2 * Analog Devices AD9389B/AD9889B video encoder driver
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * References (c = chapter, p = page):
22 * REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B,
23 * HDMI Transitter, Rev. A, October 2010
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/delay.h>
31 #include <linux/videodev2.h>
32 #include <linux/workqueue.h>
33 #include <linux/v4l2-dv-timings.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-common.h>
36 #include <media/v4l2-dv-timings.h>
37 #include <media/v4l2-ctrls.h>
38 #include <media/i2c/ad9389b.h>
41 module_param(debug
, int, 0644);
42 MODULE_PARM_DESC(debug
, "debug level (0-2)");
44 MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
47 MODULE_LICENSE("GPL");
49 #define MASK_AD9389B_EDID_RDY_INT 0x04
50 #define MASK_AD9389B_MSEN_INT 0x40
51 #define MASK_AD9389B_HPD_INT 0x80
53 #define MASK_AD9389B_HPD_DETECT 0x40
54 #define MASK_AD9389B_MSEN_DETECT 0x20
55 #define MASK_AD9389B_EDID_RDY 0x10
57 #define EDID_MAX_RETRIES (8)
58 #define EDID_DELAY 250
59 #define EDID_MAX_SEGM 8
62 **********************************************************************
64 * Arrays with configuration parameters for the AD9389B
66 **********************************************************************
69 struct ad9389b_state_edid
{
70 /* total number of blocks */
72 /* Number of segments read */
74 u8 data
[EDID_MAX_SEGM
* 256];
75 /* Number of EDID read retries left */
76 unsigned read_retries
;
79 struct ad9389b_state
{
80 struct ad9389b_platform_data pdata
;
81 struct v4l2_subdev sd
;
83 struct v4l2_ctrl_handler hdl
;
85 /* Is the ad9389b powered on? */
87 /* Did we receive hotplug and rx-sense signals? */
89 /* timings from s_dv_timings */
90 struct v4l2_dv_timings dv_timings
;
92 struct v4l2_ctrl
*hdmi_mode_ctrl
;
93 struct v4l2_ctrl
*hotplug_ctrl
;
94 struct v4l2_ctrl
*rx_sense_ctrl
;
95 struct v4l2_ctrl
*have_edid0_ctrl
;
96 struct v4l2_ctrl
*rgb_quantization_range_ctrl
;
97 struct i2c_client
*edid_i2c_client
;
98 struct ad9389b_state_edid edid
;
99 /* Running counter of the number of detected EDIDs (for debugging) */
100 unsigned edid_detect_counter
;
101 struct delayed_work edid_handler
; /* work entry */
104 static void ad9389b_check_monitor_present_status(struct v4l2_subdev
*sd
);
105 static bool ad9389b_check_edid_status(struct v4l2_subdev
*sd
);
106 static void ad9389b_setup(struct v4l2_subdev
*sd
);
107 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
);
108 static int ad9389b_s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
);
110 static inline struct ad9389b_state
*get_ad9389b_state(struct v4l2_subdev
*sd
)
112 return container_of(sd
, struct ad9389b_state
, sd
);
115 static inline struct v4l2_subdev
*to_sd(struct v4l2_ctrl
*ctrl
)
117 return &container_of(ctrl
->handler
, struct ad9389b_state
, hdl
)->sd
;
120 /* ------------------------ I2C ----------------------------------------------- */
122 static int ad9389b_rd(struct v4l2_subdev
*sd
, u8 reg
)
124 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
126 return i2c_smbus_read_byte_data(client
, reg
);
129 static int ad9389b_wr(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
131 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
135 for (i
= 0; i
< 3; i
++) {
136 ret
= i2c_smbus_write_byte_data(client
, reg
, val
);
140 v4l2_err(sd
, "%s: failed reg 0x%x, val 0x%x\n", __func__
, reg
, val
);
144 /* To set specific bits in the register, a clear-mask is given (to be AND-ed),
145 and then the value-mask (to be OR-ed). */
146 static inline void ad9389b_wr_and_or(struct v4l2_subdev
*sd
, u8 reg
,
147 u8 clr_mask
, u8 val_mask
)
149 ad9389b_wr(sd
, reg
, (ad9389b_rd(sd
, reg
) & clr_mask
) | val_mask
);
152 static void ad9389b_edid_rd(struct v4l2_subdev
*sd
, u16 len
, u8
*buf
)
154 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
157 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
