2 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/ktime.h>
26 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
31 #include <drm/drm_edid.h>
35 static void cec_fill_msg_report_features(struct cec_adapter
*adap
,
40 * 400 ms is the time it takes for one 16 byte message to be
41 * transferred and 5 is the maximum number of retries. Add
42 * another 100 ms as a margin. So if the transmit doesn't
43 * finish before that time something is really wrong and we
46 * This is a sign that something it really wrong and a warning
49 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
51 #define call_op(adap, op, arg...) \
52 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
54 #define call_void_op(adap, op, arg...) \
57 adap->ops->op(adap, ## arg); \
60 static int cec_log_addr2idx(const struct cec_adapter
*adap
, u8 log_addr
)
64 for (i
= 0; i
< adap
->log_addrs
.num_log_addrs
; i
++)
65 if (adap
->log_addrs
.log_addr
[i
] == log_addr
)
70 static unsigned int cec_log_addr2dev(const struct cec_adapter
*adap
, u8 log_addr
)
72 int i
= cec_log_addr2idx(adap
, log_addr
);
74 return adap
->log_addrs
.primary_device_type
[i
< 0 ? 0 : i
];
78 * Queue a new event for this filehandle. If ts == 0, then set it
79 * to the current time.
81 * We keep a queue of at most max_event events where max_event differs
82 * per event. If the queue becomes full, then drop the oldest event and
83 * keep track of how many events we've dropped.
85 void cec_queue_event_fh(struct cec_fh
*fh
,
86 const struct cec_event
*new_ev
, u64 ts
)
88 static const u8 max_events
[CEC_NUM_EVENTS
] = {
91 struct cec_event_entry
*entry
;
92 unsigned int ev_idx
= new_ev
->event
- 1;
94 if (WARN_ON(ev_idx
>= ARRAY_SIZE(fh
->events
)))
100 mutex_lock(&fh
->lock
);
101 if (ev_idx
< CEC_NUM_CORE_EVENTS
)
102 entry
= &fh
->core_events
[ev_idx
];
104 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
106 if (new_ev
->event
== CEC_EVENT_LOST_MSGS
&&
107 fh
->queued_events
[ev_idx
]) {
108 entry
->ev
.lost_msgs
.lost_msgs
+=
109 new_ev
->lost_msgs
.lost_msgs
;
115 if (fh
->queued_events
[ev_idx
] < max_events
[ev_idx
]) {
116 /* Add new msg at the end of the queue */
117 list_add_tail(&entry
->list
, &fh
->events
[ev_idx
]);
118 fh
->queued_events
[ev_idx
]++;
119 fh
->total_queued_events
++;
123 if (ev_idx
>= CEC_NUM_CORE_EVENTS
) {
124 list_add_tail(&entry
->list
, &fh
->events
[ev_idx
]);
125 /* drop the oldest event */
126 entry
= list_first_entry(&fh
->events
[ev_idx
],
127 struct cec_event_entry
, list
);
128 list_del(&entry
->list
);
132 /* Mark that events were lost */
133 entry
= list_first_entry_or_null(&fh
->events
[ev_idx
],
134 struct cec_event_entry
, list
);
136 entry
->ev
.flags
|= CEC_EVENT_FL_DROPPED_EVENTS
;
139 mutex_unlock(&fh
->lock
);
140 wake_up_interruptible(&fh
->wait
);
143 /* Queue a new event for all open filehandles. */
144 static void cec_queue_event(struct cec_adapter
*adap
,
145 const struct cec_event
*ev
)
147 u64 ts
= ktime_get_ns();
150 mutex_lock(&adap
->devnode
.lock
);
151 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
152 cec_queue_event_fh(fh
, ev
, ts
);
153 mutex_unlock(&adap
->devnode
.lock
);
156 /* Notify userspace that the CEC pin changed state at the given time. */
157 void cec_queue_pin_cec_event(struct cec_adapter
*adap
, bool is_high
, ktime_t ts
)
159 struct cec_event ev
= {
160 .event
= is_high
? CEC_EVENT_PIN_CEC_HIGH
:
161 CEC_EVENT_PIN_CEC_LOW
,
165 mutex_lock(&adap
->devnode
.lock
);
166 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
167 if (fh
->mode_follower
== CEC_MODE_MONITOR_PIN
)
168 cec_queue_event_fh(fh
, &ev
, ktime_to_ns(ts
));
169 mutex_unlock(&adap
->devnode
.lock
);
171 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event
);
173 /* Notify userspace that the HPD pin changed state at the given time. */
174 void cec_queue_pin_hpd_event(struct cec_adapter
*adap
, bool is_high
, ktime_t ts
)
176 struct cec_event ev
= {
177 .event
= is_high
? CEC_EVENT_PIN_HPD_HIGH
:
178 CEC_EVENT_PIN_HPD_LOW
,
182 mutex_lock(&adap
->devnode
.lock
);
183 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
184 cec_queue_event_fh(fh
, &ev
, ktime_to_ns(ts
));
185 mutex_unlock(&adap
->devnode
.lock
);
187 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event
);
190 * Queue a new message for this filehandle.
192 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
193 * queue becomes full, then drop the oldest message and keep track
194 * of how many messages we've dropped.
196 static void cec_queue_msg_fh(struct cec_fh
*fh
, const struct cec_msg
*msg
)
198 static const struct cec_event ev_lost_msgs
= {
199 .event
= CEC_EVENT_LOST_MSGS
,
205 struct cec_msg_entry
*entry
;
207 mutex_lock(&fh
->lock
);
208 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
211 /* Add new msg at the end of the queue */
212 list_add_tail(&entry
->list
, &fh
->msgs
);
214 if (fh
->queued_msgs
< CEC_MAX_MSG_RX_QUEUE_SZ
) {
215 /* All is fine if there is enough room */
217 mutex_unlock(&fh
->lock
);
218 wake_up_interruptible(&fh
->wait
);
223 * if the message queue is full, then drop the oldest one and
224 * send a lost message event.
226 entry
= list_first_entry(&fh
->msgs
, struct cec_msg_entry
, list
);
227 list_del(&entry
->list
);
230 mutex_unlock(&fh
->lock
);
233 * We lost a message, either because kmalloc failed or the queue
236 cec_queue_event_fh(fh
, &ev_lost_msgs
, ktime_get_ns());
240 * Queue the message for those filehandles that are in monitor mode.
241 * If valid_la is true (this message is for us or was sent by us),
242 * then pass it on to any monitoring filehandle. If this message
243 * isn't for us or from us, then only give it to filehandles that
244 * are in MONITOR_ALL mode.
246 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
247 * set and the CEC adapter was placed in 'monitor all' mode.
249 static void cec_queue_msg_monitor(struct cec_adapter
*adap
,
250 const struct cec_msg
*msg
,
254 u32 monitor_mode
= valid_la
? CEC_MODE_MONITOR
:
255 CEC_MODE_MONITOR_ALL
;
257 mutex_lock(&adap
->devnode
.lock
);
258 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
) {
259 if (fh
->mode_follower
>= monitor_mode
)
260 cec_queue_msg_fh(fh
, msg
);
262 mutex_unlock(&adap
->devnode
.lock
);
266 * Queue the message for follower filehandles.
268 static void cec_queue_msg_followers(struct cec_adapter
*adap
,
269 const struct cec_msg
*msg
)
273 mutex_lock(&adap
->devnode
.lock
);
274 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
) {
275 if (fh
->mode_follower
== CEC_MODE_FOLLOWER
)
276 cec_queue_msg_fh(fh
, msg
);
278 mutex_unlock(&adap
->devnode
.lock
);
281 /* Notify userspace of an adapter state change. */
282 static void cec_post_state_event(struct cec_adapter
*adap
)
284 struct cec_event ev
= {
285 .event
= CEC_EVENT_STATE_CHANGE
,
288 ev
.state_change
.phys_addr
= adap
->phys_addr
;
289 ev
.state_change
.log_addr_mask
= adap
->log_addrs
.log_addr_mask
;
290 cec_queue_event(adap
, &ev
);
294 * A CEC transmit (and a possible wait for reply) completed.
295 * If this was in blocking mode, then complete it, otherwise
296 * queue the message for userspace to dequeue later.
298 * This function is called with adap->lock held.
300 static void cec_data_completed(struct cec_data
*data
)
303 * Delete this transmit from the filehandle's xfer_list since
304 * we're done with it.
306 * Note that if the filehandle is closed before this transmit
307 * finished, then the release() function will set data->fh to NULL.
308 * Without that we would be referring to a closed filehandle.
311 list_del(&data
->xfer_list
);
313 if (data
->blocking
) {
315 * Someone is blocking so mark the message as completed
318 data
->completed
= true;
322 * No blocking, so just queue the message if needed and
326 cec_queue_msg_fh(data
->fh
, &data
->msg
);
332 * A pending CEC transmit needs to be cancelled, either because the CEC
333 * adapter is disabled or the transmit takes an impossibly long time to
336 * This function is called with adap->lock held.
338 static void cec_data_cancel(struct cec_data
*data
)
341 * It's either the current transmit, or it is a pending
342 * transmit. Take the appropriate action to clear it.
