2 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 * This code is more or less generated from another driver, please
19 * excuse some codingstyle oddities.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/i2c.h>
28 #include <linux/mutex.h>
30 #include <media/dvb_frontend.h>
33 #include "dibx000_common.h"
36 module_param(debug
, int, 0644);
37 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
39 #define dprintk(fmt, arg...) do { \
41 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
45 #define CONFIG_SYS_DVBT
46 #define CONFIG_SYS_ISDBT
47 #define CONFIG_BAND_CBAND
48 #define CONFIG_BAND_VHF
49 #define CONFIG_BAND_UHF
50 #define CONFIG_DIB0090_USE_PWM_AGC
52 #define EN_LNA0 0x8000
53 #define EN_LNA1 0x4000
54 #define EN_LNA2 0x2000
55 #define EN_LNA3 0x1000
56 #define EN_MIX0 0x0800
57 #define EN_MIX1 0x0400
58 #define EN_MIX2 0x0200
59 #define EN_MIX3 0x0100
60 #define EN_IQADC 0x0040
65 #define EN_BIAS 0x0001
67 #define EN_IQANA 0x0002
68 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
69 #define EN_CRYSTAL 0x0002
77 /* Calibration defines */
81 #define CAPTRIM_CAL 0x8
83 #define KROSUS_PLL_LOCKED 0x800
86 /* Use those defines to identify SOC version */
88 #define SOC_7090_P1G_11R1 0x82
89 #define SOC_7090_P1G_21R1 0x8a
90 #define SOC_8090_P1G_11R1 0x86
91 #define SOC_8090_P1G_21R1 0x8e
93 /* else use thos ones to check */
100 #define MP001 0x1 /* Single 9090/8096 */
101 #define MP005 0x4 /* Single Sband */
102 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
103 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
105 #define pgm_read_word(w) (*w)
107 struct dc_calibration
;
109 struct dib0090_tuning
{
110 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
121 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
128 struct dib0090_identity
{
135 struct dib0090_state
{
136 struct i2c_adapter
*i2c
;
137 struct dvb_frontend
*fe
;
138 const struct dib0090_config
*config
;
141 enum frontend_tune_state tune_state
;
145 s16 wbd_target
; /* in dB */
147 s16 rf_gain_limit
; /* take-over-point: where to split between bb and rf gain */
148 s16 current_gain
; /* keeps the currently programmed gain */
149 u8 agc_step
; /* new binary search */
151 u16 gain
[2]; /* for channel monitoring */
156 /* for the software AGC ramps */
161 /* for the captrim/dc-offset search */
169 const struct dc_calibration
*dc
;
172 const struct dib0090_tuning
*current_tune_table_index
;
173 const struct dib0090_pll
*current_pll_table_index
;
178 struct dib0090_identity identity
;
188 u8 wbd_calibration_gain
;
189 const struct dib0090_wbd_slope
*current_wbd_table
;
192 /* for the I2C transfer */
193 struct i2c_msg msg
[2];
194 u8 i2c_write_buffer
[3];
195 u8 i2c_read_buffer
[2];
196 struct mutex i2c_buffer_lock
;
199 struct dib0090_fw_state
{
200 struct i2c_adapter
*i2c
;
201 struct dvb_frontend
*fe
;
202 struct dib0090_identity identity
;
203 const struct dib0090_config
*config
;
205 /* for the I2C transfer */
207 u8 i2c_write_buffer
[2];
208 u8 i2c_read_buffer
[2];
209 struct mutex i2c_buffer_lock
;
212 static u16
dib0090_read_reg(struct dib0090_state
*state
, u8 reg
)
216 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
217 dprintk("could not acquire lock\n");
221 state
->i2c_write_buffer
[0] = reg
;
223 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
224 state
->msg
[0].addr
= state
->config
->i2c_address
;
225 state
->msg
[0].flags
= 0;
226 state
->msg
[0].buf
= state
->i2c_write_buffer
;
227 state
->msg
[0].len
= 1;
228 state
->msg
[1].addr
= state
->config
->i2c_address
;
229 state
->msg
[1].flags
= I2C_M_RD
;
230 state
->msg
[1].buf
= state
->i2c_read_buffer
;
231 state
->msg
[1].len
= 2;
233 if (i2c_transfer(state
->i2c
, state
->msg
, 2) != 2) {
234 pr_warn("DiB0090 I2C read failed\n");
237 ret
= (state
->i2c_read_buffer
[0] << 8)
238 | state
->i2c_read_buffer
[1];
240 mutex_unlock(&state
->i2c_buffer_lock
);
244 static int dib0090_write_reg(struct dib0090_state
*state
, u32 reg
, u16 val
)
248 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
249 dprintk("could not acquire lock\n");
253 state
->i2c_write_buffer
[0] = reg
& 0xff;
254 state
->i2c_write_buffer
[1] = val
>> 8;
255 state
->i2c_write_buffer
[2] = val
& 0xff;
257 memset(state
->msg
, 0, sizeof(struct i2c_msg
));
258 state
->msg
[0].addr
= state
->config
->i2c_address
;
259 state
->msg
[0].flags
= 0;
260 state
->msg
[0].buf
= state
->i2c_write_buffer
;
261 state
->msg
[0].len
= 3;
263 if (i2c_transfer(state
->i2c
, state
->msg
, 1) != 1) {
264 pr_warn("DiB0090 I2C write failed\n");
269 mutex_unlock(&state
->i2c_buffer_lock
);
273 static u16
dib0090_fw_read_reg(struct dib0090_fw_state
*state
, u8 reg
)
277 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
278 dprintk("could not acquire lock\n");
282 state
->i2c_write_buffer
[0] = reg
;
284 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
285 state
->msg
.addr
= reg
;
286 state
->msg
.flags
= I2C_M_RD
;
287 state
->msg
.buf
= state
->i2c_read_buffer
;
289 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
290 pr_warn("DiB0090 I2C read failed\n");
293 ret
= (state
->i2c_read_buffer
[0] << 8)
294 | state
->i2c_read_buffer
[1];
296 mutex_unlock(&state
->i2c_buffer_lock
);
300 static int dib0090_fw_write_reg(struct dib0090_fw_state
*state
, u8 reg
, u16 val
)
304 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
305 dprintk("could not acquire lock\n");
309 state
->i2c_write_buffer
[0] = val
>> 8;
310 state
->i2c_write_buffer
[1] = val
& 0xff;
312 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
313 state
->msg
.addr
= reg
;
314 state
->msg
.flags
= 0;
315 state
->msg
.buf
= state
->i2c_write_buffer
;
317 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
318 pr_warn("DiB0090 I2C write failed\n");
323 mutex_unlock(&state
->i2c_buffer_lock
);
327 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
328 #define ADC_TARGET -220
332 static void dib0090_write_regs(struct dib0090_state
*state
, u8 r
, const u16
* b
, u8 c
)
335 dib0090_write_reg(state
, r
++, *b
++);
339 static int dib0090_identify(struct dvb_frontend
*fe
)
341 struct dib0090_state
*state
= fe
->tuner_priv
;
343 struct dib0090_identity
*identity
= &state
->identity
;
345 v
= dib0090_read_reg(state
, 0x1a);
348 identity
->in_soc
= 0;
350 dprintk("Tuner identification (Version = 0x%04x)\n", v
);
352 /* without PLL lock info */
353 v
&= ~KROSUS_PLL_LOCKED
;
355 identity
->version
= v
& 0xff;
356 identity
->product
= (v
>> 8) & 0xf;
358 if (identity
->product
!= KROSUS
)
359 goto identification_error
;
361 if ((identity
->version
& 0x3) == SOC
) {
362 identity
->in_soc
= 1;
363 switch (identity
->version
) {
364 case SOC_8090_P1G_11R1
:
365 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
368 case SOC_8090_P1G_21R1
:
369 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
372 case SOC_7090_P1G_11R1
:
373 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
376 case SOC_7090_P1G_21R1
:
377 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
381 goto identification_error
;
384 switch ((identity
->version
>> 5) & 0x7) {
386 dprintk("MP001 : 9090/8096\n");
389 dprintk("MP005 : Single Sband\n");
392 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
395 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
398 goto identification_error
;
401 switch (identity
->version
& 0x1f) {
403 dprintk("P1G_21R2 detected\n");
407 dprintk("P1G detected\n");
411 dprintk("P1D/E/F detected\n");
414 dprintk("P1C detected\n");
417 dprintk("P1-A/B detected: driver is deactivated - not available\n");
418 goto identification_error
;
421 goto identification_error
;
427 identification_error
:
431 static int dib0090_fw_identify(struct dvb_frontend
*fe
)
433 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
434 struct dib0090_identity
*identity
= &state
->identity
;
436 u16 v
= dib0090_fw_read_reg(state
, 0x1a);
438 identity
->in_soc
= 0;
440 dprintk("FE: Tuner identification (Version = 0x%04x)\n", v
);
442 /* without PLL lock info */
443 v
&= ~KROSUS_PLL_LOCKED
;
445 identity
->version
= v
& 0xff;
446 identity
->product
= (v
>> 8) & 0xf;
448 if (identity
->product
!= KROSUS
)
449 goto identification_error
;
451 if ((identity
->version
& 0x3) == SOC
) {
452 identity
->in_soc
= 1;
453 switch (identity
->version
) {
454 case SOC_8090_P1G_11R1
:
455 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
458 case SOC_8090_P1G_21R1
:
459 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
462 case SOC_7090_P1G_11R1
:
463 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
466 case SOC_7090_P1G_21R1
:
467 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
471 goto identification_error
;
474 switch ((identity
->version
>> 5) & 0x7) {
476 dprintk("MP001 : 9090/8096\n");
479 dprintk("MP005 : Single Sband\n");
482 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
485 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
488 goto identification_error
;
491 switch (identity
->version
& 0x1f) {
