR resources and insert them later in
1097 * pcibios_resource_survey():
1099 if (do_mark_busy(entry
->type
, res
)) {
1100 res
->flags
|= IORESOURCE_BUSY
;
1101 insert_resource(&iomem_resource
, res
);
1106 /* Expose the bootloader-provided memory layout to the sysfs. */
1107 for (i
= 0; i
< e820_table_firmware
->nr_entries
; i
++) {
1108 struct e820_entry
*entry
= e820_table_firmware
->entries
+ i
;
1110 firmware_map_add_early(entry
->addr
, entry
->addr
+ entry
->size
, e820_type_to_string(entry
));
1115 * How much should we pad the end of RAM, depending on where it is?
1117 static unsigned long __init
ram_alignment(resource_size_t pos
)
1119 unsigned long mb
= pos
>> 20;
1121 /* To 64kB in the first megabyte */
1125 /* To 1MB in the first 16MB */
1129 /* To 64MB for anything above that */
1130 return 64*1024*1024;
1133 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1135 void __init
e820__reserve_resources_late(void)
1138 struct resource
*res
;
1141 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
1142 if (!res
->parent
&& res
->end
)
1143 insert_resource_expand_to_fit(&iomem_resource
, res
);
1148 * Try to bump up RAM regions to reasonable boundaries, to
1151 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
1152 struct e820_entry
*entry
= &e820_table
->entries
[i
];
1155 if (entry
->type
!= E820_TYPE_RAM
)
1158 start
= entry
->addr
+ entry
->size
;
1159 end
= round_up(start
, ram_alignment(start
)) - 1;
1160 if (end
> MAX_RESOURCE_SIZE
)
1161 end
= MAX_RESOURCE_SIZE
;
1165 printk(KERN_DEBUG
"e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start
, end
);
1166 reserve_region_with_split(&iomem_resource
, start
, end
, "RAM buffer");
1171 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1173 char *__init
e820__memory_setup_default(void)
1175 char *who
= "BIOS-e820";
1178 * Try to copy the BIOS-supplied E820-map.
1180 * Otherwise fake a memory map; one section from 0k->640k,
1181 * the next section from 1mb->appropriate_mem_k
1183 if (append_e820_table(boot_params
.e820_table
, boot_params
.e820_entries
) < 0) {
1186 /* Compare results from other methods and take the one that gives more RAM: */
1187 if (boot_params
.alt_mem_k
< boot_params
.screen_info
.ext_mem_k
) {
1188 mem_size
= boot_params
.screen_info
.ext_mem_k
;
1191 mem_size
= boot_params
.alt_mem_k
;
1195 e820_table
->nr_entries
= 0;
1196 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM
);
1197 e820__range_add(HIGH_MEMORY
, mem_size
<< 10, E820_TYPE_RAM
);
1200 /* We just appended a lot of ranges, sanitize the table: */
1201 e820__update_table(e820_table
);
1207 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1208 * E820 map - with an optional platform quirk available for virtual platforms
1209 * to override this method of boot environment processing:
1211 void __init
e820__memory_setup(void)
1215 /* This is a firmware interface ABI - make sure we don't break it: */
1216 BUILD_BUG_ON(sizeof(struct boot_e820_entry
) != 20);
1218 who
= x86_init
.resources
.memory_setup();
1220 memcpy(e820_table_kexec
, e820_table
, sizeof(*e820_table_kexec
));
1221 memcpy(e820_table_firmware
, e820_table
, sizeof(*e820_table_firmware
));
1223 pr_info("e820: BIOS-provided physical RAM map:\n");
1224 e820__print_table(who
);
1227 void __init
e820__memblock_setup(void)
1233 * The bootstrap memblock region count maximum is 128 entries
1234 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1235 * than that - so allow memblock resizing.
1237 * This is safe, because this call happens pretty late during x86 setup,
1238 * so we know about reserved memory regions already. (This is important
1239 * so that memblock resizing does no stomp over reserved areas.)
1241 memblock_allow_resize();
1243 for (i
= 0; i
< e820_table
->nr_entries
; i
++) {
1244 struct e820_entry
*entry
= &e820_table
->entries
[i
];
1246 end
= entry
->addr
+ entry
->size
;
1247 if (end
!= (resource_size_t
)end
)
1250 if (entry
->type
!= E820_TYPE_RAM
&& entry
->type
!= E820_TYPE_RESERVED_KERN
)
1253 memblock_add(entry
->addr
, entry
->size
);
1256 /* Throw away partial pages: */
1257 memblock_trim_memory(PAGE_SIZE
);
1259 memblock_dump_all();