159 for (i
= 0; i
< len
; i
++)
160 buf
[i
] = i2c_smbus_read_byte_data(state
->edid_i2c_client
, i
);
163 static inline bool ad9389b_have_hotplug(struct v4l2_subdev
*sd
)
165 return ad9389b_rd(sd
, 0x42) & MASK_AD9389B_HPD_DETECT
;
168 static inline bool ad9389b_have_rx_sense(struct v4l2_subdev
*sd
)
170 return ad9389b_rd(sd
, 0x42) & MASK_AD9389B_MSEN_DETECT
;
173 static void ad9389b_csc_conversion_mode(struct v4l2_subdev
*sd
, u8 mode
)
175 ad9389b_wr_and_or(sd
, 0x17, 0xe7, (mode
& 0x3)<<3);
176 ad9389b_wr_and_or(sd
, 0x18, 0x9f, (mode
& 0x3)<<5);
179 static void ad9389b_csc_coeff(struct v4l2_subdev
*sd
,
180 u16 A1
, u16 A2
, u16 A3
, u16 A4
,
181 u16 B1
, u16 B2
, u16 B3
, u16 B4
,
182 u16 C1
, u16 C2
, u16 C3
, u16 C4
)
185 ad9389b_wr_and_or(sd
, 0x18, 0xe0, A1
>>8);
186 ad9389b_wr(sd
, 0x19, A1
);
187 ad9389b_wr_and_or(sd
, 0x1A, 0xe0, A2
>>8);
188 ad9389b_wr(sd
, 0x1B, A2
);
189 ad9389b_wr_and_or(sd
, 0x1c, 0xe0, A3
>>8);
190 ad9389b_wr(sd
, 0x1d, A3
);
191 ad9389b_wr_and_or(sd
, 0x1e, 0xe0, A4
>>8);
192 ad9389b_wr(sd
, 0x1f, A4
);
195 ad9389b_wr_and_or(sd
, 0x20, 0xe0, B1
>>8);
196 ad9389b_wr(sd
, 0x21, B1
);
197 ad9389b_wr_and_or(sd
, 0x22, 0xe0, B2
>>8);
198 ad9389b_wr(sd
, 0x23, B2
);
199 ad9389b_wr_and_or(sd
, 0x24, 0xe0, B3
>>8);
200 ad9389b_wr(sd
, 0x25, B3
);
201 ad9389b_wr_and_or(sd
, 0x26, 0xe0, B4
>>8);
202 ad9389b_wr(sd
, 0x27, B4
);
205 ad9389b_wr_and_or(sd
, 0x28, 0xe0, C1
>>8);
206 ad9389b_wr(sd
, 0x29, C1
);
207 ad9389b_wr_and_or(sd
, 0x2A, 0xe0, C2
>>8);
208 ad9389b_wr(sd
, 0x2B, C2
);
209 ad9389b_wr_and_or(sd
, 0x2C, 0xe0, C3
>>8);
210 ad9389b_wr(sd
, 0x2D, C3
);
211 ad9389b_wr_and_or(sd
, 0x2E, 0xe0, C4
>>8);
212 ad9389b_wr(sd
, 0x2F, C4
);
215 static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev
*sd
, bool enable
)
220 ad9389b_csc_conversion_mode(sd
, csc_mode
);
221 ad9389b_csc_coeff(sd
,
224 0, 0, 4096-564, 256);
226 ad9389b_wr_and_or(sd
, 0x3b, 0xfe, 0x1);
227 /* AVI infoframe: Limited range RGB (16-235) */
228 ad9389b_wr_and_or(sd
, 0xcd, 0xf9, 0x02);
231 ad9389b_wr_and_or(sd
, 0x3b, 0xfe, 0x0);
232 /* AVI infoframe: Full range RGB (0-255) */
233 ad9389b_wr_and_or(sd
, 0xcd, 0xf9, 0x04);
237 static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev
*sd
)
239 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
241 if (state
->dv_timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
242 /* CE format, not IT */
243 ad9389b_wr_and_or(sd
, 0xcd, 0xbf, 0x00);
246 ad9389b_wr_and_or(sd
, 0xcd, 0xbf, 0x40);
250 static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev
*sd
, struct v4l2_ctrl
*ctrl
)
252 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
255 case V4L2_DV_RGB_RANGE_AUTO
:
257 if (state
->dv_timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
258 /* CE format, RGB limited range (16-235) */
259 ad9389b_csc_rgb_full2limit(sd
, true);
261 /* not CE format, RGB full range (0-255) */
262 ad9389b_csc_rgb_full2limit(sd
, false);
265 case V4L2_DV_RGB_RANGE_LIMITED
:
266 /* RGB limited range (16-235) */
267 ad9389b_csc_rgb_full2limit(sd
, true);
269 case V4L2_DV_RGB_RANGE_FULL
:
270 /* RGB full range (0-255) */
271 ad9389b_csc_rgb_full2limit(sd
, false);
279 static void ad9389b_set_manual_pll_gear(struct v4l2_subdev
*sd
, u32 pixelclock
)
283 /* Workaround for TMDS PLL problem
284 * The TMDS PLL in AD9389b change gear when the chip is heated above a
285 * certain temperature. The output is disabled when the PLL change gear
286 * so the monitor has to lock on the signal again. A workaround for
287 * this is to use the manual PLL gears. This is a solution from Analog
288 * Devices that is not documented in the datasheets.
289 * 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear
291 * The pixel frequency ranges are based on readout of the gear the
292 * automatic gearing selects for different pixel clocks
293 * (read from 0x9e [3:1]).