493 dprintk("P1G_21R2 detected\n");
497 dprintk("P1G detected\n");
501 dprintk("P1D/E/F detected\n");
504 dprintk("P1C detected\n");
507 dprintk("P1-A/B detected: driver is deactivated - not available\n");
508 goto identification_error
;
511 goto identification_error
;
517 identification_error
:
521 static void dib0090_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
523 struct dib0090_state
*state
= fe
->tuner_priv
;
527 dib0090_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
531 dib0090_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
532 /* adcClkOutRatio=8->7, release reset */
533 dib0090_write_reg(state
, 0x20, ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
534 if (cfg
->clkoutdrive
!= 0)
535 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
536 | (cfg
->clkoutdrive
<< 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
538 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
539 | (7 << 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
541 /* Read Pll current config * */
542 PllCfg
= dib0090_read_reg(state
, 0x21);
544 /** Reconfigure PLL if current setting is different from default setting **/
545 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && (!cfg
->in_soc
)
546 && !cfg
->io
.pll_bypass
) {
548 /* Set Bypass mode */
550 dib0090_write_reg(state
, 0x21, PllCfg
);
553 PllCfg
&= ~(1 << 13);
554 dib0090_write_reg(state
, 0x21, PllCfg
);
556 /*** Set new Pll configuration in bypass and reset state ***/
557 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
558 dib0090_write_reg(state
, 0x21, PllCfg
);
560 /* Remove Reset Pll */
562 dib0090_write_reg(state
, 0x21, PllCfg
);
564 /*** Wait for PLL lock ***/
567 v
= !!(dib0090_read_reg(state
, 0x1a) & 0x800);
573 dprintk("Pll: Unable to lock Pll\n");
577 /* Finally Remove Bypass mode */
578 PllCfg
&= ~(1 << 15);
579 dib0090_write_reg(state
, 0x21, PllCfg
);
582 if (cfg
->io
.pll_bypass
) {
583 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
584 dib0090_write_reg(state
, 0x21, PllCfg
);
588 static int dib0090_fw_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
590 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
595 dprintk("fw reset digital\n");
598 dib0090_fw_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
599 dib0090_fw_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
601 dib0090_fw_write_reg(state
, 0x20,
602 ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg
->data_tx_drv
<< 4) | cfg
->ls_cfg_pad_drv
);
604 v
= (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 9) | (0 << 8) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0);
605 if (cfg
->clkoutdrive
!= 0)
606 v
|= cfg
->clkoutdrive
<< 5;
611 dib0090_fw_write_reg(state
, 0x23, v
);
613 /* Read Pll current config * */
614 PllCfg
= dib0090_fw_read_reg(state
, 0x21);
616 /** Reconfigure PLL if current setting is different from default setting **/
617 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && !cfg
->io
.pll_bypass
) {
619 /* Set Bypass mode */
621 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
624 PllCfg
&= ~(1 << 13);
625 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
627 /*** Set new Pll configuration in bypass and reset state ***/
628 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
629 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
631 /* Remove Reset Pll */
633 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
635 /*** Wait for PLL lock ***/
638 v
= !!(dib0090_fw_read_reg(state
, 0x1a) & 0x800);
644 dprintk("Pll: Unable to lock Pll\n");
648 /* Finally Remove Bypass mode */
649 PllCfg
&= ~(1 << 15);
650 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
653 if (cfg
->io
.pll_bypass
) {
654 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
655 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
658 return dib0090_fw_identify(fe
);
661 static int dib0090_wakeup(struct dvb_frontend
*fe
)
663 struct dib0090_state
*state
= fe
->tuner_priv
;
664 if (state
->config
->sleep
)
665 state
->config
->sleep(fe
, 0);
667 /* enable dataTX in case we have been restarted in the wrong moment */
668 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
672 static int dib0090_sleep(struct dvb_frontend
*fe
)
674 struct dib0090_state
*state
= fe
->tuner_priv
;
675 if (state
->config
->sleep
)
676 state
->config
->sleep(fe
, 1);
680 void dib0090_dcc_freq(struct dvb_frontend
*fe
, u8 fast
)
682 struct dib0090_state
*state
= fe
->tuner_priv
;
684 dib0090_write_reg(state
, 0x04, 0);
686 dib0090_write_reg(state
, 0x04, 1);
689 EXPORT_SYMBOL(dib0090_dcc_freq
);
691 static const u16 bb_ramp_pwm_normal_socs
[] = {
692 550, /* max BB gain in 10th of dB */
693 (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
695 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
696 (0 << 9) | 208, /* BB_RAMP4 */
697 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
698 (0 << 9) | 440, /* BB_RAMP6 */
701 static const u16 rf_ramp_pwm_cband_7090p
[] = {
702 280, /* max RF gain in 10th of dB */
703 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
704 504, /* ramp_max = maximum X used on the ramp */
705 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
706 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
707 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
708 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
709 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
710 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
711 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
712 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
715 static const u16 rf_ramp_pwm_cband_7090e_sensitivity
[] = {
716 186, /* max RF gain in 10th of dB */
717 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
718 746, /* ramp_max = maximum X used on the ramp */
719 (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
720 (0 << 10) | 746, /* RF_RAMP6, LNA 1 */
721 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
722 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
723 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
724 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
725 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
726 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
729 static const u16 rf_ramp_pwm_cband_7090e_aci
[] = {
730 86, /* max RF gain in 10th of dB */
731 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
732 345, /* ramp_max = maximum X used on the ramp */
733 (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
734 (0 << 10) | 0, /* RF_RAMP6, LNA 1 */
735 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
736 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
737 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
738 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
739 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
740 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
743 static const u16 rf_ramp_pwm_cband_8090
[] = {
744 345, /* max RF gain in 10th of dB */
745 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
746 1000, /* ramp_max = maximum X used on the ramp */
747 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
748 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
749 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
750 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
751 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
752 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
753 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
754 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
757 static const u16 rf_ramp_pwm_uhf_7090
[] = {
758 407, /* max RF gain in 10th of dB */
759 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
760 529, /* ramp_max = maximum X used on the ramp */
761 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
762 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
763 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
764 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
765 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
766 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
767 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
768 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
771 static const u16 rf_ramp_pwm_uhf_8090
[] = {
772 388, /* max RF gain in 10th of dB */
773 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
774 1008, /* ramp_max = maximum X used on the ramp */
775 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
776 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
777 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
778 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
779 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
780 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
781 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
782 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
785 /* GENERAL PWM ramp definition for all other Krosus */
786 static const u16 bb_ramp_pwm_normal
