4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/notifier.h>
53 #include <linux/mutex.h>
54 #include <linux/kthread.h>
56 #include <linux/interrupt.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ipmi.h>
59 #include <linux/ipmi_smi.h>
61 #include <linux/string.h>
62 #include <linux/ctype.h>
64 #define PFX "ipmi_si: "
66 /* Measure times between events in the driver. */
69 /* Call every 10 ms. */
70 #define SI_TIMEOUT_TIME_USEC 10000
71 #define SI_USEC_PER_JIFFY (1000000/HZ)
72 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
73 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
84 /* FIXME - add watchdog stuff. */
87 /* Some BT-specific defines we need here. */
88 #define IPMI_BT_INTMASK_REG 2
89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
92 static const char * const si_to_str
[] = { "invalid", "kcs", "smic", "bt" };
94 static int initialized
;
97 * Indexes into stats[] in smi_info below.
99 enum si_stat_indexes
{
101 * Number of times the driver requested a timer while an operation
104 SI_STAT_short_timeouts
= 0,
107 * Number of times the driver requested a timer while nothing was in
110 SI_STAT_long_timeouts
,
112 /* Number of times the interface was idle while being polled. */
115 /* Number of interrupts the driver handled. */
118 /* Number of time the driver got an ATTN from the hardware. */
121 /* Number of times the driver requested flags from the hardware. */
122 SI_STAT_flag_fetches
,
124 /* Number of times the hardware didn't follow the state machine. */
127 /* Number of completed messages. */
128 SI_STAT_complete_transactions
,
130 /* Number of IPMI events received from the hardware. */
133 /* Number of watchdog pretimeouts. */
134 SI_STAT_watchdog_pretimeouts
,
136 /* Number of asynchronous messages received. */
137 SI_STAT_incoming_messages
,
140 /* This *must* remain last, add new values above this. */
147 struct si_sm_data
*si_sm
;
148 const struct si_sm_handlers
*handlers
;
150 struct ipmi_smi_msg
*waiting_msg
;
151 struct ipmi_smi_msg
*curr_msg
;
152 enum si_intf_state si_state
;
155 * Used to handle the various types of I/O that can occur with
161 * Per-OEM handler, called from handle_flags(). Returns 1
162 * when handle_flags() needs to be re-run or 0 indicating it
163 * set si_state itself.
165 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
168 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
169 * is set to hold the flags until we are done handling everything
172 #define RECEIVE_MSG_AVAIL 0x01
173 #define EVENT_MSG_BUFFER_FULL 0x02
174 #define WDT_PRE_TIMEOUT_INT 0x08
175 #define OEM0_DATA_AVAIL 0x20
176 #define OEM1_DATA_AVAIL 0x40
177 #define OEM2_DATA_AVAIL 0x80
178 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
181 unsigned char msg_flags
;
183 /* Does the BMC have an event buffer? */
184 bool has_event_buffer
;
187 * If set to true, this will request events the next time the
188 * state machine is idle.
193 * If true, run the state machine to completion on every send
194 * call. Generally used after a panic to make sure stuff goes
197 bool run_to_completion
;
199 /* The timer for this si. */
200 struct timer_list si_timer
;
202 /* This flag is set, if the timer can be set */
203 bool timer_can_start
;
205 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
208 /* The time (in jiffies) the last timeout occurred at. */
209 unsigned long last_timeout_jiffies
;
211 /* Are we waiting for the events, pretimeouts, received msgs? */
215 * The driver will disable interrupts when it gets into a
216 * situation where it cannot handle messages due to lack of
217 * memory. Once that situation clears up, it will re-enable
220 bool interrupt_disabled
;
223 * Does the BMC support events?
225 bool supports_event_msg_buff
;
228 * Can we disable interrupts the global enables receive irq
229 * bit? There are currently two forms of brokenness, some
230 * systems cannot disable the bit (which is technically within
231 * the spec but a bad idea) and some systems have the bit
232 * forced to zero even though interrupts work (which is
233 * clearly outside the spec). The next bool tells which form
234 * of brokenness is present.
236 bool cannot_disable_irq
;
239 * Some systems are broken and cannot set the irq enable
240 * bit, even if they support interrupts.
242 bool irq_enable_broken
;
245 * Did we get an attention that we did not handle?
249 /* From the get device id response... */
250 struct ipmi_device_id device_id
;
252 /* Default driver model device. */
253 struct platform_device
*pdev
;
255 /* Counters and things for the proc filesystem. */
256 atomic_t stats
[SI_NUM_STATS
];
258 struct task_struct
*thread
;
260 struct list_head link
;
263 #define smi_inc_stat(smi, stat) \
264 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
265 #define smi_get_stat(smi, stat) \
266 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
268 #define IPMI_MAX_INTFS 4
269 static int force_kipmid
[IPMI_MAX_INTFS
];
270 static int num_force_kipmid
;
272 static unsigned int kipmid_max_busy_us
[IPMI_MAX_INTFS
];
273 static int num_max_busy_us
;
275 static bool unload_when_empty
= true;
277 static int try_smi_init(struct smi_info
*smi
);
278 static void cleanup_one_si(struct smi_info
*to_clean
);
279 static void cleanup_ipmi_si(void);
282 void debug_timestamp(char *msg
)
286 getnstimeofday64(&t
);
287 pr_debug("**%s: %lld.%9.9ld\n", msg
, (long long) t
.tv_sec
, t
.tv_nsec
);
290 #define debug_timestamp(x)
293 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
294 static int register_xaction_notifier(struct notifier_block
*nb
)
296 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
299 static void deliver_recv_msg(struct smi_info
*smi_info
,
300 struct ipmi_smi_msg
*msg
)
302 /* Deliver the message to the upper layer. */
304 ipmi_smi_msg_received(smi_info
->intf
, msg
);
306 ipmi_free_smi_msg(msg
);
309 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
311 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
313 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
314 cCode
= IPMI_ERR_UNSPECIFIED
;
315 /* else use it as is */
317 /* Make it a response */
318 msg
->rsp
[0] = msg
->data
[0] | 4;
319 msg
->rsp
[1] = msg
->data
[1];
323 smi_info
->curr_msg
= NULL
;
324 deliver_recv_msg(smi_info
, msg
);
327 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
331 if (!smi_info
->waiting_msg
) {
332 smi_info
->curr_msg
= NULL
;
337 smi_info
->curr_msg
= smi_info
->waiting_msg
;
338 smi_info
->waiting_msg
= NULL
;
339 debug_timestamp("Start2");
340 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
342 if (err
& NOTIFY_STOP_MASK
) {
343 rv
= SI_SM_CALL_WITHOUT_DELAY
;
346 err
= smi_info
->handlers
->start_transaction(
348 smi_info
->curr_msg
->data
,
349 smi_info
->curr_msg
->data_size
);
351 return_hosed_msg(smi_info
, err
);
353 rv
= SI_SM_CALL_WITHOUT_DELAY
;
359 static void smi_mod_timer(struct smi_info
*smi_info
, unsigned long new_val
)
361 if (!smi_info
->timer_can_start
)
363 smi_info
->last_timeout_jiffies
= jiffies
;
364 mod_timer(&smi_info
->si_timer
, new_val
);
365 smi_info
->timer_running
= true;
369 * Start a new message and (re)start the timer and thread.