344 if (data
->adap
->transmitting
== data
) {
345 data
->adap
->transmitting
= NULL
;
347 list_del_init(&data
->list
);
348 if (!(data
->msg
.tx_status
& CEC_TX_STATUS_OK
))
349 data
->adap
->transmit_queue_sz
--;
352 /* Mark it as an error */
353 data
->msg
.tx_ts
= ktime_get_ns();
354 data
->msg
.tx_status
|= CEC_TX_STATUS_ERROR
|
355 CEC_TX_STATUS_MAX_RETRIES
;
356 data
->msg
.tx_error_cnt
++;
358 /* Queue transmitted message for monitoring purposes */
359 cec_queue_msg_monitor(data
->adap
, &data
->msg
, 1);
361 cec_data_completed(data
);
365 * Flush all pending transmits and cancel any pending timeout work.
367 * This function is called with adap->lock held.
369 static void cec_flush(struct cec_adapter
*adap
)
371 struct cec_data
*data
, *n
;
374 * If the adapter is disabled, or we're asked to stop,
375 * then cancel any pending transmits.
377 while (!list_empty(&adap
->transmit_queue
)) {
378 data
= list_first_entry(&adap
->transmit_queue
,
379 struct cec_data
, list
);
380 cec_data_cancel(data
);
382 if (adap
->transmitting
)
383 cec_data_cancel(adap
->transmitting
);
385 /* Cancel the pending timeout work. */
386 list_for_each_entry_safe(data
, n
, &adap
->wait_queue
, list
) {
387 if (cancel_delayed_work(&data
->work
))
388 cec_data_cancel(data
);
390 * If cancel_delayed_work returned false, then
391 * the cec_wait_timeout function is running,
392 * which will call cec_data_completed. So no
393 * need to do anything special in that case.
399 * Main CEC state machine
401 * Wait until the thread should be stopped, or we are not transmitting and
402 * a new transmit message is queued up, in which case we start transmitting
403 * that message. When the adapter finished transmitting the message it will
404 * call cec_transmit_done().
406 * If the adapter is disabled, then remove all queued messages instead.
408 * If the current transmit times out, then cancel that transmit.
410 int cec_thread_func(void *_adap
)
412 struct cec_adapter
*adap
= _adap
;
415 unsigned int signal_free_time
;
416 struct cec_data
*data
;
417 bool timeout
= false;
420 if (adap
->transmitting
) {
424 * We are transmitting a message, so add a timeout
425 * to prevent the state machine to get stuck waiting
426 * for this message to finalize and add a check to
427 * see if the adapter is disabled in which case the
428 * transmit should be canceled.
430 err
= wait_event_interruptible_timeout(adap
->kthread_waitq
,
432 (!adap
->is_configured
&& !adap
->is_configuring
)) ||
433 kthread_should_stop() ||
434 (!adap
->transmitting
&&
435 !list_empty(&adap
->transmit_queue
)),
436 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS
));
439 /* Otherwise we just wait for something to happen. */
440 wait_event_interruptible(adap
->kthread_waitq
,
441 kthread_should_stop() ||
442 (!adap
->transmitting
&&
443 !list_empty(&adap
->transmit_queue
)));
446 mutex_lock(&adap
->lock
);
448 if ((adap
->needs_hpd
&&
449 (!adap
->is_configured
&& !adap
->is_configuring
)) ||
450 kthread_should_stop()) {
455 if (adap
->transmitting
&& timeout
) {
457 * If we timeout, then log that. Normally this does
458 * not happen and it is an indication of a faulty CEC
459 * adapter driver, or the CEC bus is in some weird
460 * state. On rare occasions it can happen if there is
461 * so much traffic on the bus that the adapter was
462 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
464 dprintk(1, "%s: message %*ph timed out\n", __func__
,
465 adap
->transmitting
->msg
.len
,
466 adap
->transmitting
->msg
.msg
);
468 /* Just give up on this. */
469 cec_data_cancel(adap
->transmitting
);
474 * If we are still transmitting, or there is nothing new to
475 * transmit, then just continue waiting.
477 if (adap
->transmitting
|| list_empty(&adap
->transmit_queue
))
480 /* Get a new message to transmit */
481 data
= list_first_entry(&adap
->transmit_queue
,
482 struct cec_data
, list
);
483 list_del_init(&data
->list
);
484 adap
->transmit_queue_sz
--;
486 /* Make this the current transmitting message */
487 adap
->transmitting
= data
;
490 * Suggested number of attempts as per the CEC 2.0 spec:
491 * 4 attempts is the default, except for 'secondary poll
492 * messages', i.e. poll messages not sent during the adapter
493 * configuration phase when it allocates logical addresses.
495 if (data
->msg
.len
== 1 && adap
->is_configured
)
500 /* Set the suggested signal free time */
501 if (data
->attempts
) {
502 /* should be >= 3 data bit periods for a retry */
503 signal_free_time
= CEC_SIGNAL_FREE_TIME_RETRY
;
504 } else if (data
->new_initiator
) {
505 /* should be >= 5 data bit periods for new initiator */
506 signal_free_time
= CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
;
509 * should be >= 7 data bit periods for sending another
510 * frame immediately after another.
512 signal_free_time
= CEC_SIGNAL_FREE_TIME_NEXT_XFER
;
514 if (data
->attempts
== 0)
515 data
->attempts
= attempts
;
517 /* Tell the adapter to transmit, cancel on error */
518 if (adap
->ops
->adap_transmit(adap
, data
->attempts
,
519 signal_free_time
, &data
->msg
))
520 cec_data_cancel(data
);
523 mutex_unlock(&adap
->lock
);
525 if (kthread_should_stop())
532 * Called by the CEC adapter if a transmit finished.
534 void cec_transmit_done_ts(struct cec_adapter
*adap
, u8 status
,
535 u8 arb_lost_cnt
, u8 nack_cnt
, u8 low_drive_cnt
,
536 u8 error_cnt
, ktime_t ts
)
538 struct cec_data
*data
;
540 unsigned int attempts_made
= arb_lost_cnt
+ nack_cnt
+
541 low_drive_cnt
+ error_cnt
;
543 dprintk(2, "%s: status 0x%02x\n", __func__
, status
);
544 if (attempts_made
< 1)
547 mutex_lock(&adap
->lock
);
548 data
= adap
->transmitting
;
551 * This can happen if a transmit was issued and the cable is
552 * unplugged while the transmit is ongoing. Ignore this
553 * transmit in that case.
555 dprintk(1, "%s was called without an ongoing transmit!\n",
562 /* Drivers must fill in the status! */
563 WARN_ON(status
== 0);
564 msg
->tx_ts
= ktime_to_ns(ts
);
565 msg
->tx_status
|= status
;
566 msg
->tx_arb_lost_cnt
+= arb_lost_cnt
;
567 msg
->tx_nack_cnt
+= nack_cnt
;
568 msg
->tx_low_drive_cnt
+= low_drive_cnt
;
569 msg
->tx_error_cnt
+= error_cnt
;
571 /* Mark that we're done with this transmit */
572 adap
->transmitting
= NULL
;
575 * If there are still retry attempts left and there was an error and
576 * the hardware didn't signal that it retried itself (by setting
577 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
579 if (data
->attempts
> attempts_made
&&
580 !(status
& (CEC_TX_STATUS_MAX_RETRIES
| CEC_TX_STATUS_OK
))) {
581 /* Retry this message */
582 data
->attempts
-= attempts_made
;
584 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
585 msg
->len
, msg
->msg
, data
->attempts
, msg
->reply
);
587 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
588 msg
->len
, msg
->msg
, data
->attempts
);
589 /* Add the message in front of the transmit queue */
590 list_add(&data
->list
, &adap
->transmit_queue
);
591 adap
->transmit_queue_sz
++;
597 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
598 if (!(status
& CEC_TX_STATUS_OK
))
599 msg
->tx_status
|= CEC_TX_STATUS_MAX_RETRIES
;
601 /* Queue transmitted message for monitoring purposes */
602 cec_queue_msg_monitor(adap
, msg
, 1);
604 if ((status
& CEC_TX_STATUS_OK
) && adap
->is_configured
&&
607 * Queue the message into the wait queue if we want to wait
610 list_add_tail(&data
->list
, &adap
->wait_queue
);
611 schedule_delayed_work(&data
->work
,
612 msecs_to_jiffies(msg
->timeout
));
614 /* Otherwise we're done */
615 cec_data_completed(data
);
620 * Wake up the main thread to see if another message is ready
621 * for transmitting or to retry the current message.
623 wake_up_interruptible(&adap
->kthread_waitq
);
625 mutex_unlock(&adap
->lock
);
627 EXPORT_SYMBOL_GPL(cec_transmit_done_ts
);
629 void cec_transmit_attempt_done_ts(struct cec_adapter
*adap
,
630 u8 status
, ktime_t ts
)
632 switch (status
& ~CEC_TX_STATUS_MAX_RETRIES
) {
633 case CEC_TX_STATUS_OK
:
634 cec_transmit_done_ts(adap
, status
, 0, 0, 0, 0, ts
);
636 case CEC_TX_STATUS_ARB_LOST
:
637 cec_transmit_done_ts(adap
, status
, 1, 0, 0, 0, ts
);
639 case CEC_TX_STATUS_NACK
:
640 cec_transmit_done_ts(adap
, status
, 0, 1, 0, 0, ts
);
642 case CEC_TX_STATUS_LOW_DRIVE
:
643 cec_transmit_done_ts(adap
, status
, 0, 0, 1, 0, ts
);
645 case CEC_TX_STATUS_ERROR
:
646 cec_transmit_done_ts(adap
, status
, 0, 0, 0, 1, ts
);
649 /* Should never happen */
650 WARN(1, "cec-%s: invalid status 0x%02x\n", adap
->name
, status
);
654 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts
);
657 * Called when waiting for a reply times out.