[] = {
787 500, /* max BB gain in 10th of dB */
788 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
790 (2 << 9) | 0, /* BB_RAMP3 = 21dB */
791 (0 << 9) | 168, /* BB_RAMP4 */
792 (2 << 9) | 168, /* BB_RAMP5 = 29dB */
793 (0 << 9) | 400, /* BB_RAMP6 */
797 /* Currently unused */
798 static const u16 bb_ramp_pwm_boost
[] = {
799 550, /* max BB gain in 10th of dB */
800 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
802 (2 << 9) | 0, /* BB_RAMP3 = 26dB */
803 (0 << 9) | 208, /* BB_RAMP4 */
804 (2 << 9) | 208, /* BB_RAMP5 = 29dB */
805 (0 << 9) | 440, /* BB_RAMP6 */
809 static const u16 rf_ramp_pwm_cband
[] = {
810 314, /* max RF gain in 10th of dB */
811 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
812 1023, /* ramp_max = maximum X used on the ramp */
813 (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
814 (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */
815 (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
816 (0 << 10) | 742, /* RF_RAMP6, LNA 2 */
817 (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
818 (0 << 10) | 468, /* RF_RAMP8, LNA 3 */
819 (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
820 (0 << 10) | 233, /* GAIN_4_2, LNA 4 */
823 static const u16 rf_ramp_pwm_vhf
[] = {
824 398, /* max RF gain in 10th of dB */
825 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
826 954, /* ramp_max = maximum X used on the ramp */
827 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
828 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
829 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
830 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
831 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
832 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
833 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
834 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
837 static const u16 rf_ramp_pwm_uhf
[] = {
838 398, /* max RF gain in 10th of dB */
839 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
840 954, /* ramp_max = maximum X used on the ramp */
841 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
842 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
843 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
844 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
845 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
846 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
847 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
848 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
852 /* Currently unused */
853 static const u16 rf_ramp_pwm_sband
[] = {
854 253, /* max RF gain in 10th of dB */
855 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
857 (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
858 (0 << 10) | 508, /* RF_RAMP4, LNA 1 */
859 (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
860 (0 << 10) | 961, /* RF_RAMP6, LNA 2 */
861 (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
862 (0 << 10) | 0, /* RF_RAMP8, LNA 3 */
863 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
864 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
872 static u16
slopes_to_scale(const struct slope
*slopes
, u8 num
, s16 val
)
877 for (i
= 0; i
< num
; i
++) {
878 if (val
> slopes
[i
].range
)
879 rest
= slopes
[i
].range
;
882 ret
+= (rest
* slopes
[i
].slope
) / slopes
[i
].range
;
888 static const struct slope dib0090_wbd_slopes
[3] = {
889 {66, 120}, /* -64,-52: offset - 65 */
890 {600, 170}, /* -52,-35: 65 - 665 */
891 {170, 250}, /* -45,-10: 665 - 835 */
894 static s16
dib0090_wbd_to_db(struct dib0090_state
*state
, u16 wbd
)
897 if (wbd
< state
->wbd_offset
)
900 wbd
-= state
->wbd_offset
;
901 /* -64dB is the floor */
902 return -640 + (s16
) slopes_to_scale(dib0090_wbd_slopes
, ARRAY_SIZE(dib0090_wbd_slopes
), wbd
);
905 static void dib0090_wbd_target(struct dib0090_state
*state
, u32 rf
)
909 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
911 if (state
->current_band
== BAND_VHF
)
913 #ifndef FIRMWARE_FIREFLY
914 if (state
->current_band
== BAND_VHF
)
915 offset
= state
->config
->wbd_vhf_offset
;
916 if (state
->current_band
== BAND_CBAND
)
917 offset
= state
->config
->wbd_cband_offset
;
920 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ offset
);
921 dprintk("wbd-target: %d dB\n", (u32
) state
->wbd_target
);
924 static const int gain_reg_addr
[4] = {
925 0x08, 0x0a, 0x0f, 0x01
928 static void dib0090_gain_apply(struct dib0090_state
*state
, s16 gain_delta
, s16 top_delta
, u8 force
)
931 u16 i
, v
, gain_reg
[4] = { 0 }, gain
;
934 if (top_delta
< -511)
940 top_delta
*= (1 << WBD_ALPHA
);
941 gain_delta
*= (1 << GAIN_ALPHA
);
944 if (top_delta
>= ((s16
) (state
->rf_ramp
[0] << WBD_ALPHA
) - state
->rf_gain_limit
)) /* overflow */
945 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
947 state
->rf_gain_limit
+= top_delta
;
949 if (state
->rf_gain_limit
< 0) /*underflow */
950 state
->rf_gain_limit
= 0;
952 /* use gain as a temporary variable and correct current_gain */
953 gain
= ((state
->rf_gain_limit
>> WBD_ALPHA
) + state
->bb_ramp
[0]) << GAIN_ALPHA
;
954 if (gain_delta
>= ((s16
) gain
- state
->current_gain
)) /* overflow */
955 state
->current_gain
= gain
;
957 state
->current_gain
+= gain_delta
;
958 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
959 if (state
->current_gain
< 0)
960 state
->current_gain
= 0;
962 /* now split total gain to rf and bb gain */
963 gain
= state
->current_gain
>> GAIN_ALPHA
;
965 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
966 if (gain
> (state
->rf_gain_limit
>> WBD_ALPHA
)) {
967 rf
= state
->rf_gain_limit
>> WBD_ALPHA
;
969 if (bb
> state
->bb_ramp
[0])
970 bb
= state
->bb_ramp
[0];
971 } else { /* high signal level -> all gains put on RF */
980 /* Start with RF gains */
981 g
= state
->rf_ramp
+ 1; /* point on RF LNA1 max gain */
983 for (i
= 0; i
< 7; i
++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
984 if (g
[0] == 0 || ref
< (g
[1] - g
[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
985 v
= 0; /* force the gain to write for the current amp to be null */
986 else if (ref
>= g
[1]) /* Gain to set is higher than the high working point of this amp */
987 v
= g
[2]; /* force this amp to be full gain */
988 else /* compute the value to set to this amp because we are somewhere in his range */
989 v
= ((ref
- (g
[1] - g
[0])) * g
[2]) / g
[0];
991 if (i
== 0) /* LNA 1 reg mapping */
993 else if (i
== 1) /* LNA 2 reg mapping */
994 gain_reg
[0] |= v
<< 7;
995 else if (i
== 2) /* LNA 3 reg mapping */
997 else if (i
== 3) /* LNA 4 reg mapping */
998 gain_reg
[1] |= v
<< 7;
999 else if (i
== 4) /* CBAND LNA reg mapping */
1000 gain_reg
[2] = v
| state
->rf_lt_def
;
1001 else if (i
== 5) /* BB gain 1 reg mapping */
1002 gain_reg
[3] = v
<< 3;
1003 else if (i
== 6) /* BB gain 2 reg mapping */
1004 gain_reg
[3] |= v
<< 8;
1006 g
+= 3; /* go to next gain bloc */
1008 /* When RF is finished, start with BB */
1010 g
= state
->bb_ramp
+ 1; /* point on BB gain 1 max gain */
1014 gain_reg
[3] |= state
->bb_1_def
;
1015 gain_reg
[3] |= ((bb
% 10) * 100) / 125;
1018 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x\n", rf
, bb
, rf
+ bb
,
1019 gain_reg
[0], gain_reg
[1], gain_reg
[2], gain_reg
[3]);
1022 /* Write the amplifier regs */
1023 for (i
= 0; i
< 4; i
++) {
1025 if (force
|| state
->gain_reg
[i
] != v
) {
1026 state
->gain_reg
[i
] = v
;
1027 dib0090_write_reg(state
, gain_reg_addr
[i
], v
);
1032 static void dib0090_set_boost(struct dib0090_state
*state
, int onoff
)
1034 state
->bb_1_def
&= 0xdfff;
1035 state
->bb_1_def
|= onoff
<< 13;
1038 static void dib0090_set_rframp(struct dib0090_state
*state
, const u16
* cfg
)
1040 state
->rf_ramp
= cfg
;
1043 static void dib0090_set_rframp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1045 state
->rf_ramp
= cfg
;
1047 dib0090_write_reg(state
, 0x2a, 0xffff);
1049 dprintk("total RF gain: %ddB, step: %d\n", (u32
) cfg
[0], dib0090_read_reg(state
, 0x2a));
1051 dib0090_write_regs(state
, 0x2c, cfg
+ 3, 6);
1052 dib0090_write_regs(state
, 0x3e, cfg
+ 9, 2);
1055 static void dib0090_set_bbramp(struct dib0090_state
*state
, const u16
* cfg
)
1057 state
->bb_ramp
= cfg
;
1058 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1061 static void dib0090_set_bbramp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1063 state
->bb_ramp
= cfg
;
1065 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1067 dib0090_write_reg(state
, 0x33, 0xffff);
1068 dprintk("total BB gain: %ddB, step: %d\n", (u32
) cfg
[0], dib0090_read_reg(state
, 0x33));
1069 dib0090_write_regs(state
, 0x35, cfg
+ 3, 4);
1072 void dib0090_pwm_gain_reset(struct dvb_frontend
*fe
)
1074 struct dib0090_state
*state
= fe
->tuner_priv
;
1075 u16
*bb_ramp
= (u16
*)&bb_ramp_pwm_normal
; /* default baseband config */
1076 u16
*rf_ramp
= NULL
;
1077 u8 en_pwm_rf_mux
= 1;
1080 if (state
->config
->use_pwm_agc
) {
1081 if (state
->current_band
== BAND_CBAND
) {
1082 if (state