371 static void start_new_msg(struct smi_info
*smi_info
, unsigned char *msg
,
374 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
376 if (smi_info
->thread
)
377 wake_up_process(smi_info
->thread
);
379 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, size
);
382 static void start_check_enables(struct smi_info
*smi_info
)
384 unsigned char msg
[2];
386 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
387 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
389 start_new_msg(smi_info
, msg
, 2);
390 smi_info
->si_state
= SI_CHECKING_ENABLES
;
393 static void start_clear_flags(struct smi_info
*smi_info
)
395 unsigned char msg
[3];
397 /* Make sure the watchdog pre-timeout flag is not set at startup. */
398 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
399 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
400 msg
[2] = WDT_PRE_TIMEOUT_INT
;
402 start_new_msg(smi_info
, msg
, 3);
403 smi_info
->si_state
= SI_CLEARING_FLAGS
;
406 static void start_getting_msg_queue(struct smi_info
*smi_info
)
408 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
409 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
410 smi_info
->curr_msg
->data_size
= 2;
412 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
413 smi_info
->curr_msg
->data_size
);
414 smi_info
->si_state
= SI_GETTING_MESSAGES
;
417 static void start_getting_events(struct smi_info
*smi_info
)
419 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
420 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
421 smi_info
->curr_msg
->data_size
= 2;
423 start_new_msg(smi_info
, smi_info
->curr_msg
->data
,
424 smi_info
->curr_msg
->data_size
);
425 smi_info
->si_state
= SI_GETTING_EVENTS
;
429 * When we have a situtaion where we run out of memory and cannot
430 * allocate messages, we just leave them in the BMC and run the system
431 * polled until we can allocate some memory. Once we have some
432 * memory, we will re-enable the interrupt.
434 * Note that we cannot just use disable_irq(), since the interrupt may
437 static inline bool disable_si_irq(struct smi_info
*smi_info
)
439 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
440 smi_info
->interrupt_disabled
= true;
441 start_check_enables(smi_info
);
447 static inline bool enable_si_irq(struct smi_info
*smi_info
)
449 if ((smi_info
->io
.irq
) && (smi_info
->interrupt_disabled
)) {
450 smi_info
->interrupt_disabled
= false;
451 start_check_enables(smi_info
);
458 * Allocate a message. If unable to allocate, start the interrupt
459 * disable process and return NULL. If able to allocate but
460 * interrupts are disabled, free the message and return NULL after
461 * starting the interrupt enable process.
463 static struct ipmi_smi_msg
*alloc_msg_handle_irq(struct smi_info
*smi_info
)
465 struct ipmi_smi_msg
*msg
;
467 msg
= ipmi_alloc_smi_msg();
469 if (!disable_si_irq(smi_info
))
470 smi_info
->si_state
= SI_NORMAL
;
471 } else if (enable_si_irq(smi_info
)) {
472 ipmi_free_smi_msg(msg
);
478 static void handle_flags(struct smi_info
*smi_info
)
481 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
482 /* Watchdog pre-timeout */
483 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
485 start_clear_flags(smi_info
);
486 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
488 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
489 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
490 /* Messages available. */
491 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
492 if (!smi_info
->curr_msg
)
495 start_getting_msg_queue(smi_info
);
496 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
497 /* Events available. */
498 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
499 if (!smi_info
->curr_msg
)
502 start_getting_events(smi_info
);
503 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
504 smi_info
->oem_data_avail_handler
) {
505 if (smi_info
->oem_data_avail_handler(smi_info
))
508 smi_info
->si_state
= SI_NORMAL
;
512 * Global enables we care about.
514 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
515 IPMI_BMC_EVT_MSG_INTR)
517 static u8
current_global_enables(struct smi_info
*smi_info
, u8 base
,
522 if (smi_info
->supports_event_msg_buff
)
523 enables
|= IPMI_BMC_EVT_MSG_BUFF
;
525 if (((smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
) ||
526 smi_info
->cannot_disable_irq
) &&
527 !smi_info
->irq_enable_broken
)
528 enables
|= IPMI_BMC_RCV_MSG_INTR
;
530 if (smi_info
->supports_event_msg_buff
&&
531 smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
&&
532 !smi_info
->irq_enable_broken
)
533 enables
|= IPMI_BMC_EVT_MSG_INTR
;
535 *irq_on
= enables
& (IPMI_BMC_EVT_MSG_INTR
| IPMI_BMC_RCV_MSG_INTR
);
540 static void check_bt_irq(struct smi_info
*smi_info
, bool irq_on
)
542 u8 irqstate
= smi_info
->io
.inputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
);
544 irqstate
&= IPMI_BT_INTMASK_ENABLE_IRQ_BIT
;
546 if ((bool)irqstate
== irq_on
)
550 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
551 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
553 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
, 0);
556 static void handle_transaction_done(struct smi_info
*smi_info
)
558 struct ipmi_smi_msg
*msg
;
560 debug_timestamp("Done");
561 switch (smi_info
->si_state
) {
563 if (!smi_info
->curr_msg
)
566 smi_info
->curr_msg
->rsp_size
567 = smi_info
->handlers
->get_result(
569 smi_info
->curr_msg
->rsp
,
570 IPMI_MAX_MSG_LENGTH
);
573 * Do this here becase deliver_recv_msg() releases the
574 * lock, and a new message can be put in during the
575 * time the lock is released.
577 msg
= smi_info
->curr_msg
;
578 smi_info
->curr_msg
= NULL
;
579 deliver_recv_msg(smi_info
, msg
);
582 case SI_GETTING_FLAGS
:
584 unsigned char msg
[4];
587 /* We got the flags from the SMI, now handle them. */
588 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
590 /* Error fetching flags, just give up for now. */
591 smi_info
->si_state
= SI_NORMAL
;
592 } else if (len
< 4) {
594 * Hmm, no flags. That's technically illegal, but
595 * don't use uninitialized data.
597 smi_info
->si_state
= SI_NORMAL
;
599 smi_info
->msg_flags
= msg
[3];
600 handle_flags(smi_info
);
605 case SI_CLEARING_FLAGS
:
607 unsigned char msg
[3];
609 /* We cleared the flags. */
610 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
612 /* Error clearing flags */
613 dev_warn(smi_info
->io
.dev
,
614 "Error clearing flags: %2.2x\n", msg
[2]);
616 smi_info
->si_state
= SI_NORMAL
;
620 case SI_GETTING_EVENTS
:
622 smi_info
->curr_msg
->rsp_size
623 = smi_info
->handlers
->get_result(
625 smi_info
->curr_msg
->rsp
,
626 IPMI_MAX_MSG_LENGTH
);
629 * Do this here becase deliver_recv_msg() releases the
630 * lock, and a new message can be put in during the
631 * time the lock is released.
633 msg
= smi_info
->curr_msg
;
634 smi_info
->curr_msg
= NULL
;
635 if (msg
->rsp
[2] != 0) {
636 /* Error getting event, probably done. */
639 /* Take off the event flag. */
640 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
641 handle_flags(smi_info
);
643 smi_inc_stat(smi_info
, events
);
646 * Do this before we deliver the message
647 * because delivering the message releases the
648 * lock and something else can mess with the
651 handle_flags(smi_info
);
653 deliver_recv_msg(smi_info
, msg
);
658 case SI_GETTING_MESSAGES
:
660 smi_info
->curr_msg
->rsp_size
661 = smi_info
->handlers
->get_result(
663 smi_info
->curr_msg
->rsp
,
664 IPMI_MAX_MSG_LENGTH
);
667 * Do this here becase deliver_recv_msg() releases the
668 * lock, and a new message can be put in during the
669 * time the lock is released.
