Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / base / power / main.c
blob02a497e7c78549a633d1079212da0936033075d1
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
7 * This file is released under the GPLv2
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
37 #include "../base.h"
38 #include "power.h"
40 typedef int (*pm_callback_t)(struct device *);
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
62 static int async_error;
64 static const char *pm_verb(int event)
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
88 /**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
92 void device_pm_sleep_init(struct device *dev)
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
105 * device_pm_lock - Lock the list of active devices used by the PM core.
107 void device_pm_lock(void)
109 mutex_lock(&dpm_list_mtx);
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 void device_pm_unlock(void)
117 mutex_unlock(&dpm_list_mtx);
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
124 void device_pm_add(struct device *dev)
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 dev->power.in_dpm_list = true;
135 mutex_unlock(&dpm_list_mtx);
139 * device_pm_remove - Remove a device from the PM core's list of active devices.
140 * @dev: Device to be removed from the list.
142 void device_pm_remove(struct device *dev)
144 pr_debug("PM: Removing info for %s:%s\n",
145 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146 complete_all(&dev->power.completion);
147 mutex_lock(&dpm_list_mtx);
148 list_del_init(&dev->power.entry);
149 dev->power.in_dpm_list = false;
150 mutex_unlock(&dpm_list_mtx);
151 device_wakeup_disable(dev);
152 pm_runtime_remove(dev);
153 device_pm_check_callbacks(dev);
157 * device_pm_move_before - Move device in the PM core's list of active devices.
158 * @deva: Device to move in dpm_list.
159 * @devb: Device @deva should come before.
161 void device_pm_move_before(struct device *deva, struct device *devb)
163 pr_debug("PM: Moving %s:%s before %s:%s\n",
164 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166 /* Delete deva from dpm_list and reinsert before devb. */
167 list_move_tail(&deva->power.entry, &devb->power.entry);
171 * device_pm_move_after - Move device in the PM core's list of active devices.
172 * @deva: Device to move in dpm_list.
173 * @devb: Device @deva should come after.
175 void device_pm_move_after(struct device *deva, struct device *devb)
177 pr_debug("PM: Moving %s:%s after %s:%s\n",
178 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 /* Delete deva from dpm_list and reinsert after devb. */
181 list_move(&deva->power.entry, &devb->power.entry);
185 * device_pm_move_last - Move device to end of the PM core's list of devices.
186 * @dev: Device to move in dpm_list.
188 void device_pm_move_last(struct device *dev)
190 pr_debug("PM: Moving %s:%s to end of list\n",
191 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192 list_move_tail(&dev->power.entry, &dpm_list);
195 static ktime_t initcall_debug_start(struct device *dev)
197 ktime_t calltime = 0;
199 if (pm_print_times_enabled) {
200 pr_info("calling %s+ @ %i, parent: %s\n",
201 dev_name(dev), task_pid_nr(current),
202 dev->parent ? dev_name(dev->parent) : "none");
203 calltime = ktime_get();
206 return calltime;
209 static void initcall_debug_report(struct device *dev, ktime_t calltime,
210 int error, pm_message_t state,
211 const char *info)
213 ktime_t rettime;
214 s64 nsecs;
216 rettime = ktime_get();
217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219 if (pm_print_times_enabled) {
220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221 error, (unsigned long long)nsecs >> 10);
226 * dpm_wait - Wait for a PM operation to complete.
227 * @dev: Device to wait for.
228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
230 static void dpm_wait(struct device *dev, bool async)
232 if (!dev)
233 return;
235 if (async || (pm_async_enabled && dev->power.async_suspend))
236 wait_for_completion(&dev->power.completion);
239 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 dpm_wait(dev, *((bool *)async_ptr));
242 return 0;
245 static void dpm_wait_for_children(struct device *dev, bool async)
247 device_for_each_child(dev, &async, dpm_wait_fn);
250 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 struct device_link *link;
253 int idx;
255 idx = device_links_read_lock();
258 * If the supplier goes away right after we've checked the link to it,
259 * we'll wait for its completion to change the state, but that's fine,
260 * because the only things that will block as a result are the SRCU
261 * callbacks freeing the link objects for the links in the list we're
262 * walking.
264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266 dpm_wait(link->supplier, async);
268 device_links_read_unlock(idx);
271 static void dpm_wait_for_superior(struct device *dev, bool async)
273 dpm_wait(dev->parent, async);
274 dpm_wait_for_suppliers(dev, async);
277 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 struct device_link *link;
280 int idx;
282 idx = device_links_read_lock();
285 * The status of a device link can only be changed from "dormant" by a
286 * probe, but that cannot happen during system suspend/resume. In
287 * theory it can change to "dormant" at that time, but then it is
288 * reasonable to wait for the target device anyway (eg. if it goes
289 * away, it's better to wait for it to go away completely and then
290 * continue instead of trying to continue in parallel with its
291 * unregistration).
293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295 dpm_wait(link->consumer, async);
297 device_links_read_unlock(idx);
300 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 dpm_wait_for_children(dev, async);
303 dpm_wait_for_consumers(dev, async);
307 * pm_op - Return the PM operation appropriate for given PM event.
308 * @ops: PM operations to choose from.
309 * @state: PM transition of the system being carried out.
311 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 switch (state.event) {
314 #ifdef CONFIG_SUSPEND
315 case PM_EVENT_SUSPEND:
316 return ops->suspend;
317 case PM_EVENT_RESUME:
318 return ops->resume;
319 #endif /* CONFIG_SUSPEND */
320 #ifdef CONFIG_HIBERNATE_CALLBACKS
321 case PM_EVENT_FREEZE:
322 case PM_EVENT_QUIESCE:
323 return ops->freeze;
324 case PM_EVENT_HIBERNATE:
325 return ops->poweroff;
326 case PM_EVENT_THAW:
327 case PM_EVENT_RECOVER:
328 return ops->thaw;
329 break;
330 case PM_EVENT_RESTORE:
331 return ops->restore;
332 #endif /* CONFIG_HIBERNATE_CALLBACKS */
335 return NULL;
339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
340 * @ops: PM operations to choose from.
341 * @state: PM transition of the system being carried out.
343 * Runtime PM is disabled for @dev while this function is being executed.