659 static void cec_wait_timeout(struct work_struct
*work
)
661 struct cec_data
*data
= container_of(work
, struct cec_data
, work
.work
);
662 struct cec_adapter
*adap
= data
->adap
;
664 mutex_lock(&adap
->lock
);
666 * Sanity check in case the timeout and the arrival of the message
667 * happened at the same time.
669 if (list_empty(&data
->list
))
672 /* Mark the message as timed out */
673 list_del_init(&data
->list
);
674 data
->msg
.rx_ts
= ktime_get_ns();
675 data
->msg
.rx_status
= CEC_RX_STATUS_TIMEOUT
;
676 cec_data_completed(data
);
678 mutex_unlock(&adap
->lock
);
682 * Transmit a message. The fh argument may be NULL if the transmit is not
683 * associated with a specific filehandle.
685 * This function is called with adap->lock held.
687 int cec_transmit_msg_fh(struct cec_adapter
*adap
, struct cec_msg
*msg
,
688 struct cec_fh
*fh
, bool block
)
690 struct cec_data
*data
;
691 u8 last_initiator
= 0xff;
692 unsigned int timeout
;
699 msg
->tx_arb_lost_cnt
= 0;
700 msg
->tx_nack_cnt
= 0;
701 msg
->tx_low_drive_cnt
= 0;
702 msg
->tx_error_cnt
= 0;
705 if (msg
->reply
&& msg
->timeout
== 0) {
706 /* Make sure the timeout isn't 0. */
710 msg
->flags
&= CEC_MSG_FL_REPLY_TO_FOLLOWERS
;
715 if (msg
->len
== 0 || msg
->len
> CEC_MAX_MSG_SIZE
) {
716 dprintk(1, "%s: invalid length %d\n", __func__
, msg
->len
);
719 if (msg
->timeout
&& msg
->len
== 1) {
720 dprintk(1, "%s: can't reply for poll msg\n", __func__
);
723 memset(msg
->msg
+ msg
->len
, 0, sizeof(msg
->msg
) - msg
->len
);
725 if (cec_msg_destination(msg
) == 0xf) {
726 dprintk(1, "%s: invalid poll message\n", __func__
);
729 if (cec_has_log_addr(adap
, cec_msg_destination(msg
))) {
731 * If the destination is a logical address our adapter
732 * has already claimed, then just NACK this.
733 * It depends on the hardware what it will do with a
734 * POLL to itself (some OK this), so it is just as
735 * easy to handle it here so the behavior will be
738 msg
->tx_ts
= ktime_get_ns();
739 msg
->tx_status
= CEC_TX_STATUS_NACK
|
740 CEC_TX_STATUS_MAX_RETRIES
;
741 msg
->tx_nack_cnt
= 1;
742 msg
->sequence
= ++adap
->sequence
;
744 msg
->sequence
= ++adap
->sequence
;
748 if (msg
->len
> 1 && !cec_msg_is_broadcast(msg
) &&
749 cec_has_log_addr(adap
, cec_msg_destination(msg
))) {
750 dprintk(1, "%s: destination is the adapter itself\n", __func__
);
753 if (msg
->len
> 1 && adap
->is_configured
&&
754 !cec_has_log_addr(adap
, cec_msg_initiator(msg
))) {
755 dprintk(1, "%s: initiator has unknown logical address %d\n",
756 __func__
, cec_msg_initiator(msg
));
759 if (!adap
->is_configured
&& !adap
->is_configuring
) {
760 if (adap
->needs_hpd
|| msg
->msg
[0] != 0xf0) {
761 dprintk(1, "%s: adapter is unconfigured\n", __func__
);
765 dprintk(1, "%s: invalid msg->reply\n", __func__
);
770 if (adap
->transmit_queue_sz
>= CEC_MAX_MSG_TX_QUEUE_SZ
) {
771 dprintk(1, "%s: transmit queue full\n", __func__
);
775 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
779 msg
->sequence
= ++adap
->sequence
;
781 msg
->sequence
= ++adap
->sequence
;
783 if (msg
->len
> 1 && msg
->msg
[1] == CEC_MSG_CDC_MESSAGE
) {
784 msg
->msg
[2] = adap
->phys_addr
>> 8;
785 msg
->msg
[3] = adap
->phys_addr
& 0xff;
789 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
790 __func__
, msg
->len
, msg
->msg
, msg
->reply
,
791 !block
? ", nb" : "");
793 dprintk(2, "%s: %*ph%s\n",
794 __func__
, msg
->len
, msg
->msg
, !block
? " (nb)" : "");
799 data
->blocking
= block
;
802 * Determine if this message follows a message from the same
803 * initiator. Needed to determine the free signal time later on.
806 if (!(list_empty(&adap
->transmit_queue
))) {
807 const struct cec_data
*last
;
809 last
= list_last_entry(&adap
->transmit_queue
,
810 const struct cec_data
, list
);
811 last_initiator
= cec_msg_initiator(&last
->msg
);
812 } else if (adap
->transmitting
) {
814 cec_msg_initiator(&adap
->transmitting
->msg
);
817 data
->new_initiator
= last_initiator
!= cec_msg_initiator(msg
);
818 init_completion(&data
->c
);
819 INIT_DELAYED_WORK(&data
->work
, cec_wait_timeout
);
822 list_add_tail(&data
->xfer_list
, &fh
->xfer_list
);
824 list_add_tail(&data
->list
, &adap
->transmit_queue
);
825 adap
->transmit_queue_sz
++;
826 if (!adap
->transmitting
)
827 wake_up_interruptible(&adap
->kthread_waitq
);
829 /* All done if we don't need to block waiting for completion */
834 * If we don't get a completion before this time something is really
835 * wrong and we time out.
837 timeout
= CEC_XFER_TIMEOUT_MS
;
838 /* Add the requested timeout if we have to wait for a reply as well */
840 timeout
+= msg
->timeout
;
843 * Release the lock and wait, retake the lock afterwards.
845 mutex_unlock(&adap
->lock
);
846 res
= wait_for_completion_killable_timeout(&data
->c
,
847 msecs_to_jiffies(timeout
));
848 mutex_lock(&adap
->lock
);
850 if (data
->completed
) {
851 /* The transmit completed (possibly with an error) */
857 * The wait for completion timed out or was interrupted, so mark this
858 * as non-blocking and disconnect from the filehandle since it is
859 * still 'in flight'. When it finally completes it will just drop the
862 data
->blocking
= false;
864 list_del(&data
->xfer_list
);
867 if (res
== 0) { /* timed out */
868 /* Check if the reply or the transmit failed */
869 if (msg
->timeout
&& (msg
->tx_status
& CEC_TX_STATUS_OK
))
870 msg
->rx_status
= CEC_RX_STATUS_TIMEOUT
;
872 msg
->tx_status
= CEC_TX_STATUS_MAX_RETRIES
;
874 return res
> 0 ? 0 : res
;
877 /* Helper function to be used by drivers and this framework. */
878 int cec_transmit_msg(struct cec_adapter
*adap
, struct cec_msg
*msg
,
883 mutex_lock(&adap
->lock
);
884 ret
= cec_transmit_msg_fh(adap
, msg
, NULL
, block
);
885 mutex_unlock(&adap
->lock
);
888 EXPORT_SYMBOL_GPL(cec_transmit_msg
);
891 * I don't like forward references but without this the low-level
892 * cec_received_msg() function would come after a bunch of high-level
893 * CEC protocol handling functions. That was very confusing.
895 static int cec_receive_notify(struct cec_adapter
*adap
, struct cec_msg
*msg
,
898 #define DIRECTED 0x80
899 #define BCAST1_4 0x40
900 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
901 #define BCAST (BCAST1_4 | BCAST2_0)
902 #define BOTH (BCAST | DIRECTED)
905 * Specify minimum length and whether the message is directed, broadcast
906 * or both. Messages that do not match the criteria are ignored as per
907 * the CEC specification.