->identity
.in_soc
) {
1083 bb_ramp
= (u16
*)&bb_ramp_pwm_normal_socs
;
1084 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1085 rf_ramp
= (u16
*)&rf_ramp_pwm_cband_8090
;
1086 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
) {
1087 if (state
->config
->is_dib7090e
) {
1088 if (state
->rf_ramp
== NULL
)
1089 rf_ramp
= (u16
*)&rf_ramp_pwm_cband_7090e_sensitivity
;
1091 rf_ramp
= (u16
*)state
->rf_ramp
;
1093 rf_ramp
= (u16
*)&rf_ramp_pwm_cband_7090p
;
1096 rf_ramp
= (u16
*)&rf_ramp_pwm_cband
;
1099 if (state
->current_band
== BAND_VHF
) {
1100 if (state
->identity
.in_soc
) {
1101 bb_ramp
= (u16
*)&bb_ramp_pwm_normal_socs
;
1102 /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1104 rf_ramp
= (u16
*)&rf_ramp_pwm_vhf
;
1105 } else if (state
->current_band
== BAND_UHF
) {
1106 if (state
->identity
.in_soc
) {
1107 bb_ramp
= (u16
*)&bb_ramp_pwm_normal_socs
;
1108 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1109 rf_ramp
= (u16
*)&rf_ramp_pwm_uhf_8090
;
1110 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1111 rf_ramp
= (u16
*)&rf_ramp_pwm_uhf_7090
;
1113 rf_ramp
= (u16
*)&rf_ramp_pwm_uhf
;
1116 dib0090_set_rframp_pwm(state
, rf_ramp
);
1117 dib0090_set_bbramp_pwm(state
, bb_ramp
);
1119 /* activate the ramp generator using PWM control */
1121 dprintk("ramp RF gain = %d BAND = %s version = %d\n",
1123 (state
->current_band
== BAND_CBAND
) ? "CBAND" : "NOT CBAND",
1124 state
->identity
.version
& 0x1f);
1126 if (rf_ramp
&& ((state
->rf_ramp
&& state
->rf_ramp
[0] == 0) ||
1127 (state
->current_band
== BAND_CBAND
&&
1128 (state
->identity
.version
& 0x1f) <= P1D_E_F
))) {
1129 dprintk("DE-Engage mux for direct gain reg control\n");
1132 dprintk("Engage mux for PWM control\n");
1134 dib0090_write_reg(state
, 0x32, (en_pwm_rf_mux
<< 12) | (en_pwm_rf_mux
<< 11));
1136 /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1137 if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1138 dib0090_write_reg(state
, 0x04, 3);
1140 dib0090_write_reg(state
, 0x04, 1);
1141 dib0090_write_reg(state
, 0x39, (1 << 10)); /* 0 gain by default */
1144 EXPORT_SYMBOL(dib0090_pwm_gain_reset
);
1146 void dib0090_set_dc_servo(struct dvb_frontend
*fe
, u8 DC_servo_cutoff
)
1148 struct dib0090_state
*state
= fe
->tuner_priv
;
1149 if (DC_servo_cutoff
< 4)
1150 dib0090_write_reg(state
, 0x04, DC_servo_cutoff
);
1152 EXPORT_SYMBOL(dib0090_set_dc_servo
);
1154 static u32
dib0090_get_slow_adc_val(struct dib0090_state
*state
)
1156 u16 adc_val
= dib0090_read_reg(state
, 0x1d);
1157 if (state
->identity
.in_soc
)
1162 int dib0090_gain_control(struct dvb_frontend
*fe
)
1164 struct dib0090_state
*state
= fe
->tuner_priv
;
1165 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1169 u8 apply_gain_immediatly
= 1;
1170 s16 wbd_error
= 0, adc_error
= 0;
1172 if (*tune_state
== CT_AGC_START
) {
1173 state
->agc_freeze
= 0;
1174 dib0090_write_reg(state
, 0x04, 0x0);
1176 #ifdef CONFIG_BAND_SBAND
1177 if (state
->current_band
== BAND_SBAND
) {
1178 dib0090_set_rframp(state
, rf_ramp_sband
);
1179 dib0090_set_bbramp(state
, bb_ramp_boost
);
1182 #ifdef CONFIG_BAND_VHF
1183 if (state
->current_band
== BAND_VHF
&& !state
->identity
.p1g
) {
1184 dib0090_set_rframp(state
, rf_ramp_pwm_vhf
);
1185 dib0090_set_bbramp(state
, bb_ramp_pwm_normal
);
1188 #ifdef CONFIG_BAND_CBAND
1189 if (state
->current_band
== BAND_CBAND
&& !state
->identity
.p1g
) {
1190 dib0090_set_rframp(state
, rf_ramp_pwm_cband
);
1191 dib0090_set_bbramp(state
, bb_ramp_pwm_normal
);
1194 if ((state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) && state
->identity
.p1g
) {
1195 dib0090_set_rframp(state
, rf_ramp_pwm_cband_7090p
);
1196 dib0090_set_bbramp(state
, bb_ramp_pwm_normal_socs
);
1198 dib0090_set_rframp(state
, rf_ramp_pwm_uhf
);
1199 dib0090_set_bbramp(state
, bb_ramp_pwm_normal
);
1202 dib0090_write_reg(state
, 0x32, 0);
1203 dib0090_write_reg(state
, 0x39, 0);
1205 dib0090_wbd_target(state
, state
->current_rf
);
1207 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
1208 state
->current_gain
= ((state
->rf_ramp
[0] + state
->bb_ramp
[0]) / 2) << GAIN_ALPHA
;
1210 *tune_state
= CT_AGC_STEP_0
;
1211 } else if (!state
->agc_freeze
) {
1212 s16 wbd
= 0, i
, cnt
;
1215 wbd_val
= dib0090_get_slow_adc_val(state
);
1217 if (*tune_state
== CT_AGC_STEP_0
)
1222 for (i
= 0; i
< cnt
; i
++) {
1223 wbd_val
= dib0090_get_slow_adc_val(state
);
1224 wbd
+= dib0090_wbd_to_db(state
, wbd_val
);
1227 wbd_error
= state
->wbd_target
- wbd
;
1229 if (*tune_state
== CT_AGC_STEP_0
) {
1230 if (wbd_error
< 0 && state
->rf_gain_limit
> 0 && !state
->identity
.p1g
) {
1231 #ifdef CONFIG_BAND_CBAND
1232 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1233 u8 ltg2
= (state
->rf_lt_def
>> 10) & 0x7;
1234 if (state
->current_band
== BAND_CBAND
&& ltg2
) {
1236 state
->rf_lt_def
&= ltg2
<< 10; /* reduce in 3 steps from 7 to 0 */
1240 state
->agc_step
= 0;
1241 *tune_state
= CT_AGC_STEP_1
;
1244 /* calc the adc power */
1245 adc
= state
->config
->get_adc_power(fe
);
1246 adc
= (adc
* ((s32
) 355774) + (((s32
) 1) << 20)) >> 21; /* included in [0:-700] */
1248 adc_error
= (s16
) (((s32
) ADC_TARGET
) - adc
);
1249 #ifdef CONFIG_STANDARD_DAB
1250 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
)
1253 #ifdef CONFIG_STANDARD_DVBT
1254 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DVBT
&&
1255 (state
->fe
->dtv_property_cache
.modulation
== QAM_64
|| state
->fe
->dtv_property_cache
.modulation
== QAM_16
))
1258 #ifdef CONFIG_SYS_ISDBT
1259 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
) && (((state
->fe
->dtv_property_cache
.layer
[0].segment_count
>
1262 ((state
->fe
->dtv_property_cache
.layer
[0].modulation
==
1264 || (state
->fe
->dtv_property_cache
.
1265 layer
[0].modulation
== QAM_16
)))
1267 ((state
->fe
->dtv_property_cache
.layer
[1].segment_count
>
1270 ((state
->fe
->dtv_property_cache
.layer
[1].modulation
==
1272 || (state
->fe
->dtv_property_cache
.
1273 layer
[1].modulation
== QAM_16
)))
1275 ((state
->fe
->dtv_property_cache
.layer
[2].segment_count
>
1278 ((state
->fe
->dtv_property_cache
.layer
[2].modulation
==
1280 || (state
->fe
->dtv_property_cache
.
1281 layer
[2].modulation
== QAM_16
)))
1287 if (*tune_state
== CT_AGC_STEP_1
) { /* quickly go to the correct range of the ADC power */
1288 if (ABS(adc_error
) < 50 || state
->agc_step
++ > 5) {
1290 #ifdef CONFIG_STANDARD_DAB
1291 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
) {
1292 dib0090_write_reg(state
, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1293 dib0090_write_reg(state
, 0x04, 0x0);
1297 dib0090_write_reg(state
, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1298 dib0090_write_reg(state
, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1301 *tune_state
= CT_AGC_STOP
;
1304 /* everything higher than or equal to CT_AGC_STOP means tracking */
1305 ret
= 100; /* 10ms interval */
1306 apply_gain_immediatly
= 0;
1311 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1312 (u32
) *tune_state
, (u32
) adc
, (u32
) adc_error
, (u32
) wbd
, (u32
) wbd_error
, (u32
) wbd_val
,
1313 (u32
) state
->rf_gain_limit
>> WBD_ALPHA
, (s32
) 200 + adc
- (state
->current_gain
>> GAIN_ALPHA
));
1318 if (!state
->agc_freeze
)
1319 dib0090_gain_apply(state
, adc_error
, wbd_error
, apply_gain_immediatly
);
1323 EXPORT_SYMBOL(dib0090_gain_control
);
1325 void dib0090_get_current_gain(struct dvb_frontend
*fe
, u16
* rf
, u16
* bb
, u16
* rf_gain_limit
, u16
* rflt
)
1327 struct dib0090_state
*state
= fe
->tuner_priv
;
1329 *rf
= state
->gain
[0];
1331 *bb
= state
->gain
[1];
1333 *rf_gain_limit
= state
->rf_gain_limit
;
1335 *rflt
= (state
->rf_lt_def
>> 10) & 0x7;
1338 EXPORT_SYMBOL(dib0090_get_current_gain
);
1340 u16
dib0090_get_wbd_target(struct dvb_frontend
*fe
)
1342 struct dib0090_state
*state
= fe
->tuner_priv
;
1343 u32 f_MHz
= state
->fe
->dtv_property_cache
.frequency
/ 1000000;
1344 s32 current_temp
= state
->temperature
;
1345 s32 wbd_thot
, wbd_tcold
;
1346 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1348 while (f_MHz
> wbd
->max_freq
)
1351 dprintk("using wbd-table-entry with max freq %d\n", wbd
->max_freq
);
1353 if (current_temp
< 0)
1355 if (current_temp
> 128)
1358 state
->wbdmux
&= ~(7 << 13);
1359 if (wbd
->wbd_gain
!= 0)
1360 state
->wbdmux
|= (wbd
->wbd_gain
<< 13);
1362 state
->wbdmux
|= (4 << 13);
1364 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
1366 wbd_thot
= wbd
->offset_hot
- (((u32
) wbd
->slope_hot
* f_MHz
) >> 6);
1367 wbd_tcold
= wbd
->offset_cold
- (((u32
) wbd
->slope_cold
* f_MHz
) >> 6);
1369 wbd_tcold
+= ((wbd_thot
- wbd_tcold
) * current_temp
) >> 7;
1371 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ wbd_tcold
);
1372 dprintk("wbd-target: %d dB\n", (u32
) state
->wbd_target
);
1373 dprintk("wbd offset applied is %d\n", wbd_tcold
);
1375 return state
->wbd_offset
+ wbd_tcold
;
1377 EXPORT_SYMBOL(dib0090_get_wbd_target
);
1379 u16
dib0090_get_wbd_offset(struct dvb_frontend
*fe
)