671 msg
= smi_info
->curr_msg
;
672 smi_info
->curr_msg
= NULL
;
673 if (msg
->rsp
[2] != 0) {
674 /* Error getting event, probably done. */
677 /* Take off the msg flag. */
678 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
679 handle_flags(smi_info
);
681 smi_inc_stat(smi_info
, incoming_messages
);
684 * Do this before we deliver the message
685 * because delivering the message releases the
686 * lock and something else can mess with the
689 handle_flags(smi_info
);
691 deliver_recv_msg(smi_info
, msg
);
696 case SI_CHECKING_ENABLES
:
698 unsigned char msg
[4];
702 /* We got the flags from the SMI, now handle them. */
703 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
705 dev_warn(smi_info
->io
.dev
,
706 "Couldn't get irq info: %x.\n", msg
[2]);
707 dev_warn(smi_info
->io
.dev
,
708 "Maybe ok, but ipmi might run very slowly.\n");
709 smi_info
->si_state
= SI_NORMAL
;
712 enables
= current_global_enables(smi_info
, 0, &irq_on
);
713 if (smi_info
->io
.si_type
== SI_BT
)
714 /* BT has its own interrupt enable bit. */
715 check_bt_irq(smi_info
, irq_on
);
716 if (enables
!= (msg
[3] & GLOBAL_ENABLES_MASK
)) {
717 /* Enables are not correct, fix them. */
718 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
719 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
720 msg
[2] = enables
| (msg
[3] & ~GLOBAL_ENABLES_MASK
);
721 smi_info
->handlers
->start_transaction(
722 smi_info
->si_sm
, msg
, 3);
723 smi_info
->si_state
= SI_SETTING_ENABLES
;
724 } else if (smi_info
->supports_event_msg_buff
) {
725 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
726 if (!smi_info
->curr_msg
) {
727 smi_info
->si_state
= SI_NORMAL
;
730 start_getting_events(smi_info
);
732 smi_info
->si_state
= SI_NORMAL
;
737 case SI_SETTING_ENABLES
:
739 unsigned char msg
[4];
741 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
743 dev_warn(smi_info
->io
.dev
,
744 "Could not set the global enables: 0x%x.\n",
747 if (smi_info
->supports_event_msg_buff
) {
748 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
749 if (!smi_info
->curr_msg
) {
750 smi_info
->si_state
= SI_NORMAL
;
753 start_getting_events(smi_info
);
755 smi_info
->si_state
= SI_NORMAL
;
763 * Called on timeouts and events. Timeouts should pass the elapsed
764 * time, interrupts should pass in zero. Must be called with
765 * si_lock held and interrupts disabled.
767 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
770 enum si_sm_result si_sm_result
;
774 * There used to be a loop here that waited a little while
775 * (around 25us) before giving up. That turned out to be
776 * pointless, the minimum delays I was seeing were in the 300us
777 * range, which is far too long to wait in an interrupt. So
778 * we just run until the state machine tells us something
779 * happened or it needs a delay.
781 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
783 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
784 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
786 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
787 smi_inc_stat(smi_info
, complete_transactions
);
789 handle_transaction_done(smi_info
);
791 } else if (si_sm_result
== SI_SM_HOSED
) {
792 smi_inc_stat(smi_info
, hosed_count
);
795 * Do the before return_hosed_msg, because that
798 smi_info
->si_state
= SI_NORMAL
;
799 if (smi_info
->curr_msg
!= NULL
) {
801 * If we were handling a user message, format
802 * a response to send to the upper layer to
803 * tell it about the error.
805 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
811 * We prefer handling attn over new messages. But don't do
812 * this if there is not yet an upper layer to handle anything.
814 if (likely(smi_info
->intf
) &&
815 (si_sm_result
== SI_SM_ATTN
|| smi_info
->got_attn
)) {
816 unsigned char msg
[2];
818 if (smi_info
->si_state
!= SI_NORMAL
) {
820 * We got an ATTN, but we are doing something else.
821 * Handle the ATTN later.
823 smi_info
->got_attn
= true;
825 smi_info
->got_attn
= false;
826 smi_inc_stat(smi_info
, attentions
);
829 * Got a attn, send down a get message flags to see
830 * what's causing it. It would be better to handle
831 * this in the upper layer, but due to the way
832 * interrupts work with the SMI, that's not really
835 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
836 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
838 start_new_msg(smi_info
, msg
, 2);
839 smi_info
->si_state
= SI_GETTING_FLAGS
;
844 /* If we are currently idle, try to start the next message. */
845 if (si_sm_result
== SI_SM_IDLE
) {
846 smi_inc_stat(smi_info
, idles
);
848 si_sm_result
= start_next_msg(smi_info
);
849 if (si_sm_result
!= SI_SM_IDLE
)
853 if ((si_sm_result
== SI_SM_IDLE
)
854 && (atomic_read(&smi_info
->req_events
))) {
856 * We are idle and the upper layer requested that I fetch
859 atomic_set(&smi_info
->req_events
, 0);
862 * Take this opportunity to check the interrupt and
863 * message enable state for the BMC. The BMC can be
864 * asynchronously reset, and may thus get interrupts
865 * disable and messages disabled.
867 if (smi_info
->supports_event_msg_buff
|| smi_info
->io
.irq
) {
868 start_check_enables(smi_info
);
870 smi_info
->curr_msg
= alloc_msg_handle_irq(smi_info
);
871 if (!smi_info
->curr_msg
)
874 start_getting_events(smi_info
);
879 if (si_sm_result
== SI_SM_IDLE
&& smi_info
->timer_running
) {
880 /* Ok it if fails, the timer will just go off. */
881 if (del_timer(&smi_info
->si_timer
))
882 smi_info
->timer_running
= false;
889 static void check_start_timer_thread(struct smi_info
*smi_info
)
891 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
) {
892 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
894 if (smi_info
->thread
)
895 wake_up_process(smi_info
->thread
);
897 start_next_msg(smi_info
);
898 smi_event_handler(smi_info
, 0);
902 static void flush_messages(void *send_info
)
904 struct smi_info
*smi_info
= send_info
;
905 enum si_sm_result result
;
908 * Currently, this function is called only in run-to-completion
909 * mode. This means we are single-threaded, no need for locks.
911 result
= smi_event_handler(smi_info
, 0);
912 while (result
!= SI_SM_IDLE
) {
913 udelay(SI_SHORT_TIMEOUT_USEC
);
914 result
= smi_event_handler(smi_info
, SI_SHORT_TIMEOUT_USEC
);
918 static void sender(void *send_info
,
919 struct ipmi_smi_msg
*msg
)
921 struct smi_info
*smi_info
= send_info
;
924 debug_timestamp("Enqueue");
926 if (smi_info
->run_to_completion
) {
928 * If we are running to completion, start it. Upper
929 * layer will call flush_messages to clear it out.
931 smi_info
->waiting_msg
= msg
;
935 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
937 * The following two lines don't need to be under the lock for
938 * the lock's sake, but they do need SMP memory barriers to
939 * avoid getting things out of order. We are already claiming
940 * the lock, anyway, so just do it under the lock to avoid the
943 BUG_ON(smi_info
->waiting_msg
);
944 smi_info
->waiting_msg
= msg
;
945 check_start_timer_thread(smi_info
);
946 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
949 static void set_run_to_completion(void *send_info
, bool i_run_to_completion
)
951 struct smi_info
*smi_info
= send_info
;
953 smi_info
->run_to_completion
= i_run_to_completion
;
954 if (i_run_to_completion
)
955 flush_messages(smi_info
);
959 * Use -1 in the nsec value of the busy waiting timespec to tell that
960 * we are spinning in kipmid looking for something and not delaying
963 static inline void ipmi_si_set_not_busy(struct timespec64
*ts
)
967 static inline int ipmi_si_is_busy(struct timespec64
*ts
)
969 return ts
->tv_nsec
!= -1;
972 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
973 const struct smi_info
*smi_info
,
974 struct timespec64
*busy_until
)
976 unsigned int max_busy_us
= 0;
978 if (smi_info
->intf_num
< num_max_busy_us
)
979 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
980 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
981 ipmi_si_set_not_busy(busy_until
);
982 else if (!ipmi_si_is_busy(busy_until
)) {
983 getnstimeofday64(busy_until
);
984 timespec64_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
986 struct timespec64 now
;
988 getnstimeofday64(&now
);
989 if (unlikely(timespec64_compare(&now
, busy_until
) > 0)) {
990 ipmi_si_set_not_busy(busy_until
);
999 * A busy-waiting loop for speeding up IPMI operation.
1001 * Lousy hardware makes this hard. This is only enabled for systems
1002 * that are not BT and do not have interrupts. It starts spinning
1003 * when an operation is complete or until max_busy tells it to stop
1004 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1005 * Documentation/IPMI.txt for details.