909 static const u8 cec_msg_size
[256] = {
910 [CEC_MSG_ACTIVE_SOURCE
] = 4 | BCAST
,
911 [CEC_MSG_IMAGE_VIEW_ON
] = 2 | DIRECTED
,
912 [CEC_MSG_TEXT_VIEW_ON
] = 2 | DIRECTED
,
913 [CEC_MSG_INACTIVE_SOURCE
] = 4 | DIRECTED
,
914 [CEC_MSG_REQUEST_ACTIVE_SOURCE
] = 2 | BCAST
,
915 [CEC_MSG_ROUTING_CHANGE
] = 6 | BCAST
,
916 [CEC_MSG_ROUTING_INFORMATION
] = 4 | BCAST
,
917 [CEC_MSG_SET_STREAM_PATH
] = 4 | BCAST
,
918 [CEC_MSG_STANDBY
] = 2 | BOTH
,
919 [CEC_MSG_RECORD_OFF
] = 2 | DIRECTED
,
920 [CEC_MSG_RECORD_ON
] = 3 | DIRECTED
,
921 [CEC_MSG_RECORD_STATUS
] = 3 | DIRECTED
,
922 [CEC_MSG_RECORD_TV_SCREEN
] = 2 | DIRECTED
,
923 [CEC_MSG_CLEAR_ANALOGUE_TIMER
] = 13 | DIRECTED
,
924 [CEC_MSG_CLEAR_DIGITAL_TIMER
] = 16 | DIRECTED
,
925 [CEC_MSG_CLEAR_EXT_TIMER
] = 13 | DIRECTED
,
926 [CEC_MSG_SET_ANALOGUE_TIMER
] = 13 | DIRECTED
,
927 [CEC_MSG_SET_DIGITAL_TIMER
] = 16 | DIRECTED
,
928 [CEC_MSG_SET_EXT_TIMER
] = 13 | DIRECTED
,
929 [CEC_MSG_SET_TIMER_PROGRAM_TITLE
] = 2 | DIRECTED
,
930 [CEC_MSG_TIMER_CLEARED_STATUS
] = 3 | DIRECTED
,
931 [CEC_MSG_TIMER_STATUS
] = 3 | DIRECTED
,
932 [CEC_MSG_CEC_VERSION
] = 3 | DIRECTED
,
933 [CEC_MSG_GET_CEC_VERSION
] = 2 | DIRECTED
,
934 [CEC_MSG_GIVE_PHYSICAL_ADDR
] = 2 | DIRECTED
,
935 [CEC_MSG_GET_MENU_LANGUAGE
] = 2 | DIRECTED
,
936 [CEC_MSG_REPORT_PHYSICAL_ADDR
] = 5 | BCAST
,
937 [CEC_MSG_SET_MENU_LANGUAGE
] = 5 | BCAST
,
938 [CEC_MSG_REPORT_FEATURES
] = 6 | BCAST
,
939 [CEC_MSG_GIVE_FEATURES
] = 2 | DIRECTED
,
940 [CEC_MSG_DECK_CONTROL
] = 3 | DIRECTED
,
941 [CEC_MSG_DECK_STATUS
] = 3 | DIRECTED
,
942 [CEC_MSG_GIVE_DECK_STATUS
] = 3 | DIRECTED
,
943 [CEC_MSG_PLAY
] = 3 | DIRECTED
,
944 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS
] = 3 | DIRECTED
,
945 [CEC_MSG_SELECT_ANALOGUE_SERVICE
] = 6 | DIRECTED
,
946 [CEC_MSG_SELECT_DIGITAL_SERVICE
] = 9 | DIRECTED
,
947 [CEC_MSG_TUNER_DEVICE_STATUS
] = 7 | DIRECTED
,
948 [CEC_MSG_TUNER_STEP_DECREMENT
] = 2 | DIRECTED
,
949 [CEC_MSG_TUNER_STEP_INCREMENT
] = 2 | DIRECTED
,
950 [CEC_MSG_DEVICE_VENDOR_ID
] = 5 | BCAST
,
951 [CEC_MSG_GIVE_DEVICE_VENDOR_ID
] = 2 | DIRECTED
,
952 [CEC_MSG_VENDOR_COMMAND
] = 2 | DIRECTED
,
953 [CEC_MSG_VENDOR_COMMAND_WITH_ID
] = 5 | BOTH
,
954 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN
] = 2 | BOTH
,
955 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP
] = 2 | BOTH
,
956 [CEC_MSG_SET_OSD_STRING
] = 3 | DIRECTED
,
957 [CEC_MSG_GIVE_OSD_NAME
] = 2 | DIRECTED
,
958 [CEC_MSG_SET_OSD_NAME
] = 2 | DIRECTED
,
959 [CEC_MSG_MENU_REQUEST
] = 3 | DIRECTED
,
960 [CEC_MSG_MENU_STATUS
] = 3 | DIRECTED
,
961 [CEC_MSG_USER_CONTROL_PRESSED
] = 3 | DIRECTED
,
962 [CEC_MSG_USER_CONTROL_RELEASED
] = 2 | DIRECTED
,
963 [CEC_MSG_GIVE_DEVICE_POWER_STATUS
] = 2 | DIRECTED
,
964 [CEC_MSG_REPORT_POWER_STATUS
] = 3 | DIRECTED
| BCAST2_0
,
965 [CEC_MSG_FEATURE_ABORT
] = 4 | DIRECTED
,
966 [CEC_MSG_ABORT
] = 2 | DIRECTED
,
967 [CEC_MSG_GIVE_AUDIO_STATUS
] = 2 | DIRECTED
,
968 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS
] = 2 | DIRECTED
,
969 [CEC_MSG_REPORT_AUDIO_STATUS
] = 3 | DIRECTED
,
970 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR
] = 2 | DIRECTED
,
971 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR
] = 2 | DIRECTED
,
972 [CEC_MSG_SET_SYSTEM_AUDIO_MODE
] = 3 | BOTH
,
973 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST
] = 2 | DIRECTED
,
974 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS
] = 3 | DIRECTED
,
975 [CEC_MSG_SET_AUDIO_RATE
] = 3 | DIRECTED
,
976 [CEC_MSG_INITIATE_ARC
] = 2 | DIRECTED
,
977 [CEC_MSG_REPORT_ARC_INITIATED
] = 2 | DIRECTED
,
978 [CEC_MSG_REPORT_ARC_TERMINATED
] = 2 | DIRECTED
,
979 [CEC_MSG_REQUEST_ARC_INITIATION
] = 2 | DIRECTED
,
980 [CEC_MSG_REQUEST_ARC_TERMINATION
] = 2 | DIRECTED
,
981 [CEC_MSG_TERMINATE_ARC
] = 2 | DIRECTED
,
982 [CEC_MSG_REQUEST_CURRENT_LATENCY
] = 4 | BCAST
,
983 [CEC_MSG_REPORT_CURRENT_LATENCY
] = 6 | BCAST
,
984 [CEC_MSG_CDC_MESSAGE
] = 2 | BCAST
,
987 /* Called by the CEC adapter if a message is received */
988 void cec_received_msg_ts(struct cec_adapter
*adap
,
989 struct cec_msg
*msg
, ktime_t ts
)
991 struct cec_data
*data
;
992 u8 msg_init
= cec_msg_initiator(msg
);
993 u8 msg_dest
= cec_msg_destination(msg
);
994 u8 cmd
= msg
->msg
[1];
995 bool is_reply
= false;
996 bool valid_la
= true;
999 if (WARN_ON(!msg
->len
|| msg
->len
> CEC_MAX_MSG_SIZE
))
1003 * Some CEC adapters will receive the messages that they transmitted.
1004 * This test filters out those messages by checking if we are the
1005 * initiator, and just returning in that case.
1007 * Note that this won't work if this is an Unregistered device.
1009 * It is bad practice if the hardware receives the message that it
1010 * transmitted and luckily most CEC adapters behave correctly in this
1013 if (msg_init
!= CEC_LOG_ADDR_UNREGISTERED
&&
1014 cec_has_log_addr(adap
, msg_init
))
1017 msg
->rx_ts
= ktime_to_ns(ts
);
1018 msg
->rx_status
= CEC_RX_STATUS_OK
;
1019 msg
->sequence
= msg
->reply
= msg
->timeout
= 0;
1022 msg
->tx_arb_lost_cnt
= 0;
1023 msg
->tx_nack_cnt
= 0;
1024 msg
->tx_low_drive_cnt
= 0;
1025 msg
->tx_error_cnt
= 0;
1027 memset(msg
->msg
+ msg
->len
, 0, sizeof(msg
->msg
) - msg
->len
);
1029 mutex_lock(&adap
->lock
);
1030 dprintk(2, "%s: %*ph\n", __func__
, msg
->len
, msg
->msg
);
1032 /* Check if this message was for us (directed or broadcast). */
1033 if (!cec_msg_is_broadcast(msg
))
1034 valid_la
= cec_has_log_addr(adap
, msg_dest
);
1037 * Check if the length is not too short or if the message is a
1038 * broadcast message where a directed message was expected or
1039 * vice versa. If so, then the message has to be ignored (according
1040 * to section CEC 7.3 and CEC 12.2).
1042 if (valid_la
&& msg
->len
> 1 && cec_msg_size
[cmd
]) {
1043 u8 dir_fl
= cec_msg_size
[cmd
] & BOTH
;
1045 min_len
= cec_msg_size
[cmd
] & 0x1f;
1046 if (msg
->len
< min_len
)
1048 else if (!cec_msg_is_broadcast(msg
) && !(dir_fl
& DIRECTED
))
1050 else if (cec_msg_is_broadcast(msg
) && !(dir_fl
& BCAST1_4
))
1052 else if (cec_msg_is_broadcast(msg
) &&
1053 adap
->log_addrs
.cec_version
>= CEC_OP_CEC_VERSION_2_0
&&
1054 !(dir_fl
& BCAST2_0
))
1057 if (valid_la
&& min_len
) {
1058 /* These messages have special length requirements */
1060 case CEC_MSG_TIMER_STATUS
:
1061 if (msg
->msg
[2] & 0x10) {
1062 switch (msg
->msg
[2] & 0xf) {
1063 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE
:
1064 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE
:
1069 } else if ((msg
->msg
[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE
) {
1074 case CEC_MSG_RECORD_ON
:
1075 switch (msg
->msg
[2]) {
1076 case CEC_OP_RECORD_SRC_OWN
:
1078 case CEC_OP_RECORD_SRC_DIGITAL
:
1082 case CEC_OP_RECORD_SRC_ANALOG
:
1086 case CEC_OP_RECORD_SRC_EXT_PLUG
:
1090 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR
:
1099 /* It's a valid message and not a poll or CDC message */
1100 if (valid_la
&& msg
->len
> 1 && cmd
!= CEC_MSG_CDC_MESSAGE
) {
1101 bool abort
= cmd
== CEC_MSG_FEATURE_ABORT
;
1103 /* The aborted command is in msg[2] */
1108 * Walk over all transmitted messages that are waiting for a
1111 list_for_each_entry(data
, &adap
->wait_queue
, list
) {
1112 struct cec_msg
*dst
= &data
->msg
;
1115 * The *only* CEC message that has two possible replies
1116 * is CEC_MSG_INITIATE_ARC.