345 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346 pm_message_t state)
348 switch (state.event) {
349 #ifdef CONFIG_SUSPEND
350 case PM_EVENT_SUSPEND:
351 return ops->suspend_late;
352 case PM_EVENT_RESUME:
353 return ops->resume_early;
354 #endif /* CONFIG_SUSPEND */
355 #ifdef CONFIG_HIBERNATE_CALLBACKS
356 case PM_EVENT_FREEZE:
357 case PM_EVENT_QUIESCE:
358 return ops->freeze_late;
359 case PM_EVENT_HIBERNATE:
360 return ops->poweroff_late;
361 case PM_EVENT_THAW:
362 case PM_EVENT_RECOVER:
363 return ops->thaw_early;
364 case PM_EVENT_RESTORE:
365 return ops->restore_early;
366 #endif /* CONFIG_HIBERNATE_CALLBACKS */
369 return NULL;
373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
374 * @ops: PM operations to choose from.
375 * @state: PM transition of the system being carried out.
377 * The driver of @dev will not receive interrupts while this function is being
378 * executed.
380 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 switch (state.event) {
383 #ifdef CONFIG_SUSPEND
384 case PM_EVENT_SUSPEND:
385 return ops->suspend_noirq;
386 case PM_EVENT_RESUME:
387 return ops->resume_noirq;
388 #endif /* CONFIG_SUSPEND */
389 #ifdef CONFIG_HIBERNATE_CALLBACKS
390 case PM_EVENT_FREEZE:
391 case PM_EVENT_QUIESCE:
392 return ops->freeze_noirq;
393 case PM_EVENT_HIBERNATE:
394 return ops->poweroff_noirq;
395 case PM_EVENT_THAW:
396 case PM_EVENT_RECOVER:
397 return ops->thaw_noirq;
398 case PM_EVENT_RESTORE:
399 return ops->restore_noirq;
400 #endif /* CONFIG_HIBERNATE_CALLBACKS */
403 return NULL;
406 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410 ", may wakeup" : "");
413 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
414 int error)
416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417 dev_name(dev), pm_verb(state.event), info, error);
420 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
421 const char *info)
423 ktime_t calltime;
424 u64 usecs64;
425 int usecs;
427 calltime = ktime_get();
428 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
429 do_div(usecs64, NSEC_PER_USEC);
430 usecs = usecs64;
431 if (usecs == 0)
432 usecs = 1;
434 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
435 info ?: "", info ? " " : "", pm_verb(state.event),
436 error ? "aborted" : "complete",
437 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
440 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
441 pm_message_t state, const char *info)
443 ktime_t calltime;
444 int error;
446 if (!cb)
447 return 0;
449 calltime = initcall_debug_start(dev);
451 pm_dev_dbg(dev, state, info);
452 trace_device_pm_callback_start(dev, info, state.event);
453 error = cb(dev);
454 trace_device_pm_callback_end(dev, error);
455 suspend_report_result(cb, error);
457 initcall_debug_report(dev, calltime, error, state, info);
459 return error;
462 #ifdef CONFIG_DPM_WATCHDOG
463 struct dpm_watchdog {
464 struct device *dev;
465 struct task_struct *tsk;
466 struct timer_list timer;
469 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
470 struct dpm_watchdog wd
473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
474 * @data: Watchdog object address.
476 * Called when a driver has timed out suspending or resuming.
477 * There's not much we can do here to recover so panic() to
478 * capture a crash-dump in pstore.
480 static void dpm_watchdog_handler(struct timer_list *t)
482 struct dpm_watchdog *wd = from_timer(wd, t, timer);
484 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
485 show_stack(wd->tsk, NULL);
486 panic("%s %s: unrecoverable failure\n",
487 dev_driver_string(wd->dev), dev_name(wd->dev));
491 * dpm_watchdog_set - Enable pm watchdog for given device.
492 * @wd: Watchdog. Must be allocated on the stack.
493 * @dev: Device to handle.
495 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 struct timer_list *timer = &wd->timer;
499 wd->dev = dev;
500 wd->tsk = current;
502 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
503 /* use same timeout value for both suspend and resume */
504 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
505 add_timer(timer);
509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
510 * @wd: Watchdog to disable.
512 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
514 struct timer_list *timer = &wd->timer;
516 del_timer_sync(timer);
517 destroy_timer_on_stack(timer);
519 #else
520 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
521 #define dpm_watchdog_set(x, y)
522 #define dpm_watchdog_clear(x)
523 #endif
525 /*------------------------- Resume routines -------------------------*/
528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
529 * @dev: Target device.
531 * Make the core skip the "early resume" and "resume" phases for @dev.
533 * This function can be called by middle-layer code during the "noirq" phase of
534 * system resume if necessary, but not by device drivers.
536 void dev_pm_skip_next_resume_phases(struct device *dev)
538 dev->power.is_late_suspended = false;
539 dev->power.is_suspended = false;
543 * suspend_event - Return a "suspend" message for given "resume" one.
544 * @resume_msg: PM message representing a system-wide resume transition.
546 static pm_message_t suspend_event(pm_message_t resume_msg)
548 switch (resume_msg.event) {
549 case PM_EVENT_RESUME:
550 return PMSG_SUSPEND;
551 case PM_EVENT_THAW:
552 case PM_EVENT_RESTORE:
553 return PMSG_FREEZE;
554 case PM_EVENT_RECOVER:
555 return PMSG_HIBERNATE;
557 return PMSG_ON;
561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
564 * Checks whether or not the device may be left in suspend after a system-wide
565 * transition to the working state.
567 bool dev_pm_may_skip_resume(struct device *dev)
569 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
572 static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
573 pm_message_t state,
574 const char **info_p)
576 pm_callback_t callback;
577 const char *info;
579 if (dev->pm_domain) {
580 info = "noirq power domain ";
581 callback = pm_noirq_op(&dev->pm_domain->ops, state);
582 } else if (dev->type && dev->type->pm) {
583 info = "noirq type ";
584 callback = pm_noirq_op(dev->type->pm, state);
585 } else if (dev->class && dev->class->pm) {
586 info = "noirq class ";
587 callback = pm_noirq_op(dev->class->pm, state);
588 } else if (dev->bus && dev->bus->pm) {
589 info = "noirq bus ";
590 callback = pm_noirq_op(dev->bus->pm, state);
591 } else {
592 return NULL;
595 if (info_p)
596 *info_p = info;
598 return callback;
601 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
602 pm_message_t state,
603 const char **info_p);
605 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
606 pm_message_t state,
607 const char **info_p);
610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
611 * @dev: Device to handle.