1007 static int ipmi_thread(void *data
)
1009 struct smi_info
*smi_info
= data
;
1010 unsigned long flags
;
1011 enum si_sm_result smi_result
;
1012 struct timespec64 busy_until
;
1014 ipmi_si_set_not_busy(&busy_until
);
1015 set_user_nice(current
, MAX_NICE
);
1016 while (!kthread_should_stop()) {
1019 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1020 smi_result
= smi_event_handler(smi_info
, 0);
1023 * If the driver is doing something, there is a possible
1024 * race with the timer. If the timer handler see idle,
1025 * and the thread here sees something else, the timer
1026 * handler won't restart the timer even though it is
1027 * required. So start it here if necessary.
1029 if (smi_result
!= SI_SM_IDLE
&& !smi_info
->timer_running
)
1030 smi_mod_timer(smi_info
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1032 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1033 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1035 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1037 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1039 else if (smi_result
== SI_SM_IDLE
) {
1040 if (atomic_read(&smi_info
->need_watch
)) {
1041 schedule_timeout_interruptible(100);
1043 /* Wait to be woken up when we are needed. */
1044 __set_current_state(TASK_INTERRUPTIBLE
);
1048 schedule_timeout_interruptible(1);
1054 static void poll(void *send_info
)
1056 struct smi_info
*smi_info
= send_info
;
1057 unsigned long flags
= 0;
1058 bool run_to_completion
= smi_info
->run_to_completion
;
1061 * Make sure there is some delay in the poll loop so we can
1062 * drive time forward and timeout things.
1065 if (!run_to_completion
)
1066 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1067 smi_event_handler(smi_info
, 10);
1068 if (!run_to_completion
)
1069 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1072 static void request_events(void *send_info
)
1074 struct smi_info
*smi_info
= send_info
;
1076 if (!smi_info
->has_event_buffer
)
1079 atomic_set(&smi_info
->req_events
, 1);
1082 static void set_need_watch(void *send_info
, bool enable
)
1084 struct smi_info
*smi_info
= send_info
;
1085 unsigned long flags
;
1087 atomic_set(&smi_info
->need_watch
, enable
);
1088 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1089 check_start_timer_thread(smi_info
);
1090 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1093 static void smi_timeout(struct timer_list
*t
)
1095 struct smi_info
*smi_info
= from_timer(smi_info
, t
, si_timer
);
1096 enum si_sm_result smi_result
;
1097 unsigned long flags
;
1098 unsigned long jiffies_now
;
1102 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1103 debug_timestamp("Timer");
1105 jiffies_now
= jiffies
;
1106 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1107 * SI_USEC_PER_JIFFY
);
1108 smi_result
= smi_event_handler(smi_info
, time_diff
);
1110 if ((smi_info
->io
.irq
) && (!smi_info
->interrupt_disabled
)) {
1111 /* Running with interrupts, only do long timeouts. */
1112 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1113 smi_inc_stat(smi_info
, long_timeouts
);
1118 * If the state machine asks for a short delay, then shorten
1119 * the timer timeout.
1121 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1122 smi_inc_stat(smi_info
, short_timeouts
);
1123 timeout
= jiffies
+ 1;
1125 smi_inc_stat(smi_info
, long_timeouts
);
1126 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1130 if (smi_result
!= SI_SM_IDLE
)
1131 smi_mod_timer(smi_info
, timeout
);
1133 smi_info
->timer_running
= false;
1134 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1137 irqreturn_t
ipmi_si_irq_handler(int irq
, void *data
)
1139 struct smi_info
*smi_info
= data
;
1140 unsigned long flags
;
1142 if (smi_info
->io
.si_type
== SI_BT
)
1143 /* We need to clear the IRQ flag for the BT interface. */
1144 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1145 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1146 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1148 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1150 smi_inc_stat(smi_info
, interrupts
);
1152 debug_timestamp("Interrupt");
1154 smi_event_handler(smi_info
, 0);
1155 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1159 static int smi_start_processing(void *send_info
,
1162 struct smi_info
*new_smi
= send_info
;
1165 new_smi
->intf
= intf
;
1167 /* Set up the timer that drives the interface. */
1168 timer_setup(&new_smi
->si_timer
, smi_timeout
, 0);
1169 new_smi
->timer_can_start
= true;
1170 smi_mod_timer(new_smi
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1172 /* Try to claim any interrupts. */
1173 if (new_smi
->io
.irq_setup
) {
1174 new_smi
->io
.irq_handler_data
= new_smi
;
1175 new_smi
->io
.irq_setup(&new_smi
->io
);
1179 * Check if the user forcefully enabled the daemon.
1181 if (new_smi
->intf_num
< num_force_kipmid
)
1182 enable
= force_kipmid
[new_smi
->intf_num
];
1184 * The BT interface is efficient enough to not need a thread,
1185 * and there is no need for a thread if we have interrupts.
1187 else if ((new_smi
->io
.si_type
!= SI_BT
) && (!new_smi
->io
.irq
))
1191 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1192 "kipmi%d", new_smi
->intf_num
);
1193 if (IS_ERR(new_smi
->thread
)) {
1194 dev_notice(new_smi
->io
.dev
, "Could not start"
1195 " kernel thread due to error %ld, only using"
1196 " timers to drive the interface\n",
1197 PTR_ERR(new_smi
->thread
));
1198 new_smi
->thread
= NULL
;
1205 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1207 struct smi_info
*smi
= send_info
;
1209 data
->addr_src
= smi
->io
.addr_source
;
1210 data
->dev
= smi
->io
.dev
;
1211 data
->addr_info
= smi
->io
.addr_info
;
1212 get_device(smi
->io
.dev
);
1217 static void set_maintenance_mode(void *send_info
, bool enable
)
1219 struct smi_info
*smi_info
= send_info
;
1222 atomic_set(&smi_info
->req_events
, 0);
1225 static const struct ipmi_smi_handlers handlers
= {
1226 .owner
= THIS_MODULE
,
1227 .start_processing
= smi_start_processing
,
1228 .get_smi_info
= get_smi_info
,
1230 .request_events
= request_events
,
1231 .set_need_watch
= set_need_watch
,
1232 .set_maintenance_mode
= set_maintenance_mode
,
1233 .set_run_to_completion
= set_run_to_completion
,
1234 .flush_messages
= flush_messages
,
1238 static LIST_HEAD(smi_infos
);
1239 static DEFINE_MUTEX(smi_infos_lock
);
1240 static int smi_num
; /* Used to sequence the SMIs */
1242 static const char * const addr_space_to_str
[] = { "i/o", "mem" };
1244 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1245 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1246 " disabled(0). Normally the IPMI driver auto-detects"
1247 " this, but the value may be overridden by this parm.");
1248 module_param(unload_when_empty
, bool, 0);
1249 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1250 " specified or found, default is 1. Setting to 0"
1251 " is useful for hot add of devices using hotmod.");
1252 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1253 MODULE_PARM_DESC(kipmid_max_busy_us
,
1254 "Max time (in microseconds) to busy-wait for IPMI data before"
1255 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1256 " if kipmid is using up a lot of CPU time.");
1258 void ipmi_irq_finish_setup(struct si_sm_io
*io
)
1260 if (io
->si_type
== SI_BT
)
1261 /* Enable the interrupt in the BT interface. */
1262 io
->outputb(io
, IPMI_BT_INTMASK_REG
,
1263 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1266 void ipmi_irq_start_cleanup(struct si_sm_io
*io
)
1268 if (io
->si_type
== SI_BT
)
1269 /* Disable the interrupt in the BT interface. */
1270 io
->outputb(io
, IPMI_BT_INTMASK_REG
, 0);
1273 static void std_irq_cleanup(struct si_sm_io
*io
)
1275 ipmi_irq_start_cleanup(io
);
1276 free_irq(io
->irq
, io
->irq_handler_data
);
1279 int ipmi_std_irq_setup(struct si_sm_io
*io
)
1286 rv
= request_irq(io
->irq
,
1287 ipmi_si_irq_handler
,
1290 io
->irq_handler_data
);
1292 dev_warn(io
->dev
, "%s unable to claim interrupt %d,"
1293 " running polled\n",
1294 DEVICE_NAME
, io
->irq
);
1297 io
->irq_cleanup
= std_irq_cleanup
;
1298 ipmi_irq_finish_setup(io
);
1299 dev_info(io
->dev
, "Using irq %d\n", io
->irq
);
1305 static int wait_for_msg_done(struct smi_info
*smi_info
)
1307 enum si_sm_result smi_result
;
1309 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
1311 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
1312 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
1313 schedule_timeout_uninterruptible(1);
1314 smi_result
= smi_info
->handlers
->event(
1315 smi_info
->si_sm
, jiffies_to_usecs(1));
1316 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
1317 smi_result
= smi_info
->handlers
->event(
1318 smi_info
->si_sm
, 0);
1322 if (smi_result
== SI_SM_HOSED
)
1324 * We couldn't get the state machine to run, so whatever's at
1325 * the port is probably not an IPMI SMI interface.