1117 * In this case allow either of the two replies.
1119 if (!abort
&& dst
->msg
[1] == CEC_MSG_INITIATE_ARC
&&
1120 (cmd
== CEC_MSG_REPORT_ARC_INITIATED
||
1121 cmd
== CEC_MSG_REPORT_ARC_TERMINATED
) &&
1122 (dst
->reply
== CEC_MSG_REPORT_ARC_INITIATED
||
1123 dst
->reply
== CEC_MSG_REPORT_ARC_TERMINATED
))
1126 /* Does the command match? */
1127 if ((abort
&& cmd
!= dst
->msg
[1]) ||
1128 (!abort
&& cmd
!= dst
->reply
))
1131 /* Does the addressing match? */
1132 if (msg_init
!= cec_msg_destination(dst
) &&
1133 !cec_msg_is_broadcast(dst
))
1136 /* We got a reply */
1137 memcpy(dst
->msg
, msg
->msg
, msg
->len
);
1138 dst
->len
= msg
->len
;
1139 dst
->rx_ts
= msg
->rx_ts
;
1140 dst
->rx_status
= msg
->rx_status
;
1142 dst
->rx_status
|= CEC_RX_STATUS_FEATURE_ABORT
;
1143 msg
->flags
= dst
->flags
;
1144 /* Remove it from the wait_queue */
1145 list_del_init(&data
->list
);
1147 /* Cancel the pending timeout work */
1148 if (!cancel_delayed_work(&data
->work
)) {
1149 mutex_unlock(&adap
->lock
);
1150 flush_scheduled_work();
1151 mutex_lock(&adap
->lock
);
1154 * Mark this as a reply, provided someone is still
1155 * waiting for the answer.
1159 cec_data_completed(data
);
1163 mutex_unlock(&adap
->lock
);
1165 /* Pass the message on to any monitoring filehandles */
1166 cec_queue_msg_monitor(adap
, msg
, valid_la
);
1168 /* We're done if it is not for us or a poll message */
1169 if (!valid_la
|| msg
->len
<= 1)
1172 if (adap
->log_addrs
.log_addr_mask
== 0)
1176 * Process the message on the protocol level. If is_reply is true,
1177 * then cec_receive_notify() won't pass on the reply to the listener(s)
1178 * since that was already done by cec_data_completed() above.
1180 cec_receive_notify(adap
, msg
, is_reply
);
1182 EXPORT_SYMBOL_GPL(cec_received_msg_ts
);
1184 /* Logical Address Handling */
1187 * Attempt to claim a specific logical address.
1189 * This function is called with adap->lock held.
1191 static int cec_config_log_addr(struct cec_adapter
*adap
,
1193 unsigned int log_addr
)
1195 struct cec_log_addrs
*las
= &adap
->log_addrs
;
1196 struct cec_msg msg
= { };
1199 if (cec_has_log_addr(adap
, log_addr
))
1202 /* Send poll message */
1204 msg
.msg
[0] = (log_addr
<< 4) | log_addr
;
1205 err
= cec_transmit_msg_fh(adap
, &msg
, NULL
, true);
1208 * While trying to poll the physical address was reset
1209 * and the adapter was unconfigured, so bail out.
1211 if (!adap
->is_configuring
)
1217 if (msg
.tx_status
& CEC_TX_STATUS_OK
)
1221 * Message not acknowledged, so this logical
1222 * address is free to use.
1224 err
= adap
->ops
->adap_log_addr(adap
, log_addr
);
1228 las
->log_addr
[idx
] = log_addr
;
1229 las
->log_addr_mask
|= 1 << log_addr
;
1230 adap
->phys_addrs
[log_addr
] = adap
->phys_addr
;
1235 * Unconfigure the adapter: clear all logical addresses and send
1236 * the state changed event.
1238 * This function is called with adap->lock held.
1240 static void cec_adap_unconfigure(struct cec_adapter
*adap
)
1242 if (!adap
->needs_hpd
||
1243 adap
->phys_addr
!= CEC_PHYS_ADDR_INVALID
)
1244 WARN_ON(adap
->ops
->adap_log_addr(adap
, CEC_LOG_ADDR_INVALID
));
1245 adap
->log_addrs
.log_addr_mask
= 0;
1246 adap
->is_configuring
= false;
1247 adap
->is_configured
= false;
1248 memset(adap
->phys_addrs
, 0xff, sizeof(adap
->phys_addrs
));
1250 wake_up_interruptible(&adap
->kthread_waitq
);
1251 cec_post_state_event(adap
);
1255 * Attempt to claim the required logical addresses.
1257 static int cec_config_thread_func(void *arg
)
1259 /* The various LAs for each type of device */
1260 static const u8 tv_log_addrs
[] = {
1261 CEC_LOG_ADDR_TV
, CEC_LOG_ADDR_SPECIFIC
,
1262 CEC_LOG_ADDR_INVALID
1264 static const u8 record_log_addrs
[] = {
1265 CEC_LOG_ADDR_RECORD_1
, CEC_LOG_ADDR_RECORD_2
,
1266 CEC_LOG_ADDR_RECORD_3
,
1267 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1268 CEC_LOG_ADDR_INVALID
1270 static const u8 tuner_log_addrs
[] = {
1271 CEC_LOG_ADDR_TUNER_1
, CEC_LOG_ADDR_TUNER_2
,
1272 CEC_LOG_ADDR_TUNER_3
, CEC_LOG_ADDR_TUNER_4
,
1273 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1274 CEC_LOG_ADDR_INVALID
1276 static const u8 playback_log_addrs
[] = {
1277 CEC_LOG_ADDR_PLAYBACK_1
, CEC_LOG_ADDR_PLAYBACK_2
,
1278 CEC_LOG_ADDR_PLAYBACK_3
,
1279 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1280 CEC_LOG_ADDR_INVALID
1282 static const u8 audiosystem_log_addrs
[] = {
1283 CEC_LOG_ADDR_AUDIOSYSTEM
,
1284 CEC_LOG_ADDR_INVALID
1286 static const u8 specific_use_log_addrs
[] = {
1287 CEC_LOG_ADDR_SPECIFIC
,
1288 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1289 CEC_LOG_ADDR_INVALID
1291 static const u8
*type2addrs
[6] = {
1292 [CEC_LOG_ADDR_TYPE_TV
] = tv_log_addrs
,
1293 [CEC_LOG_ADDR_TYPE_RECORD
] = record_log_addrs
,
1294 [CEC_LOG_ADDR_TYPE_TUNER
] = tuner_log_addrs
,
1295 [CEC_LOG_ADDR_TYPE_PLAYBACK
] = playback_log_addrs
,
1296 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM
] = audiosystem_log_addrs
,
1297 [CEC_LOG_ADDR_TYPE_SPECIFIC
] = specific_use_log_addrs
,
1299 static const u16 type2mask
[] = {
1300 [CEC_LOG_ADDR_TYPE_TV
] = CEC_LOG_ADDR_MASK_TV
,
1301 [CEC_LOG_ADDR_TYPE_RECORD
] = CEC_LOG_ADDR_MASK_RECORD
,
1302 [CEC_LOG_ADDR_TYPE_TUNER
] = CEC_LOG_ADDR_MASK_TUNER
,
1303 [CEC_LOG_ADDR_TYPE_PLAYBACK
] = CEC_LOG_ADDR_MASK_PLAYBACK
,
1304 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM
] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM
,
1305 [CEC_LOG_ADDR_TYPE_SPECIFIC
] = CEC_LOG_ADDR_MASK_SPECIFIC
,
1307 struct cec_adapter
*adap
= arg
;
1308 struct cec_log_addrs
*las
= &adap
->log_addrs
;
1312 mutex_lock(&adap
->lock
);
1313 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1314 cec_phys_addr_exp(adap
->phys_addr
), las
->num_log_addrs
);
1315 las
->log_addr_mask
= 0;
1317 if (las
->log_addr_type
[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED
)
1320 for (i
= 0; i
< las
->num_log_addrs
; i
++) {
1321 unsigned int type
= las
->log_addr_type
[i
];
1326 * The TV functionality can only map to physical address 0.
1327 * For any other address, try the Specific functionality
1328 * instead as per the spec.
