1 // SPDX-License-Identifier: GPL-2.0
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
10 // Hash part based on omap-sham.c driver.
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
36 #define _SBF(s, v) ((v) << (s))
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT 0x0000
40 #define SSS_FCINTSTAT_HPARTINT BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
47 #define SSS_REG_FCINTENSET 0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55 #define SSS_REG_FCINTENCLR 0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63 #define SSS_REG_FCINTPEND 0x000C
64 #define SSS_FCINTPEND_HPARTINTP BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
71 #define SSS_REG_FCFIFOSTAT 0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81 #define SSS_REG_FCFIFOCTRL 0x0014
82 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
86 #define SSS_HASHIN_MASK _SBF(0, 0x03)
88 #define SSS_REG_FCBRDMAS 0x0020
89 #define SSS_REG_FCBRDMAL 0x0024
90 #define SSS_REG_FCBRDMAC 0x0028
91 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
92 #define SSS_FCBRDMAC_FLUSH BIT(0)
94 #define SSS_REG_FCBTDMAS 0x0030
95 #define SSS_REG_FCBTDMAL 0x0034
96 #define SSS_REG_FCBTDMAC 0x0038
97 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
98 #define SSS_FCBTDMAC_FLUSH BIT(0)
100 #define SSS_REG_FCHRDMAS 0x0040
101 #define SSS_REG_FCHRDMAL 0x0044
102 #define SSS_REG_FCHRDMAC 0x0048
103 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
104 #define SSS_FCHRDMAC_FLUSH BIT(0)
106 #define SSS_REG_FCPKDMAS 0x0050
107 #define SSS_REG_FCPKDMAL 0x0054
108 #define SSS_REG_FCPKDMAC 0x0058
109 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
110 #define SSS_FCPKDMAC_DESCEND BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
112 #define SSS_FCPKDMAC_FLUSH BIT(0)
114 #define SSS_REG_FCPKDMAO 0x005C
117 #define SSS_REG_AES_CONTROL 0x00
118 #define SSS_AES_BYTESWAP_DI BIT(11)
119 #define SSS_AES_BYTESWAP_DO BIT(10)
120 #define SSS_AES_BYTESWAP_IV BIT(9)
121 #define SSS_AES_BYTESWAP_CNT BIT(8)
122 #define SSS_AES_BYTESWAP_KEY BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT BIT(0)
133 #define SSS_REG_AES_STATUS 0x04
134 #define SSS_AES_BUSY BIT(2)
135 #define SSS_AES_INPUT_READY BIT(1)
136 #define SSS_AES_OUTPUT_READY BIT(0)
138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT BIT(0)
154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155 #define FLAGS_AES_CBC _SBF(1, 0x01)
156 #define FLAGS_AES_CTR _SBF(1, 0x02)
158 #define AES_KEY_LEN 16
159 #define CRYPTO_QUEUE_LEN 1
162 #define SSS_REG_HASH_CTRL 0x00
164 #define SSS_HASH_USER_IV_EN BIT(5)
165 #define SSS_HASH_INIT_BIT BIT(4)
166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172 #define SSS_REG_HASH_CTRL_PAUSE 0x04
174 #define SSS_HASH_PAUSE BIT(0)
176 #define SSS_REG_HASH_CTRL_FIFO 0x08
178 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU 0
181 #define SSS_REG_HASH_CTRL_SWAP 0x0C
183 #define SSS_HASH_BYTESWAP_DI BIT(3)
184 #define SSS_HASH_BYTESWAP_DO BIT(2)
185 #define SSS_HASH_BYTESWAP_IV BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY BIT(0)
188 #define SSS_REG_HASH_STATUS 0x10
190 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203 #define HASH_BLOCK_SIZE 64
204 #define HASH_REG_SIZEOF 4
205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 #define HASH_FLAGS_BUSY 0
216 #define HASH_FLAGS_FINAL 1
217 #define HASH_FLAGS_DMA_ACTIVE 2
218 #define HASH_FLAGS_OUTPUT_READY 3
219 #define HASH_FLAGS_DMA_READY 4
220 #define HASH_FLAGS_SGS_COPIED 5
221 #define HASH_FLAGS_SGS_ALLOCED 6
223 /* HASH HW constants */
224 #define BUFLEN HASH_BLOCK_SIZE
226 #define SSS_HASH_DMA_LEN_ALIGN 8
227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
229 #define SSS_HASH_QUEUE_LENGTH 10
232 * struct samsung_aes_variant - platform specific SSS driver data
233 * @aes_offset: AES register offset from SSS module's base.
234 * @hash_offset: HASH register offset from SSS module's base.
236 * Specifies platform specific configuration of SSS module.
237 * Note: A structure for driver specific platform data is used for future
238 * expansion of its usage.
240 struct samsung_aes_variant
{
241 unsigned int aes_offset
;
242 unsigned int hash_offset
;
245 struct s5p_aes_reqctx
{
250 struct s5p_aes_dev
*dev
;
252 uint8_t aes_key
[AES_MAX_KEY_SIZE
];
253 uint8_t nonce
[CTR_RFC3686_NONCE_SIZE
];
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @ioaddr: Mapped IO memory region
262 * @aes_ioaddr: Per-varian offset for AES block IO memory
263 * @irq_fc: Feed control interrupt line
264 * @req: Crypto request currently handled by the device
265 * @ctx: Configuration for currently handled crypto request
266 * @sg_src: Scatter list with source data for currently handled block
267 * in device. This is DMA-mapped into device.
268 * @sg_dst: Scatter list with destination data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_src_cpy: In case of unaligned access, copied scatter list
272 * @sg_dst_cpy: In case of unaligned access, copied scatter list
273 * with destination data.
274 * @tasklet: New request scheduling jib
275 * @queue: Crypto queue
276 * @busy: Indicates whether the device is currently handling some request
277 * thus it uses some of the fields from this state, like:
278 * req, ctx, sg_src/dst (and copies). This essentially
279 * protects against concurrent access to these fields.
280 * @lock: Lock for protecting both access to device hardware registers
281 * and fields related to current request (including the busy field).
282 * @res: Resources for hash.
283 * @io_hash_base: Per-variant offset for HASH block IO memory.
284 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
286 * @hash_flags: Flags for current HASH op.
287 * @hash_queue: Async hash queue.
288 * @hash_tasklet: New HASH request scheduling job.
289 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
290 * @hash_req: Current request sending to SSS HASH block.
291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292 * @hash_sg_cnt: Counter for hash_sg_iter.
294 * @use_hash: true if HASH algs enabled
299 void __iomem
*ioaddr
;
300 void __iomem
*aes_ioaddr
;
303 struct ablkcipher_request
*req
;
304 struct s5p_aes_ctx
*ctx
;
305 struct scatterlist
*sg_src
;
306 struct scatterlist
*sg_dst
;
308 struct scatterlist
*sg_src_cpy
;
309 struct scatterlist
*sg_dst_cpy
;
311 struct tasklet_struct tasklet
;
312 struct crypto_queue queue
;
316 struct resource
*res
;
317 void __iomem
*io_hash_base
;
319 spinlock_t hash_lock
; /* protect hash_ vars */
320 unsigned long hash_flags
;
321 struct crypto_queue hash_queue
;
322 struct tasklet_struct hash_tasklet
;
325 struct ahash_request
*hash_req
;
326 struct scatterlist
*hash_sg_iter
;
327 unsigned int hash_sg_cnt
;
333 * struct s5p_hash_reqctx - HASH request context
334 * @dd: Associated device
335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
336 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
337 * @digest: Digest message or IV for partial result
338 * @nregs: Number of HW registers for digest or IV read/write
339 * @engine: Bits for selecting type of HASH in SSS block
340 * @sg: sg for DMA transfer
341 * @sg_len: Length of sg for DMA transfer
342 * @sgl[]: sg for joining buffer and req->src scatterlist
343 * @skip: Skip offset in req->src for current op
344 * @total: Total number of bytes for current request
345 * @finup: Keep state for finup or final.