1332 static int try_get_dev_id(struct smi_info
*smi_info
)
1334 unsigned char msg
[2];
1335 unsigned char *resp
;
1336 unsigned long resp_len
;
1339 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1344 * Do a Get Device ID command, since it comes back with some
1347 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1348 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
1349 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1351 rv
= wait_for_msg_done(smi_info
);
1355 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1356 resp
, IPMI_MAX_MSG_LENGTH
);
1358 /* Check and record info from the get device id, in case we need it. */
1359 rv
= ipmi_demangle_device_id(resp
[0] >> 2, resp
[1],
1360 resp
+ 2, resp_len
- 2, &smi_info
->device_id
);
1367 static int get_global_enables(struct smi_info
*smi_info
, u8
*enables
)
1369 unsigned char msg
[3];
1370 unsigned char *resp
;
1371 unsigned long resp_len
;
1374 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1378 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1379 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1380 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1382 rv
= wait_for_msg_done(smi_info
);
1384 dev_warn(smi_info
->io
.dev
,
1385 "Error getting response from get global enables command: %d\n",
1390 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1391 resp
, IPMI_MAX_MSG_LENGTH
);
1394 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1395 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1397 dev_warn(smi_info
->io
.dev
,
1398 "Invalid return from get global enables command: %ld %x %x %x\n",
1399 resp_len
, resp
[0], resp
[1], resp
[2]);
1412 * Returns 1 if it gets an error from the command.
1414 static int set_global_enables(struct smi_info
*smi_info
, u8 enables
)
1416 unsigned char msg
[3];
1417 unsigned char *resp
;
1418 unsigned long resp_len
;
1421 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1425 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1426 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1428 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1430 rv
= wait_for_msg_done(smi_info
);
1432 dev_warn(smi_info
->io
.dev
,
1433 "Error getting response from set global enables command: %d\n",
1438 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1439 resp
, IPMI_MAX_MSG_LENGTH
);
1442 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1443 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1444 dev_warn(smi_info
->io
.dev
,
1445 "Invalid return from set global enables command: %ld %x %x\n",
1446 resp_len
, resp
[0], resp
[1]);
1460 * Some BMCs do not support clearing the receive irq bit in the global
1461 * enables (even if they don't support interrupts on the BMC). Check
1462 * for this and handle it properly.
1464 static void check_clr_rcv_irq(struct smi_info
*smi_info
)
1469 rv
= get_global_enables(smi_info
, &enables
);
1471 if ((enables
& IPMI_BMC_RCV_MSG_INTR
) == 0)
1472 /* Already clear, should work ok. */
1475 enables
&= ~IPMI_BMC_RCV_MSG_INTR
;
1476 rv
= set_global_enables(smi_info
, enables
);
1480 dev_err(smi_info
->io
.dev
,
1481 "Cannot check clearing the rcv irq: %d\n", rv
);
1487 * An error when setting the event buffer bit means
1488 * clearing the bit is not supported.
1490 dev_warn(smi_info
->io
.dev
,
1491 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1492 smi_info
->cannot_disable_irq
= true;
1497 * Some BMCs do not support setting the interrupt bits in the global
1498 * enables even if they support interrupts. Clearly bad, but we can
1501 static void check_set_rcv_irq(struct smi_info
*smi_info
)
1506 if (!smi_info
->io
.irq
)
1509 rv
= get_global_enables(smi_info
, &enables
);
1511 enables
|= IPMI_BMC_RCV_MSG_INTR
;
1512 rv
= set_global_enables(smi_info
, enables
);
1516 dev_err(smi_info
->io
.dev
,
1517 "Cannot check setting the rcv irq: %d\n", rv
);
1523 * An error when setting the event buffer bit means
1524 * setting the bit is not supported.
1526 dev_warn(smi_info
->io
.dev
,
1527 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1528 smi_info
->cannot_disable_irq
= true;
1529 smi_info
->irq_enable_broken
= true;
1533 static int try_enable_event_buffer(struct smi_info
*smi_info
)
1535 unsigned char msg
[3];
1536 unsigned char *resp
;
1537 unsigned long resp_len
;
1540 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
1544 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1545 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
1546 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
1548 rv
= wait_for_msg_done(smi_info
);
1550 pr_warn(PFX
"Error getting response from get global enables command, the event buffer is not enabled.\n");
1554 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1555 resp
, IPMI_MAX_MSG_LENGTH
);
1558 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1559 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
1561 pr_warn(PFX
"Invalid return from get global enables command, cannot enable the event buffer.\n");
1566 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
) {
1567 /* buffer is already enabled, nothing to do. */
1568 smi_info
->supports_event_msg_buff
= true;
1572 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
1573 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
1574 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
1575 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
1577 rv
= wait_for_msg_done(smi_info
);
1579 pr_warn(PFX
"Error getting response from set global, enables command, the event buffer is not enabled.\n");
1583 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
1584 resp
, IPMI_MAX_MSG_LENGTH
);
1587 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
1588 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
1589 pr_warn(PFX
"Invalid return from get global, enables command, not enable the event buffer.\n");
1596 * An error when setting the event buffer bit means
1597 * that the event buffer is not supported.