1330 if (adap
->phys_addr
&& type
== CEC_LOG_ADDR_TYPE_TV
)
1331 type
= CEC_LOG_ADDR_TYPE_SPECIFIC
;
1333 la_list
= type2addrs
[type
];
1334 last_la
= las
->log_addr
[i
];
1335 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1336 if (last_la
== CEC_LOG_ADDR_INVALID
||
1337 last_la
== CEC_LOG_ADDR_UNREGISTERED
||
1338 !((1 << last_la
) & type2mask
[type
]))
1339 last_la
= la_list
[0];
1341 err
= cec_config_log_addr(adap
, i
, last_la
);
1342 if (err
> 0) /* Reused last LA */
1348 for (j
= 0; la_list
[j
] != CEC_LOG_ADDR_INVALID
; j
++) {
1349 /* Tried this one already, skip it */
1350 if (la_list
[j
] == last_la
)
1352 /* The backup addresses are CEC 2.0 specific */
1353 if ((la_list
[j
] == CEC_LOG_ADDR_BACKUP_1
||
1354 la_list
[j
] == CEC_LOG_ADDR_BACKUP_2
) &&
1355 las
->cec_version
< CEC_OP_CEC_VERSION_2_0
)
1358 err
= cec_config_log_addr(adap
, i
, la_list
[j
]);
1359 if (err
== 0) /* LA is in use */
1363 /* Done, claimed an LA */
1367 if (la_list
[j
] == CEC_LOG_ADDR_INVALID
)
1368 dprintk(1, "could not claim LA %d\n", i
);
1371 if (adap
->log_addrs
.log_addr_mask
== 0 &&
1372 !(las
->flags
& CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK
))
1376 if (adap
->log_addrs
.log_addr_mask
== 0) {
1377 /* Fall back to unregistered */
1378 las
->log_addr
[0] = CEC_LOG_ADDR_UNREGISTERED
;
1379 las
->log_addr_mask
= 1 << las
->log_addr
[0];
1380 for (i
= 1; i
< las
->num_log_addrs
; i
++)
1381 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1383 for (i
= las
->num_log_addrs
; i
< CEC_MAX_LOG_ADDRS
; i
++)
1384 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1385 adap
->is_configured
= true;
1386 adap
->is_configuring
= false;
1387 cec_post_state_event(adap
);
1390 * Now post the Report Features and Report Physical Address broadcast
1391 * messages. Note that these are non-blocking transmits, meaning that
1392 * they are just queued up and once adap->lock is unlocked the main
1393 * thread will kick in and start transmitting these.
1395 * If after this function is done (but before one or more of these
1396 * messages are actually transmitted) the CEC adapter is unconfigured,
1397 * then any remaining messages will be dropped by the main thread.
1399 for (i
= 0; i
< las
->num_log_addrs
; i
++) {
1400 struct cec_msg msg
= {};
1402 if (las
->log_addr
[i
] == CEC_LOG_ADDR_INVALID
||
1403 (las
->flags
& CEC_LOG_ADDRS_FL_CDC_ONLY
))
1406 msg
.msg
[0] = (las
->log_addr
[i
] << 4) | 0x0f;
1408 /* Report Features must come first according to CEC 2.0 */
1409 if (las
->log_addr
[i
] != CEC_LOG_ADDR_UNREGISTERED
&&
1410 adap
->log_addrs
.cec_version
>= CEC_OP_CEC_VERSION_2_0
) {
1411 cec_fill_msg_report_features(adap
, &msg
, i
);
1412 cec_transmit_msg_fh(adap
, &msg
, NULL
, false);
1415 /* Report Physical Address */
1416 cec_msg_report_physical_addr(&msg
, adap
->phys_addr
,
1417 las
->primary_device_type
[i
]);
1418 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1420 cec_phys_addr_exp(adap
->phys_addr
));
1421 cec_transmit_msg_fh(adap
, &msg
, NULL
, false);
1423 adap
->kthread_config
= NULL
;
1424 complete(&adap
->config_completion
);
1425 mutex_unlock(&adap
->lock
);
1429 for (i
= 0; i
< las
->num_log_addrs
; i
++)
1430 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1431 cec_adap_unconfigure(adap
);
1432 adap
->kthread_config
= NULL
;
1433 mutex_unlock(&adap
->lock
);
1434 complete(&adap
->config_completion
);
1439 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1440 * logical addresses.
1442 * This function is called with adap->lock held.
1444 static void cec_claim_log_addrs(struct cec_adapter
*adap
, bool block
)
1446 if (WARN_ON(adap
->is_configuring
|| adap
->is_configured
))
1449 init_completion(&adap
->config_completion
);
1451 /* Ready to kick off the thread */
1452 adap
->is_configuring
= true;
1453 adap
->kthread_config
= kthread_run(cec_config_thread_func
, adap
,
1454 "ceccfg-%s", adap
->name
);
1455 if (IS_ERR(adap
->kthread_config
)) {
1456 adap
->kthread_config
= NULL
;
1458 mutex_unlock(&adap
->lock
);
1459 wait_for_completion(&adap
->config_completion
);
1460 mutex_lock(&adap
->lock
);
1464 /* Set a new physical address and send an event notifying userspace of this.
1466 * This function is called with adap->lock held.
1468 void __cec_s_phys_addr(struct cec_adapter
*adap
, u16 phys_addr
, bool block
)
1470 if (phys_addr
== adap
->phys_addr
)
1472 if (phys_addr
!= CEC_PHYS_ADDR_INVALID
&& adap
->devnode
.unregistered
)
1475 dprintk(1, "new physical address %x.%x.%x.%x\n",
1476 cec_phys_addr_exp(phys_addr
));
1477 if (phys_addr
== CEC_PHYS_ADDR_INVALID
||
1478 adap
->phys_addr
!= CEC_PHYS_ADDR_INVALID
) {
1479 adap
->phys_addr
= CEC_PHYS_ADDR_INVALID
;
1480 cec_post_state_event(adap
);
1481 cec_adap_unconfigure(adap
);
1482 /* Disabling monitor all mode should always succeed */
1483 if (adap
->monitor_all_cnt
)
1484 WARN_ON(call_op(adap
, adap_monitor_all_enable
, false));
1485 mutex_lock(&adap
->devnode
.lock
);
1486 if (adap
->needs_hpd
|| list_empty(&adap
->devnode
.fhs
))
1487 WARN_ON(adap
->ops
->adap_enable(adap
, false));
1488 mutex_unlock(&adap
->devnode
.lock
);
1489 if (phys_addr
== CEC_PHYS_ADDR_INVALID
)
1493 mutex_lock(&adap
->devnode
.lock
);
1494 if ((adap
->needs_hpd
|| list_empty(&adap
->devnode
.fhs
)) &&
1495 adap
->ops
->adap_enable(adap
, true)) {
1496 mutex_unlock(&adap
->devnode
.lock
);
1500 if (adap
->monitor_all_cnt
&&
1501 call_op(adap
, adap_monitor_all_enable
, true)) {
1502 if (adap
->needs_hpd
|| list_empty(&adap
->devnode
.fhs
))
1503 WARN_ON(adap
->ops
->adap_enable(adap
, false));
1504 mutex_unlock(&adap
->devnode
.lock
);
1507 mutex_unlock(&adap
->devnode
.lock
);
1509 adap
->phys_addr
= phys_addr
;
1510 cec_post_state_event(adap
);
1511 if (adap
->log_addrs
.num_log_addrs
)
1512 cec_claim_log_addrs(adap
, block
);
1515 void cec_s_phys_addr(struct cec_adapter
*adap
, u16 phys_addr
, bool block
)
1517 if (IS_ERR_OR_NULL(adap
))
1520 mutex_lock(&adap
->lock
);
1521 __cec_s_phys_addr(adap
, phys_addr
, block
);
1522 mutex_unlock(&adap
->lock
);
1524 EXPORT_SYMBOL_GPL(cec_s_phys_addr
);
1526 void cec_s_phys_addr_from_edid(struct cec_adapter
*adap
,
1527 const struct edid
*edid
)
1529 u16 pa
= CEC_PHYS_ADDR_INVALID
;
1531 if (edid
&& edid
->extensions
)
1532 pa
= cec_get_edid_phys_addr((const u8
*)edid
,
1533 EDID_LENGTH
* (edid
->extensions
+ 1), NULL
);
1534 cec_s_phys_addr(adap
, pa
, false);
1536 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid
);
1539 * Called from either the ioctl or a driver to set the logical addresses.
1541 * This function is called with adap->lock held.
1543 int __cec_s_log_addrs(struct cec_adapter
*adap
,
1544 struct cec_log_addrs
*log_addrs
, bool block
)
1549 if (adap
->devnode
.unregistered
)
1552 if (!log_addrs
|| log_addrs
->num_log_addrs
== 0) {
1553 cec_adap_unconfigure(adap
);
1554 adap
->log_addrs
.num_log_addrs
= 0;
1555 for (i
= 0; i
< CEC_MAX_LOG_ADDRS
; i
++)
1556 adap
->log_addrs
.log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1557 adap
->log_addrs
.osd_name
[0] = '\0';
1558 adap
->log_addrs
.vendor_id
= CEC_VENDOR_ID_NONE
;
1559 adap
->log_addrs
.cec_version
= CEC_OP_CEC_VERSION_2_0
;
1563 if (log_addrs
->flags
& CEC_LOG_ADDRS_FL_CDC_ONLY
) {
1565 * Sanitize log_addrs fields if a CDC-Only device is
1568 log_addrs
->num_log_addrs
= 1;
1569 log_addrs
->osd_name
[0] = '\0';
1570 log_addrs
->vendor_id
= CEC_VENDOR_ID_NONE
;
1571 log_addrs
->log_addr_type
[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED
;
1573 * This is just an internal convention since a CDC-Only device
1574 * doesn't have to be a switch. But switches already use
1575 * unregistered, so it makes some kind of sense to pick this
1576 * as the primary device. Since a CDC-Only device never sends
1577 * any 'normal' CEC messages this primary device type is never
1578 * sent over the CEC bus.