612 * @state: PM transition of the system being carried out.
613 * @async: If true, the device is being resumed asynchronously.
615 * The driver of @dev will not receive interrupts while this function is being
616 * executed.
618 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
620 pm_callback_t callback;
621 const char *info;
622 bool skip_resume;
623 int error = 0;
625 TRACE_DEVICE(dev);
626 TRACE_RESUME(0);
628 if (dev->power.syscore || dev->power.direct_complete)
629 goto Out;
631 if (!dev->power.is_noirq_suspended)
632 goto Out;
634 dpm_wait_for_superior(dev, async);
636 skip_resume = dev_pm_may_skip_resume(dev);
638 callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
639 if (callback)
640 goto Run;
642 if (skip_resume)
643 goto Skip;
645 if (dev_pm_smart_suspend_and_suspended(dev)) {
646 pm_message_t suspend_msg = suspend_event(state);
649 * If "freeze" callbacks have been skipped during a transition
650 * related to hibernation, the subsequent "thaw" callbacks must
651 * be skipped too or bad things may happen. Otherwise, resume
652 * callbacks are going to be run for the device, so its runtime
653 * PM status must be changed to reflect the new state after the
654 * transition under way.
656 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
657 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
658 if (state.event == PM_EVENT_THAW) {
659 skip_resume = true;
660 goto Skip;
661 } else {
662 pm_runtime_set_active(dev);
667 if (dev->driver && dev->driver->pm) {
668 info = "noirq driver ";
669 callback = pm_noirq_op(dev->driver->pm, state);
672 Run:
673 error = dpm_run_callback(callback, dev, state, info);
675 Skip:
676 dev->power.is_noirq_suspended = false;
678 if (skip_resume) {
680 * The device is going to be left in suspend, but it might not
681 * have been in runtime suspend before the system suspended, so
682 * its runtime PM status needs to be updated to avoid confusing
683 * the runtime PM framework when runtime PM is enabled for the
684 * device again.
686 pm_runtime_set_suspended(dev);
687 dev_pm_skip_next_resume_phases(dev);
690 Out:
691 complete_all(&dev->power.completion);
692 TRACE_RESUME(error);
693 return error;
696 static bool is_async(struct device *dev)
698 return dev->power.async_suspend && pm_async_enabled
699 && !pm_trace_is_enabled();
702 static void async_resume_noirq(void *data, async_cookie_t cookie)
704 struct device *dev = (struct device *)data;
705 int error;
707 error = device_resume_noirq(dev, pm_transition, true);
708 if (error)
709 pm_dev_err(dev, pm_transition, " async", error);
711 put_device(dev);
714 void dpm_noirq_resume_devices(pm_message_t state)
716 struct device *dev;
717 ktime_t starttime = ktime_get();
719 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
720 mutex_lock(&dpm_list_mtx);
721 pm_transition = state;
724 * Advanced the async threads upfront,
725 * in case the starting of async threads is
726 * delayed by non-async resuming devices.
728 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
729 reinit_completion(&dev->power.completion);
730 if (is_async(dev)) {
731 get_device(dev);
732 async_schedule(async_resume_noirq, dev);
736 while (!list_empty(&dpm_noirq_list)) {
737 dev = to_device(dpm_noirq_list.next);
738 get_device(dev);
739 list_move_tail(&dev->power.entry, &dpm_late_early_list);
740 mutex_unlock(&dpm_list_mtx);
742 if (!is_async(dev)) {
743 int error;
745 error = device_resume_noirq(dev, state, false);
746 if (error) {
747 suspend_stats.failed_resume_noirq++;
748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749 dpm_save_failed_dev(dev_name(dev));
750 pm_dev_err(dev, state, " noirq", error);
754 mutex_lock(&dpm_list_mtx);
755 put_device(dev);
757 mutex_unlock(&dpm_list_mtx);
758 async_synchronize_full();
759 dpm_show_time(starttime, state, 0, "noirq");
760 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
763 void dpm_noirq_end(void)
765 resume_device_irqs();
766 device_wakeup_disarm_wake_irqs();
767 cpuidle_resume();
771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
772 * @state: PM transition of the system being carried out.
774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
775 * allow device drivers' interrupt handlers to be called.
777 void dpm_resume_noirq(pm_message_t state)
779 dpm_noirq_resume_devices(state);
780 dpm_noirq_end();
783 static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
784 pm_message_t state,
785 const char **info_p)
787 pm_callback_t callback;
788 const char *info;
790 if (dev->pm_domain) {
791 info = "early power domain ";
792 callback = pm_late_early_op(&dev->pm_domain->ops, state);
793 } else if (dev->type && dev->type->pm) {
794 info = "early type ";
795 callback = pm_late_early_op(dev->type->pm, state);
796 } else if (dev->class && dev->class->pm) {
797 info = "early class ";
798 callback = pm_late_early_op(dev->class->pm, state);
799 } else if (dev->bus && dev->bus->pm) {
800 info = "early bus ";
801 callback = pm_late_early_op(dev->bus->pm, state);
802 } else {
803 return NULL;
806 if (info_p)
807 *info_p = info;
809 return callback;
813 * device_resume_early - Execute an "early resume" callback for given device.
814 * @dev: Device to handle.
815 * @state: PM transition of the system being carried out.
816 * @async: If true, the device is being resumed asynchronously.
818 * Runtime PM is disabled for @dev while this function is being executed.
820 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
822 pm_callback_t callback;
823 const char *info;
824 int error = 0;
826 TRACE_DEVICE(dev);
827 TRACE_RESUME(0);
829 if (dev->power.syscore || dev->power.direct_complete)
830 goto Out;
832 if (!dev->power.is_late_suspended)
833 goto Out;
835 dpm_wait_for_superior(dev, async);
837 callback = dpm_subsys_resume_early_cb(dev, state, &info);
839 if (!callback && dev->driver && dev->driver->pm) {
840 info = "early driver ";
841 callback = pm_late_early_op(dev->driver->pm, state);
844 error = dpm_run_callback(callback, dev, state, info);
845 dev->power.is_late_suspended = false;
847 Out:
848 TRACE_RESUME(error);
850 pm_runtime_enable(dev);
851 complete_all(&dev->power.completion);
852 return error;
855 static void async_resume_early(void *data, async_cookie_t cookie)
857 struct device *dev = (struct device *)data;
858 int error;
860 error = device_resume_early(dev, pm_transition, true);
861 if (error)
862 pm_dev_err(dev, pm_transition, " async", error);
864 put_device(dev);
868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
869 * @state: PM transition of the system being carried out.