346 * @error: Keep track of error.
347 * @bufcnt: Number of bytes holded in buffer[]
348 * @buffer[]: For byte(s) from end of req->src in UPDATE op
350 struct s5p_hash_reqctx
{
351 struct s5p_aes_dev
*dd
;
355 u8 digest
[SHA256_DIGEST_SIZE
];
357 unsigned int nregs
; /* digest_size / sizeof(reg) */
360 struct scatterlist
*sg
;
362 struct scatterlist sgl
[2];
373 * struct s5p_hash_ctx - HASH transformation context
374 * @dd: Associated device
375 * @flags: Bits for algorithm HASH.
376 * @fallback: Software transformation for zero message or size < BUFLEN.
378 struct s5p_hash_ctx
{
379 struct s5p_aes_dev
*dd
;
381 struct crypto_shash
*fallback
;
384 static const struct samsung_aes_variant s5p_aes_data
= {
385 .aes_offset
= 0x4000,
386 .hash_offset
= 0x6000,
389 static const struct samsung_aes_variant exynos_aes_data
= {
391 .hash_offset
= 0x400,
394 static const struct of_device_id s5p_sss_dt_match
[] = {
396 .compatible
= "samsung,s5pv210-secss",
397 .data
= &s5p_aes_data
,
400 .compatible
= "samsung,exynos4210-secss",
401 .data
= &exynos_aes_data
,
405 MODULE_DEVICE_TABLE(of
, s5p_sss_dt_match
);
407 static inline struct samsung_aes_variant
*find_s5p_sss_version
408 (struct platform_device
*pdev
)
410 if (IS_ENABLED(CONFIG_OF
) && (pdev
->dev
.of_node
)) {
411 const struct of_device_id
*match
;
413 match
= of_match_node(s5p_sss_dt_match
,
415 return (struct samsung_aes_variant
*)match
->data
;
417 return (struct samsung_aes_variant
*)
418 platform_get_device_id(pdev
)->driver_data
;
421 static struct s5p_aes_dev
*s5p_dev
;
423 static void s5p_set_dma_indata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
425 SSS_WRITE(dev
, FCBRDMAS
, sg_dma_address(sg
));
426 SSS_WRITE(dev
, FCBRDMAL
, sg_dma_len(sg
));
429 static void s5p_set_dma_outdata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
431 SSS_WRITE(dev
, FCBTDMAS
, sg_dma_address(sg
));
432 SSS_WRITE(dev
, FCBTDMAL
, sg_dma_len(sg
));
435 static void s5p_free_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
**sg
)
442 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
443 free_pages((unsigned long)sg_virt(*sg
), get_order(len
));
449 static void s5p_sg_copy_buf(void *buf
, struct scatterlist
*sg
,
450 unsigned int nbytes
, int out
)
452 struct scatter_walk walk
;
457 scatterwalk_start(&walk
, sg
);
458 scatterwalk_copychunks(buf
, &walk
, nbytes
, out
);
459 scatterwalk_done(&walk
, out
, 0);
462 static void s5p_sg_done(struct s5p_aes_dev
*dev
)
464 if (dev
->sg_dst_cpy
) {
466 "Copying %d bytes of output data back to original place\n",
468 s5p_sg_copy_buf(sg_virt(dev
->sg_dst_cpy
), dev
->req
->dst
,
469 dev
->req
->nbytes
, 1);
471 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
472 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
475 /* Calls the completion. Cannot be called with dev->lock hold. */
476 static void s5p_aes_complete(struct s5p_aes_dev
*dev
, int err
)
478 dev
->req
->base
.complete(&dev
->req
->base
, err
);
481 static void s5p_unset_outdata(struct s5p_aes_dev
*dev
)
483 dma_unmap_sg(dev
->dev
, dev
->sg_dst
, 1, DMA_FROM_DEVICE
);
486 static void s5p_unset_indata(struct s5p_aes_dev
*dev
)
488 dma_unmap_sg(dev
->dev
, dev
->sg_src
, 1, DMA_TO_DEVICE
);
491 static int s5p_make_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
*src
,
492 struct scatterlist
**dst
)
497 *dst
= kmalloc(sizeof(**dst
), GFP_ATOMIC
);
501 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
502 pages
= (void *)__get_free_pages(GFP_ATOMIC
, get_order(len
));
509 s5p_sg_copy_buf(pages
, src
, dev
->req
->nbytes
, 0);
511 sg_init_table(*dst
, 1);
512 sg_set_buf(*dst
, pages
, len
);
517 static int s5p_set_outdata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
526 err
= dma_map_sg(dev
->dev
, sg
, 1, DMA_FROM_DEVICE
);
539 static int s5p_set_indata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
548 err
= dma_map_sg(dev
->dev
, sg
, 1, DMA_TO_DEVICE
);
562 * Returns -ERRNO on error (mapping of new data failed).
563 * On success returns:
564 * - 0 if there is no more data,
565 * - 1 if new transmitting (output) data is ready and its address+length
566 * have to be written to device (by calling s5p_set_dma_outdata()).
568 static int s5p_aes_tx(struct s5p_aes_dev
*dev
)
572 s5p_unset_outdata(dev
);
574 if (!sg_is_last(dev
->sg_dst
)) {
575 ret
= s5p_set_outdata(dev
, sg_next(dev
->sg_dst
));
584 * Returns -ERRNO on error (mapping of new data failed).
585 * On success returns:
586 * - 0 if there is no more data,
587 * - 1 if new receiving (input) data is ready and its address+length
588 * have to be written to device (by calling s5p_set_dma_indata()).
590 static int s5p_aes_rx(struct s5p_aes_dev
*dev
/*, bool *set_dma*/)
594 s5p_unset_indata(dev
);
596 if (!sg_is_last(dev
->sg_src
)) {
597 ret
= s5p_set_indata(dev
, sg_next(dev
->sg_src
));
605 static inline u32
s5p_hash_read(struct s5p_aes_dev
*dd
, u32 offset
)
607 return __raw_readl(dd
->io_hash_base
+ offset
);
610 static inline void s5p_hash_write(struct s5p_aes_dev
*dd
,
611 u32 offset
, u32 value
)
613 __raw_writel(value
, dd
->io_hash_base
+ offset
);
617 * s5p_set_dma_hashdata() - start DMA with sg
619 * @sg: scatterlist ready to DMA transmit
621 static void s5p_set_dma_hashdata(struct s5p_aes_dev
*dev
,
622 struct scatterlist
*sg
)
625 SSS_WRITE(dev
, FCHRDMAS
, sg_dma_address(sg
));
626 SSS_WRITE(dev
, FCHRDMAL
, sg_dma_len(sg
)); /* DMA starts */
630 * s5p_hash_rx() - get next hash_sg_iter
634 * 2 if there is no more data and it is UPDATE op
635 * 1 if new receiving (input) data is ready and can be written to device
636 * 0 if there is no more data and it is FINAL op
638 static int s5p_hash_rx(struct s5p_aes_dev
*dev
)
640 if (dev
->hash_sg_cnt
> 0) {
641 dev
->hash_sg_iter
= sg_next(dev
->hash_sg_iter
);
645 set_bit(HASH_FLAGS_DMA_READY
, &dev
->hash_flags
);
646 if (test_bit(HASH_FLAGS_FINAL
, &dev
->hash_flags
))
652 static irqreturn_t
s5p_aes_interrupt(int irq
, void *dev_id
)
654 struct platform_device
*pdev
= dev_id
;
655 struct s5p_aes_dev
*dev
= platform_get_drvdata(pdev
);
666 spin_lock_irqsave(&dev
->lock
, flags
);
669 * Handle rx or tx interrupt. If there is still data (scatterlist did not
670 * reach end), then map next scatterlist entry.