296 if (pixelclock
> 140000000)
297 gear
= 0xc0; /* 4th gear */
298 else if (pixelclock
> 117000000)
299 gear
= 0xb0; /* 3rd gear */
300 else if (pixelclock
> 87000000)
301 gear
= 0xa0; /* 2nd gear */
302 else if (pixelclock
> 60000000)
303 gear
= 0x90; /* 1st gear */
305 gear
= 0x80; /* 0th gear */
307 ad9389b_wr_and_or(sd
, 0x98, 0x0f, gear
);
310 /* ------------------------------ CTRL OPS ------------------------------ */
312 static int ad9389b_s_ctrl(struct v4l2_ctrl
*ctrl
)
314 struct v4l2_subdev
*sd
= to_sd(ctrl
);
315 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
317 v4l2_dbg(1, debug
, sd
,
318 "%s: ctrl id: %d, ctrl->val %d\n", __func__
, ctrl
->id
, ctrl
->val
);
320 if (state
->hdmi_mode_ctrl
== ctrl
) {
321 /* Set HDMI or DVI-D */
322 ad9389b_wr_and_or(sd
, 0xaf, 0xfd,
323 ctrl
->val
== V4L2_DV_TX_MODE_HDMI
? 0x02 : 0x00);
326 if (state
->rgb_quantization_range_ctrl
== ctrl
)
327 return ad9389b_set_rgb_quantization_mode(sd
, ctrl
);
331 static const struct v4l2_ctrl_ops ad9389b_ctrl_ops
= {
332 .s_ctrl
= ad9389b_s_ctrl
,
335 /* ---------------------------- CORE OPS ------------------------------------------- */
337 #ifdef CONFIG_VIDEO_ADV_DEBUG
338 static int ad9389b_g_register(struct v4l2_subdev
*sd
, struct v4l2_dbg_register
*reg
)
340 reg
->val
= ad9389b_rd(sd
, reg
->reg
& 0xff);
345 static int ad9389b_s_register(struct v4l2_subdev
*sd
, const struct v4l2_dbg_register
*reg
)
347 ad9389b_wr(sd
, reg
->reg
& 0xff, reg
->val
& 0xff);
352 static int ad9389b_log_status(struct v4l2_subdev
*sd
)
354 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
355 struct ad9389b_state_edid
*edid
= &state
->edid
;
357 static const char * const states
[] = {
363 "initializing HDCP repeater",
364 "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
366 static const char * const errors
[] = {
373 "max repeater cascade exceeded",
376 "9", "A", "B", "C", "D", "E", "F"
381 v4l2_info(sd
, "chip revision %d\n", state
->chip_revision
);
382 v4l2_info(sd
, "power %s\n", state
->power_on
? "on" : "off");
383 v4l2_info(sd
, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n",
384 (ad9389b_rd(sd
, 0x42) & MASK_AD9389B_HPD_DETECT
) ?
386 (ad9389b_rd(sd
, 0x42) & MASK_AD9389B_MSEN_DETECT
) ?
388 edid
->segments
? "found" : "no", edid
->blocks
);
389 v4l2_info(sd
, "%s output %s\n",
390 (ad9389b_rd(sd
, 0xaf) & 0x02) ?
392 (ad9389b_rd(sd
, 0xa1) & 0x3c) ?
393 "disabled" : "enabled");
394 v4l2_info(sd
, "ad9389b: %s\n", (ad9389b_rd(sd
, 0xb8) & 0x40) ?
395 "encrypted" : "no encryption");
396 v4l2_info(sd
, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n",
397 states
[ad9389b_rd(sd
, 0xc8) & 0xf],
398 errors
[ad9389b_rd(sd
, 0xc8) >> 4],
399 state
->edid_detect_counter
,
400 ad9389b_rd(sd
, 0x94), ad9389b_rd(sd
, 0x96));
401 manual_gear
= ad9389b_rd(sd
, 0x98) & 0x80;
402 v4l2_info(sd
, "ad9389b: RGB quantization: %s range\n",
403 ad9389b_rd(sd
, 0x3b) & 0x01 ? "limited" : "full");
404 v4l2_info(sd
, "ad9389b: %s gear %d\n",
405 manual_gear
? "manual" : "automatic",
406 manual_gear
? ((ad9389b_rd(sd
, 0x98) & 0x70) >> 4) :
407 ((ad9389b_rd(sd
, 0x9e) & 0x0e) >> 1));
408 if (ad9389b_rd(sd
, 0xaf) & 0x02) {
410 u8 manual_cts
= ad9389b_rd(sd
, 0x0a) & 0x80;
411 u32 N
= (ad9389b_rd(sd
, 0x01) & 0xf) << 16 |
412 ad9389b_rd(sd
, 0x02) << 8 |
413 ad9389b_rd(sd
, 0x03);
414 u8 vic_detect
= ad9389b_rd(sd
, 0x3e) >> 2;
415 u8 vic_sent
= ad9389b_rd(sd
, 0x3d) & 0x3f;
419 CTS
= (ad9389b_rd(sd
, 0x07) & 0xf) << 16 |
420 ad9389b_rd(sd
, 0x08) << 8 |
421 ad9389b_rd(sd
, 0x09);
423 CTS
= (ad9389b_rd(sd
, 0x04) & 0xf) << 16 |
424 ad9389b_rd(sd
, 0x05) << 8 |
425 ad9389b_rd(sd
, 0x06);
426 N
= (ad9389b_rd(sd
, 0x01) & 0xf) << 16 |
427 ad9389b_rd(sd
, 0x02) << 8 |
428 ad9389b_rd(sd
, 0x03);
430 v4l2_info(sd
, "ad9389b: CTS %s mode: N %d, CTS %d\n",
431 manual_cts
? "manual" : "automatic", N
, CTS
);
433 v4l2_info(sd
, "ad9389b: VIC: detected %d, sent %d\n",
434 vic_detect
, vic_sent
);
436 if (state
->dv_timings
.type
== V4L2_DV_BT_656_1120
)
437 v4l2_print_dv_timings(sd
->name
, "timings: ",
438 &state
->dv_timings
, false);
440 v4l2_info(sd
, "no timings set\n");
444 /* Power up/down ad9389b */
445 static int ad9389b_s_power(struct v4l2_subdev
*sd
, int on
)
447 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
448 struct ad9389b_platform_data
*pdata
= &state
->pdata
;
449 const int retries
= 20;
452 v4l2_dbg(1, debug
, sd
, "%s: power %s\n", __func__
, on
? "on" : "off");
454 state
->power_on
= on
;
458 ad9389b_wr_and_or(sd
, 0x41, 0xbf, 0x40);
463 /* The ad9389b does not always come up immediately.
