Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / kernel / process.c
blob03408b942adbad2bd1bca42b89e559e2d198d9da
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
43 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
44 * no more per-task TSS's. The TSS size is kept cacheline-aligned
45 * so they are allowed to end up in the .data..cacheline_aligned
46 * section. Since TSS's are completely CPU-local, we want them
47 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
50 .x86_tss = {
52 * .sp0 is only used when entering ring 0 from a lower
53 * privilege level. Since the init task never runs anything
54 * but ring 0 code, there is no need for a valid value here.
55 * Poison it.
57 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 #ifdef CONFIG_X86_64
61 * .sp1 is cpu_current_top_of_stack. The init task never
62 * runs user code, but cpu_current_top_of_stack should still
63 * be well defined before the first context switch.
65 .sp1 = TOP_OF_INIT_STACK,
66 #endif
68 #ifdef CONFIG_X86_32
69 .ss0 = __KERNEL_DS,
70 .ss1 = __KERNEL_CS,
71 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
72 #endif
74 #ifdef CONFIG_X86_32
76 * Note that the .io_bitmap member must be extra-big. This is because
77 * the CPU will access an additional byte beyond the end of the IO
78 * permission bitmap. The extra byte must be all 1 bits, and must
79 * be within the limit.
81 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
82 #endif
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
90 * this gets called so that we can store lazy state into memory and copy the
91 * current task into the new thread.
93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 memcpy(dst, src, arch_task_struct_size);
96 #ifdef CONFIG_VM86
97 dst->thread.vm86 = NULL;
98 #endif
100 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
104 * Free current thread data structures etc..
106 void exit_thread(struct task_struct *tsk)
108 struct thread_struct *t = &tsk->thread;
109 unsigned long *bp = t->io_bitmap_ptr;
110 struct fpu *fpu = &t->fpu;
112 if (bp) {
113 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115 t->io_bitmap_ptr = NULL;
116 clear_thread_flag(TIF_IO_BITMAP);
118 * Careful, clear this in the TSS too:
120 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
121 t->io_bitmap_max = 0;
122 put_cpu();
123 kfree(bp);
126 free_vm86(t);
128 fpu__drop(fpu);
131 void flush_thread(void)
133 struct task_struct *tsk = current;
135 flush_ptrace_hw_breakpoint(tsk);
136 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138 fpu__clear(&tsk->thread.fpu);
141 void disable_TSC(void)
143 preempt_disable();
144 if (!test_and_set_thread_flag(TIF_NOTSC))
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
149 cr4_set_bits(X86_CR4_TSD);
150 preempt_enable();
153 static void enable_TSC(void)
155 preempt_disable();
156 if (test_and_clear_thread_flag(TIF_NOTSC))
158 * Must flip the CPU state synchronously with
159 * TIF_NOTSC in the current running context.
161 cr4_clear_bits(X86_CR4_TSD);
162 preempt_enable();
165 int get_tsc_mode(unsigned long adr)
167 unsigned int val;
169 if (test_thread_flag(TIF_NOTSC))
170 val = PR_TSC_SIGSEGV;
171 else
172 val = PR_TSC_ENABLE;
174 return put_user(val, (unsigned int __user *)adr);
177 int set_tsc_mode(unsigned int val)
179 if (val == PR_TSC_SIGSEGV)
180 disable_TSC();
181 else if (val == PR_TSC_ENABLE)
182 enable_TSC();
183 else
184 return -EINVAL;
186 return 0;
189 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191 static void set_cpuid_faulting(bool on)
193 u64 msrval;
195 msrval = this_cpu_read(msr_misc_features_shadow);
196 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
197 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
198 this_cpu_write(msr_misc_features_shadow, msrval);
199 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
202 static void disable_cpuid(void)
204 preempt_disable();
205 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 * Must flip the CPU state synchronously with
208 * TIF_NOCPUID in the current running context.
210 set_cpuid_faulting(true);
212 preempt_enable();
215 static void enable_cpuid(void)
217 preempt_disable();
218 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 * Must flip the CPU state synchronously with
221 * TIF_NOCPUID in the current running context.
223 set_cpuid_faulting(false);
225 preempt_enable();
228 static int get_cpuid_mode(void)
230 return !test_thread_flag(TIF_NOCPUID);
233 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
236 return -ENODEV;
238 if (cpuid_enabled)
239 enable_cpuid();
240 else
241 disable_cpuid();
243 return 0;
247 * Called immediately after a successful exec.