671 * In case of such mapping error, s5p_aes_complete() should be called.
673 * If there is no more data in tx scatter list, call s5p_aes_complete()
674 * and schedule new tasklet.
676 * Handle hx interrupt. If there is still data map next entry.
678 status
= SSS_READ(dev
, FCINTSTAT
);
679 if (status
& SSS_FCINTSTAT_BRDMAINT
)
680 err_dma_rx
= s5p_aes_rx(dev
);
682 if (status
& SSS_FCINTSTAT_BTDMAINT
) {
683 if (sg_is_last(dev
->sg_dst
))
685 err_dma_tx
= s5p_aes_tx(dev
);
688 if (status
& SSS_FCINTSTAT_HRDMAINT
)
689 err_dma_hx
= s5p_hash_rx(dev
);
691 st_bits
= status
& (SSS_FCINTSTAT_BRDMAINT
| SSS_FCINTSTAT_BTDMAINT
|
692 SSS_FCINTSTAT_HRDMAINT
);
694 SSS_WRITE(dev
, FCINTPEND
, st_bits
);
696 /* clear HASH irq bits */
697 if (status
& (SSS_FCINTSTAT_HDONEINT
| SSS_FCINTSTAT_HPARTINT
)) {
698 /* cannot have both HPART and HDONE */
699 if (status
& SSS_FCINTSTAT_HPARTINT
)
700 st_bits
= SSS_HASH_STATUS_PARTIAL_DONE
;
702 if (status
& SSS_FCINTSTAT_HDONEINT
)
703 st_bits
= SSS_HASH_STATUS_MSG_DONE
;
705 set_bit(HASH_FLAGS_OUTPUT_READY
, &dev
->hash_flags
);
706 s5p_hash_write(dev
, SSS_REG_HASH_STATUS
, st_bits
);
708 /* when DONE or PART, do not handle HASH DMA */
712 if (err_dma_rx
< 0) {
716 if (err_dma_tx
< 0) {
724 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
726 spin_unlock_irqrestore(&dev
->lock
, flags
);
728 s5p_aes_complete(dev
, 0);
729 /* Device is still busy */
730 tasklet_schedule(&dev
->tasklet
);
733 * Writing length of DMA block (either receiving or
734 * transmitting) will start the operation immediately, so this
735 * should be done at the end (even after clearing pending
736 * interrupts to not miss the interrupt).
739 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
741 s5p_set_dma_indata(dev
, dev
->sg_src
);
743 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
745 spin_unlock_irqrestore(&dev
->lock
, flags
);
754 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
756 spin_unlock_irqrestore(&dev
->lock
, flags
);
757 s5p_aes_complete(dev
, err
);
761 * Note about else if:
762 * when hash_sg_iter reaches end and its UPDATE op,
763 * issue SSS_HASH_PAUSE and wait for HPART irq
766 tasklet_schedule(&dev
->hash_tasklet
);
767 else if (err_dma_hx
== 2)
768 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_PAUSE
,
775 * s5p_hash_read_msg() - read message or IV from HW
776 * @req: AHASH request
778 static void s5p_hash_read_msg(struct ahash_request
*req
)
780 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
781 struct s5p_aes_dev
*dd
= ctx
->dd
;
782 u32
*hash
= (u32
*)ctx
->digest
;
785 for (i
= 0; i
< ctx
->nregs
; i
++)
786 hash
[i
] = s5p_hash_read(dd
, SSS_REG_HASH_OUT(i
));
790 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
792 * @ctx: request context
794 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev
*dd
,
795 struct s5p_hash_reqctx
*ctx
)
797 u32
*hash
= (u32
*)ctx
->digest
;
800 for (i
= 0; i
< ctx
->nregs
; i
++)
801 s5p_hash_write(dd
, SSS_REG_HASH_IV(i
), hash
[i
]);
805 * s5p_hash_write_iv() - write IV for next partial/finup op.
806 * @req: AHASH request
808 static void s5p_hash_write_iv(struct ahash_request
*req
)
810 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
812 s5p_hash_write_ctx_iv(ctx
->dd
, ctx
);
816 * s5p_hash_copy_result() - copy digest into req->result
817 * @req: AHASH request
819 static void s5p_hash_copy_result(struct ahash_request
*req
)
821 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
826 memcpy(req
->result
, ctx
->digest
, ctx
->nregs
* HASH_REG_SIZEOF
);
830 * s5p_hash_dma_flush() - flush HASH DMA
833 static void s5p_hash_dma_flush(struct s5p_aes_dev
*dev
)
835 SSS_WRITE(dev
, FCHRDMAC
, SSS_FCHRDMAC_FLUSH
);
839 * s5p_hash_dma_enable() - enable DMA mode for HASH
842 * enable DMA mode for HASH
844 static void s5p_hash_dma_enable(struct s5p_aes_dev
*dev
)
846 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_FIFO
, SSS_HASH_FIFO_MODE_DMA
);
850 * s5p_hash_irq_disable() - disable irq HASH signals
852 * @flags: bitfield with irq's to be disabled
854 static void s5p_hash_irq_disable(struct s5p_aes_dev
*dev
, u32 flags
)
856 SSS_WRITE(dev
, FCINTENCLR
, flags
);
860 * s5p_hash_irq_enable() - enable irq signals
862 * @flags: bitfield with irq's to be enabled
864 static void s5p_hash_irq_enable(struct s5p_aes_dev
*dev
, int flags
)
866 SSS_WRITE(dev
, FCINTENSET
, flags
);
870 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
872 * @hashflow: HASH stream flow with/without crypto AES/DES
874 static void s5p_hash_set_flow(struct s5p_aes_dev
*dev
, u32 hashflow
)
879 spin_lock_irqsave(&dev
->lock
, flags
);
881 flow
= SSS_READ(dev
, FCFIFOCTRL
);
882 flow
&= ~SSS_HASHIN_MASK
;
884 SSS_WRITE(dev
, FCFIFOCTRL
, flow
);
886 spin_unlock_irqrestore(&dev
->lock
, flags
);
890 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
892 * @hashflow: HASH stream flow with/without AES/DES
894 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
895 * enable HASH irq's HRDMA, HDONE, HPART
897 static void s5p_ahash_dma_init(struct s5p_aes_dev
*dev
, u32 hashflow
)
899 s5p_hash_irq_disable(dev
, SSS_FCINTENCLR_HRDMAINTENCLR
|
900 SSS_FCINTENCLR_HDONEINTENCLR
|
901 SSS_FCINTENCLR_HPARTINTENCLR
);
902 s5p_hash_dma_flush(dev
);
904 s5p_hash_dma_enable(dev
);
905 s5p_hash_set_flow(dev
, hashflow
& SSS_HASHIN_MASK
);
906 s5p_hash_irq_enable(dev
, SSS_FCINTENSET_HRDMAINTENSET
|
907 SSS_FCINTENSET_HDONEINTENSET
|
908 SSS_FCINTENSET_HPARTINTENSET
);
912 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
914 * @length: length for request
915 * @final: true if final op
917 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
918 * after previous updates, fill up IV words. For final, calculate and set
919 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
920 * length as 2^63 so it will be never reached and set to zero prelow and
923 * This function does not start DMA transfer.