1381 struct dib0090_state
*state
= fe
->tuner_priv
;
1382 return state
->wbd_offset
;
1384 EXPORT_SYMBOL(dib0090_get_wbd_offset
);
1386 int dib0090_set_switch(struct dvb_frontend
*fe
, u8 sw1
, u8 sw2
, u8 sw3
)
1388 struct dib0090_state
*state
= fe
->tuner_priv
;
1390 dib0090_write_reg(state
, 0x0b, (dib0090_read_reg(state
, 0x0b) & 0xfff8)
1391 | ((sw3
& 1) << 2) | ((sw2
& 1) << 1) | (sw1
& 1));
1395 EXPORT_SYMBOL(dib0090_set_switch
);
1397 int dib0090_set_vga(struct dvb_frontend
*fe
, u8 onoff
)
1399 struct dib0090_state
*state
= fe
->tuner_priv
;
1401 dib0090_write_reg(state
, 0x09, (dib0090_read_reg(state
, 0x09) & 0x7fff)
1402 | ((onoff
& 1) << 15));
1405 EXPORT_SYMBOL(dib0090_set_vga
);
1407 int dib0090_update_rframp_7090(struct dvb_frontend
*fe
, u8 cfg_sensitivity
)
1409 struct dib0090_state
*state
= fe
->tuner_priv
;
1411 if ((!state
->identity
.p1g
) || (!state
->identity
.in_soc
)
1412 || ((state
->identity
.version
!= SOC_7090_P1G_21R1
)
1413 && (state
->identity
.version
!= SOC_7090_P1G_11R1
))) {
1414 dprintk("%s() function can only be used for dib7090P\n", __func__
);
1418 if (cfg_sensitivity
)
1419 state
->rf_ramp
= (const u16
*)&rf_ramp_pwm_cband_7090e_sensitivity
;
1421 state
->rf_ramp
= (const u16
*)&rf_ramp_pwm_cband_7090e_aci
;
1422 dib0090_pwm_gain_reset(fe
);
1426 EXPORT_SYMBOL(dib0090_update_rframp_7090
);
1428 static const u16 dib0090_defaults
[] = {
1468 EN_UHF
| EN_CRYSTAL
,
1476 static const u16 dib0090_p1g_additionnal_defaults
[] = {
1491 static void dib0090_set_default_config(struct dib0090_state
*state
, const u16
* n
)
1495 l
= pgm_read_word(n
++);
1497 r
= pgm_read_word(n
++);
1499 dib0090_write_reg(state
, r
, pgm_read_word(n
++));
1502 l
= pgm_read_word(n
++);
1506 #define CAP_VALUE_MIN (u8) 9
1507 #define CAP_VALUE_MAX (u8) 40
1508 #define HR_MIN (u8) 25
1509 #define HR_MAX (u8) 40
1510 #define POLY_MIN (u8) 0
1511 #define POLY_MAX (u8) 8
1513 static void dib0090_set_EFUSE(struct dib0090_state
*state
)
1519 e2
= dib0090_read_reg(state
, 0x26);
1520 e4
= dib0090_read_reg(state
, 0x28);
1522 if ((state
->identity
.version
== P1D_E_F
) ||
1523 (state
->identity
.version
== P1G
) || (e2
== 0xffff)) {
1525 dib0090_write_reg(state
, 0x22, 0x10);
1526 cal
= (dib0090_read_reg(state
, 0x22) >> 6) & 0x3ff;
1528 if ((cal
< 670) || (cal
== 1023))
1530 n
= 165 - ((cal
* 10)>>6) ;
1531 e2
= e4
= (3<<12) | (34<<6) | (n
);
1535 e2
&= e4
; /* Remove the redundancy */
1539 n
= (e2
>> 12) & 0xf;
1540 h
= (e2
>> 6) & 0x3f;
1542 if ((c
>= CAP_VALUE_MAX
) || (c
<= CAP_VALUE_MIN
))
1546 if ((h
>= HR_MAX
) || (h
<= HR_MIN
))
1548 if ((n
>= POLY_MAX
) || (n
<= POLY_MIN
))
1551 dib0090_write_reg(state
, 0x13, (h
<< 10));
1552 e2
= (n
<< 11) | ((h
>> 2)<<6) | c
;
1553 dib0090_write_reg(state
, 0x2, e2
); /* Load the BB_2 */
1557 static int dib0090_reset(struct dvb_frontend
*fe
)
1559 struct dib0090_state
*state
= fe
->tuner_priv
;
1561 dib0090_reset_digital(fe
, state
->config
);
1562 if (dib0090_identify(fe
) < 0)
1565 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1566 if (!(state
->identity
.version
& 0x1)) /* it is P1B - reset is already done */
1570 if (!state
->identity
.in_soc
) {
1571 if ((dib0090_read_reg(state
, 0x1a) >> 5) & 0x2)
1572 dib0090_write_reg(state
, 0x1b, (EN_IQADC
| EN_BB
| EN_BIAS
| EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1574 dib0090_write_reg(state
, 0x1b, (EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1577 dib0090_set_default_config(state
, dib0090_defaults
);
1579 if (state
->identity
.in_soc
)
1580 dib0090_write_reg(state
, 0x18, 0x2910); /* charge pump current = 0 */
1582 if (state
->identity
.p1g
)
1583 dib0090_set_default_config(state
, dib0090_p1g_additionnal_defaults
);
1585 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1586 if (((state
->identity
.version
& 0x1f) >= P1D_E_F
) || (state
->identity
.in_soc
))
1587 dib0090_set_EFUSE(state
);
1589 /* Congigure in function of the crystal */
1590 if (state
->config
->force_crystal_mode
!= 0)
1591 dib0090_write_reg(state
, 0x14,
1592 state
->config
->force_crystal_mode
& 3);
1593 else if (state
->config
->io
.clock_khz
>= 24000)
1594 dib0090_write_reg(state
, 0x14, 1);
1596 dib0090_write_reg(state
, 0x14, 2);
1597 dprintk("Pll lock : %d\n", (dib0090_read_reg(state
, 0x1a) >> 11) & 0x1);
1599 state
->calibrate
= DC_CAL
| WBD_CAL
| TEMP_CAL
; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1604 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1605 #define INTERN_WAIT 10
1606 static int dib0090_get_offset(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1608 int ret
= INTERN_WAIT
* 10;
1610 switch (*tune_state
) {
1611 case CT_TUNER_STEP_2
:
1612 /* Turns to positive */
1613 dib0090_write_reg(state
, 0x1f, 0x7);
1614 *tune_state
= CT_TUNER_STEP_3
;
1617 case CT_TUNER_STEP_3
:
1618 state
->adc_diff
= dib0090_read_reg(state
, 0x1d);
1620 /* Turns to negative */
1621 dib0090_write_reg(state
, 0x1f, 0x4);
1622 *tune_state
= CT_TUNER_STEP_4
;
1625 case CT_TUNER_STEP_4
:
1626 state
->adc_diff
-= dib0090_read_reg(state
, 0x1d);
1627 *tune_state
= CT_TUNER_STEP_5
;
1638 struct dc_calibration
{
1646 static const struct dc_calibration dc_table
[] = {
1647 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1648 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1649 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1650 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1651 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1652 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1656 static const struct dc_calibration dc_p1g_table
[] = {
1657 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1658 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1659 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1660 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1661 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1662 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1663 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1667 static void dib0090_set_trim(struct dib0090_state
*state
)
1671 if (state
->dc
->addr
== 0x07)
1676 *val
&= ~(0x1f << state
->dc
->offset
);
1677 *val
|= state
->step
<< state
->dc
->offset
;
1679 dib0090_write_reg(state
, state
->dc
->addr
, *val
);
1682 static int dib0090_dc_offset_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1687 switch (*tune_state
) {
1688 case CT_TUNER_START
:
1689 dprintk("Start DC offset calibration");
1691 /* force vcm2 = 0.8V */
1693 state
->bb7
= 0x040d;
1695 /* the LNA AND LO are off */
1696 reg
= dib0090_read_reg(state
, 0x24) & 0x0ffb; /* shutdown lna and lo */
1697 dib0090_write_reg(state
, 0x24, reg
);
1699 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
1700 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x7 << 3) | 0x3);
1701 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
1703 state
->dc
= dc_table
;
1705 if (state
->identity
.p1g
)
1706 state
->dc
= dc_p1g_table
;
1709 case CT_TUNER_STEP_0
:
1710 dprintk("Start/continue DC calibration for %s path\n",
1711 (state
->dc
->i
== 1) ? "I" : "Q");
1712 dib0090_write_reg(state
, 0x01, state
->dc
->bb1
);
1713 dib0090_write_reg(state
, 0x07, state
->bb7
| (state
->dc
->i
<< 7));
1716 state
->min_adc_diff
= 1023;
1717 *tune_state
= CT_TUNER_STEP_1
;
1721 case CT_TUNER_STEP_1
:
1722 dib0090_set_trim(state
);
1723 *tune_state
= CT_TUNER_STEP_2
;
1726 case CT_TUNER_STEP_2
:
1727 case CT_TUNER_STEP_3
:
1728 case CT_TUNER_STEP_4
:
1729 ret
= dib0090_get_offset(state
, tune_state
);
1732 case CT_TUNER_STEP_5
: /* found an offset */
1733 dprintk("adc_diff = %d, current step= %d\n", (u32
) state
->adc_diff
, state
->step
);
1734 if (state
->step
== 0 && state
->adc_diff
< 0) {
1735 state
->min_adc_diff
= -1023;
1736 dprintk("Change of sign of the minimum adc diff\n");
1739 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d\n", state
->adc_diff
, state
->min_adc_diff
, state
->step
);
1741 /* first turn for this frequency */
1742 if (state
->step
== 0) {
1743 if (state
->dc
->pga
&& state
->adc_diff
< 0)
1745 if (state
->dc
->pga
== 0 && state
->adc_diff
> 0)
1749 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1750 if ((state
->adc_diff
& 0x8000) == (state
->min_adc_diff
& 0x8000) && steps(state
->step
) < 15) {
1751 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1753 state
->min_adc_diff
= state
->adc_diff
;
1754 *tune_state
= CT_TUNER_STEP_1
;
1756 /* the minimum was what we have seen in the step before */
1757 if (ABS(state
->adc_diff
) > ABS(state
->min_adc_diff
)) {
1758 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step\n", state
->adc_diff
, state
->min_adc_diff
);
1762 dib0090_set_trim(state
);
1763 dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd\n", state
->dc
->addr
, state
->adc_diff
, state
->step
);
1766 if (state
->dc
->addr
== 0) /* done */
1767 *tune_state
= CT_TUNER_STEP_6
;
1769 *tune_state
= CT_TUNER_STEP_0
;
1774 case CT_TUNER_STEP_6
:
1775 dib0090_write_reg(state
, 0x07, state
->bb7