249 void arch_setup_new_exec(void)
251 /* If cpuid was previously disabled for this task, re-enable it. */
252 if (test_thread_flag(TIF_NOCPUID))
253 enable_cpuid();
256 static inline void switch_to_bitmap(struct tss_struct *tss,
257 struct thread_struct *prev,
258 struct thread_struct *next,
259 unsigned long tifp, unsigned long tifn)
261 if (tifn & _TIF_IO_BITMAP) {
263 * Copy the relevant range of the IO bitmap.
264 * Normally this is 128 bytes or less:
266 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
267 max(prev->io_bitmap_max, next->io_bitmap_max));
269 * Make sure that the TSS limit is correct for the CPU
270 * to notice the IO bitmap.
272 refresh_tss_limit();
273 } else if (tifp & _TIF_IO_BITMAP) {
275 * Clear any possible leftover bits:
277 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
281 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
282 struct tss_struct *tss)
284 struct thread_struct *prev, *next;
285 unsigned long tifp, tifn;
287 prev = &prev_p->thread;
288 next = &next_p->thread;
290 tifn = READ_ONCE(task_thread_info(next_p)->flags);
291 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
292 switch_to_bitmap(tss, prev, next, tifp, tifn);
294 propagate_user_return_notify(prev_p, next_p);
296 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
297 arch_has_block_step()) {
298 unsigned long debugctl, msk;
300 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
301 debugctl &= ~DEBUGCTLMSR_BTF;
302 msk = tifn & _TIF_BLOCKSTEP;
303 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
304 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
307 if ((tifp ^ tifn) & _TIF_NOTSC)
308 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
310 if ((tifp ^ tifn) & _TIF_NOCPUID)
311 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
315 * Idle related variables and functions
317 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
318 EXPORT_SYMBOL(boot_option_idle_override);
320 static void (*x86_idle)(void);
322 #ifndef CONFIG_SMP
323 static inline void play_dead(void)
325 BUG();
327 #endif
329 void arch_cpu_idle_enter(void)
331 tsc_verify_tsc_adjust(false);
332 local_touch_nmi();
335 void arch_cpu_idle_dead(void)
337 play_dead();
341 * Called from the generic idle code.
343 void arch_cpu_idle(void)
345 x86_idle();
349 * We use this if we don't have any better idle routine..
351 void __cpuidle default_idle(void)
353 trace_cpu_idle_rcuidle(1, smp_processor_id());
354 safe_halt();
355 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
357 #ifdef CONFIG_APM_MODULE
358 EXPORT_SYMBOL(default_idle);
359 #endif
361 #ifdef CONFIG_XEN
362 bool xen_set_default_idle(void)
364 bool ret = !!x86_idle;
366 x86_idle = default_idle;
368 return ret;
370 #endif
372 void stop_this_cpu(void *dummy)
374 local_irq_disable();
376 * Remove this CPU:
378 set_cpu_online(smp_processor_id(), false);
379 disable_local_APIC();
380 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
383 * Use wbinvd on processors that support SME. This provides support
384 * for performing a successful kexec when going from SME inactive
385 * to SME active (or vice-versa). The cache must be cleared so that
386 * if there are entries with the same physical address, both with and
387 * without the encryption bit, they don't race each other when flushed
388 * and potentially end up with the wrong entry being committed to
389 * memory.
391 if (boot_cpu_has(X86_FEATURE_SME))
392 native_wbinvd();
393 for (;;) {
395 * Use native_halt() so that memory contents don't change
396 * (stack usage and variables) after possibly issuing the
397 * native_wbinvd() above.
399 native_halt();
404 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
405 * states (local apic timer and TSC stop).
407 static void amd_e400_idle(void)
410 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
411 * gets set after static_cpu_has() places have been converted via
412 * alternatives.
414 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
415 default_idle();
416 return;
419 tick_broadcast_enter();
421 default_idle();
424 * The switch back from broadcast mode needs to be called with
425 * interrupts disabled.
427 local_irq_disable();
428 tick_broadcast_exit();
429 local_irq_enable();
433 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
434 * We can't rely on cpuidle installing MWAIT, because it will not load
435 * on systems that support only C1 -- so the boot default must be MWAIT.
437 * Some AMD machines are the opposite, they depend on using HALT.
439 * So for default C1, which is used during boot until cpuidle loads,
440 * use MWAIT-C1 on Intel HW that has it, else use HALT.
442 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
444 if (c->x86_vendor != X86_VENDOR_INTEL)
445 return 0;
447 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
448 return 0;
450 return 1;
454 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
455 * with interrupts enabled and no flags, which is backwards compatible with the
456 * original MWAIT implementation.