925 static void s5p_hash_write_ctrl(struct s5p_aes_dev
*dd
, size_t length
,
928 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
929 u32 prelow
, prehigh
, low
, high
;
930 u32 configflags
, swapflags
;
933 configflags
= ctx
->engine
| SSS_HASH_INIT_BIT
;
935 if (likely(ctx
->digcnt
)) {
936 s5p_hash_write_ctx_iv(dd
, ctx
);
937 configflags
|= SSS_HASH_USER_IV_EN
;
941 /* number of bytes for last part */
944 /* total number of bits prev hashed */
945 tmplen
= ctx
->digcnt
* 8;
946 prelow
= (u32
)tmplen
;
947 prehigh
= (u32
)(tmplen
>> 32);
955 swapflags
= SSS_HASH_BYTESWAP_DI
| SSS_HASH_BYTESWAP_DO
|
956 SSS_HASH_BYTESWAP_IV
| SSS_HASH_BYTESWAP_KEY
;
958 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_LOW
, low
);
959 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_HIGH
, high
);
960 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_LOW
, prelow
);
961 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_HIGH
, prehigh
);
963 s5p_hash_write(dd
, SSS_REG_HASH_CTRL_SWAP
, swapflags
);
964 s5p_hash_write(dd
, SSS_REG_HASH_CTRL
, configflags
);
968 * s5p_hash_xmit_dma() - start DMA hash processing
970 * @length: length for request
971 * @final: true if final op
973 * Update digcnt here, as it is needed for finup/final op.
975 static int s5p_hash_xmit_dma(struct s5p_aes_dev
*dd
, size_t length
,
978 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
981 cnt
= dma_map_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
983 dev_err(dd
->dev
, "dma_map_sg error\n");
988 set_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
989 dd
->hash_sg_iter
= ctx
->sg
;
990 dd
->hash_sg_cnt
= cnt
;
991 s5p_hash_write_ctrl(dd
, length
, final
);
992 ctx
->digcnt
+= length
;
993 ctx
->total
-= length
;
995 /* catch last interrupt */
997 set_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
);
999 s5p_set_dma_hashdata(dd
, dd
->hash_sg_iter
); /* DMA starts */
1001 return -EINPROGRESS
;
1005 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1006 * @ctx: request context
1007 * @sg: source scatterlist request
1008 * @new_len: number of bytes to process from sg
1010 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1011 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1012 * with allocated buffer.
1014 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1016 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx
*ctx
,
1017 struct scatterlist
*sg
, unsigned int new_len
)
1019 unsigned int pages
, len
;
1022 len
= new_len
+ ctx
->bufcnt
;
1023 pages
= get_order(len
);
1025 buf
= (void *)__get_free_pages(GFP_ATOMIC
, pages
);
1027 dev_err(ctx
->dd
->dev
, "alloc pages for unaligned case.\n");
1033 memcpy(buf
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1035 scatterwalk_map_and_copy(buf
+ ctx
->bufcnt
, sg
, ctx
->skip
,
1037 sg_init_table(ctx
->sgl
, 1);
1038 sg_set_buf(ctx
->sgl
, buf
, len
);
1043 set_bit(HASH_FLAGS_SGS_COPIED
, &ctx
->dd
->hash_flags
);
1049 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1050 * @ctx: request context
1051 * @sg: source scatterlist request
1052 * @new_len: number of bytes to process from sg
1054 * Allocate new scatterlist table, copy data for HASH into it. If there was
1055 * xmit_buf filled, prepare it first, then copy page, length and offset from
1056 * source sg into it, adjusting begin and/or end for skip offset and
1059 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1060 * it after irq ends processing.
1062 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx
*ctx
,
1063 struct scatterlist
*sg
, unsigned int new_len
)
1065 unsigned int skip
= ctx
->skip
, n
= sg_nents(sg
);
1066 struct scatterlist
*tmp
;
1072 ctx
->sg
= kmalloc_array(n
, sizeof(*sg
), GFP_KERNEL
);
1078 sg_init_table(ctx
->sg
, n
);
1085 sg_set_buf(tmp
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1090 while (sg
&& skip
>= sg
->length
) {
1095 while (sg
&& new_len
) {
1096 len
= sg
->length
- skip
;
1101 sg_set_page(tmp
, sg_page(sg
), len
, sg
->offset
+ skip
);
1111 set_bit(HASH_FLAGS_SGS_ALLOCED
, &ctx
->dd
->hash_flags
);
1117 * s5p_hash_prepare_sgs() - prepare sg for processing
1118 * @ctx: request context
1119 * @sg: source scatterlist request
1120 * @nbytes: number of bytes to process from sg
1121 * @final: final flag
1123 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1124 * sg table have good aligned elements (list_ok). If one of this checks fails,
1125 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1126 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1127 * table and prepare sg elements.
1129 * For digest or finup all conditions can be good, and we may not need any
1132 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx
*ctx
,
1133 struct scatterlist
*sg
,
1134 unsigned int new_len
, bool final
)
1136 unsigned int skip
= ctx
->skip
, nbytes
= new_len
, n
= 0;
1137 bool aligned
= true, list_ok
= true;
1138 struct scatterlist
*sg_tmp
= sg
;
1140 if (!sg
|| !sg
->length
|| !new_len
)
1146 while (nbytes
> 0 && sg_tmp
) {
1148 if (skip
>= sg_tmp
->length
) {
1149 skip
-= sg_tmp
->length
;
1150 if (!sg_tmp
->length
) {
1155 if (!IS_ALIGNED(sg_tmp
->length
- skip
, BUFLEN
)) {
1160 if (nbytes
< sg_tmp
->length
- skip
) {
1165 nbytes
-= sg_tmp
->length
- skip
;
1169 sg_tmp
= sg_next(sg_tmp
);
1173 return s5p_hash_copy_sgs(ctx
, sg
, new_len
);
1175 return s5p_hash_copy_sg_lists(ctx
, sg
, new_len
);
1178 * Have aligned data from previous operation and/or current
1179 * Note: will enter here only if (digest or finup) and aligned
1183 sg_init_table(ctx
->sgl
, 2);
1184 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1185 sg_chain(ctx
->sgl
, 2, sg
);
1197 * s5p_hash_prepare_request() - prepare request for processing
1198 * @req: AHASH request
1199 * @update: true if UPDATE op
1201 * Note 1: we can have update flag _and_ final flag at the same time.
1202 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1203 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1206 static int s5p_hash_prepare_request(struct ahash_request
*req
, bool update
)
1208 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1209 bool final
= ctx
->finup
;
1210 int xmit_len
, hash_later
, nbytes
;
1217 nbytes
= req
->nbytes
;
1221 ctx
->total
= nbytes
+ ctx
->bufcnt
;
1225 if (nbytes
&& (!IS_ALIGNED(ctx
->bufcnt
, BUFLEN
))) {
1226 /* bytes left from previous request, so fill up to BUFLEN */
1227 int len
= BUFLEN
- ctx
->bufcnt
% BUFLEN
;
1232 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1242 memcpy(ctx
->dd
->xmit_buf
, ctx
->buffer
, ctx
->bufcnt
);
1244 xmit_len
= ctx
->total
;
1248 if (IS_ALIGNED(xmit_len
, BUFLEN
))
1251 xmit_len
-= xmit_len
& (BUFLEN
- 1);
1253 hash_later
= ctx
->total
- xmit_len
;
1254 /* copy hash_later bytes from end of req->src */
1255 /* previous bytes are in xmit_buf, so no overwrite */
1256 scatterwalk_map_and_copy(ctx
->buffer
, req
->src
,
1257 req
->nbytes
- hash_later
,
1261 if (xmit_len
> BUFLEN
) {
1262 ret
= s5p_hash_prepare_sgs(ctx
, req
->src
, nbytes
- hash_later
,
1267 /* have buffered data only */
1268 if (unlikely(!ctx
->bufcnt
)) {
1269 /* first update didn't fill up buffer */
1270 scatterwalk_map_and_copy(ctx
->dd
->xmit_buf
, req
->src
,
1274 sg_init_table(ctx
->sgl
, 1);
1275 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, xmit_len
);
1281 ctx
->bufcnt
= hash_later
;
1283 ctx
->total
= xmit_len
;
1289 * s5p_hash_update_dma_stop() - unmap DMA
1292 * Unmap scatterlist ctx->sg.