& ~0x0008);
1776 dib0090_write_reg(state
, 0x1f, 0x7);
1777 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1778 state
->calibrate
&= ~DC_CAL
;
1785 static int dib0090_wbd_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1788 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1790 switch (*tune_state
) {
1791 case CT_TUNER_START
:
1792 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
1794 if (wbd
->wbd_gain
!= 0)
1795 wbd_gain
= wbd
->wbd_gain
;
1798 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1799 if ((state
->current_band
== BAND_LBAND
) || (state
->current_band
== BAND_SBAND
))
1804 if (wbd_gain
== state
->wbd_calibration_gain
) { /* the WBD calibration has already been done */
1805 *tune_state
= CT_TUNER_START
;
1806 state
->calibrate
&= ~WBD_CAL
;
1810 dib0090_write_reg(state
, 0x10, 0x1b81 | (1 << 10) | (wbd_gain
<< 13) | (1 << 3));
1812 dib0090_write_reg(state
, 0x24, ((EN_UHF
& 0x0fff) | (1 << 1)));
1813 *tune_state
= CT_TUNER_STEP_0
;
1814 state
->wbd_calibration_gain
= wbd_gain
;
1815 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1817 case CT_TUNER_STEP_0
:
1818 state
->wbd_offset
= dib0090_get_slow_adc_val(state
);
1819 dprintk("WBD calibration offset = %d\n", state
->wbd_offset
);
1820 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1821 state
->calibrate
&= ~WBD_CAL
;
1830 static void dib0090_set_bandwidth(struct dib0090_state
*state
)
1834 if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 5000)
1836 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 6000)
1838 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 7000)
1843 state
->bb_1_def
&= 0x3fff;
1844 state
->bb_1_def
|= tmp
;
1846 dib0090_write_reg(state
, 0x01, state
->bb_1_def
); /* be sure that we have the right bb-filter */
1848 dib0090_write_reg(state
, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1849 dib0090_write_reg(state
, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1850 if (state
->identity
.in_soc
) {
1851 dib0090_write_reg(state
, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1853 dib0090_write_reg(state
, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1854 dib0090_write_reg(state
, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1858 static const struct dib0090_pll dib0090_pll_table
[] = {
1859 #ifdef CONFIG_BAND_CBAND
1860 {56000, 0, 9, 48, 6},
1861 {70000, 1, 9, 48, 6},
1862 {87000, 0, 8, 32, 4},
1863 {105000, 1, 8, 32, 4},
1864 {115000, 0, 7, 24, 6},
1865 {140000, 1, 7, 24, 6},
1866 {170000, 0, 6, 16, 4},
1868 #ifdef CONFIG_BAND_VHF
1869 {200000, 1, 6, 16, 4},
1870 {230000, 0, 5, 12, 6},
1871 {280000, 1, 5, 12, 6},
1872 {340000, 0, 4, 8, 4},
1873 {380000, 1, 4, 8, 4},
1874 {450000, 0, 3, 6, 6},
1876 #ifdef CONFIG_BAND_UHF
1877 {580000, 1, 3, 6, 6},
1878 {700000, 0, 2, 4, 4},
1879 {860000, 1, 2, 4, 4},
1881 #ifdef CONFIG_BAND_LBAND
1882 {1800000, 1, 0, 2, 4},
1884 #ifdef CONFIG_BAND_SBAND
1885 {2900000, 0, 14, 1, 4},
1889 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband
[] = {
1891 #ifdef CONFIG_BAND_CBAND
1892 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1893 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1894 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1896 #ifdef CONFIG_BAND_UHF
1897 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1898 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1899 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1900 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1901 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1902 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1904 #ifdef CONFIG_BAND_LBAND
1905 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1906 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1907 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1909 #ifdef CONFIG_BAND_SBAND
1910 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1911 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1915 static const struct dib0090_tuning dib0090_tuning_table
[] = {
1917 #ifdef CONFIG_BAND_CBAND
1918 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1920 #ifdef CONFIG_BAND_VHF
1921 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1922 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1923 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1925 #ifdef CONFIG_BAND_UHF
1926 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1927 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1928 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1929 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1930 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1931 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1933 #ifdef CONFIG_BAND_LBAND
1934 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1935 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1936 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1938 #ifdef CONFIG_BAND_SBAND
1939 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1940 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1944 static const struct dib0090_tuning dib0090_p1g_tuning_table
[] = {
1945 #ifdef CONFIG_BAND_CBAND
1946 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB
},
1948 #ifdef CONFIG_BAND_VHF
1949 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1950 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1951 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1953 #ifdef CONFIG_BAND_UHF
1954 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1955 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1956 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1957 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1958 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1959 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1960 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1962 #ifdef CONFIG_BAND_LBAND
1963 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1964 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1965 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1967 #ifdef CONFIG_BAND_SBAND
1968 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1969 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1973 static const struct dib0090_pll dib0090_p1g_pll_table
[] = {
1974 #ifdef CONFIG_BAND_CBAND
1975 {57000, 0, 11, 48, 6},
1976 {70000, 1, 11, 48, 6},
1977 {86000, 0, 10, 32, 4},
1978 {105000, 1, 10, 32, 4},
1979 {115000, 0, 9, 24, 6},
1980 {140000, 1, 9, 24, 6},
1981 {170000, 0, 8, 16, 4},
1983 #ifdef CONFIG_BAND_VHF
1984 {200000, 1, 8, 16, 4},
1985 {230000, 0, 7, 12, 6},
1986 {280000, 1, 7, 12, 6},
1987 {340000, 0, 6, 8, 4},
1988 {380000, 1, 6, 8, 4},
1989 {455000, 0, 5, 6, 6},
1991 #ifdef CONFIG_BAND_UHF
1992 {580000, 1, 5, 6, 6},
1993 {680000, 0, 4, 4, 4},
1994 {860000, 1, 4, 4, 4},
1996 #ifdef CONFIG_BAND_LBAND
1997 {1800000, 1, 2, 2, 4},
1999 #ifdef CONFIG_BAND_SBAND
2000 {2900000, 0, 1, 1, 6},
2004 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband
[] = {
2005 #ifdef CONFIG_BAND_CBAND
2006 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
2007 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
2008 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
2010 #ifdef CONFIG_BAND_UHF
2011 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2012 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2013 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2014 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2015 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2016 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
2018 #ifdef CONFIG_BAND_LBAND
2019 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
2020 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
2021 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
2023 #ifdef CONFIG_BAND_SBAND
2024 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
2025 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
2029 static const struct dib0090_tuning dib0090_tuning_table_cband_7090
[] = {
2030 #ifdef CONFIG_BAND_CBAND
2031 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2032 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2033 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2034 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
2038 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity
[] = {
2039 #ifdef CONFIG_BAND_CBAND
2040 { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB
},
2041 { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB
},
2042 { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2043 { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2044 { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2045 { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2049 int dib0090_update_tuning_table_7090(struct dvb_frontend
*fe
,
2052 struct dib0090_state
*state
= fe
->tuner_priv
;
2053 const struct dib0090_tuning
*tune
=
2054 dib0090_tuning_table_cband_7090e_sensitivity
;
2055 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci
[] = {
2056 { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB
},
2057 { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2058 { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB
},
2061 if ((!state
->identity
.p1g
) || (!state
->identity
.in_soc
)
2062 || ((state
->identity
.version
!= SOC_7090_P1G_21R1
)
2063 && (state
->identity
.version
!= SOC_7090_P1G_11R1
))) {
2064 dprintk("%s() function can only be used for dib7090\n", __func__
);
2068 if (cfg_sensitivity
)
2069 tune
= dib0090_tuning_table_cband_7090e_sensitivity
;
2071 tune
= dib0090_tuning_table_cband_7090e_aci
;
2073 while (state
->rf_request
> tune
->max_freq
)
2076 dib0090_write_reg(state
, 0x09, (dib0090_read_reg(state
, 0x09) & 0x8000)
2077 | (tune
->lna_bias
& 0x7fff));
2078 dib0090_write_reg(state
, 0x0b, (dib0090_read_reg(state
, 0x0b) & 0xf83f)
2079 | ((tune
->lna_tune
<< 6) & 0x07c0));
2082 EXPORT_SYMBOL(dib0090_update_tuning_table_7090
);
2084 static int dib0090_captrim_search(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2092 u8 force_soft_search
= 0;
2094 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
2095 force_soft_search
= 1;
2097 if (*tune_state
== CT_TUNER_START
) {
2098 dprintk("Start Captrim search : %s\n",
2099 (force_soft_search
== 1) ? "FORCE SOFT SEARCH" : "AUTO");
2100 dib0090_write_reg(state
, 0x10, 0x2B1);
2101 dib0090_write_reg(state
, 0x1e, 0x0032);
2103 if (!state
->tuner_is_tuned
) {
2104 /* prepare a complete captrim */
2105 if (!state
->identity
.p1g
|| force_soft_search
)
2106 state
->step
= state
->captrim
= state
->fcaptrim
= 64;
2108 state
->current_rf
= state
->rf_request
;
2109 } else { /* we are already tuned to this frequency - the configuration is correct */
2110 if (!state
->identity
.p1g
|| force_soft_search
) {
2111 /* do a minimal captrim even if the frequency has not changed */
2113 state
->captrim
= state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7f;
2116 state
->adc_diff
= 3000;
2117 *tune_state
= CT_TUNER_STEP_0
;
2119 } else if (*tune_state
== CT_TUNER_STEP_0
) {
2120 if (state
->identity
.p1g
&& !force_soft_search
) {
2123 dib0090_write_reg(state
, 0x40, (3 << 7) | (ratio
<< 2) | (1 << 1) | 1);
2124 dib0090_read_reg(state
, 0x40);
2128 dib0090_write_reg(state
, 0x18, lo4
| state
->captrim
);
2130 if (state
->identity
.in_soc
)
2133 *tune_state
= CT_TUNER_STEP_1
;
2135 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2136 if (state
->identity
.p1g
&& !force_soft_search
) {
2137 dib0090_write_reg(state
, 0x40, 0x18c | (0 << 1) | 0);
2138 dib0090_read_reg(state
, 0x40);
2140 state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7F;
2141 dprintk("***Final Captrim= 0x%x\n", state
->fcaptrim
);
2142 *tune_state
= CT_TUNER_STEP_3
;
2145 /* MERGE for all krosus before P1G */
2146 adc
= dib0090_get_slow_adc_val(state
);
2147 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV\n", (u32
) state
->captrim
, (u32
) adc
, (u32
) (adc
) * (u32
) 1800 / (u32
) 1024);
2149 if (state
->rest
== 0 || state
->identity
.in_soc
) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2154 if (adc
>= adc_target
) {
2158 adc
= adc_target
- adc
;
2162 if (adc
< state
->adc_diff
) {
2163 dprintk("CAPTRIM=%d is closer to target (%d/%d)\n", (u32
) state
->captrim
, (u32
) adc
, (u32
) state
->adc_diff
);
2164 state
->adc_diff
= adc
;
2165 state
->fcaptrim
= state
->captrim
;
2168 state
->captrim
+= step_sign
* state
->step
;
2169 if (state
->step
>= 1)
2170 *tune_state
= CT_TUNER_STEP_0
;
2172 *tune_state
= CT_TUNER_STEP_2
;
2176 } else if (*tune_state
== CT_TUNER_STEP_2
) { /* this step is only used by krosus < P1G */
2177 /*write the final cptrim config */
2178 dib0090_write_reg(state
, 0x18, lo4
| state
->fcaptrim
);
2180 *tune_state
= CT_TUNER_STEP_3
;
2182 } else if (*tune_state
== CT_TUNER_STEP_3
) {
2183 state
->calibrate
&= ~CAPTRIM_CAL
;
2184 *tune_state
= CT_TUNER_STEP_0
;
2190 static int dib0090_get_temperature(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2195 switch (*tune_state
) {
2196 case CT_TUNER_START
:
2197 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
2198 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x8 << 3));
2200 state
->bias
= dib0090_read_reg(state
, 0x13);
2201 dib0090_write_reg(state
, 0x13, state
->bias
| (0x3 << 8));
2203 *tune_state
= CT_TUNER_STEP_0
;
2204 /* wait for the WBDMUX to switch and for the ADC to sample */
2207 case CT_TUNER_STEP_0
:
2208 state
->adc_diff
= dib0090_get_slow_adc_val(state
);
2209 dib0090_write_reg(state
, 0x13, (state
->bias
& ~(0x3 << 8)) | (0x2 << 8));
2210 *tune_state
= CT_TUNER_STEP_1
;
2213 case CT_TUNER_STEP_1
:
2214 val
= dib0090_get_slow_adc_val(state
);
2215 state
->temperature
= ((s16
) ((val
- state
->adc_diff
) * 180) >> 8) + 55;
2217 dprintk("temperature: %d C\n", state
->temperature
- 30);
2219 *tune_state
= CT_TUNER_STEP_2
;
2222 case CT_TUNER_STEP_2
:
2223 dib0090_write_reg(state
, 0x13, state
->bias
);
2224 dib0090_write_reg(state
, 0x10, state
->wbdmux
); /* write back original WBDMUX */
2226 *tune_state
= CT_TUNER_START
;
2227 state
->calibrate
&= ~TEMP_CAL
;
2228 if (state
->config
->analog_output
== 0)
2229 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2240 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2241 static int dib0090_tune(struct dvb_frontend
*fe
)
2243 struct dib0090_state
*state
= fe
->tuner_priv
;
2244 const struct dib0090_tuning
*tune
= state
->current_tune_table_index
;
2245 const struct dib0090_pll
*pll
= state
->current_pll_table_index
;
2246 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
2248 u16 lo5
, lo6
, Den
, tmp
;
2249 u32 FBDiv
, Rest
, FREF
, VCOF_kHz
= 0;
2250 int ret
= 10; /* 1ms is the default delay most of the time */
2253 /************************* VCO ***************************/
2254 /* Default values for FG */
2255 /* from these are needed : */
2256 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2258 /* in any case we first need to do a calibration if needed */
2259 if (*tune_state
== CT_TUNER_START
) {
2260 /* deactivate DataTX before some calibrations */
2261 if (state
->calibrate
& (DC_CAL
| TEMP_CAL
| WBD_CAL
))
2262 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
2264 /* Activate DataTX in case a calibration has been done before */
2265 if (state
->config
->analog_output
== 0)
2266 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2269 if (state
->calibrate
& DC_CAL
)
2270 return dib0090_dc_offset_calibration(state
, tune_state
);
2271 else if (state
->calibrate
& WBD_CAL
) {
2272 if (state
->current_rf
== 0)
2273 state
->current_rf
= state
->fe
->dtv_property_cache
.frequency
/ 1000;
2274 return dib0090_wbd_calibration(state
, tune_state
);
2275 } else if (state
->calibrate
& TEMP_CAL
)
2276 return dib0090_get_temperature(state
, tune_state
);
2277 else if (state
->calibrate
& CAPTRIM_CAL
)
2278 return dib0090_captrim_search(state
, tune_state
);
2280 if (*tune_state
== CT_TUNER_START
) {
2281 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2282 if (state
->config
->use_pwm_agc
&& state
->identity
.in_soc
) {
2283 tmp
= dib0090_read_reg(state
, 0x39);
2284 if ((tmp
>> 10) & 0x1)
2285 dib0090_write_reg(state
, 0x39, tmp
& ~(1 << 10));
2288 state
->current_band
= (u8
) BAND_OF_FREQUENCY(state
->fe
->dtv_property_cache
.frequency
/ 1000);
2290 state
->fe
->dtv_property_cache
.frequency
/ 1000 + (state
->current_band
==
2291 BAND_UHF
? state
->config
->freq_offset_khz_uhf
: state
->config
->
2292 freq_offset_khz_vhf
);
2294 /* in ISDB-T 1seg we shift tuning frequency */
2295 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
&& state
->fe
->dtv_property_cache
.isdbt_sb_mode
== 1
2296 && state
->fe
->dtv_property_cache
.isdbt_partial_reception
== 0)) {
2297 const struct dib0090_low_if_offset_table
*LUT_offset
= state
->config
->low_if
;
2298 u8 found_offset
= 0;
2299 u32 margin_khz
= 100;
2301 if (LUT_offset
!= NULL
) {
2302 while (LUT_offset
->RF_freq
!= 0xffff) {
2303 if (((state
->rf_request
> (LUT_offset
->RF_freq
- margin_khz
))
2304 && (state
->rf_request
< (LUT_offset
->RF_freq
+ margin_khz
)))
2305 && LUT_offset
->std
== state
->fe
->dtv_property_cache
.delivery_system
) {
2306 state
->rf_request
+= LUT_offset
->offset_khz
;
2314 if (found_offset
== 0)
2315 state
->rf_request
+= 400;
2317 if (state
->current_rf
!= state
->rf_request
|| (state
->current_standard
!= state
->fe
->dtv_property_cache
.delivery_system
)) {
2318 state
->tuner_is_tuned
= 0;
2319 state
->current_rf
= 0;
2320 state
->current_standard
= 0;
2322 tune
= dib0090_tuning_table
;
2323 if (state
->identity
.p1g
)
2324 tune
= dib0090_p1g_tuning_table
;
2326 tmp
= (state
->identity
.version
>> 5) & 0x7;
2328 if (state
->identity
.in_soc
) {
2329 if (state
->config
->force_cband_input
) { /* Use the CBAND input for all band */
2330 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
2331 || state
->current_band
& BAND_UHF
) {
2332 state
->current_band
= BAND_CBAND
;
2333 if (state
->config
->is_dib7090e
)
2334 tune