1601 smi_info
->supports_event_msg_buff
= true;
1608 #ifdef CONFIG_IPMI_PROC_INTERFACE
1609 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
1611 struct smi_info
*smi
= m
->private;
1613 seq_printf(m
, "%s\n", si_to_str
[smi
->io
.si_type
]);
1618 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
1620 return single_open(file
, smi_type_proc_show
, PDE_DATA(inode
));
1623 static const struct file_operations smi_type_proc_ops
= {
1624 .open
= smi_type_proc_open
,
1626 .llseek
= seq_lseek
,
1627 .release
= single_release
,
1630 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
1632 struct smi_info
*smi
= m
->private;
1634 seq_printf(m
, "interrupts_enabled: %d\n",
1635 smi
->io
.irq
&& !smi
->interrupt_disabled
);
1636 seq_printf(m
, "short_timeouts: %u\n",
1637 smi_get_stat(smi
, short_timeouts
));
1638 seq_printf(m
, "long_timeouts: %u\n",
1639 smi_get_stat(smi
, long_timeouts
));
1640 seq_printf(m
, "idles: %u\n",
1641 smi_get_stat(smi
, idles
));
1642 seq_printf(m
, "interrupts: %u\n",
1643 smi_get_stat(smi
, interrupts
));
1644 seq_printf(m
, "attentions: %u\n",
1645 smi_get_stat(smi
, attentions
));
1646 seq_printf(m
, "flag_fetches: %u\n",
1647 smi_get_stat(smi
, flag_fetches
));
1648 seq_printf(m
, "hosed_count: %u\n",
1649 smi_get_stat(smi
, hosed_count
));
1650 seq_printf(m
, "complete_transactions: %u\n",
1651 smi_get_stat(smi
, complete_transactions
));
1652 seq_printf(m
, "events: %u\n",
1653 smi_get_stat(smi
, events
));
1654 seq_printf(m
, "watchdog_pretimeouts: %u\n",
1655 smi_get_stat(smi
, watchdog_pretimeouts
));
1656 seq_printf(m
, "incoming_messages: %u\n",
1657 smi_get_stat(smi
, incoming_messages
));
1661 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
1663 return single_open(file
, smi_si_stats_proc_show
, PDE_DATA(inode
));
1666 static const struct file_operations smi_si_stats_proc_ops
= {
1667 .open
= smi_si_stats_proc_open
,
1669 .llseek
= seq_lseek
,
1670 .release
= single_release
,
1673 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
1675 struct smi_info
*smi
= m
->private;
1678 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1679 si_to_str
[smi
->io
.si_type
],
1680 addr_space_to_str
[smi
->io
.addr_type
],
1686 smi
->io
.slave_addr
);
1691 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
1693 return single_open(file
, smi_params_proc_show
, PDE_DATA(inode
));
1696 static const struct file_operations smi_params_proc_ops
= {
1697 .open
= smi_params_proc_open
,
1699 .llseek
= seq_lseek
,
1700 .release
= single_release
,
1704 #define IPMI_SI_ATTR(name) \
1705 static ssize_t ipmi_##name##_show(struct device *dev, \
1706 struct device_attribute *attr, \
1709 struct smi_info *smi_info = dev_get_drvdata(dev); \
1711 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1713 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1715 static ssize_t
ipmi_type_show(struct device
*dev
,
1716 struct device_attribute
*attr
,
1719 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1721 return snprintf(buf
, 10, "%s\n", si_to_str
[smi_info
->io
.si_type
]);
1723 static DEVICE_ATTR(type
, S_IRUGO
, ipmi_type_show
, NULL
);
1725 static ssize_t
ipmi_interrupts_enabled_show(struct device
*dev
,
1726 struct device_attribute
*attr
,
1729 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1730 int enabled
= smi_info
->io
.irq
&& !smi_info
->interrupt_disabled
;
1732 return snprintf(buf
, 10, "%d\n", enabled
);
1734 static DEVICE_ATTR(interrupts_enabled
, S_IRUGO
,
1735 ipmi_interrupts_enabled_show
, NULL
);
1737 IPMI_SI_ATTR(short_timeouts
);
1738 IPMI_SI_ATTR(long_timeouts
);
1739 IPMI_SI_ATTR(idles
);
1740 IPMI_SI_ATTR(interrupts
);
1741 IPMI_SI_ATTR(attentions
);
1742 IPMI_SI_ATTR(flag_fetches
);
1743 IPMI_SI_ATTR(hosed_count
);
1744 IPMI_SI_ATTR(complete_transactions
);
1745 IPMI_SI_ATTR(events
);
1746 IPMI_SI_ATTR(watchdog_pretimeouts
);
1747 IPMI_SI_ATTR(incoming_messages
);
1749 static ssize_t
ipmi_params_show(struct device
*dev
,
1750 struct device_attribute
*attr
,
1753 struct smi_info
*smi_info
= dev_get_drvdata(dev
);
1755 return snprintf(buf
, 200,
1756 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1757 si_to_str
[smi_info
->io
.si_type
],
1758 addr_space_to_str
[smi_info
->io
.addr_type
],
1759 smi_info
->io
.addr_data
,
1760 smi_info
->io
.regspacing
,
1761 smi_info
->io
.regsize
,
1762 smi_info
->io
.regshift
,
1764 smi_info
->io
.slave_addr
);
1766 static DEVICE_ATTR(params
, S_IRUGO
, ipmi_params_show
, NULL
);
1768 static struct attribute
*ipmi_si_dev_attrs
[] = {
1769 &dev_attr_type
.attr
,
1770 &dev_attr_interrupts_enabled
.attr
,
1771 &dev_attr_short_timeouts
.attr
,
1772 &dev_attr_long_timeouts
.attr
,
1773 &dev_attr_idles
.attr
,
1774 &dev_attr_interrupts
.attr
,
1775 &dev_attr_attentions
.attr
,
1776 &dev_attr_flag_fetches
.attr
,
1777 &dev_attr_hosed_count
.attr
,
1778 &dev_attr_complete_transactions
.attr
,
1779 &dev_attr_events
.attr
,
1780 &dev_attr_watchdog_pretimeouts
.attr
,
1781 &dev_attr_incoming_messages
.attr
,
1782 &dev_attr_params
.attr
,
1786 static const struct attribute_group ipmi_si_dev_attr_group
= {
1787 .attrs
= ipmi_si_dev_attrs
,
1791 * oem_data_avail_to_receive_msg_avail
1792 * @info - smi_info structure with msg_flags set
1794 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1795 * Returns 1 indicating need to re-run handle_flags().
1797 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
1799 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
1805 * setup_dell_poweredge_oem_data_handler
1806 * @info - smi_info.device_id must be populated
1808 * Systems that match, but have firmware version < 1.40 may assert
1809 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1810 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1811 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1812 * as RECEIVE_MSG_AVAIL instead.
1814 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1815 * assert the OEM[012] bits, and if it did, the driver would have to
1816 * change to handle that properly, we don't actually check for the
1818 * Device ID = 0x20 BMC on PowerEdge 8G servers
1819 * Device Revision = 0x80
1820 * Firmware Revision1 = 0x01 BMC version 1.40
1821 * Firmware Revision2 = 0x40 BCD encoded
1822 * IPMI Version = 0x51 IPMI 1.5
1823 * Manufacturer ID = A2 02 00 Dell IANA
1825 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1826 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1829 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1830 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1831 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1832 #define DELL_IANA_MFR_ID 0x0002a2
1833 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
1835 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1836 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
1837 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
1838 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
1839 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
1840 smi_info
->oem_data_avail_handler
=
1841 oem_data_avail_to_receive_msg_avail
;
1842 } else if (ipmi_version_major(id
) < 1 ||
1843 (ipmi_version_major(id
) == 1 &&
1844 ipmi_version_minor(id
) < 5)) {
1845 smi_info
->oem_data_avail_handler
=
1846 oem_data_avail_to_receive_msg_avail
;
1851 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1852 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
1854 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
1856 /* Make it a response */
1857 msg
->rsp
[0] = msg
->data
[0] | 4;
1858 msg
->rsp
[1] = msg
->data
[1];
1859 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
1861 smi_info
->curr_msg
= NULL
;
1862 deliver_recv_msg(smi_info
, msg
);
1866 * dell_poweredge_bt_xaction_handler
1867 * @info - smi_info.device_id must be populated
1869 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1870 * not respond to a Get SDR command if the length of the data
1871 * requested is exactly 0x3A, which leads to command timeouts and no
1872 * data returned. This intercepts such commands, and causes userspace
1873 * callers to try again with a different-sized buffer, which succeeds.
1876 #define STORAGE_NETFN 0x0A
1877 #define STORAGE_CMD_GET_SDR 0x23
1878 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
1879 unsigned long unused
,
1882 struct smi_info
*smi_info
= in
;
1883 unsigned char *data
= smi_info
->curr_msg
->data
;
1884 unsigned int size
= smi_info
->curr_msg
->data_size
;
1886 (data
[0]>>2) == STORAGE_NETFN
&&
1887 data
[1] == STORAGE_CMD_GET_SDR
&&
1889 return_hosed_msg_badsize(smi_info
);
1895 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
1896 .notifier_call
= dell_poweredge_bt_xaction_handler
,
1900 * setup_dell_poweredge_bt_xaction_handler
1901 * @info - smi_info.device_id must be filled in already
1903 * Fills in smi_info.device_id.start_transaction_pre_hook
1904 * when we know what function to use there.