1294 static void s5p_hash_update_dma_stop(struct s5p_aes_dev
*dd
)
1296 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
1298 dma_unmap_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
1299 clear_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
1303 * s5p_hash_finish() - copy calculated digest to crypto layer
1304 * @req: AHASH request
1306 static void s5p_hash_finish(struct ahash_request
*req
)
1308 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1309 struct s5p_aes_dev
*dd
= ctx
->dd
;
1312 s5p_hash_copy_result(req
);
1314 dev_dbg(dd
->dev
, "hash_finish digcnt: %lld\n", ctx
->digcnt
);
1318 * s5p_hash_finish_req() - finish request
1319 * @req: AHASH request
1322 static void s5p_hash_finish_req(struct ahash_request
*req
, int err
)
1324 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1325 struct s5p_aes_dev
*dd
= ctx
->dd
;
1326 unsigned long flags
;
1328 if (test_bit(HASH_FLAGS_SGS_COPIED
, &dd
->hash_flags
))
1329 free_pages((unsigned long)sg_virt(ctx
->sg
),
1330 get_order(ctx
->sg
->length
));
1332 if (test_bit(HASH_FLAGS_SGS_ALLOCED
, &dd
->hash_flags
))
1336 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_SGS_ALLOCED
) |
1337 BIT(HASH_FLAGS_SGS_COPIED
));
1339 if (!err
&& !ctx
->error
) {
1340 s5p_hash_read_msg(req
);
1341 if (test_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
))
1342 s5p_hash_finish(req
);
1347 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1348 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_BUSY
) | BIT(HASH_FLAGS_FINAL
) |
1349 BIT(HASH_FLAGS_DMA_READY
) |
1350 BIT(HASH_FLAGS_OUTPUT_READY
));
1351 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1353 if (req
->base
.complete
)
1354 req
->base
.complete(&req
->base
, err
);
1358 * s5p_hash_handle_queue() - handle hash queue
1359 * @dd: device s5p_aes_dev
1360 * @req: AHASH request
1362 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1363 * device then processes the first request from the dd->queue
1365 * Returns: see s5p_hash_final below.
1367 static int s5p_hash_handle_queue(struct s5p_aes_dev
*dd
,
1368 struct ahash_request
*req
)
1370 struct crypto_async_request
*async_req
, *backlog
;
1371 struct s5p_hash_reqctx
*ctx
;
1372 unsigned long flags
;
1373 int err
= 0, ret
= 0;
1376 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1378 ret
= ahash_enqueue_request(&dd
->hash_queue
, req
);
1380 if (test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1381 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1385 backlog
= crypto_get_backlog(&dd
->hash_queue
);
1386 async_req
= crypto_dequeue_request(&dd
->hash_queue
);
1388 set_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
);
1390 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1396 backlog
->complete(backlog
, -EINPROGRESS
);
1398 req
= ahash_request_cast(async_req
);
1400 ctx
= ahash_request_ctx(req
);
1402 err
= s5p_hash_prepare_request(req
, ctx
->op_update
);
1403 if (err
|| !ctx
->total
)
1406 dev_dbg(dd
->dev
, "handling new req, op_update: %u, nbytes: %d\n",
1407 ctx
->op_update
, req
->nbytes
);
1409 s5p_ahash_dma_init(dd
, SSS_HASHIN_INDEPENDENT
);
1411 s5p_hash_write_iv(req
); /* restore hash IV */
1413 if (ctx
->op_update
) { /* HASH_OP_UPDATE */
1414 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, ctx
->finup
);
1415 if (err
!= -EINPROGRESS
&& ctx
->finup
&& !ctx
->error
)
1416 /* no final() after finup() */
1417 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1418 } else { /* HASH_OP_FINAL */
1419 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1422 if (err
!= -EINPROGRESS
) {
1423 /* hash_tasklet_cb will not finish it, so do it here */
1424 s5p_hash_finish_req(req
, err
);
1428 * Execute next request immediately if there is anything
1438 * s5p_hash_tasklet_cb() - hash tasklet
1439 * @data: ptr to s5p_aes_dev
1441 static void s5p_hash_tasklet_cb(unsigned long data
)
1443 struct s5p_aes_dev
*dd
= (struct s5p_aes_dev
*)data
;
1445 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1446 s5p_hash_handle_queue(dd
, NULL
);
1450 if (test_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
)) {
1451 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE
,
1453 s5p_hash_update_dma_stop(dd
);
1456 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY
,
1458 /* hash or semi-hash ready */
1459 clear_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
);
1467 /* finish curent request */
1468 s5p_hash_finish_req(dd
->hash_req
, 0);
1470 /* If we are not busy, process next req */
1471 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
))
1472 s5p_hash_handle_queue(dd
, NULL
);
1476 * s5p_hash_enqueue() - enqueue request
1477 * @req: AHASH request
1478 * @op: operation UPDATE (true) or FINAL (false)
1480 * Returns: see s5p_hash_final below.
1482 static int s5p_hash_enqueue(struct ahash_request
*req
, bool op
)
1484 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1485 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1487 ctx
->op_update
= op
;
1489 return s5p_hash_handle_queue(tctx
->dd
, req
);
1493 * s5p_hash_update() - process the hash input data
1494 * @req: AHASH request
1496 * If request will fit in buffer, copy it and return immediately
1497 * else enqueue it with OP_UPDATE.
1499 * Returns: see s5p_hash_final below.
1501 static int s5p_hash_update(struct ahash_request
*req
)
1503 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1508 if (ctx
->bufcnt
+ req
->nbytes
<= BUFLEN
) {
1509 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1511 ctx
->bufcnt
+= req
->nbytes
;
1515 return s5p_hash_enqueue(req
, true); /* HASH_OP_UPDATE */
1519 * s5p_hash_shash_digest() - calculate shash digest
1520 * @tfm: crypto transformation
1523 * @len: length of data
1524 * @out: output buffer
1526 static int s5p_hash_shash_digest(struct crypto_shash
*tfm
, u32 flags
,
1527 const u8
*data
, unsigned int len
, u8
*out
)
1529 SHASH_DESC_ON_STACK(shash
, tfm
);
1532 shash
->flags
= flags
& ~CRYPTO_TFM_REQ_MAY_SLEEP
;
1534 return crypto_shash_digest(shash
, data
, len
, out
);
1538 * s5p_hash_final_shash() - calculate shash digest
1539 * @req: AHASH request
1541 static int s5p_hash_final_shash(struct ahash_request
*req
)
1543 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1544 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1546 return s5p_hash_shash_digest(tctx
->fallback
, req
->base
.flags
,
1547 ctx
->buffer
, ctx
->bufcnt
, req
->result
);
1551 * s5p_hash_final() - close up hash and calculate digest
1552 * @req: AHASH request
1554 * Note: in final req->src do not have any data, and req->nbytes can be
1557 * If there were no input data processed yet and the buffered hash data is
1558 * less than BUFLEN (64) then calculate the final hash immediately by using
1559 * SW algorithm fallback.