= dib0090_tuning_table_cband_7090e_sensitivity
;
2336 tune
= dib0090_tuning_table_cband_7090
;
2338 } else { /* Use the CBAND input for all band under UHF */
2339 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
) {
2340 state
->current_band
= BAND_CBAND
;
2341 if (state
->config
->is_dib7090e
)
2342 tune
= dib0090_tuning_table_cband_7090e_sensitivity
;
2344 tune
= dib0090_tuning_table_cband_7090
;
2348 if (tmp
== 0x4 || tmp
== 0x7) {
2349 /* CBAND tuner version for VHF */
2350 if (state
->current_band
== BAND_FM
|| state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) {
2351 state
->current_band
= BAND_CBAND
; /* Force CBAND */
2353 tune
= dib0090_tuning_table_fm_vhf_on_cband
;
2354 if (state
->identity
.p1g
)
2355 tune
= dib0090_p1g_tuning_table_fm_vhf_on_cband
;
2359 pll
= dib0090_pll_table
;
2360 if (state
->identity
.p1g
)
2361 pll
= dib0090_p1g_pll_table
;
2363 /* Look for the interval */
2364 while (state
->rf_request
> tune
->max_freq
)
2366 while (state
->rf_request
> pll
->max_freq
)
2369 state
->current_tune_table_index
= tune
;
2370 state
->current_pll_table_index
= pll
;
2372 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->switch_trim
));
2374 VCOF_kHz
= (pll
->hfdiv
* state
->rf_request
) * 2;
2376 FREF
= state
->config
->io
.clock_khz
;
2377 if (state
->config
->fref_clock_ratio
!= 0)
2378 FREF
/= state
->config
->fref_clock_ratio
;
2380 FBDiv
= (VCOF_kHz
/ pll
->topresc
/ FREF
);
2381 Rest
= (VCOF_kHz
/ pll
->topresc
) - FBDiv
* FREF
;
2385 else if (Rest
< 2 * LPF
)
2387 else if (Rest
> (FREF
- LPF
)) {
2390 } else if (Rest
> (FREF
- 2 * LPF
))
2391 Rest
= FREF
- 2 * LPF
;
2392 Rest
= (Rest
* 6528) / (FREF
/ 10);
2395 /* external loop filter, otherwise:
2396 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2407 else if (state
->config
->analog_output
)
2413 if (state
->identity
.p1g
) { /* Bias is done automatically in P1G */
2414 if (state
->identity
.in_soc
) {
2415 if (state
->identity
.version
== SOC_8090_P1G_11R1
)
2423 lo5
|= (pll
->hfdiv_code
<< 11) | (pll
->vco_band
<< 7); /* bit 15 is the split to the slave, we do not do it here */
2425 if (!state
->config
->io
.pll_int_loop_filt
) {
2426 if (state
->identity
.in_soc
)
2428 else if (state
->identity
.p1g
|| (Rest
== 0))
2433 lo6
= (state
->config
->io
.pll_int_loop_filt
<< 3);
2438 lo6
|= (1 << 2) | 2;
2441 dib0090_write_reg(state
, 0x15, (u16
) FBDiv
);
2442 if (state
->config
->fref_clock_ratio
!= 0)
2443 dib0090_write_reg(state
, 0x16, (Den
<< 8) | state
->config
->fref_clock_ratio
);
2445 dib0090_write_reg(state
, 0x16, (Den
<< 8) | 1);
2446 dib0090_write_reg(state
, 0x17, (u16
) Rest
);
2447 dib0090_write_reg(state
, 0x19, lo5
);
2448 dib0090_write_reg(state
, 0x1c, lo6
);
2450 lo6
= tune
->tuner_enable
;
2451 if (state
->config
->analog_output
)
2452 lo6
= (lo6
& 0xff9f) | 0x2;
2454 dib0090_write_reg(state
, 0x24, lo6
| EN_LO
| state
->config
->use_pwm_agc
* EN_CRYSTAL
);
2458 state
->current_rf
= state
->rf_request
;
2459 state
->current_standard
= state
->fe
->dtv_property_cache
.delivery_system
;
2462 state
->calibrate
= CAPTRIM_CAL
; /* captrim serach now */
2465 else if (*tune_state
== CT_TUNER_STEP_0
) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2466 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
2468 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
2471 dib0090_write_reg(state
, 0x1e, 0x07ff);
2472 dprintk("Final Captrim: %d\n", (u32
) state
->fcaptrim
);
2473 dprintk("HFDIV code: %d\n", (u32
) pll
->hfdiv_code
);
2474 dprintk("VCO = %d\n", (u32
) pll
->vco_band
);
2475 dprintk("VCOF in kHz: %d ((%d*%d) << 1))\n", (u32
) ((pll
->hfdiv
* state
->rf_request
) * 2), (u32
) pll
->hfdiv
, (u32
) state
->rf_request
);
2476 dprintk("REFDIV: %d, FREF: %d\n", (u32
) 1, (u32
) state
->config
->io
.clock_khz
);
2477 dprintk("FBDIV: %d, Rest: %d\n", (u32
) dib0090_read_reg(state
, 0x15), (u32
) dib0090_read_reg(state
, 0x17));
2478 dprintk("Num: %d, Den: %d, SD: %d\n", (u32
) dib0090_read_reg(state
, 0x17), (u32
) (dib0090_read_reg(state
, 0x16) >> 8),
2479 (u32
) dib0090_read_reg(state
, 0x1c) & 0x3);
2481 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2485 if (wbd
->wbd_gain
!= 0)
2488 state
->wbdmux
= (c
<< 13) | (i
<< 11) | (WBD
| (state
->config
->use_pwm_agc
<< 1));
2489 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
2491 if ((tune
->tuner_enable
== EN_CAB
) && state
->identity
.p1g
) {
2492 dprintk("P1G : The cable band is selected and lna_tune = %d\n", tune
->lna_tune
);
2493 dib0090_write_reg(state
, 0x09, tune
->lna_bias
);
2494 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->lna_tune
<< 6) | (tune
->switch_trim
));
2496 dib0090_write_reg(state
, 0x09, (tune
->lna_tune
<< 5) | tune
->lna_bias
);
2498 dib0090_write_reg(state
, 0x0c, tune
->v2i
);
2499 dib0090_write_reg(state
, 0x0d, tune
->mix
);
2500 dib0090_write_reg(state
, 0x0e, tune
->load
);
2501 *tune_state
= CT_TUNER_STEP_1
;
2503 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2504 /* initialize the lt gain register */
2505 state
->rf_lt_def
= 0x7c00;
2507 dib0090_set_bandwidth(state
);
2508 state
->tuner_is_tuned
= 1;
2510 state
->calibrate
|= WBD_CAL
;
2511 state
->calibrate
|= TEMP_CAL
;
2512 *tune_state
= CT_TUNER_STOP
;
2514 ret
= FE_CALLBACK_TIME_NEVER
;
2518 static void dib0090_release(struct dvb_frontend
*fe
)
2520 kfree(fe
->tuner_priv
);
2521 fe
->tuner_priv
= NULL
;
2524 enum frontend_tune_state
dib0090_get_tune_state(struct dvb_frontend
*fe
)
2526 struct dib0090_state
*state
= fe
->tuner_priv
;
2528 return state
->tune_state
;
2531 EXPORT_SYMBOL(dib0090_get_tune_state
);
2533 int dib0090_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2535 struct dib0090_state
*state
= fe
->tuner_priv
;
2537 state
->tune_state
= tune_state
;
2541 EXPORT_SYMBOL(dib0090_set_tune_state
);
2543 static int dib0090_get_frequency(struct dvb_frontend
*fe
, u32
* frequency
)
2545 struct dib0090_state
*state
= fe
->tuner_priv
;
2547 *frequency
= 1000 * state
->current_rf
;
2551 static int dib0090_set_params(struct dvb_frontend
*fe
)
2553 struct dib0090_state
*state
= fe
->tuner_priv
;
2556 state
->tune_state
= CT_TUNER_START
;
2559 ret
= dib0090_tune(fe
);
2560 if (ret
== FE_CALLBACK_TIME_NEVER
)
2564 * Despite dib0090_tune returns time at a 0.1 ms range,
2565 * the actual sleep time depends on CONFIG_HZ. The worse case
2566 * is when CONFIG_HZ=100. In such case, the minimum granularity
2567 * is 10ms. On some real field tests, the tuner sometimes don't
2568 * lock when this timer is lower than 10ms. So, enforce a 10ms
2569 * granularity and use usleep_range() instead of msleep().
2571 ret
= 10 * (ret
+ 99)/100;
2572 usleep_range(ret
* 1000, (ret
+ 1) * 1000);
2573 } while (state
->tune_state
!= CT_TUNER_STOP
);
2578 static const struct dvb_tuner_ops dib0090_ops
= {
2580 .name
= "DiBcom DiB0090",
2581 .frequency_min
= 45000000,
2582 .frequency_max
= 860000000,
2583 .frequency_step
= 1000,
2585 .release
= dib0090_release
,
2587 .init
= dib0090_wakeup
,
2588 .sleep
= dib0090_sleep
,
2589 .set_params
= dib0090_set_params
,
2590 .get_frequency
= dib0090_get_frequency
,
2593 static const struct dvb_tuner_ops dib0090_fw_ops
= {
2595 .name
= "DiBcom DiB0090",
2596 .frequency_min
= 45000000,
2597 .frequency_max
= 860000000,
2598 .frequency_step
= 1000,
2600 .release
= dib0090_release
,
2605 .get_frequency
= NULL
,
2608 static const struct dib0090_wbd_slope dib0090_wbd_table_default
[] = {
2609 {470, 0, 250, 0, 100, 4},
2610 {860, 51, 866, 21, 375, 4},
2611 {1700, 0, 800, 0, 850, 4},
2612 {2900, 0, 250, 0, 100, 6},
2613 {0xFFFF, 0, 0, 0, 0, 0},
2616 struct dvb_frontend
*dib0090_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2618 struct dib0090_state
*st
= kzalloc(sizeof(struct dib0090_state
), GFP_KERNEL
);
2622 st
->config
= config
;
2625 mutex_init(&st
->i2c_buffer_lock
);
2626 fe
->tuner_priv
= st
;
2628 if (config
->wbd
== NULL
)
2629 st
->current_wbd_table
= dib0090_wbd_table_default
;
2631 st
->current_wbd_table
= config
->wbd
;
2633 if (dib0090_reset(fe
) != 0)
2636 pr_info("DiB0090: successfully identified\n");
2637 memcpy(&fe
->ops
.tuner_ops
, &dib0090_ops
, sizeof(struct dvb_tuner_ops
));
2642 fe
->tuner_priv
= NULL
;
2646 EXPORT_SYMBOL(dib0090_register
);
2648 struct dvb_frontend
*dib0090_fw_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2650 struct dib0090_fw_state
*st
= kzalloc(sizeof(struct dib0090_fw_state
), GFP_KERNEL
);
2654 st
->config
= config
;
2657 mutex_init(&st
->i2c_buffer_lock
);
2658 fe
->tuner_priv
= st
;
2660 if (dib0090_fw_reset_digital(fe
, st
->config
) != 0)
2663 dprintk("DiB0090 FW: successfully identified\n");
2664 memcpy(&fe
->ops
.tuner_ops
, &dib0090_fw_ops
, sizeof(struct dvb_tuner_ops
));
2669 fe
->tuner_priv
= NULL
;
2672 EXPORT_SYMBOL(dib0090_fw_register
);
2674 MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2675 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
2676 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2677 MODULE_LICENSE("GPL");