1580 log_addrs
->primary_device_type
[0] = CEC_OP_PRIM_DEVTYPE_SWITCH
;
1581 log_addrs
->all_device_types
[0] = 0;
1582 log_addrs
->features
[0][0] = 0;
1583 log_addrs
->features
[0][1] = 0;
1586 /* Ensure the osd name is 0-terminated */
1587 log_addrs
->osd_name
[sizeof(log_addrs
->osd_name
) - 1] = '\0';
1590 if (log_addrs
->num_log_addrs
> adap
->available_log_addrs
) {
1591 dprintk(1, "num_log_addrs > %d\n", adap
->available_log_addrs
);
1596 * Vendor ID is a 24 bit number, so check if the value is
1597 * within the correct range.
1599 if (log_addrs
->vendor_id
!= CEC_VENDOR_ID_NONE
&&
1600 (log_addrs
->vendor_id
& 0xff000000) != 0) {
1601 dprintk(1, "invalid vendor ID\n");
1605 if (log_addrs
->cec_version
!= CEC_OP_CEC_VERSION_1_4
&&
1606 log_addrs
->cec_version
!= CEC_OP_CEC_VERSION_2_0
) {
1607 dprintk(1, "invalid CEC version\n");
1611 if (log_addrs
->num_log_addrs
> 1)
1612 for (i
= 0; i
< log_addrs
->num_log_addrs
; i
++)
1613 if (log_addrs
->log_addr_type
[i
] ==
1614 CEC_LOG_ADDR_TYPE_UNREGISTERED
) {
1615 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1619 for (i
= 0; i
< log_addrs
->num_log_addrs
; i
++) {
1620 const u8 feature_sz
= ARRAY_SIZE(log_addrs
->features
[0]);
1621 u8
*features
= log_addrs
->features
[i
];
1622 bool op_is_dev_features
= false;
1625 log_addrs
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1626 if (type_mask
& (1 << log_addrs
->log_addr_type
[i
])) {
1627 dprintk(1, "duplicate logical address type\n");
1630 type_mask
|= 1 << log_addrs
->log_addr_type
[i
];
1631 if ((type_mask
& (1 << CEC_LOG_ADDR_TYPE_RECORD
)) &&
1632 (type_mask
& (1 << CEC_LOG_ADDR_TYPE_PLAYBACK
))) {
1633 /* Record already contains the playback functionality */
1634 dprintk(1, "invalid record + playback combination\n");
1637 if (log_addrs
->primary_device_type
[i
] >
1638 CEC_OP_PRIM_DEVTYPE_PROCESSOR
) {
1639 dprintk(1, "unknown primary device type\n");
1642 if (log_addrs
->primary_device_type
[i
] == 2) {
1643 dprintk(1, "invalid primary device type\n");
1646 if (log_addrs
->log_addr_type
[i
] > CEC_LOG_ADDR_TYPE_UNREGISTERED
) {
1647 dprintk(1, "unknown logical address type\n");
1650 for (j
= 0; j
< feature_sz
; j
++) {
1651 if ((features
[j
] & 0x80) == 0) {
1652 if (op_is_dev_features
)
1654 op_is_dev_features
= true;
1657 if (!op_is_dev_features
|| j
== feature_sz
) {
1658 dprintk(1, "malformed features\n");
1661 /* Zero unused part of the feature array */
1662 memset(features
+ j
+ 1, 0, feature_sz
- j
- 1);
1665 if (log_addrs
->cec_version
>= CEC_OP_CEC_VERSION_2_0
) {
1666 if (log_addrs
->num_log_addrs
> 2) {
1667 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1670 if (log_addrs
->num_log_addrs
== 2) {
1671 if (!(type_mask
& ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM
) |
1672 (1 << CEC_LOG_ADDR_TYPE_TV
)))) {
1673 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1676 if (!(type_mask
& ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK
) |
1677 (1 << CEC_LOG_ADDR_TYPE_RECORD
)))) {
1678 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1684 /* Zero unused LAs */
1685 for (i
= log_addrs
->num_log_addrs
; i
< CEC_MAX_LOG_ADDRS
; i
++) {
1686 log_addrs
->primary_device_type
[i
] = 0;
1687 log_addrs
->log_addr_type
[i
] = 0;
1688 log_addrs
->all_device_types
[i
] = 0;
1689 memset(log_addrs
->features
[i
], 0,
1690 sizeof(log_addrs
->features
[i
]));
1693 log_addrs
->log_addr_mask
= adap
->log_addrs
.log_addr_mask
;
1694 adap
->log_addrs
= *log_addrs
;
1695 if (adap
->phys_addr
!= CEC_PHYS_ADDR_INVALID
)
1696 cec_claim_log_addrs(adap
, block
);
1700 int cec_s_log_addrs(struct cec_adapter
*adap
,
1701 struct cec_log_addrs
*log_addrs
, bool block
)
1705 mutex_lock(&adap
->lock
);
1706 err
= __cec_s_log_addrs(adap
, log_addrs
, block
);
1707 mutex_unlock(&adap
->lock
);
1710 EXPORT_SYMBOL_GPL(cec_s_log_addrs
);
1712 /* High-level core CEC message handling */
1714 /* Fill in the Report Features message */
1715 static void cec_fill_msg_report_features(struct cec_adapter
*adap
,
1716 struct cec_msg
*msg
,
1717 unsigned int la_idx
)
1719 const struct cec_log_addrs
*las
= &adap
->log_addrs
;
1720 const u8
*features
= las
->features
[la_idx
];
1721 bool op_is_dev_features
= false;
1724 /* Report Features */
1725 msg
->msg
[0] = (las
->log_addr
[la_idx
] << 4) | 0x0f;
1727 msg
->msg
[1] = CEC_MSG_REPORT_FEATURES
;
1728 msg
->msg
[2] = adap
->log_addrs
.cec_version
;
1729 msg
->msg
[3] = las
->all_device_types
[la_idx
];
1731 /* Write RC Profiles first, then Device Features */
1732 for (idx
= 0; idx
< ARRAY_SIZE(las
->features
[0]); idx
++) {
1733 msg
->msg
[msg
->len
++] = features
[idx
];
1734 if ((features
[idx
] & CEC_OP_FEAT_EXT
) == 0) {
1735 if (op_is_dev_features
)
1737 op_is_dev_features
= true;
1742 /* Transmit the Feature Abort message */
1743 static int cec_feature_abort_reason(struct cec_adapter
*adap
,
1744 struct cec_msg
*msg
, u8 reason
)
1746 struct cec_msg tx_msg
= { };
1749 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1752 if (msg
->msg
[1] == CEC_MSG_FEATURE_ABORT
)
1754 /* Don't Feature Abort messages from 'Unregistered' */
1755 if (cec_msg_initiator(msg
) == CEC_LOG_ADDR_UNREGISTERED
)
1757 cec_msg_set_reply_to(&tx_msg
, msg
);
1758 cec_msg_feature_abort(&tx_msg
, msg
->msg
[1], reason
);
1759 return cec_transmit_msg(adap
, &tx_msg
, false);
1762 static int cec_feature_abort(struct cec_adapter
*adap
, struct cec_msg
*msg
)
1764 return cec_feature_abort_reason(adap
, msg
,
1765 CEC_OP_ABORT_UNRECOGNIZED_OP
);
1768 static int cec_feature_refused(struct cec_adapter
*adap
, struct cec_msg
*msg
)
1770 return cec_feature_abort_reason(adap
, msg
,
1771 CEC_OP_ABORT_REFUSED
);
1775 * Called when a CEC message is received. This function will do any
1776 * necessary core processing. The is_reply bool is true if this message
1777 * is a reply to an earlier transmit.
1779 * The message is either a broadcast message or a valid directed message.
1781 static int cec_receive_notify(struct cec_adapter
*adap
, struct cec_msg
*msg
,
1784 bool is_broadcast
= cec_msg_is_broadcast(msg
);
1785 u8 dest_laddr
= cec_msg_destination(msg
);
1786 u8 init_laddr
= cec_msg_initiator(msg
);
1787 u8 devtype
= cec_log_addr2dev(adap
, dest_laddr
);
1788 int la_idx
= cec_log_addr2idx(adap
, dest_laddr
);
1789 bool from_unregistered
= init_laddr
== 0xf;
1790 struct cec_msg tx_cec_msg
= { };
1792 dprintk(2, "%s: %*ph\n", __func__
, msg
->len
, msg
->msg
);
1794 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1795 if (cec_is_cdc_only(&adap
->log_addrs
) &&
1796 msg
->msg
[1] != CEC_MSG_CDC_MESSAGE
)
1799 if (adap
->ops
->received
) {
1800 /* Allow drivers to process the message first */
1801 if (adap
->ops
->received(adap
, msg
) != -ENOMSG
)
1806 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1807 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1808 * handled by the CEC core, even if the passthrough mode is on.
1809 * The others are just ignored if passthrough mode is on.
1811 switch (msg
->msg
[1]) {
1812 case CEC_MSG_GET_CEC_VERSION
:
1814 case CEC_MSG_GIVE_DEVICE_POWER_STATUS
:
1815 case CEC_MSG_GIVE_OSD_NAME
:
1817 * These messages reply with a directed message, so ignore if
1818 * the initiator is Unregistered.