464 Retry multiple times. */
465 for (i
= 0; i
< retries
; i
++) {
466 ad9389b_wr_and_or(sd
, 0x41, 0xbf, 0x0);
467 if ((ad9389b_rd(sd
, 0x41) & 0x40) == 0)
469 ad9389b_wr_and_or(sd
, 0x41, 0xbf, 0x40);
473 v4l2_dbg(1, debug
, sd
, "failed to powerup the ad9389b\n");
474 ad9389b_s_power(sd
, 0);
478 v4l2_dbg(1, debug
, sd
,
479 "needed %d retries to powerup the ad9389b\n", i
);
481 /* Select chip: AD9389B */
482 ad9389b_wr_and_or(sd
, 0xba, 0xef, 0x10);
484 /* Reserved registers that must be set according to REF_01 p. 11*/
485 ad9389b_wr_and_or(sd
, 0x98, 0xf0, 0x07);
486 ad9389b_wr(sd
, 0x9c, 0x38);
487 ad9389b_wr_and_or(sd
, 0x9d, 0xfc, 0x01);
489 /* Differential output drive strength */
490 if (pdata
->diff_data_drive_strength
> 0)
491 ad9389b_wr(sd
, 0xa2, pdata
->diff_data_drive_strength
);
493 ad9389b_wr(sd
, 0xa2, 0x87);
495 if (pdata
->diff_clk_drive_strength
> 0)
496 ad9389b_wr(sd
, 0xa3, pdata
->diff_clk_drive_strength
);
498 ad9389b_wr(sd
, 0xa3, 0x87);
500 ad9389b_wr(sd
, 0x0a, 0x01);
501 ad9389b_wr(sd
, 0xbb, 0xff);
503 /* Set number of attempts to read the EDID */
504 ad9389b_wr(sd
, 0xc9, 0xf);
508 /* Enable interrupts */
509 static void ad9389b_set_isr(struct v4l2_subdev
*sd
, bool enable
)
511 u8 irqs
= MASK_AD9389B_HPD_INT
| MASK_AD9389B_MSEN_INT
;
515 /* The datasheet says that the EDID ready interrupt should be
516 disabled if there is no hotplug. */
519 else if (ad9389b_have_hotplug(sd
))
520 irqs
|= MASK_AD9389B_EDID_RDY_INT
;
523 * This i2c write can fail (approx. 1 in 1000 writes). But it
524 * is essential that this register is correct, so retry it
527 * Note that the i2c write does not report an error, but the readback
528 * clearly shows the wrong value.
531 ad9389b_wr(sd
, 0x94, irqs
);
532 irqs_rd
= ad9389b_rd(sd
, 0x94);
533 } while (retries
-- && irqs_rd
!= irqs
);
536 v4l2_err(sd
, "Could not set interrupts: hw failure?\n");
539 /* Interrupt handler */
540 static int ad9389b_isr(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
544 /* disable interrupts to prevent a race condition */
545 ad9389b_set_isr(sd
, false);
546 irq_status
= ad9389b_rd(sd
, 0x96);
547 /* clear detected interrupts */
548 ad9389b_wr(sd
, 0x96, irq_status
);
549 /* enable interrupts */
550 ad9389b_set_isr(sd
, true);
552 v4l2_dbg(1, debug
, sd
, "%s: irq_status 0x%x\n", __func__
, irq_status
);
554 if (irq_status
& (MASK_AD9389B_HPD_INT
))
555 ad9389b_check_monitor_present_status(sd
);
556 if (irq_status
& MASK_AD9389B_EDID_RDY_INT
)
557 ad9389b_check_edid_status(sd
);
563 static const struct v4l2_subdev_core_ops ad9389b_core_ops
= {
564 .log_status
= ad9389b_log_status
,
565 #ifdef CONFIG_VIDEO_ADV_DEBUG
566 .g_register
= ad9389b_g_register
,
567 .s_register
= ad9389b_s_register
,
569 .s_power
= ad9389b_s_power
,
570 .interrupt_service_routine
= ad9389b_isr
,
573 /* ------------------------------ VIDEO OPS ------------------------------ */
575 /* Enable/disable ad9389b output */
576 static int ad9389b_s_stream(struct v4l2_subdev
*sd
, int enable
)
578 v4l2_dbg(1, debug
, sd
, "%s: %sable\n", __func__
, (enable
? "en" : "dis"));
580 ad9389b_wr_and_or(sd
, 0xa1, ~0x3c, (enable
? 0 : 0x3c));
582 ad9389b_check_monitor_present_status(sd
);
584 ad9389b_s_power(sd
, 0);
589 static const struct v4l2_dv_timings_cap ad9389b_timings_cap
= {
590 .type
= V4L2_DV_BT_656_1120
,
591 /* keep this initialization for compatibility with GCC < 4.4.6 */
593 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
594 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
595 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
596 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
597 V4L2_DV_BT_CAP_CUSTOM
)
600 static int ad9389b_s_dv_timings(struct v4l2_subdev
*sd
,
601 struct v4l2_dv_timings
*timings
)
603 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
605 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
607 /* quick sanity check */
608 if (!v4l2_valid_dv_timings(timings
, &ad9389b_timings_cap
, NULL
, NULL
))
611 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
612 if the format is one of the CEA or DMT timings. */
613 v4l2_find_dv_timings_cap(timings
, &ad9389b_timings_cap
, 0, NULL
, NULL
);
615 timings
->bt
.flags
&= ~V4L2_DV_FL_REDUCED_FPS
;
618 state
->dv_timings
= *timings
;
620 /* update quantization range based on new dv_timings */
621 ad9389b_set_rgb_quantization_mode(sd
, state
->rgb_quantization_range_ctrl
);
623 /* update PLL gear based on new dv_timings */
624 if (state
->pdata
.tmds_pll_gear
== AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC
)
625 ad9389b_set_manual_pll_gear(sd