1561 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1562 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1563 * previous update op, so there are always some buffered bytes in ctx->buffer,
1564 * which means that ctx->bufcnt!=0
1567 * 0 if the request has been processed immediately,
1568 * -EINPROGRESS if the operation has been queued for later execution or is set
1569 * to processing by HW,
1570 * -EBUSY if queue is full and request should be resubmitted later,
1571 * other negative values denotes an error.
1573 static int s5p_hash_final(struct ahash_request
*req
)
1575 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1579 return -EINVAL
; /* uncompleted hash is not needed */
1581 if (!ctx
->digcnt
&& ctx
->bufcnt
< BUFLEN
)
1582 return s5p_hash_final_shash(req
);
1584 return s5p_hash_enqueue(req
, false); /* HASH_OP_FINAL */
1588 * s5p_hash_finup() - process last req->src and calculate digest
1589 * @req: AHASH request containing the last update data
1591 * Return values: see s5p_hash_final above.
1593 static int s5p_hash_finup(struct ahash_request
*req
)
1595 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1600 err1
= s5p_hash_update(req
);
1601 if (err1
== -EINPROGRESS
|| err1
== -EBUSY
)
1605 * final() has to be always called to cleanup resources even if
1606 * update() failed, except EINPROGRESS or calculate digest for small
1609 err2
= s5p_hash_final(req
);
1611 return err1
?: err2
;
1615 * s5p_hash_init() - initialize AHASH request contex
1616 * @req: AHASH request
1618 * Init async hash request context.
1620 static int s5p_hash_init(struct ahash_request
*req
)
1622 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1623 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1624 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1634 dev_dbg(tctx
->dd
->dev
, "init: digest size: %d\n",
1635 crypto_ahash_digestsize(tfm
));
1637 switch (crypto_ahash_digestsize(tfm
)) {
1638 case MD5_DIGEST_SIZE
:
1639 ctx
->engine
= SSS_HASH_ENGINE_MD5
;
1640 ctx
->nregs
= HASH_MD5_MAX_REG
;
1642 case SHA1_DIGEST_SIZE
:
1643 ctx
->engine
= SSS_HASH_ENGINE_SHA1
;
1644 ctx
->nregs
= HASH_SHA1_MAX_REG
;
1646 case SHA256_DIGEST_SIZE
:
1647 ctx
->engine
= SSS_HASH_ENGINE_SHA256
;
1648 ctx
->nregs
= HASH_SHA256_MAX_REG
;
1659 * s5p_hash_digest - calculate digest from req->src
1660 * @req: AHASH request
1662 * Return values: see s5p_hash_final above.
1664 static int s5p_hash_digest(struct ahash_request
*req
)
1666 return s5p_hash_init(req
) ?: s5p_hash_finup(req
);
1670 * s5p_hash_cra_init_alg - init crypto alg transformation
1671 * @tfm: crypto transformation
1673 static int s5p_hash_cra_init_alg(struct crypto_tfm
*tfm
)
1675 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1676 const char *alg_name
= crypto_tfm_alg_name(tfm
);
1679 /* Allocate a fallback and abort if it failed. */
1680 tctx
->fallback
= crypto_alloc_shash(alg_name
, 0,
1681 CRYPTO_ALG_NEED_FALLBACK
);
1682 if (IS_ERR(tctx
->fallback
)) {
1683 pr_err("fallback alloc fails for '%s'\n", alg_name
);
1684 return PTR_ERR(tctx
->fallback
);
1687 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1688 sizeof(struct s5p_hash_reqctx
) + BUFLEN
);
1694 * s5p_hash_cra_init - init crypto tfm
1695 * @tfm: crypto transformation
1697 static int s5p_hash_cra_init(struct crypto_tfm
*tfm
)
1699 return s5p_hash_cra_init_alg(tfm
);
1703 * s5p_hash_cra_exit - exit crypto tfm
1704 * @tfm: crypto transformation
1706 * free allocated fallback
1708 static void s5p_hash_cra_exit(struct crypto_tfm
*tfm
)
1710 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1712 crypto_free_shash(tctx
->fallback
);
1713 tctx
->fallback
= NULL
;
1717 * s5p_hash_export - export hash state
1718 * @req: AHASH request
1719 * @out: buffer for exported state
1721 static int s5p_hash_export(struct ahash_request
*req
, void *out
)
1723 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1725 memcpy(out
, ctx
, sizeof(*ctx
) + ctx
->bufcnt
);
1731 * s5p_hash_import - import hash state
1732 * @req: AHASH request
1733 * @in: buffer with state to be imported from
1735 static int s5p_hash_import(struct ahash_request
*req
, const void *in
)
1737 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1738 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1739 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1740 const struct s5p_hash_reqctx
*ctx_in
= in
;
1742 memcpy(ctx
, in
, sizeof(*ctx
) + BUFLEN
);
1743 if (ctx_in
->bufcnt
> BUFLEN
) {
1754 static struct ahash_alg algs_sha1_md5_sha256
[] = {
1756 .init
= s5p_hash_init
,
1757 .update
= s5p_hash_update
,
1758 .final
= s5p_hash_final
,
1759 .finup
= s5p_hash_finup
,
1760 .digest
= s5p_hash_digest
,
1761 .export
= s5p_hash_export
,
1762 .import
= s5p_hash_import
,
1763 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1764 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1767 .cra_driver_name
= "exynos-sha1",
1768 .cra_priority
= 100,
1769 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1770 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1772 CRYPTO_ALG_NEED_FALLBACK
,
1773 .cra_blocksize
= HASH_BLOCK_SIZE
,
1774 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1775 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1776 .cra_module
= THIS_MODULE
,
1777 .cra_init
= s5p_hash_cra_init
,
1778 .cra_exit
= s5p_hash_cra_exit
,
1782 .init
= s5p_hash_init
,
1783 .update
= s5p_hash_update
,
1784 .final
= s5p_hash_final
,
1785 .finup
= s5p_hash_finup
,
1786 .digest
= s5p_hash_digest
,
1787 .export
= s5p_hash_export
,
1788 .import
= s5p_hash_import
,
1789 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1790 .halg
.digestsize
= MD5_DIGEST_SIZE
,
1793 .cra_driver_name
= "exynos-md5",
1794 .cra_priority
= 100,
1795 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1796 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1798 CRYPTO_ALG_NEED_FALLBACK
,
1799 .cra_blocksize
= HASH_BLOCK_SIZE
,
1800 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1801 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1802 .cra_module
= THIS_MODULE
,
1803 .cra_init
= s5p_hash_cra_init
,
1804 .cra_exit
= s5p_hash_cra_exit
,
1808 .init
= s5p_hash_init
,
1809 .update
= s5p_hash_update
,
1810 .final
= s5p_hash_final
,
1811 .finup