458 static __cpuidle void mwait_idle(void)
460 if (!current_set_polling_and_test()) {
461 trace_cpu_idle_rcuidle(1, smp_processor_id());
462 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
463 mb(); /* quirk */
464 clflush((void *)&current_thread_info()->flags);
465 mb(); /* quirk */
468 __monitor((void *)&current_thread_info()->flags, 0, 0);
469 if (!need_resched())
470 __sti_mwait(0, 0);
471 else
472 local_irq_enable();
473 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
474 } else {
475 local_irq_enable();
477 __current_clr_polling();
480 void select_idle_routine(const struct cpuinfo_x86 *c)
482 #ifdef CONFIG_SMP
483 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
484 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
485 #endif
486 if (x86_idle || boot_option_idle_override == IDLE_POLL)
487 return;
489 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
490 pr_info("using AMD E400 aware idle routine\n");
491 x86_idle = amd_e400_idle;
492 } else if (prefer_mwait_c1_over_halt(c)) {
493 pr_info("using mwait in idle threads\n");
494 x86_idle = mwait_idle;
495 } else
496 x86_idle = default_idle;
499 void amd_e400_c1e_apic_setup(void)
501 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
502 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
503 local_irq_disable();
504 tick_broadcast_force();
505 local_irq_enable();
509 void __init arch_post_acpi_subsys_init(void)
511 u32 lo, hi;
513 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
514 return;
517 * AMD E400 detection needs to happen after ACPI has been enabled. If
518 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
519 * MSR_K8_INT_PENDING_MSG.
521 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
522 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
523 return;
525 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
527 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
528 mark_tsc_unstable("TSC halt in AMD C1E");
529 pr_info("System has AMD C1E enabled\n");
532 static int __init idle_setup(char *str)
534 if (!str)
535 return -EINVAL;
537 if (!strcmp(str, "poll")) {
538 pr_info("using polling idle threads\n");
539 boot_option_idle_override = IDLE_POLL;
540 cpu_idle_poll_ctrl(true);
541 } else if (!strcmp(str, "halt")) {
543 * When the boot option of idle=halt is added, halt is
544 * forced to be used for CPU idle. In such case CPU C2/C3
545 * won't be used again.
546 * To continue to load the CPU idle driver, don't touch
547 * the boot_option_idle_override.
549 x86_idle = default_idle;
550 boot_option_idle_override = IDLE_HALT;
551 } else if (!strcmp(str, "nomwait")) {
553 * If the boot option of "idle=nomwait" is added,
554 * it means that mwait will be disabled for CPU C2/C3
555 * states. In such case it won't touch the variable
556 * of boot_option_idle_override.
558 boot_option_idle_override = IDLE_NOMWAIT;
559 } else
560 return -1;
562 return 0;
564 early_param("idle", idle_setup);
566 unsigned long arch_align_stack(unsigned long sp)
568 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
569 sp -= get_random_int() % 8192;
570 return sp & ~0xf;
573 unsigned long arch_randomize_brk(struct mm_struct *mm)
575 return randomize_page(mm->brk, 0x02000000);
579 * Called from fs/proc with a reference on @p to find the function
580 * which called into schedule(). This needs to be done carefully
581 * because the task might wake up and we might look at a stack
582 * changing under us.
584 unsigned long get_wchan(struct task_struct *p)
586 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
587 int count = 0;
589 if (!p || p == current || p->state == TASK_RUNNING)
590 return 0;
592 if (!try_get_task_stack(p))
593 return 0;
595 start = (unsigned long)task_stack_page(p);
596 if (!start)
597 goto out;
600 * Layout of the stack page:
602 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
603 * PADDING
604 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
605 * stack
606 * ----------- bottom = start
608 * The tasks stack pointer points at the location where the
609 * framepointer is stored. The data on the stack is:
610 * ... IP FP ... IP FP
612 * We need to read FP and IP, so we need to adjust the upper
613 * bound by another unsigned long.
615 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
616 top -= 2 * sizeof(unsigned long);
617 bottom = start;
619 sp = READ_ONCE(p->thread.sp);
620 if (sp < bottom || sp > top)
621 goto out;
623 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
624 do {
625 if (fp < bottom || fp > top)
626 goto out;
627 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
628 if (!in_sched_functions(ip)) {
629 ret = ip;
630 goto out;
632 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
633 } while (count++ < 16 && p->state != TASK_RUNNING);
635 out:
636 put_task_stack(p);
637 return ret;
640 long do_arch_prctl_common(struct task_struct *task, int option,
641 unsigned long cpuid_enabled)
643 switch (option) {
644 case ARCH_GET_CPUID:
645 return get_cpuid_mode();
646 case ARCH_SET_CPUID:
647 return set_cpuid_mode(task, cpuid_enabled);
650 return -EINVAL;