, (u32
)timings
->bt
.pixelclock
);
627 /* update AVI infoframe */
628 ad9389b_set_IT_content_AVI_InfoFrame(sd
);
633 static int ad9389b_g_dv_timings(struct v4l2_subdev
*sd
,
634 struct v4l2_dv_timings
*timings
)
636 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
638 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
643 *timings
= state
->dv_timings
;
648 static int ad9389b_enum_dv_timings(struct v4l2_subdev
*sd
,
649 struct v4l2_enum_dv_timings
*timings
)
651 if (timings
->pad
!= 0)
654 return v4l2_enum_dv_timings_cap(timings
, &ad9389b_timings_cap
,
658 static int ad9389b_dv_timings_cap(struct v4l2_subdev
*sd
,
659 struct v4l2_dv_timings_cap
*cap
)
664 *cap
= ad9389b_timings_cap
;
668 static const struct v4l2_subdev_video_ops ad9389b_video_ops
= {
669 .s_stream
= ad9389b_s_stream
,
670 .s_dv_timings
= ad9389b_s_dv_timings
,
671 .g_dv_timings
= ad9389b_g_dv_timings
,
674 /* ------------------------------ PAD OPS ------------------------------ */
676 static int ad9389b_get_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
678 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
682 if (edid
->blocks
== 0 || edid
->blocks
> 256)
684 if (!state
->edid
.segments
) {
685 v4l2_dbg(1, debug
, sd
, "EDID segment 0 not found\n");
688 if (edid
->start_block
>= state
->edid
.segments
* 2)
690 if (edid
->blocks
+ edid
->start_block
>= state
->edid
.segments
* 2)
691 edid
->blocks
= state
->edid
.segments
* 2 - edid
->start_block
;
692 memcpy(edid
->edid
, &state
->edid
.data
[edid
->start_block
* 128],
697 static const struct v4l2_subdev_pad_ops ad9389b_pad_ops
= {
698 .get_edid
= ad9389b_get_edid
,
699 .enum_dv_timings
= ad9389b_enum_dv_timings
,
700 .dv_timings_cap
= ad9389b_dv_timings_cap
,
703 /* ------------------------------ AUDIO OPS ------------------------------ */
705 static int ad9389b_s_audio_stream(struct v4l2_subdev
*sd
, int enable
)
707 v4l2_dbg(1, debug
, sd
, "%s: %sable\n", __func__
, (enable
? "en" : "dis"));
710 ad9389b_wr_and_or(sd
, 0x45, 0x3f, 0x80);
712 ad9389b_wr_and_or(sd
, 0x45, 0x3f, 0x40);
717 static int ad9389b_s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
)
722 case 32000: N
= 4096; break;
723 case 44100: N
= 6272; break;
724 case 48000: N
= 6144; break;
725 case 88200: N
= 12544; break;
726 case 96000: N
= 12288; break;
727 case 176400: N
= 25088; break;
728 case 192000: N
= 24576; break;
733 /* Set N (used with CTS to regenerate the audio clock) */
734 ad9389b_wr(sd
, 0x01, (N
>> 16) & 0xf);
735 ad9389b_wr(sd
, 0x02, (N
>> 8) & 0xff);
736 ad9389b_wr(sd
, 0x03, N
& 0xff);
741 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev
*sd
, u32 freq
)
746 case 32000: i2s_sf
= 0x30; break;
747 case 44100: i2s_sf
= 0x00; break;
748 case 48000: i2s_sf
= 0x20; break;
749 case 88200: i2s_sf
= 0x80; break;
750 case 96000: i2s_sf
= 0xa0; break;
751 case 176400: i2s_sf
= 0xc0; break;
752 case 192000: i2s_sf
= 0xe0; break;
757 /* Set sampling frequency for I2S audio to 48 kHz */
758 ad9389b_wr_and_or(sd
, 0x15, 0xf, i2s_sf
);
763 static int ad9389b_s_routing(struct v4l2_subdev
*sd
, u32 input
, u32 output
, u32 config
)
765 /* TODO based on input/output/config */
766 /* TODO See datasheet "Programmers guide" p. 39-40 */
768 /* Only 2 channels in use for application */
769 ad9389b_wr_and_or(sd
, 0x50, 0x1f, 0x20);
770 /* Speaker mapping */
771 ad9389b_wr(sd
, 0x51, 0x00);
773 /* TODO Where should this be placed? */
774 /* 16 bit audio word length */
775 ad9389b_wr_and_or(sd
, 0x14, 0xf0, 0x02);
780 static const struct v4l2_subdev_audio_ops ad9389b_audio_ops
= {
781 .s_stream
= ad9389b_s_audio_stream
,
782 .s_clock_freq
= ad9389b_s_clock_freq
,
783 .s_i2s_clock_freq
= ad9389b_s_i2s_clock_freq
,
784 .s_routing
= ad9389b_s_routing
,
787 /* --------------------- SUBDEV OPS --------------------------------------- */
789 static const struct v4l2_subdev_ops ad9389b_ops
= {
790 .core
= &ad9389b_core_ops
,
791 .video
= &ad9389b_video_ops
,
792 .audio
= &ad9389b_audio_ops
,
793 .pad
= &ad9389b_pad_ops
,
796 /* ----------------------------------------------------------------------- */
797 static void ad9389b_dbg_dump_edid(int lvl
, int debug
, struct v4l2_subdev
*sd
,
798 int segment
, u8
*buf
)
805 v4l2_dbg(lvl
, debug
, sd
, "edid segment %d\n", segment
);
806 for (i
= 0; i
< 256; i
+= 16) {
811 v4l2_dbg(lvl
, debug
, sd
, "\n");
812 for (j
= i
; j
< i
+ 16; j
++) {
813 sprintf(bp
, "0x%02x, ", buf
[j
]);
817 v4l2_dbg(lvl
, debug
, sd
, "%s\n", b
);
821 static void ad9389b_edid_handler(struct work_struct
*work
)
823 struct delayed_work
*dwork
= to_delayed_work(work