1820 if (!adap
->passthrough
&& from_unregistered
)
1823 case CEC_MSG_GIVE_DEVICE_VENDOR_ID
:
1824 case CEC_MSG_GIVE_FEATURES
:
1825 case CEC_MSG_GIVE_PHYSICAL_ADDR
:
1827 * Skip processing these messages if the passthrough mode
1830 if (adap
->passthrough
)
1831 goto skip_processing
;
1832 /* Ignore if addressing is wrong */
1837 case CEC_MSG_USER_CONTROL_PRESSED
:
1838 case CEC_MSG_USER_CONTROL_RELEASED
:
1839 /* Wrong addressing mode: don't process */
1840 if (is_broadcast
|| from_unregistered
)
1841 goto skip_processing
;
1844 case CEC_MSG_REPORT_PHYSICAL_ADDR
:
1846 * This message is always processed, regardless of the
1847 * passthrough setting.
1849 * Exception: don't process if wrong addressing mode.
1852 goto skip_processing
;
1859 cec_msg_set_reply_to(&tx_cec_msg
, msg
);
1861 switch (msg
->msg
[1]) {
1862 /* The following messages are processed but still passed through */
1863 case CEC_MSG_REPORT_PHYSICAL_ADDR
: {
1864 u16 pa
= (msg
->msg
[2] << 8) | msg
->msg
[3];
1866 if (!from_unregistered
)
1867 adap
->phys_addrs
[init_laddr
] = pa
;
1868 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1869 cec_phys_addr_exp(pa
), init_laddr
);
1873 case CEC_MSG_USER_CONTROL_PRESSED
:
1874 if (!(adap
->capabilities
& CEC_CAP_RC
) ||
1875 !(adap
->log_addrs
.flags
& CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU
))
1878 #ifdef CONFIG_MEDIA_CEC_RC
1879 switch (msg
->msg
[2]) {
1881 * Play function, this message can have variable length
1882 * depending on the specific play function that is used.
1886 rc_keydown(adap
->rc
, RC_PROTO_CEC
,
1889 rc_keydown(adap
->rc
, RC_PROTO_CEC
,
1890 msg
->msg
[2] << 8 | msg
->msg
[3], 0);
1893 * Other function messages that are not handled.
1894 * Currently the RC framework does not allow to supply an
1895 * additional parameter to a keypress. These "keys" contain
1896 * other information such as channel number, an input number
1898 * For the time being these messages are not processed by the
1899 * framework and are simply forwarded to the user space.
1901 case 0x56: case 0x57:
1902 case 0x67: case 0x68: case 0x69: case 0x6a:
1905 rc_keydown(adap
->rc
, RC_PROTO_CEC
, msg
->msg
[2], 0);
1911 case CEC_MSG_USER_CONTROL_RELEASED
:
1912 if (!(adap
->capabilities
& CEC_CAP_RC
) ||
1913 !(adap
->log_addrs
.flags
& CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU
))
1915 #ifdef CONFIG_MEDIA_CEC_RC
1921 * The remaining messages are only processed if the passthrough mode
1924 case CEC_MSG_GET_CEC_VERSION
:
1925 cec_msg_cec_version(&tx_cec_msg
, adap
->log_addrs
.cec_version
);
1926 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1928 case CEC_MSG_GIVE_PHYSICAL_ADDR
:
1929 /* Do nothing for CEC switches using addr 15 */
1930 if (devtype
== CEC_OP_PRIM_DEVTYPE_SWITCH
&& dest_laddr
== 15)
1932 cec_msg_report_physical_addr(&tx_cec_msg
, adap
->phys_addr
, devtype
);
1933 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1935 case CEC_MSG_GIVE_DEVICE_VENDOR_ID
:
1936 if (adap
->log_addrs
.vendor_id
== CEC_VENDOR_ID_NONE
)
1937 return cec_feature_abort(adap
, msg
);
1938 cec_msg_device_vendor_id(&tx_cec_msg
, adap
->log_addrs
.vendor_id
);
1939 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1942 /* Do nothing for CEC switches */
1943 if (devtype
== CEC_OP_PRIM_DEVTYPE_SWITCH
)
1945 return cec_feature_refused(adap
, msg
);
1947 case CEC_MSG_GIVE_OSD_NAME
: {
1948 if (adap
->log_addrs
.osd_name
[0] == 0)
1949 return cec_feature_abort(adap
, msg
);
1950 cec_msg_set_osd_name(&tx_cec_msg
, adap
->log_addrs
.osd_name
);
1951 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1954 case CEC_MSG_GIVE_FEATURES
:
1955 if (adap
->log_addrs
.cec_version
< CEC_OP_CEC_VERSION_2_0
)
1956 return cec_feature_abort(adap
, msg
);
1957 cec_fill_msg_report_features(adap
, &tx_cec_msg
, la_idx
);
1958 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1962 * Unprocessed messages are aborted if userspace isn't doing
1963 * any processing either.
1965 if (!is_broadcast
&& !is_reply
&& !adap
->follower_cnt
&&
1966 !adap
->cec_follower
&& msg
->msg
[1] != CEC_MSG_FEATURE_ABORT
)
1967 return cec_feature_abort(adap
, msg
);
1972 /* If this was a reply, then we're done, unless otherwise specified */
1973 if (is_reply
&& !(msg
->flags
& CEC_MSG_FL_REPLY_TO_FOLLOWERS
))
1977 * Send to the exclusive follower if there is one, otherwise send
1980 if (adap
->cec_follower
)
1981 cec_queue_msg_fh(adap
->cec_follower
, msg
);
1983 cec_queue_msg_followers(adap
, msg
);
1988 * Helper functions to keep track of the 'monitor all' use count.
1990 * These functions are called with adap->lock held.
1992 int cec_monitor_all_cnt_inc(struct cec_adapter
*adap
)
1996 if (adap
->monitor_all_cnt
== 0)
1997 ret
= call_op(adap
, adap_monitor_all_enable
, 1);
1999 adap
->monitor_all_cnt
++;
2003 void cec_monitor_all_cnt_dec(struct cec_adapter
*adap
)
2005 adap
->monitor_all_cnt
--;
2006 if (adap
->monitor_all_cnt
== 0)
2007 WARN_ON(call_op(adap
, adap_monitor_all_enable
, 0));
2011 * Helper functions to keep track of the 'monitor pin' use count.
2013 * These functions are called with adap->lock held.
2015 int cec_monitor_pin_cnt_inc(struct cec_adapter
*adap
)
2019 if (adap
->monitor_pin_cnt
== 0)
2020 ret
= call_op(adap
, adap_monitor_pin_enable
, 1);
2022 adap
->monitor_pin_cnt
++;
2026 void cec_monitor_pin_cnt_dec(struct cec_adapter
*adap
)
2028 adap
->monitor_pin_cnt
--;
2029 if (adap
->monitor_pin_cnt
== 0)
2030 WARN_ON(call_op(adap
, adap_monitor_pin_enable
, 0));
2033 #ifdef CONFIG_DEBUG_FS
2035 * Log the current state of the CEC adapter.
2036 * Very useful for debugging.
2038 int cec_adap_status(struct seq_file
*file
, void *priv
)
2040 struct cec_adapter
*adap
= dev_get_drvdata(file
->private);
2041 struct cec_data
*data
;
2043 mutex_lock(&adap
->lock
);
2044 seq_printf(file
, "configured: %d\n", adap
->is_configured
);
2045 seq_printf(file
, "configuring: %d\n", adap
->is_configuring
);
2046 seq_printf(file
, "phys_addr: %x.%x.%x.%x\n",
2047 cec_phys_addr_exp(adap
->phys_addr
));
2048 seq_printf(file
, "number of LAs: %d\n", adap
->log_addrs
.num_log_addrs
);
2049 seq_printf(file
, "LA mask: 0x%04x\n", adap
->log_addrs
.log_addr_mask
);
2050 if (adap
->cec_follower
)
2051 seq_printf(file
, "has CEC follower%s\n",
2052 adap
->passthrough
? " (in passthrough mode)" : "");
2053 if (adap
->cec_initiator
)
2054 seq_puts(file
, "has CEC initiator\n");
2055 if (adap
->monitor_all_cnt
)
2056 seq_printf(file
, "file handles in Monitor All mode: %u\n",
2057 adap
->monitor_all_cnt
);
2058 if (adap
->tx_timeouts
) {
2059 seq_printf(file
, "transmit timeouts: %u\n",
2061 adap
->tx_timeouts
= 0;
2063 data
= adap
->transmitting
;
2065 seq_printf(file
, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2066 data
->msg
.len
, data
->msg
.msg
, data
->msg
.reply
,
2068 seq_printf(file
, "pending transmits: %u\n", adap
->transmit_queue_sz
);
2069 list_for_each_entry(data
, &adap
->transmit_queue
, list
) {
2070 seq_printf(file
, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2071 data
->msg
.len
, data
->msg
.msg
, data
->msg
.reply
,
2074 list_for_each_entry(data
, &adap
->wait_queue
, list
) {
2075 seq_printf(file
, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2076 data
->msg
.len
, data
->msg
.msg
, data
->msg
.reply
,
2080 call_void_op(adap
, adap_status
, file
);
2081 mutex_unlock(&adap
->lock
);