871 void dpm_resume_early(pm_message_t state)
873 struct device *dev;
874 ktime_t starttime = ktime_get();
876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
877 mutex_lock(&dpm_list_mtx);
878 pm_transition = state;
881 * Advanced the async threads upfront,
882 * in case the starting of async threads is
883 * delayed by non-async resuming devices.
885 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
886 reinit_completion(&dev->power.completion);
887 if (is_async(dev)) {
888 get_device(dev);
889 async_schedule(async_resume_early, dev);
893 while (!list_empty(&dpm_late_early_list)) {
894 dev = to_device(dpm_late_early_list.next);
895 get_device(dev);
896 list_move_tail(&dev->power.entry, &dpm_suspended_list);
897 mutex_unlock(&dpm_list_mtx);
899 if (!is_async(dev)) {
900 int error;
902 error = device_resume_early(dev, state, false);
903 if (error) {
904 suspend_stats.failed_resume_early++;
905 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
906 dpm_save_failed_dev(dev_name(dev));
907 pm_dev_err(dev, state, " early", error);
910 mutex_lock(&dpm_list_mtx);
911 put_device(dev);
913 mutex_unlock(&dpm_list_mtx);
914 async_synchronize_full();
915 dpm_show_time(starttime, state, 0, "early");
916 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
921 * @state: PM transition of the system being carried out.
923 void dpm_resume_start(pm_message_t state)
925 dpm_resume_noirq(state);
926 dpm_resume_early(state);
928 EXPORT_SYMBOL_GPL(dpm_resume_start);
931 * device_resume - Execute "resume" callbacks for given device.
932 * @dev: Device to handle.
933 * @state: PM transition of the system being carried out.
934 * @async: If true, the device is being resumed asynchronously.
936 static int device_resume(struct device *dev, pm_message_t state, bool async)
938 pm_callback_t callback = NULL;
939 const char *info = NULL;
940 int error = 0;
941 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
943 TRACE_DEVICE(dev);
944 TRACE_RESUME(0);
946 if (dev->power.syscore)
947 goto Complete;
949 if (dev->power.direct_complete) {
950 /* Match the pm_runtime_disable() in __device_suspend(). */
951 pm_runtime_enable(dev);
952 goto Complete;
955 dpm_wait_for_superior(dev, async);
956 dpm_watchdog_set(&wd, dev);
957 device_lock(dev);
960 * This is a fib. But we'll allow new children to be added below
961 * a resumed device, even if the device hasn't been completed yet.
963 dev->power.is_prepared = false;
965 if (!dev->power.is_suspended)
966 goto Unlock;
968 if (dev->pm_domain) {
969 info = "power domain ";
970 callback = pm_op(&dev->pm_domain->ops, state);
971 goto Driver;
974 if (dev->type && dev->type->pm) {
975 info = "type ";
976 callback = pm_op(dev->type->pm, state);
977 goto Driver;
980 if (dev->class && dev->class->pm) {
981 info = "class ";
982 callback = pm_op(dev->class->pm, state);
983 goto Driver;
986 if (dev->bus) {
987 if (dev->bus->pm) {
988 info = "bus ";
989 callback = pm_op(dev->bus->pm, state);
990 } else if (dev->bus->resume) {
991 info = "legacy bus ";
992 callback = dev->bus->resume;
993 goto End;
997 Driver:
998 if (!callback && dev->driver && dev->driver->pm) {
999 info = "driver ";
1000 callback = pm_op(dev->driver->pm, state);
1003 End:
1004 error = dpm_run_callback(callback, dev, state, info);
1005 dev->power.is_suspended = false;
1007 Unlock:
1008 device_unlock(dev);
1009 dpm_watchdog_clear(&wd);
1011 Complete:
1012 complete_all(&dev->power.completion);
1014 TRACE_RESUME(error);
1016 return error;
1019 static void async_resume(void *data, async_cookie_t cookie)
1021 struct device *dev = (struct device *)data;
1022 int error;
1024 error = device_resume(dev, pm_transition, true);
1025 if (error)
1026 pm_dev_err(dev, pm_transition, " async", error);
1027 put_device(dev);
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1037 void dpm_resume(pm_message_t state)
1039 struct device *dev;
1040 ktime_t starttime = ktime_get();
1042 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043 might_sleep();
1045 mutex_lock(&dpm_list_mtx);
1046 pm_transition = state;
1047 async_error = 0;
1049 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050 reinit_completion(&dev->power.completion);
1051 if (is_async(dev)) {
1052 get_device(dev);
1053 async_schedule(async_resume, dev);
1057 while (!list_empty(&dpm_suspended_list)) {
1058 dev = to_device(dpm_suspended_list.next);
1059 get_device(dev);
1060 if (!is_async(dev)) {
1061 int error;
1063 mutex_unlock(&dpm_list_mtx);
1065 error = device_resume(dev, state, false);
1066 if (error) {
1067 suspend_stats.failed_resume++;
1068 dpm_save_failed_step(SUSPEND_RESUME);
1069 dpm_save_failed_dev(dev_name(dev));
1070 pm_dev_err(dev, state, "", error);
1073 mutex_lock(&dpm_list_mtx);
1075 if (!list_empty(&dev->power.entry))
1076 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077 put_device(dev);
1079 mutex_unlock(&dpm_list_mtx);
1080 async_synchronize_full();
1081 dpm_show_time(starttime, state, 0, NULL);
1083 cpufreq_resume();
1084 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1092 static void device_complete(struct device *dev, pm_message_t state)
1094 void (*callback)(struct device *) = NULL;
1095 const char *info = NULL;
1097 if (dev->power.syscore)
1098 return;
1100 device_lock(dev);
1102 if (dev->pm_domain) {
1103 info = "completing power domain ";
1104 callback = dev->pm_domain->ops.complete;
1105 } else if (dev->type && dev->type->pm) {
1106 info = "completing type ";
1107 callback = dev->type->pm->complete;
1108 } else if (dev->class && dev->class->pm) {
1109 info = "completing class ";
1110 callback = dev->class->pm->complete;
1111 } else if (dev->bus && dev->bus->pm) {
1112 info = "completing bus ";
1113 callback = dev->bus->pm->complete;
1116 if (!callback && dev->driver && dev->driver->pm) {