);
824 struct ad9389b_state
*state
=
825 container_of(dwork
, struct ad9389b_state
, edid_handler
);
826 struct v4l2_subdev
*sd
= &state
->sd
;
827 struct ad9389b_edid_detect ed
;
829 v4l2_dbg(1, debug
, sd
, "%s:\n", __func__
);
831 if (ad9389b_check_edid_status(sd
)) {
832 /* Return if we received the EDID. */
836 if (ad9389b_have_hotplug(sd
)) {
837 /* We must retry reading the EDID several times, it is possible
838 * that initially the EDID couldn't be read due to i2c errors
839 * (DVI connectors are particularly prone to this problem). */
840 if (state
->edid
.read_retries
) {
841 state
->edid
.read_retries
--;
842 v4l2_dbg(1, debug
, sd
, "%s: edid read failed\n", __func__
);
843 ad9389b_s_power(sd
, false);
844 ad9389b_s_power(sd
, true);
845 schedule_delayed_work(&state
->edid_handler
, EDID_DELAY
);
850 /* We failed to read the EDID, so send an event for this. */
852 ed
.segment
= ad9389b_rd(sd
, 0xc4);
853 v4l2_subdev_notify(sd
, AD9389B_EDID_DETECT
, (void *)&ed
);
854 v4l2_dbg(1, debug
, sd
, "%s: no edid found\n", __func__
);
857 static void ad9389b_audio_setup(struct v4l2_subdev
*sd
)
859 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
861 ad9389b_s_i2s_clock_freq(sd
, 48000);
862 ad9389b_s_clock_freq(sd
, 48000);
863 ad9389b_s_routing(sd
, 0, 0, 0);
866 /* Initial setup of AD9389b */
868 /* Configure hdmi transmitter. */
869 static void ad9389b_setup(struct v4l2_subdev
*sd
)
871 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
873 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
875 /* Input format: RGB 4:4:4 */
876 ad9389b_wr_and_or(sd
, 0x15, 0xf1, 0x0);
877 /* Output format: RGB 4:4:4 */
878 ad9389b_wr_and_or(sd
, 0x16, 0x3f, 0x0);
879 /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion,
880 Aspect ratio: 16:9 */
881 ad9389b_wr_and_or(sd
, 0x17, 0xf9, 0x06);
882 /* Output format: RGB 4:4:4, Active Format Information is valid. */
883 ad9389b_wr_and_or(sd
, 0x45, 0xc7, 0x08);
885 ad9389b_wr_and_or(sd
, 0x46, 0x3f, 0x80);
886 /* Setup video format */
887 ad9389b_wr(sd
, 0x3c, 0x0);
888 /* Active format aspect ratio: same as picure. */
889 ad9389b_wr(sd
, 0x47, 0x80);
891 ad9389b_wr_and_or(sd
, 0xaf, 0xef, 0x0);
892 /* Positive clk edge capture for input video clock */
893 ad9389b_wr_and_or(sd
, 0xba, 0x1f, 0x60);
895 ad9389b_audio_setup(sd
);
897 v4l2_ctrl_handler_setup(&state
->hdl
);
899 ad9389b_set_IT_content_AVI_InfoFrame(sd
);
902 static void ad9389b_notify_monitor_detect(struct v4l2_subdev
*sd
)
904 struct ad9389b_monitor_detect mdt
;
905 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
907 mdt
.present
= state
->have_monitor
;
908 v4l2_subdev_notify(sd
, AD9389B_MONITOR_DETECT
, (void *)&mdt
);
911 static void ad9389b_update_monitor_present_status(struct v4l2_subdev
*sd
)
913 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
914 /* read hotplug and rx-sense state */
915 u8 status
= ad9389b_rd(sd
, 0x42);
917 v4l2_dbg(1, debug
, sd
, "%s: status: 0x%x%s%s\n",
920 status
& MASK_AD9389B_HPD_DETECT
? ", hotplug" : "",
921 status
& MASK_AD9389B_MSEN_DETECT
? ", rx-sense" : "");
923 if (status
& MASK_AD9389B_HPD_DETECT
) {
924 v4l2_dbg(1, debug
, sd
, "%s: hotplug detected\n", __func__
);
925 state
->have_monitor
= true;
926 if (!ad9389b_s_power(sd
, true)) {
927 v4l2_dbg(1, debug
, sd
,
928 "%s: monitor detected, powerup failed\n", __func__
);
932 ad9389b_notify_monitor_detect(sd
);
933 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
934 schedule_delayed_work(&state
->edid_handler
, EDID_DELAY
);
935 } else if (!(status
& MASK_AD9389B_HPD_DETECT
)) {
936 v4l2_dbg(1, debug
, sd
, "%s: hotplug not detected\n", __func__
);
937 state
->have_monitor
= false;
938 ad9389b_notify_monitor_detect(sd
);
939 ad9389b_s_power(sd
, false);
940 memset(&state
->edid
, 0, sizeof(struct ad9389b_state_edid
));
943 /* update read only ctrls */
944 v4l2_ctrl_s_ctrl(state
->hotplug_ctrl
, ad9389b_have_hotplug(sd
) ? 0x1 : 0x0);
945 v4l2_ctrl_s_ctrl(state
->rx_sense_ctrl
, ad9389b_have_rx_sense(sd
) ? 0x1 : 0x0);
946 v4l2_ctrl_s_ctrl(state
->have_edid0_ctrl
, state
->edid
.segments
? 0x1 : 0x0);
948 /* update with setting from ctrls */
949 ad9389b_s_ctrl(state
->rgb_quantization_range_ctrl
);
950 ad9389b_s_ctrl(state
->hdmi_mode_ctrl
);
953 static void ad9389b_check_monitor_present_status(struct v4l2_subdev
*sd
)
955 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
958 ad9389b_update_monitor_present_status(sd
);
961 * Rapid toggling of the hotplug may leave the chip powered off,
962 * even if we think it is on. In that case reset and power up again.