1907 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
1909 struct ipmi_device_id
*id
= &smi_info
->device_id
;
1910 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
1911 smi_info
->io
.si_type
== SI_BT
)
1912 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
1916 * setup_oem_data_handler
1917 * @info - smi_info.device_id must be filled in already
1919 * Fills in smi_info.device_id.oem_data_available_handler
1920 * when we know what function to use there.
1923 static void setup_oem_data_handler(struct smi_info
*smi_info
)
1925 setup_dell_poweredge_oem_data_handler(smi_info
);
1928 static void setup_xaction_handlers(struct smi_info
*smi_info
)
1930 setup_dell_poweredge_bt_xaction_handler(smi_info
);
1933 static void check_for_broken_irqs(struct smi_info
*smi_info
)
1935 check_clr_rcv_irq(smi_info
);
1936 check_set_rcv_irq(smi_info
);
1939 static inline void stop_timer_and_thread(struct smi_info
*smi_info
)
1941 if (smi_info
->thread
!= NULL
) {
1942 kthread_stop(smi_info
->thread
);
1943 smi_info
->thread
= NULL
;
1946 smi_info
->timer_can_start
= false;
1947 if (smi_info
->timer_running
)
1948 del_timer_sync(&smi_info
->si_timer
);
1951 static struct smi_info
*find_dup_si(struct smi_info
*info
)
1955 list_for_each_entry(e
, &smi_infos
, link
) {
1956 if (e
->io
.addr_type
!= info
->io
.addr_type
)
1958 if (e
->io
.addr_data
== info
->io
.addr_data
) {
1960 * This is a cheap hack, ACPI doesn't have a defined
1961 * slave address but SMBIOS does. Pick it up from
1962 * any source that has it available.
1964 if (info
->io
.slave_addr
&& !e
->io
.slave_addr
)
1965 e
->io
.slave_addr
= info
->io
.slave_addr
;
1973 int ipmi_si_add_smi(struct si_sm_io
*io
)
1976 struct smi_info
*new_smi
, *dup
;
1978 if (!io
->io_setup
) {
1979 if (io
->addr_type
== IPMI_IO_ADDR_SPACE
) {
1980 io
->io_setup
= ipmi_si_port_setup
;
1981 } else if (io
->addr_type
== IPMI_MEM_ADDR_SPACE
) {
1982 io
->io_setup
= ipmi_si_mem_setup
;
1988 new_smi
= kzalloc(sizeof(*new_smi
), GFP_KERNEL
);
1991 spin_lock_init(&new_smi
->si_lock
);
1995 mutex_lock(&smi_infos_lock
);
1996 dup
= find_dup_si(new_smi
);
1998 if (new_smi
->io
.addr_source
== SI_ACPI
&&
1999 dup
->io
.addr_source
== SI_SMBIOS
) {
2000 /* We prefer ACPI over SMBIOS. */
2001 dev_info(dup
->io
.dev
,
2002 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
2003 si_to_str
[new_smi
->io
.si_type
]);
2004 cleanup_one_si(dup
);
2006 dev_info(new_smi
->io
.dev
,
2007 "%s-specified %s state machine: duplicate\n",
2008 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
2009 si_to_str
[new_smi
->io
.si_type
]);
2016 pr_info(PFX
"Adding %s-specified %s state machine\n",
2017 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
2018 si_to_str
[new_smi
->io
.si_type
]);
2020 /* So we know not to free it unless we have allocated one. */
2021 new_smi
->intf
= NULL
;
2022 new_smi
->si_sm
= NULL
;
2023 new_smi
->handlers
= NULL
;
2025 list_add_tail(&new_smi
->link
, &smi_infos
);
2028 rv
= try_smi_init(new_smi
);
2030 mutex_unlock(&smi_infos_lock
);
2031 cleanup_one_si(new_smi
);
2036 mutex_unlock(&smi_infos_lock
);
2041 * Try to start up an interface. Must be called with smi_infos_lock
2042 * held, primarily to keep smi_num consistent, we only one to do these
2045 static int try_smi_init(struct smi_info
*new_smi
)
2049 char *init_name
= NULL
;
2050 bool platform_device_registered
= false;
2052 pr_info(PFX
"Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2053 ipmi_addr_src_to_str(new_smi
->io
.addr_source
),
2054 si_to_str
[new_smi
->io
.si_type
],
2055 addr_space_to_str
[new_smi
->io
.addr_type
],
2056 new_smi
->io
.addr_data
,
2057 new_smi
->io
.slave_addr
, new_smi
->io
.irq
);
2059 switch (new_smi
->io
.si_type
) {
2061 new_smi
->handlers
= &kcs_smi_handlers
;
2065 new_smi
->handlers
= &smic_smi_handlers
;
2069 new_smi
->handlers
= &bt_smi_handlers
;
2073 /* No support for anything else yet. */
2078 new_smi
->intf_num
= smi_num
;
2080 /* Do this early so it's available for logs. */
2081 if (!new_smi
->io
.dev
) {
2082 init_name
= kasprintf(GFP_KERNEL
, "ipmi_si.%d",
2086 * If we don't already have a device from something
2087 * else (like PCI), then register a new one.
2089 new_smi
->pdev
= platform_device_alloc("ipmi_si",
2091 if (!new_smi
->pdev
) {
2092 pr_err(PFX
"Unable to allocate platform device\n");
2095 new_smi
->io
.dev
= &new_smi
->pdev
->dev
;
2096 new_smi
->io
.dev
->driver
= &ipmi_platform_driver
.driver
;
2097 /* Nulled by device_add() */
2098 new_smi
->io
.dev
->init_name
= init_name
;
2101 /* Allocate the state machine's data and initialize it. */
2102 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
2103 if (!new_smi
->si_sm
) {
2107 new_smi
->io
.io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
2110 /* Now that we know the I/O size, we can set up the I/O. */
2111 rv
= new_smi
->io
.io_setup(&new_smi
->io
);
2113 dev_err(new_smi
->io
.dev
, "Could not set up I/O space\n");
2117 /* Do low-level detection first. */
2118 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
2119 if (new_smi
->io
.addr_source
)
2120 dev_err(new_smi
->io
.dev
,
2121 "Interface detection failed\n");
2127 * Attempt a get device id command. If it fails, we probably
2128 * don't have a BMC here.
2130 rv
= try_get_dev_id(new_smi
);
2132 if (new_smi
->io
.addr_source
)
2133 dev_err(new_smi
->io
.dev
,
2134 "There appears to be no BMC at this location\n");
2138 setup_oem_data_handler(new_smi
);
2139 setup_xaction_handlers(new_smi
);
2140 check_for_broken_irqs(new_smi
);
2142 new_smi
->waiting_msg
= NULL
;
2143 new_smi
->curr_msg
= NULL
;
2144 atomic_set(&new_smi
->req_events
, 0);
2145 new_smi
->run_to_completion
= false;
2146 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2147 atomic_set(&new_smi
->stats
[i
], 0);
2149 new_smi
->interrupt_disabled
= true;
2150 atomic_set(&new_smi
->need_watch
, 0);
2152 rv
= try_enable_event_buffer(new_smi
);
2154 new_smi
->has_event_buffer
= true;
2157 * Start clearing the flags before we enable interrupts or the
2158 * timer to avoid racing with the timer.
2160 start_clear_flags(new_smi
);
2163 * IRQ is defined to be set when non-zero. req_events will
2164 * cause a global flags check that will enable interrupts.