1117 info = "completing driver ";
1118 callback = dev->driver->pm->complete;
1121 if (callback) {
1122 pm_dev_dbg(dev, state, info);
1123 callback(dev);
1126 device_unlock(dev);
1128 pm_runtime_put(dev);
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1138 void dpm_complete(pm_message_t state)
1140 struct list_head list;
1142 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143 might_sleep();
1145 INIT_LIST_HEAD(&list);
1146 mutex_lock(&dpm_list_mtx);
1147 while (!list_empty(&dpm_prepared_list)) {
1148 struct device *dev = to_device(dpm_prepared_list.prev);
1150 get_device(dev);
1151 dev->power.is_prepared = false;
1152 list_move(&dev->power.entry, &list);
1153 mutex_unlock(&dpm_list_mtx);
1155 trace_device_pm_callback_start(dev, "", state.event);
1156 device_complete(dev, state);
1157 trace_device_pm_callback_end(dev, 0);
1159 mutex_lock(&dpm_list_mtx);
1160 put_device(dev);
1162 list_splice(&list, &dpm_list);
1163 mutex_unlock(&dpm_list_mtx);
1165 /* Allow device probing and trigger re-probing of deferred devices */
1166 device_unblock_probing();
1167 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1177 void dpm_resume_end(pm_message_t state)
1179 dpm_resume(state);
1180 dpm_complete(state);
1182 EXPORT_SYMBOL_GPL(dpm_resume_end);
1185 /*------------------------- Suspend routines -------------------------*/
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1194 static pm_message_t resume_event(pm_message_t sleep_state)
1196 switch (sleep_state.event) {
1197 case PM_EVENT_SUSPEND:
1198 return PMSG_RESUME;
1199 case PM_EVENT_FREEZE:
1200 case PM_EVENT_QUIESCE:
1201 return PMSG_RECOVER;
1202 case PM_EVENT_HIBERNATE:
1203 return PMSG_RESTORE;
1205 return PMSG_ON;
1208 static void dpm_superior_set_must_resume(struct device *dev)
1210 struct device_link *link;
1211 int idx;
1213 if (dev->parent)
1214 dev->parent->power.must_resume = true;
1216 idx = device_links_read_lock();
1218 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219 link->supplier->power.must_resume = true;
1221 device_links_read_unlock(idx);
1224 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225 pm_message_t state,
1226 const char **info_p)
1228 pm_callback_t callback;
1229 const char *info;
1231 if (dev->pm_domain) {
1232 info = "noirq power domain ";
1233 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234 } else if (dev->type && dev->type->pm) {
1235 info = "noirq type ";
1236 callback = pm_noirq_op(dev->type->pm, state);
1237 } else if (dev->class && dev->class->pm) {
1238 info = "noirq class ";
1239 callback = pm_noirq_op(dev->class->pm, state);
1240 } else if (dev->bus && dev->bus->pm) {
1241 info = "noirq bus ";
1242 callback = pm_noirq_op(dev->bus->pm, state);
1243 } else {
1244 return NULL;
1247 if (info_p)
1248 *info_p = info;
1250 return callback;
1253 static bool device_must_resume(struct device *dev, pm_message_t state,
1254 bool no_subsys_suspend_noirq)
1256 pm_message_t resume_msg = resume_event(state);
1259 * If all of the device driver's "noirq", "late" and "early" callbacks
1260 * are invoked directly by the core, the decision to allow the device to
1261 * stay in suspend can be based on its current runtime PM status and its
1262 * wakeup settings.
1264 if (no_subsys_suspend_noirq &&
1265 !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268 return !pm_runtime_status_suspended(dev) &&
1269 (resume_msg.event != PM_EVENT_RESUME ||
1270 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1273 * The only safe strategy here is to require that if the device may not
1274 * be left in suspend, resume callbacks must be invoked for it.
1276 return !dev->power.may_skip_resume;
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1288 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1290 pm_callback_t callback;
1291 const char *info;
1292 bool no_subsys_cb = false;
1293 int error = 0;
1295 TRACE_DEVICE(dev);
1296 TRACE_SUSPEND(0);
1298 dpm_wait_for_subordinate(dev, async);
1300 if (async_error)
1301 goto Complete;
1303 if (pm_wakeup_pending()) {
1304 async_error = -EBUSY;
1305 goto Complete;
1308 if (dev->power.syscore || dev->power.direct_complete)
1309 goto Complete;
1311 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312 if (callback)
1313 goto Run;
1315 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1317 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318 goto Skip;
1320 if (dev->driver && dev->driver->pm) {
1321 info = "noirq driver ";
1322 callback = pm_noirq_op(dev->driver->pm, state);
1325 Run:
1326 error = dpm_run_callback(callback, dev, state, info);
1327 if (error) {
1328 async_error = error;
1329 goto Complete;
1332 Skip:
1333 dev->power.is_noirq_suspended = true;
1335 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336 dev->power.must_resume = dev->power.must_resume ||
1337 atomic_read(&dev->power.usage_count) > 1 ||
1338 device_must_resume(dev, state, no_subsys_cb);
1339 } else {
1340 dev->power.must_resume = true;
1343 if (dev->power.must_resume)
1344 dpm_superior_set_must_resume(dev);
1346 Complete:
1347 complete_all(&dev->power.completion);
1348 TRACE_SUSPEND(error);
1349 return error;
1352 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1354 struct device *dev = (struct device *)data;
1355 int error;
1357 error = __device_suspend_noirq(dev, pm_transition, true);
1358 if (error) {
1359 dpm_save_failed_dev(dev_name(dev));
1360 pm_dev_err(dev, pm_transition, " async", error);
1363 put_device(dev);
1366 static int device_suspend_noirq(struct device *dev)
1368 reinit_completion(&dev->power.completion);
1370 if (is_async(dev)) {
1371 get_device(dev);
1372 async_schedule(async_suspend_noirq, dev);
1373 return 0;
1375 return __device_suspend_noirq(dev, pm_transition, false);
1378 void dpm_noirq_begin(void)
1380 cpuidle_pause();