964 while (state
->power_on
&& (ad9389b_rd(sd
, 0x41) & 0x40)) {
966 v4l2_err(sd
, "retried %d times, give up\n", retry
);
969 v4l2_dbg(1, debug
, sd
, "%s: reset and re-check status (%d)\n", __func__
, retry
);
970 ad9389b_notify_monitor_detect(sd
);
971 cancel_delayed_work_sync(&state
->edid_handler
);
972 memset(&state
->edid
, 0, sizeof(struct ad9389b_state_edid
));
973 ad9389b_s_power(sd
, false);
974 ad9389b_update_monitor_present_status(sd
);
978 static bool edid_block_verify_crc(u8
*edid_block
)
983 for (i
= 0; i
< 128; i
++)
984 sum
+= edid_block
[i
];
988 static bool edid_verify_crc(struct v4l2_subdev
*sd
, u32 segment
)
990 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
991 u32 blocks
= state
->edid
.blocks
;
992 u8
*data
= state
->edid
.data
;
994 if (edid_block_verify_crc(&data
[segment
* 256])) {
995 if ((segment
+ 1) * 2 <= blocks
)
996 return edid_block_verify_crc(&data
[segment
* 256 + 128]);
1002 static bool edid_verify_header(struct v4l2_subdev
*sd
, u32 segment
)
1004 static const u8 hdmi_header
[] = {
1005 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1007 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1008 u8
*data
= state
->edid
.data
;
1014 for (i
= 0; i
< ARRAY_SIZE(hdmi_header
); i
++)
1015 if (data
[i
] != hdmi_header
[i
])
1021 static bool ad9389b_check_edid_status(struct v4l2_subdev
*sd
)
1023 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1024 struct ad9389b_edid_detect ed
;
1026 u8 edidRdy
= ad9389b_rd(sd
, 0xc5);
1028 v4l2_dbg(1, debug
, sd
, "%s: edid ready (retries: %d)\n",
1029 __func__
, EDID_MAX_RETRIES
- state
->edid
.read_retries
);
1031 if (!(edidRdy
& MASK_AD9389B_EDID_RDY
))
1034 segment
= ad9389b_rd(sd
, 0xc4);
1035 if (segment
>= EDID_MAX_SEGM
) {
1036 v4l2_err(sd
, "edid segment number too big\n");
1039 v4l2_dbg(1, debug
, sd
, "%s: got segment %d\n", __func__
, segment
);
1040 ad9389b_edid_rd(sd
, 256, &state
->edid
.data
[segment
* 256]);
1041 ad9389b_dbg_dump_edid(2, debug
, sd
, segment
,
1042 &state
->edid
.data
[segment
* 256]);
1044 state
->edid
.blocks
= state
->edid
.data
[0x7e] + 1;
1045 v4l2_dbg(1, debug
, sd
, "%s: %d blocks in total\n",
1046 __func__
, state
->edid
.blocks
);
1048 if (!edid_verify_crc(sd
, segment
) ||
1049 !edid_verify_header(sd
, segment
)) {
1050 /* edid crc error, force reread of edid segment */
1051 v4l2_err(sd
, "%s: edid crc or header error\n", __func__
);
1052 ad9389b_s_power(sd
, false);
1053 ad9389b_s_power(sd
, true);
1056 /* one more segment read ok */
1057 state
->edid
.segments
= segment
+ 1;
1058 if (((state
->edid
.data
[0x7e] >> 1) + 1) > state
->edid
.segments
) {
1059 /* Request next EDID segment */
1060 v4l2_dbg(1, debug
, sd
, "%s: request segment %d\n",
1061 __func__
, state
->edid
.segments
);
1062 ad9389b_wr(sd
, 0xc9, 0xf);
1063 ad9389b_wr(sd
, 0xc4, state
->edid
.segments
);
1064 state
->edid
.read_retries
= EDID_MAX_RETRIES
;
1065 schedule_delayed_work(&state
->edid_handler
, EDID_DELAY
);
1069 /* report when we have all segments but report only for segment 0 */
1072 v4l2_subdev_notify(sd
, AD9389B_EDID_DETECT
, (void *)&ed
);
1073 state
->edid_detect_counter
++;
1074 v4l2_ctrl_s_ctrl(state
->have_edid0_ctrl
, state
->edid
.segments
? 0x1 : 0x0);
1078 /* ----------------------------------------------------------------------- */
1080 static void ad9389b_init_setup(struct v4l2_subdev
*sd
)
1082 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1083 struct ad9389b_state_edid
*edid
= &state
->edid
;
1085 v4l2_dbg(1, debug
, sd
, "%s\n", __func__
);
1087 /* clear all interrupts */
1088 ad9389b_wr(sd
, 0x96, 0xff);
1090 memset(edid
, 0, sizeof(struct ad9389b_state_edid
));
1091 state
->have_monitor
= false;
1092 ad9389b_set_isr(sd
, false);