= s5p_hash_finup
,
1812 .digest
= s5p_hash_digest
,
1813 .export
= s5p_hash_export
,
1814 .import
= s5p_hash_import
,
1815 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1816 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1818 .cra_name
= "sha256",
1819 .cra_driver_name
= "exynos-sha256",
1820 .cra_priority
= 100,
1821 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1822 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1824 CRYPTO_ALG_NEED_FALLBACK
,
1825 .cra_blocksize
= HASH_BLOCK_SIZE
,
1826 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1827 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1828 .cra_module
= THIS_MODULE
,
1829 .cra_init
= s5p_hash_cra_init
,
1830 .cra_exit
= s5p_hash_cra_exit
,
1836 static void s5p_set_aes(struct s5p_aes_dev
*dev
,
1837 uint8_t *key
, uint8_t *iv
, unsigned int keylen
)
1839 void __iomem
*keystart
;
1842 memcpy_toio(dev
->aes_ioaddr
+ SSS_REG_AES_IV_DATA(0), iv
, 0x10);
1844 if (keylen
== AES_KEYSIZE_256
)
1845 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(0);
1846 else if (keylen
== AES_KEYSIZE_192
)
1847 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(2);
1849 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(4);
1851 memcpy_toio(keystart
, key
, keylen
);
1854 static bool s5p_is_sg_aligned(struct scatterlist
*sg
)
1857 if (!IS_ALIGNED(sg
->length
, AES_BLOCK_SIZE
))
1865 static int s5p_set_indata_start(struct s5p_aes_dev
*dev
,
1866 struct ablkcipher_request
*req
)
1868 struct scatterlist
*sg
;
1871 dev
->sg_src_cpy
= NULL
;
1873 if (!s5p_is_sg_aligned(sg
)) {
1875 "At least one unaligned source scatter list, making a copy\n");
1876 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_src_cpy
);
1880 sg
= dev
->sg_src_cpy
;
1883 err
= s5p_set_indata(dev
, sg
);
1885 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
1892 static int s5p_set_outdata_start(struct s5p_aes_dev
*dev
,
1893 struct ablkcipher_request
*req
)
1895 struct scatterlist
*sg
;
1898 dev
->sg_dst_cpy
= NULL
;
1900 if (!s5p_is_sg_aligned(sg
)) {
1902 "At least one unaligned dest scatter list, making a copy\n");
1903 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_dst_cpy
);
1907 sg
= dev
->sg_dst_cpy
;
1910 err
= s5p_set_outdata(dev
, sg
);
1912 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
1919 static void s5p_aes_crypt_start(struct s5p_aes_dev
*dev
, unsigned long mode
)
1921 struct ablkcipher_request
*req
= dev
->req
;
1922 uint32_t aes_control
;
1923 unsigned long flags
;
1927 aes_control
= SSS_AES_KEY_CHANGE_MODE
;
1928 if (mode
& FLAGS_AES_DECRYPT
)
1929 aes_control
|= SSS_AES_MODE_DECRYPT
;
1931 if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CBC
) {
1932 aes_control
|= SSS_AES_CHAIN_MODE_CBC
;
1934 } else if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CTR
) {
1935 aes_control
|= SSS_AES_CHAIN_MODE_CTR
;
1938 iv
= NULL
; /* AES_ECB */
1941 if (dev
->ctx
->keylen
== AES_KEYSIZE_192
)
1942 aes_control
|= SSS_AES_KEY_SIZE_192
;
1943 else if (dev
->ctx
->keylen
== AES_KEYSIZE_256
)
1944 aes_control
|= SSS_AES_KEY_SIZE_256
;
1946 aes_control
|= SSS_AES_FIFO_MODE
;
1948 /* as a variant it is possible to use byte swapping on DMA side */
1949 aes_control
|= SSS_AES_BYTESWAP_DI
1950 | SSS_AES_BYTESWAP_DO
1951 | SSS_AES_BYTESWAP_IV
1952 | SSS_AES_BYTESWAP_KEY
1953 | SSS_AES_BYTESWAP_CNT
;
1955 spin_lock_irqsave(&dev
->lock
, flags
);
1957 SSS_WRITE(dev
, FCINTENCLR
,
1958 SSS_FCINTENCLR_BTDMAINTENCLR
| SSS_FCINTENCLR_BRDMAINTENCLR
);
1959 SSS_WRITE(dev
, FCFIFOCTRL
, 0x00);
1961 err
= s5p_set_indata_start(dev
, req
);
1965 err
= s5p_set_outdata_start(dev
, req
);
1969 SSS_AES_WRITE(dev
, AES_CONTROL
, aes_control
);
1970 s5p_set_aes(dev
, dev
->ctx
->aes_key
, iv
, dev
->ctx
->keylen
);
1972 s5p_set_dma_indata(dev
, dev
->sg_src
);
1973 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
1975 SSS_WRITE(dev
, FCINTENSET
,
1976 SSS_FCINTENSET_BTDMAINTENSET
| SSS_FCINTENSET_BRDMAINTENSET
);
1978 spin_unlock_irqrestore(&dev
->lock
, flags
);
1983 s5p_unset_indata(dev
);
1988 spin_unlock_irqrestore(&dev
->lock
, flags
);
1989 s5p_aes_complete(dev
, err
);
1992 static void s5p_tasklet_cb(unsigned long data
)
1994 struct s5p_aes_dev
*dev
= (struct s5p_aes_dev
*)data
;
1995 struct crypto_async_request
*async_req
, *backlog
;
1996 struct s5p_aes_reqctx
*reqctx
;
1997 unsigned long flags
;
1999 spin_lock_irqsave(&dev
->lock
, flags
);
2000 backlog
= crypto_get_backlog(&dev
->queue
);
2001 async_req
= crypto_dequeue_request(&dev
->queue
);
2005 spin_unlock_irqrestore(&dev
->lock
, flags
);
2008 spin_unlock_irqrestore(&dev
->lock
, flags
);
2011 backlog
->complete(backlog
, -EINPROGRESS
);
2013 dev
->req
= ablkcipher_request_cast(async_req
);
2014 dev
->ctx
= crypto_tfm_ctx(dev
->req
->base
.tfm
);
2015 reqctx
= ablkcipher_request_ctx(dev
->req
);
2017 s5p_aes_crypt_start(dev
, reqctx
->mode
);
2020 static int s5p_aes_handle_req(struct s5p_aes_dev
*dev
,
2021 struct ablkcipher_request
*req
)
2023 unsigned long flags
;
2026 spin_lock_irqsave(&dev
->lock
, flags
);
2027 err
= ablkcipher_enqueue_request(&dev
->queue
, req
);
2029 spin_unlock_irqrestore(&dev
->lock
, flags
);
2034 spin_unlock_irqrestore(&dev
->lock
, flags
);
2036 tasklet_schedule(&dev
->tasklet
);
2042 static int s5p_aes_crypt(struct ablkcipher_request
*req
, unsigned long mode
)
2044 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
2045 struct s5p_aes_reqctx
*reqctx
= ablkcipher_request_ctx(req
);
2046 struct s5p_aes_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
2047 struct s5p_aes_dev
*dev
= ctx
->dev
;
2049 if (!IS_ALIGNED(req
->nbytes
, AES_BLOCK_SIZE
)) {
2050 dev_err(dev
->dev
, "request size is not exact amount of AES blocks\n");
2054 reqctx
->mode
= mode
;
2056 return s5p_aes_handle_req(dev
, req
);
2059 static int s5p_aes_setkey(struct crypto_ablkcipher
*cipher
,
2060 const uint8_t *key
, unsigned int keylen
)
2062 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
2063 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2065 if (keylen
!= AES_KEYSIZE_128
&&
2066 keylen
!= AES_KEYSIZE_192
&&
2067 keylen
!= AES_KEYSIZE_256
)
2070 memcpy(ctx
->aes_key
, key
, keylen
);
2071 ctx
->keylen
= keylen
;
2076 static int s5p_aes_ecb_encrypt(struct ablkcipher_request