1381 device_wakeup_arm_wake_irqs();
1382 suspend_device_irqs();
1385 int dpm_noirq_suspend_devices(pm_message_t state)
1387 ktime_t starttime = ktime_get();
1388 int error = 0;
1390 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391 mutex_lock(&dpm_list_mtx);
1392 pm_transition = state;
1393 async_error = 0;
1395 while (!list_empty(&dpm_late_early_list)) {
1396 struct device *dev = to_device(dpm_late_early_list.prev);
1398 get_device(dev);
1399 mutex_unlock(&dpm_list_mtx);
1401 error = device_suspend_noirq(dev);
1403 mutex_lock(&dpm_list_mtx);
1404 if (error) {
1405 pm_dev_err(dev, state, " noirq", error);
1406 dpm_save_failed_dev(dev_name(dev));
1407 put_device(dev);
1408 break;
1410 if (!list_empty(&dev->power.entry))
1411 list_move(&dev->power.entry, &dpm_noirq_list);
1412 put_device(dev);
1414 if (async_error)
1415 break;
1417 mutex_unlock(&dpm_list_mtx);
1418 async_synchronize_full();
1419 if (!error)
1420 error = async_error;
1422 if (error) {
1423 suspend_stats.failed_suspend_noirq++;
1424 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1426 dpm_show_time(starttime, state, error, "noirq");
1427 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428 return error;
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1438 int dpm_suspend_noirq(pm_message_t state)
1440 int ret;
1442 dpm_noirq_begin();
1443 ret = dpm_noirq_suspend_devices(state);
1444 if (ret)
1445 dpm_resume_noirq(resume_event(state));
1447 return ret;
1450 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1452 struct device *parent = dev->parent;
1454 if (!parent)
1455 return;
1457 spin_lock_irq(&parent->power.lock);
1459 if (dev->power.wakeup_path && !parent->power.ignore_children)
1460 parent->power.wakeup_path = true;
1462 spin_unlock_irq(&parent->power.lock);
1465 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466 pm_message_t state,
1467 const char **info_p)
1469 pm_callback_t callback;
1470 const char *info;
1472 if (dev->pm_domain) {
1473 info = "late power domain ";
1474 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475 } else if (dev->type && dev->type->pm) {
1476 info = "late type ";
1477 callback = pm_late_early_op(dev->type->pm, state);
1478 } else if (dev->class && dev->class->pm) {
1479 info = "late class ";
1480 callback = pm_late_early_op(dev->class->pm, state);
1481 } else if (dev->bus && dev->bus->pm) {
1482 info = "late bus ";
1483 callback = pm_late_early_op(dev->bus->pm, state);
1484 } else {
1485 return NULL;
1488 if (info_p)
1489 *info_p = info;
1491 return callback;
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1500 * Runtime PM is disabled for @dev while this function is being executed.
1502 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1504 pm_callback_t callback;
1505 const char *info;
1506 int error = 0;
1508 TRACE_DEVICE(dev);
1509 TRACE_SUSPEND(0);
1511 __pm_runtime_disable(dev, false);
1513 dpm_wait_for_subordinate(dev, async);
1515 if (async_error)
1516 goto Complete;
1518 if (pm_wakeup_pending()) {
1519 async_error = -EBUSY;
1520 goto Complete;
1523 if (dev->power.syscore || dev->power.direct_complete)
1524 goto Complete;
1526 callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527 if (callback)
1528 goto Run;
1530 if (dev_pm_smart_suspend_and_suspended(dev) &&
1531 !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532 goto Skip;
1534 if (dev->driver && dev->driver->pm) {
1535 info = "late driver ";
1536 callback = pm_late_early_op(dev->driver->pm, state);
1539 Run:
1540 error = dpm_run_callback(callback, dev, state, info);
1541 if (error) {
1542 async_error = error;
1543 goto Complete;
1545 dpm_propagate_wakeup_to_parent(dev);
1547 Skip:
1548 dev->power.is_late_suspended = true;
1550 Complete:
1551 TRACE_SUSPEND(error);
1552 complete_all(&dev->power.completion);
1553 return error;
1556 static void async_suspend_late(void *data, async_cookie_t cookie)
1558 struct device *dev = (struct device *)data;
1559 int error;
1561 error = __device_suspend_late(dev, pm_transition, true);
1562 if (error) {
1563 dpm_save_failed_dev(dev_name(dev));
1564 pm_dev_err(dev, pm_transition, " async", error);
1566 put_device(dev);
1569 static int device_suspend_late(struct device *dev)
1571 reinit_completion(&dev->power.completion);
1573 if (is_async(dev)) {
1574 get_device(dev);
1575 async_schedule(async_suspend_late, dev);
1576 return 0;
1579 return __device_suspend_late(dev, pm_transition, false);
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1586 int dpm_suspend_late(pm_message_t state)
1588 ktime_t starttime = ktime_get();
1589 int error = 0;
1591 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592 mutex_lock(&dpm_list_mtx);
1593 pm_transition = state;
1594 async_error = 0;
1596 while (!list_empty(&dpm_suspended_list)) {
1597 struct device *dev = to_device(dpm_suspended_list.prev);
1599 get_device(dev);
1600 mutex_unlock(&dpm_list_mtx);
1602 error = device_suspend_late(dev);
1604 mutex_lock(&dpm_list_mtx);
1605 if (!list_empty(&dev->power.entry))
1606 list_move(&dev->power.entry, &dpm_late_early_list);
1608 if (error) {
1609 pm_dev_err(dev, state, " late", error);
1610 dpm_save_failed_dev(dev_name(dev));
1611 put_device(dev);
1612 break;
1614 put_device(dev);
1616 if (async_error)
1617 break;
1619 mutex_unlock(&dpm_list_mtx);
1620 async_synchronize_full();
1621 if (!error)
1622 error = async_error;
1623 if (error) {
1624 suspend_stats.failed_suspend_late++;
1625 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626 dpm_resume_early(resume_event(state));
1628 dpm_show_time(starttime, state, error, "late");
1629 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630 return error;
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1637 int dpm_suspend_end(pm_message_t state)
1639 int error = dpm_suspend_late(state);