1095 static int ad9389b_probe(struct i2c_client
*client
, const struct i2c_device_id
*id
)
1097 const struct v4l2_dv_timings dv1080p60
= V4L2_DV_BT_CEA_1920X1080P60
;
1098 struct ad9389b_state
*state
;
1099 struct ad9389b_platform_data
*pdata
= client
->dev
.platform_data
;
1100 struct v4l2_ctrl_handler
*hdl
;
1101 struct v4l2_subdev
*sd
;
1104 /* Check if the adapter supports the needed features */
1105 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_SMBUS_BYTE_DATA
))
1108 v4l_dbg(1, debug
, client
, "detecting ad9389b client on address 0x%x\n",
1111 state
= devm_kzalloc(&client
->dev
, sizeof(*state
), GFP_KERNEL
);
1116 if (pdata
== NULL
) {
1117 v4l_err(client
, "No platform data!\n");
1120 memcpy(&state
->pdata
, pdata
, sizeof(state
->pdata
));
1123 v4l2_i2c_subdev_init(sd
, client
, &ad9389b_ops
);
1124 sd
->flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
;
1127 v4l2_ctrl_handler_init(hdl
, 5);
1129 state
->hdmi_mode_ctrl
= v4l2_ctrl_new_std_menu(hdl
, &ad9389b_ctrl_ops
,
1130 V4L2_CID_DV_TX_MODE
, V4L2_DV_TX_MODE_HDMI
,
1131 0, V4L2_DV_TX_MODE_DVI_D
);
1132 state
->hotplug_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1133 V4L2_CID_DV_TX_HOTPLUG
, 0, 1, 0, 0);
1134 state
->rx_sense_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1135 V4L2_CID_DV_TX_RXSENSE
, 0, 1, 0, 0);
1136 state
->have_edid0_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
1137 V4L2_CID_DV_TX_EDID_PRESENT
, 0, 1, 0, 0);
1138 state
->rgb_quantization_range_ctrl
=
1139 v4l2_ctrl_new_std_menu(hdl
, &ad9389b_ctrl_ops
,
1140 V4L2_CID_DV_TX_RGB_RANGE
, V4L2_DV_RGB_RANGE_FULL
,
1141 0, V4L2_DV_RGB_RANGE_AUTO
);
1142 sd
->ctrl_handler
= hdl
;
1148 state
->pad
.flags
= MEDIA_PAD_FL_SINK
;
1149 err
= media_entity_pads_init(&sd
->entity
, 1, &state
->pad
);
1153 state
->chip_revision
= ad9389b_rd(sd
, 0x0);
1154 if (state
->chip_revision
!= 2) {
1155 v4l2_err(sd
, "chip_revision %d != 2\n", state
->chip_revision
);
1159 v4l2_dbg(1, debug
, sd
, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n",
1160 ad9389b_rd(sd
, 0x41), state
->chip_revision
);
1162 state
->edid_i2c_client
= i2c_new_dummy(client
->adapter
, (0x7e>>1));
1163 if (state
->edid_i2c_client
== NULL
) {
1164 v4l2_err(sd
, "failed to register edid i2c client\n");
1169 INIT_DELAYED_WORK(&state
->edid_handler
, ad9389b_edid_handler
);
1170 state
->dv_timings
= dv1080p60
;
1172 ad9389b_init_setup(sd
);
1173 ad9389b_set_isr(sd
, true);
1175 v4l2_info(sd
, "%s found @ 0x%x (%s)\n", client
->name
,
1176 client
->addr
<< 1, client
->adapter
->name
);
1180 media_entity_cleanup(&sd
->entity
);
1182 v4l2_ctrl_handler_free(&state
->hdl
);
1186 /* ----------------------------------------------------------------------- */
1188 static int ad9389b_remove(struct i2c_client
*client
)
1190 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
1191 struct ad9389b_state
*state
= get_ad9389b_state(sd
);
1193 state
->chip_revision
= -1;
1195 v4l2_dbg(1, debug
, sd
, "%s removed @ 0x%x (%s)\n", client
->name
,
1196 client
->addr
<< 1, client
->adapter
->name
);
1198 ad9389b_s_stream(sd
, false);
1199 ad9389b_s_audio_stream(sd
, false);
1200 ad9389b_init_setup(sd
);
1201 cancel_delayed_work_sync(&state
->edid_handler
);
1202 i2c_unregister_device(state
->edid_i2c_client
);
1203 v4l2_device_unregister_subdev(sd
);
1204 media_entity_cleanup(&sd
->entity
);
1205 v4l2_ctrl_handler_free(sd
->ctrl_handler
);
1209 /* ----------------------------------------------------------------------- */
1211 static const struct i2c_device_id ad9389b_id
[] = {
1216 MODULE_DEVICE_TABLE(i2c
, ad9389b_id
);
1218 static struct i2c_driver ad9389b_driver
= {
1222 .probe
= ad9389b_probe
,
1223 .remove
= ad9389b_remove
,
1224 .id_table
= ad9389b_id
,
1227 module_i2c_driver(ad9389b_driver
);