*req
)
2078 return s5p_aes_crypt(req
, 0);
2081 static int s5p_aes_ecb_decrypt(struct ablkcipher_request
*req
)
2083 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
);
2086 static int s5p_aes_cbc_encrypt(struct ablkcipher_request
*req
)
2088 return s5p_aes_crypt(req
, FLAGS_AES_CBC
);
2091 static int s5p_aes_cbc_decrypt(struct ablkcipher_request
*req
)
2093 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
| FLAGS_AES_CBC
);
2096 static int s5p_aes_cra_init(struct crypto_tfm
*tfm
)
2098 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2101 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct s5p_aes_reqctx
);
2106 static struct crypto_alg algs
[] = {
2108 .cra_name
= "ecb(aes)",
2109 .cra_driver_name
= "ecb-aes-s5p",
2110 .cra_priority
= 100,
2111 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2113 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2114 .cra_blocksize
= AES_BLOCK_SIZE
,
2115 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2116 .cra_alignmask
= 0x0f,
2117 .cra_type
= &crypto_ablkcipher_type
,
2118 .cra_module
= THIS_MODULE
,
2119 .cra_init
= s5p_aes_cra_init
,
2120 .cra_u
.ablkcipher
= {
2121 .min_keysize
= AES_MIN_KEY_SIZE
,
2122 .max_keysize
= AES_MAX_KEY_SIZE
,
2123 .setkey
= s5p_aes_setkey
,
2124 .encrypt
= s5p_aes_ecb_encrypt
,
2125 .decrypt
= s5p_aes_ecb_decrypt
,
2129 .cra_name
= "cbc(aes)",
2130 .cra_driver_name
= "cbc-aes-s5p",
2131 .cra_priority
= 100,
2132 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2134 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2135 .cra_blocksize
= AES_BLOCK_SIZE
,
2136 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2137 .cra_alignmask
= 0x0f,
2138 .cra_type
= &crypto_ablkcipher_type
,
2139 .cra_module
= THIS_MODULE
,
2140 .cra_init
= s5p_aes_cra_init
,
2141 .cra_u
.ablkcipher
= {
2142 .min_keysize
= AES_MIN_KEY_SIZE
,
2143 .max_keysize
= AES_MAX_KEY_SIZE
,
2144 .ivsize
= AES_BLOCK_SIZE
,
2145 .setkey
= s5p_aes_setkey
,
2146 .encrypt
= s5p_aes_cbc_encrypt
,
2147 .decrypt
= s5p_aes_cbc_decrypt
,
2152 static int s5p_aes_probe(struct platform_device
*pdev
)
2154 struct device
*dev
= &pdev
->dev
;
2155 int i
, j
, err
= -ENODEV
;
2156 struct samsung_aes_variant
*variant
;
2157 struct s5p_aes_dev
*pdata
;
2158 struct resource
*res
;
2159 unsigned int hash_i
;
2164 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
2168 variant
= find_s5p_sss_version(pdev
);
2169 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2172 * Note: HASH and PRNG uses the same registers in secss, avoid
2173 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2174 * is enabled in config. We need larger size for HASH registers in
2175 * secss, current describe only AES/DES
2177 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH
)) {
2178 if (variant
== &exynos_aes_data
) {
2180 pdata
->use_hash
= true;
2185 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2186 if (IS_ERR(pdata
->ioaddr
)) {
2187 if (!pdata
->use_hash
)
2188 return PTR_ERR(pdata
->ioaddr
);
2189 /* try AES without HASH */
2191 pdata
->use_hash
= false;
2192 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2193 if (IS_ERR(pdata
->ioaddr
))
2194 return PTR_ERR(pdata
->ioaddr
);
2197 pdata
->clk
= devm_clk_get(dev
, "secss");
2198 if (IS_ERR(pdata
->clk
)) {
2199 dev_err(dev
, "failed to find secss clock source\n");
2203 err
= clk_prepare_enable(pdata
->clk
);
2205 dev_err(dev
, "Enabling SSS clk failed, err %d\n", err
);
2209 spin_lock_init(&pdata
->lock
);
2210 spin_lock_init(&pdata
->hash_lock
);
2212 pdata
->aes_ioaddr
= pdata
->ioaddr
+ variant
->aes_offset
;
2213 pdata
->io_hash_base
= pdata
->ioaddr
+ variant
->hash_offset
;
2215 pdata
->irq_fc
= platform_get_irq(pdev
, 0);
2216 if (pdata
->irq_fc
< 0) {
2217 err
= pdata
->irq_fc
;
2218 dev_warn(dev
, "feed control interrupt is not available.\n");
2221 err
= devm_request_threaded_irq(dev
, pdata
->irq_fc
, NULL
,
2222 s5p_aes_interrupt
, IRQF_ONESHOT
,
2225 dev_warn(dev
, "feed control interrupt is not available.\n");
2229 pdata
->busy
= false;
2231 platform_set_drvdata(pdev
, pdata
);
2234 tasklet_init(&pdata
->tasklet
, s5p_tasklet_cb
, (unsigned long)pdata
);
2235 crypto_init_queue(&pdata
->queue
, CRYPTO_QUEUE_LEN
);
2237 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++) {
2238 err
= crypto_register_alg(&algs
[i
]);
2243 if (pdata
->use_hash
) {
2244 tasklet_init(&pdata
->hash_tasklet
, s5p_hash_tasklet_cb
,
2245 (unsigned long)pdata
);
2246 crypto_init_queue(&pdata
->hash_queue
, SSS_HASH_QUEUE_LENGTH
);
2248 for (hash_i
= 0; hash_i
< ARRAY_SIZE(algs_sha1_md5_sha256
);
2250 struct ahash_alg
*alg
;
2252 alg
= &algs_sha1_md5_sha256
[hash_i
];
2253 err
= crypto_register_ahash(alg
);
2255 dev_err(dev
, "can't register '%s': %d\n",
2256 alg
->halg
.base
.cra_driver_name
, err
);
2262 dev_info(dev
, "s5p-sss driver registered\n");
2267 for (j
= hash_i
- 1; j
>= 0; j
--)
2268 crypto_unregister_ahash(&algs_sha1_md5_sha256
[j
]);
2270 tasklet_kill(&pdata
->hash_tasklet
);
2274 if (i
< ARRAY_SIZE(algs
))
2275 dev_err(dev
, "can't register '%s': %d\n", algs
[i
].cra_name
,
2278 for (j
= 0; j
< i
; j
++)
2279 crypto_unregister_alg(&algs
[j
]);
2281 tasklet_kill(&pdata
->tasklet
);
2284 clk_disable_unprepare(pdata
->clk
);
2291 static int s5p_aes_remove(struct platform_device
*pdev
)
2293 struct s5p_aes_dev
*pdata
= platform_get_drvdata(pdev
);
2299 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++)
2300 crypto_unregister_alg(&algs
[i
]);
2302 tasklet_kill(&pdata
->tasklet
);
2303 if (pdata
->use_hash
) {
2304 for (i
= ARRAY_SIZE(algs_sha1_md5_sha256
) - 1; i
>= 0; i
--)
2305 crypto_unregister_ahash(&algs_sha1_md5_sha256
[i
]);
2307 pdata
->res
->end
-= 0x300;
2308 tasklet_kill(&pdata
->hash_tasklet
);
2309 pdata
->use_hash
= false;
2312 clk_disable_unprepare(pdata
->clk
);
2318 static struct platform_driver s5p_aes_crypto
= {
2319 .probe
= s5p_aes_probe
,
2320 .remove
= s5p_aes_remove
,
2322 .name
= "s5p-secss",
2323 .of_match_table
= s5p_sss_dt_match
,
2327 module_platform_driver(s5p_aes_crypto
);
2329 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2330 MODULE_LICENSE("GPL v2");
2331 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2332 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");