1640 if (error)
1641 return error;
1643 error = dpm_suspend_noirq(state);
1644 if (error) {
1645 dpm_resume_early(resume_event(state));
1646 return error;
1649 return 0;
1651 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1660 static int legacy_suspend(struct device *dev, pm_message_t state,
1661 int (*cb)(struct device *dev, pm_message_t state),
1662 const char *info)
1664 int error;
1665 ktime_t calltime;
1667 calltime = initcall_debug_start(dev);
1669 trace_device_pm_callback_start(dev, info, state.event);
1670 error = cb(dev, state);
1671 trace_device_pm_callback_end(dev, error);
1672 suspend_report_result(cb, error);
1674 initcall_debug_report(dev, calltime, error, state, info);
1676 return error;
1679 static void dpm_clear_superiors_direct_complete(struct device *dev)
1681 struct device_link *link;
1682 int idx;
1684 if (dev->parent) {
1685 spin_lock_irq(&dev->parent->power.lock);
1686 dev->parent->power.direct_complete = false;
1687 spin_unlock_irq(&dev->parent->power.lock);
1690 idx = device_links_read_lock();
1692 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693 spin_lock_irq(&link->supplier->power.lock);
1694 link->supplier->power.direct_complete = false;
1695 spin_unlock_irq(&link->supplier->power.lock);
1698 device_links_read_unlock(idx);
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1707 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1709 pm_callback_t callback = NULL;
1710 const char *info = NULL;
1711 int error = 0;
1712 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1714 TRACE_DEVICE(dev);
1715 TRACE_SUSPEND(0);
1717 dpm_wait_for_subordinate(dev, async);
1719 if (async_error)
1720 goto Complete;
1723 * If a device configured to wake up the system from sleep states
1724 * has been suspended at run time and there's a resume request pending
1725 * for it, this is equivalent to the device signaling wakeup, so the
1726 * system suspend operation should be aborted.
1728 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729 pm_wakeup_event(dev, 0);
1731 if (pm_wakeup_pending()) {
1732 async_error = -EBUSY;
1733 goto Complete;
1736 if (dev->power.syscore)
1737 goto Complete;
1739 if (dev->power.direct_complete) {
1740 if (pm_runtime_status_suspended(dev)) {
1741 pm_runtime_disable(dev);
1742 if (pm_runtime_status_suspended(dev))
1743 goto Complete;
1745 pm_runtime_enable(dev);
1747 dev->power.direct_complete = false;
1750 dev->power.may_skip_resume = false;
1751 dev->power.must_resume = false;
1753 dpm_watchdog_set(&wd, dev);
1754 device_lock(dev);
1756 if (dev->pm_domain) {
1757 info = "power domain ";
1758 callback = pm_op(&dev->pm_domain->ops, state);
1759 goto Run;
1762 if (dev->type && dev->type->pm) {
1763 info = "type ";
1764 callback = pm_op(dev->type->pm, state);
1765 goto Run;
1768 if (dev->class && dev->class->pm) {
1769 info = "class ";
1770 callback = pm_op(dev->class->pm, state);
1771 goto Run;
1774 if (dev->bus) {
1775 if (dev->bus->pm) {
1776 info = "bus ";
1777 callback = pm_op(dev->bus->pm, state);
1778 } else if (dev->bus->suspend) {
1779 pm_dev_dbg(dev, state, "legacy bus ");
1780 error = legacy_suspend(dev, state, dev->bus->suspend,
1781 "legacy bus ");
1782 goto End;
1786 Run:
1787 if (!callback && dev->driver && dev->driver->pm) {
1788 info = "driver ";
1789 callback = pm_op(dev->driver->pm, state);
1792 error = dpm_run_callback(callback, dev, state, info);
1794 End:
1795 if (!error) {
1796 dev->power.is_suspended = true;
1797 if (device_may_wakeup(dev))
1798 dev->power.wakeup_path = true;
1800 dpm_propagate_wakeup_to_parent(dev);
1801 dpm_clear_superiors_direct_complete(dev);
1804 device_unlock(dev);
1805 dpm_watchdog_clear(&wd);
1807 Complete:
1808 if (error)
1809 async_error = error;
1811 complete_all(&dev->power.completion);
1812 TRACE_SUSPEND(error);
1813 return error;
1816 static void async_suspend(void *data, async_cookie_t cookie)
1818 struct device *dev = (struct device *)data;
1819 int error;
1821 error = __device_suspend(dev, pm_transition, true);
1822 if (error) {
1823 dpm_save_failed_dev(dev_name(dev));
1824 pm_dev_err(dev, pm_transition, " async", error);
1827 put_device(dev);
1830 static int device_suspend(struct device *dev)
1832 reinit_completion(&dev->power.completion);
1834 if (is_async(dev)) {
1835 get_device(dev);
1836 async_schedule(async_suspend, dev);
1837 return 0;
1840 return __device_suspend(dev, pm_transition, false);
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1847 int dpm_suspend(pm_message_t state)
1849 ktime_t starttime = ktime_get();
1850 int error = 0;
1852 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853 might_sleep();
1855 cpufreq_suspend();
1857 mutex_lock(&dpm_list_mtx);
1858 pm_transition = state;
1859 async_error = 0;
1860 while (!list_empty(&dpm_prepared_list)) {
1861 struct device *dev = to_device(dpm_prepared_list.prev);
1863 get_device(dev);
1864 mutex_unlock(&dpm_list_mtx);
1866 error = device_suspend(dev);
1868 mutex_lock(&dpm_list_mtx);
1869 if (error) {
1870 pm_dev_err(dev, state, "", error);
1871 dpm_save_failed_dev(dev_name(dev));
1872 put_device(dev);
1873 break;
1875 if (!list_empty(&dev->power.entry))
1876 list_move(&dev->power.entry, &dpm_suspended_list);
1877 put_device(dev);
1878 if (async_error)
1879 break;
1881 mutex_unlock(&dpm_list_mtx);
1882 async_synchronize_full();
1883 if (!error)
1884 error = async_error;
1885 if (error) {
1886 suspend_stats.failed_suspend++;
1887 dpm_save_failed_step(SUSPEND_SUSPEND);
1889 dpm_show_time(starttime, state, error, NULL);
1890 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891 return error;
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1899 * Execute the ->prepare() callback(s) for given device. No new children of the
1900 * device may be registered after this function has returned.