2166 if (new_smi
->io
.irq
) {
2167 new_smi
->interrupt_disabled
= false;
2168 atomic_set(&new_smi
->req_events
, 1);
2171 if (new_smi
->pdev
) {
2172 rv
= platform_device_add(new_smi
->pdev
);
2174 dev_err(new_smi
->io
.dev
,
2175 "Unable to register system interface device: %d\n",
2179 platform_device_registered
= true;
2182 dev_set_drvdata(new_smi
->io
.dev
, new_smi
);
2183 rv
= device_add_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2185 dev_err(new_smi
->io
.dev
,
2186 "Unable to add device attributes: error %d\n",
2188 goto out_err_stop_timer
;
2191 rv
= ipmi_register_smi(&handlers
,
2194 new_smi
->io
.slave_addr
);
2196 dev_err(new_smi
->io
.dev
,
2197 "Unable to register device: error %d\n",
2199 goto out_err_remove_attrs
;
2202 #ifdef CONFIG_IPMI_PROC_INTERFACE
2203 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
2207 dev_err(new_smi
->io
.dev
,
2208 "Unable to create proc entry: %d\n", rv
);
2209 goto out_err_stop_timer
;
2212 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
2213 &smi_si_stats_proc_ops
,
2216 dev_err(new_smi
->io
.dev
,
2217 "Unable to create proc entry: %d\n", rv
);
2218 goto out_err_stop_timer
;
2221 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
2222 &smi_params_proc_ops
,
2225 dev_err(new_smi
->io
.dev
,
2226 "Unable to create proc entry: %d\n", rv
);
2227 goto out_err_stop_timer
;
2231 /* Don't increment till we know we have succeeded. */
2234 dev_info(new_smi
->io
.dev
, "IPMI %s interface initialized\n",
2235 si_to_str
[new_smi
->io
.si_type
]);
2237 WARN_ON(new_smi
->io
.dev
->init_name
!= NULL
);
2242 out_err_remove_attrs
:
2243 device_remove_group(new_smi
->io
.dev
, &ipmi_si_dev_attr_group
);
2244 dev_set_drvdata(new_smi
->io
.dev
, NULL
);
2247 stop_timer_and_thread(new_smi
);
2250 new_smi
->interrupt_disabled
= true;
2252 if (new_smi
->intf
) {
2253 ipmi_smi_t intf
= new_smi
->intf
;
2254 new_smi
->intf
= NULL
;
2255 ipmi_unregister_smi(intf
);
2258 if (new_smi
->io
.irq_cleanup
) {
2259 new_smi
->io
.irq_cleanup(&new_smi
->io
);
2260 new_smi
->io
.irq_cleanup
= NULL
;
2264 * Wait until we know that we are out of any interrupt
2265 * handlers might have been running before we freed the
2268 synchronize_sched();
2270 if (new_smi
->si_sm
) {
2271 if (new_smi
->handlers
)
2272 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
2273 kfree(new_smi
->si_sm
);
2274 new_smi
->si_sm
= NULL
;
2276 if (new_smi
->io
.addr_source_cleanup
) {
2277 new_smi
->io
.addr_source_cleanup(&new_smi
->io
);
2278 new_smi
->io
.addr_source_cleanup
= NULL
;
2280 if (new_smi
->io
.io_cleanup
) {
2281 new_smi
->io
.io_cleanup(&new_smi
->io
);
2282 new_smi
->io
.io_cleanup
= NULL
;
2285 if (new_smi
->pdev
) {
2286 if (platform_device_registered
)
2287 platform_device_unregister(new_smi
->pdev
);
2289 platform_device_put(new_smi
->pdev
);
2290 new_smi
->pdev
= NULL
;
2298 static int init_ipmi_si(void)
2301 enum ipmi_addr_src type
= SI_INVALID
;
2306 pr_info("IPMI System Interface driver.\n");
2308 /* If the user gave us a device, they presumably want us to use it */
2309 if (!ipmi_si_hardcode_find_bmc())
2312 ipmi_si_platform_init();
2316 ipmi_si_parisc_init();
2318 /* We prefer devices with interrupts, but in the case of a machine
2319 with multiple BMCs we assume that there will be several instances
2320 of a given type so if we succeed in registering a type then also
2321 try to register everything else of the same type */
2323 mutex_lock(&smi_infos_lock
);
2324 list_for_each_entry(e
, &smi_infos
, link
) {
2325 /* Try to register a device if it has an IRQ and we either
2326 haven't successfully registered a device yet or this
2327 device has the same type as one we successfully registered */
2328 if (e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2329 if (!try_smi_init(e
)) {
2330 type
= e
->io
.addr_source
;
2335 /* type will only have been set if we successfully registered an si */
2337 goto skip_fallback_noirq
;
2339 /* Fall back to the preferred device */
2341 list_for_each_entry(e
, &smi_infos
, link
) {
2342 if (!e
->io
.irq
&& (!type
|| e
->io
.addr_source
== type
)) {
2343 if (!try_smi_init(e
)) {
2344 type
= e
->io
.addr_source
;
2349 skip_fallback_noirq
:
2351 mutex_unlock(&smi_infos_lock
);
2356 mutex_lock(&smi_infos_lock
);
2357 if (unload_when_empty
&& list_empty(&smi_infos
)) {
2358 mutex_unlock(&smi_infos_lock
);
2360 pr_warn(PFX
"Unable to find any System Interface(s)\n");
2363 mutex_unlock(&smi_infos_lock
);
2367 module_init(init_ipmi_si
);
2369 static void cleanup_one_si(struct smi_info
*to_clean
)
2376 if (to_clean
->intf
) {
2377 ipmi_smi_t intf
= to_clean
->intf
;
2379 to_clean
->intf
= NULL
;
2380 rv
= ipmi_unregister_smi(intf
);
2382 pr_err(PFX
"Unable to unregister device: errno=%d\n",
2387 device_remove_group(to_clean
->io
.dev
, &ipmi_si_dev_attr_group
);
2388 dev_set_drvdata(to_clean
->io
.dev
, NULL
);
2390 list_del(&to_clean
->link
);
2393 * Make sure that interrupts, the timer and the thread are
2394 * stopped and will not run again.
2396 if (to_clean
->io
.irq_cleanup
)
2397 to_clean
->io
.irq_cleanup(&to_clean
->io
);
2398 stop_timer_and_thread(to_clean
);
2401 * Timeouts are stopped, now make sure the interrupts are off
2402 * in the BMC. Note that timers and CPU interrupts are off,
2403 * so no need for locks.
2405 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
2407 schedule_timeout_uninterruptible(1);
2409 if (to_clean
->handlers
)
2410 disable_si_irq(to_clean
);
2411 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
2413 schedule_timeout_uninterruptible(1);
2416 if (to_clean
->handlers
)
2417 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
2419 kfree(to_clean
->si_sm
);
2421 if (to_clean
->io
.addr_source_cleanup
)
2422 to_clean
->io
.addr_source_cleanup(&to_clean
->io
);
2423 if (to_clean
->io
.io_cleanup
)
2424 to_clean
->io
.io_cleanup(&to_clean
->io
);
2427 platform_device_unregister(to_clean
->pdev
);
2432 int ipmi_si_remove_by_dev(struct device
*dev
)
2437 mutex_lock(&smi_infos_lock
);
2438 list_for_each_entry(e
, &smi_infos
, link
) {
2439 if (e
->io
.dev
== dev
) {
2445 mutex_unlock(&smi_infos_lock
);
2450 void ipmi_si_remove_by_data(int addr_space
, enum si_type si_type
,
2454 struct smi_info
*e
, *tmp_e
;
2456 mutex_lock(&smi_infos_lock
);
2457 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
2458 if (e
->io
.addr_type
!= addr_space
)
2460 if (e
->io
.si_type
!= si_type
)
2462 if (e
->io
.addr_data
== addr
)
2465 mutex_unlock(&smi_infos_lock
);
2468 static void cleanup_ipmi_si(void)
2470 struct smi_info
*e
, *tmp_e
;
2475 ipmi_si_pci_shutdown();
2477 ipmi_si_parisc_shutdown();
2479 ipmi_si_platform_shutdown();
2481 mutex_lock(&smi_infos_lock
);
2482 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
2484 mutex_unlock(&smi_infos_lock
);
2486 module_exit(cleanup_ipmi_si
);
2488 MODULE_ALIAS("platform:dmi-ipmi-si");
2489 MODULE_LICENSE("GPL");
2490 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2491 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2492 " system interfaces.");