1902 static int device_prepare(struct device *dev, pm_message_t state)
1904 int (*callback)(struct device *) = NULL;
1905 int ret = 0;
1907 if (dev->power.syscore)
1908 return 0;
1910 WARN_ON(!pm_runtime_enabled(dev) &&
1911 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912 DPM_FLAG_LEAVE_SUSPENDED));
1915 * If a device's parent goes into runtime suspend at the wrong time,
1916 * it won't be possible to resume the device. To prevent this we
1917 * block runtime suspend here, during the prepare phase, and allow
1918 * it again during the complete phase.
1920 pm_runtime_get_noresume(dev);
1922 device_lock(dev);
1924 dev->power.wakeup_path = false;
1926 if (dev->power.no_pm_callbacks) {
1927 ret = 1; /* Let device go direct_complete */
1928 goto unlock;
1931 if (dev->pm_domain)
1932 callback = dev->pm_domain->ops.prepare;
1933 else if (dev->type && dev->type->pm)
1934 callback = dev->type->pm->prepare;
1935 else if (dev->class && dev->class->pm)
1936 callback = dev->class->pm->prepare;
1937 else if (dev->bus && dev->bus->pm)
1938 callback = dev->bus->pm->prepare;
1940 if (!callback && dev->driver && dev->driver->pm)
1941 callback = dev->driver->pm->prepare;
1943 if (callback)
1944 ret = callback(dev);
1946 unlock:
1947 device_unlock(dev);
1949 if (ret < 0) {
1950 suspend_report_result(callback, ret);
1951 pm_runtime_put(dev);
1952 return ret;
1955 * A positive return value from ->prepare() means "this device appears
1956 * to be runtime-suspended and its state is fine, so if it really is
1957 * runtime-suspended, you can leave it in that state provided that you
1958 * will do the same thing with all of its descendants". This only
1959 * applies to suspend transitions, however.
1961 spin_lock_irq(&dev->power.lock);
1962 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1963 pm_runtime_suspended(dev) && ret > 0 &&
1964 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1965 spin_unlock_irq(&dev->power.lock);
1966 return 0;
1970 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1971 * @state: PM transition of the system being carried out.
1973 * Execute the ->prepare() callback(s) for all devices.
1975 int dpm_prepare(pm_message_t state)
1977 int error = 0;
1979 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1980 might_sleep();
1983 * Give a chance for the known devices to complete their probes, before
1984 * disable probing of devices. This sync point is important at least
1985 * at boot time + hibernation restore.
1987 wait_for_device_probe();
1989 * It is unsafe if probing of devices will happen during suspend or
1990 * hibernation and system behavior will be unpredictable in this case.
1991 * So, let's prohibit device's probing here and defer their probes
1992 * instead. The normal behavior will be restored in dpm_complete().
1994 device_block_probing();
1996 mutex_lock(&dpm_list_mtx);
1997 while (!list_empty(&dpm_list)) {
1998 struct device *dev = to_device(dpm_list.next);
2000 get_device(dev);
2001 mutex_unlock(&dpm_list_mtx);
2003 trace_device_pm_callback_start(dev, "", state.event);
2004 error = device_prepare(dev, state);
2005 trace_device_pm_callback_end(dev, error);
2007 mutex_lock(&dpm_list_mtx);
2008 if (error) {
2009 if (error == -EAGAIN) {
2010 put_device(dev);
2011 error = 0;
2012 continue;
2014 printk(KERN_INFO "PM: Device %s not prepared "
2015 "for power transition: code %d\n",
2016 dev_name(dev), error);
2017 put_device(dev);
2018 break;
2020 dev->power.is_prepared = true;
2021 if (!list_empty(&dev->power.entry))
2022 list_move_tail(&dev->power.entry, &dpm_prepared_list);
2023 put_device(dev);
2025 mutex_unlock(&dpm_list_mtx);
2026 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2027 return error;
2031 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2032 * @state: PM transition of the system being carried out.
2034 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2035 * callbacks for them.
2037 int dpm_suspend_start(pm_message_t state)
2039 int error;
2041 error = dpm_prepare(state);
2042 if (error) {
2043 suspend_stats.failed_prepare++;
2044 dpm_save_failed_step(SUSPEND_PREPARE);
2045 } else
2046 error = dpm_suspend(state);
2047 return error;
2049 EXPORT_SYMBOL_GPL(dpm_suspend_start);
2051 void __suspend_report_result(const char *function, void *fn, int ret)
2053 if (ret)
2054 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2056 EXPORT_SYMBOL_GPL(__suspend_report_result);
2059 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2060 * @dev: Device to wait for.
2061 * @subordinate: Device that needs to wait for @dev.
2063 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2065 dpm_wait(dev, subordinate->power.async_suspend);
2066 return async_error;
2068 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2071 * dpm_for_each_dev - device iterator.
2072 * @data: data for the callback.
2073 * @fn: function to be called for each device.
2075 * Iterate over devices in dpm_list, and call @fn for each device,
2076 * passing it @data.
2078 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2080 struct device *dev;
2082 if (!fn)
2083 return;
2085 device_pm_lock();
2086 list_for_each_entry(dev, &dpm_list, power.entry)
2087 fn(dev, data);
2088 device_pm_unlock();
2090 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2092 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2094 if (!ops)
2095 return true;
2097 return !ops->prepare &&
2098 !ops->suspend &&
2099 !ops->suspend_late &&
2100 !ops->suspend_noirq &&
2101 !ops->resume_noirq &&
2102 !ops->resume_early &&
2103 !ops->resume &&
2104 !ops->complete;
2107 void device_pm_check_callbacks(struct device *dev)
2109 spin_lock_irq(&dev->power.lock);
2110 dev->power.no_pm_callbacks =
2111 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2112 !dev->bus->suspend && !dev->bus->resume)) &&
2113 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2114 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2115 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2116 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2117 !dev->driver->suspend && !dev->driver->resume));
2118 spin_unlock_irq(&dev->power.lock);
2121 bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2123 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2124 pm_runtime_status_suspended(dev);