2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
29 static struct timing_threshold timing_default_threshold
= {
30 .max_data_setup_cycles
= (BM_GPMI_TIMING0_DATA_SETUP
>>
31 BP_GPMI_TIMING0_DATA_SETUP
),
32 .internal_data_setup_in_ns
= 0,
33 .max_sample_delay_factor
= (BM_GPMI_CTRL1_RDN_DELAY
>>
34 BP_GPMI_CTRL1_RDN_DELAY
),
35 .max_dll_clock_period_in_ns
= 32,
36 .max_dll_delay_in_ns
= 16,
39 #define MXS_SET_ADDR 0x4
40 #define MXS_CLR_ADDR 0x8
42 * Clear the bit and poll it cleared. This is usually called with
43 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
46 static int clear_poll_bit(void __iomem
*addr
, u32 mask
)
51 writel(mask
, addr
+ MXS_CLR_ADDR
);
54 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 * recommends to wait 1us.
59 /* poll the bit becoming clear */
60 while ((readl(addr
) & mask
) && --timeout
)
66 #define MODULE_CLKGATE (1 << 30)
67 #define MODULE_SFTRST (1 << 31)
69 * The current mxs_reset_block() will do two things:
70 * [1] enable the module.
71 * [2] reset the module.
73 * In most of the cases, it's ok.
74 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 * If you try to soft reset the BCH block, it becomes unusable until
76 * the next hard reset. This case occurs in the NAND boot mode. When the board
77 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 * You will see a DMA timeout in this case. The bug has been fixed
80 * in the following chips, such as MX28.
82 * To avoid this bug, just add a new parameter `just_enable` for
83 * the mxs_reset_block(), and rewrite it here.
85 static int gpmi_reset_block(void __iomem
*reset_addr
, bool just_enable
)
90 /* clear and poll SFTRST */
91 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
96 writel(MODULE_CLKGATE
, reset_addr
+ MXS_CLR_ADDR
);
99 /* set SFTRST to reset the block */
100 writel(MODULE_SFTRST
, reset_addr
+ MXS_SET_ADDR
);
103 /* poll CLKGATE becoming set */
104 while ((!(readl(reset_addr
) & MODULE_CLKGATE
)) && --timeout
)
106 if (unlikely(!timeout
))
110 /* clear and poll SFTRST */
111 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
115 /* clear and poll CLKGATE */
116 ret
= clear_poll_bit(reset_addr
, MODULE_CLKGATE
);
123 pr_err("%s(%p): module reset timeout\n", __func__
, reset_addr
);
127 static int __gpmi_enable_clk(struct gpmi_nand_data
*this, bool v
)
133 for (i
= 0; i
< GPMI_CLK_MAX
; i
++) {
134 clk
= this->resources
.clock
[i
];
139 ret
= clk_prepare_enable(clk
);
143 clk_disable_unprepare(clk
);
150 clk_disable_unprepare(this->resources
.clock
[i
- 1]);
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
157 int gpmi_init(struct gpmi_nand_data
*this)
159 struct resources
*r
= &this->resources
;
162 ret
= gpmi_enable_clk(this);
165 ret
= gpmi_reset_block(r
->gpmi_regs
, false);
170 * Reset BCH here, too. We got failures otherwise :(
171 * See later BCH reset for explanation of MX23 handling
173 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
178 /* Choose NAND mode. */
179 writel(BM_GPMI_CTRL1_GPMI_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
181 /* Set the IRQ polarity. */
182 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY
,
183 r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
185 /* Disable Write-Protection. */
186 writel(BM_GPMI_CTRL1_DEV_RESET
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
188 /* Select BCH ECC. */
189 writel(BM_GPMI_CTRL1_BCH_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
192 * Decouple the chip select from dma channel. We use dma0 for all
195 writel(BM_GPMI_CTRL1_DECOUPLE_CS
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
197 gpmi_disable_clk(this);
200 gpmi_disable_clk(this);
204 /* This function is very useful. It is called only when the bug occur. */
205 void gpmi_dump_info(struct gpmi_nand_data
*this)
207 struct resources
*r
= &this->resources
;
208 struct bch_geometry
*geo
= &this->bch_geometry
;
212 dev_err(this->dev
, "Show GPMI registers :\n");
213 for (i
= 0; i
<= HW_GPMI_DEBUG
/ 0x10 + 1; i
++) {
214 reg
= readl(r
->gpmi_regs
+ i
* 0x10);
215 dev_err(this->dev
, "offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
218 /* start to print out the BCH info */
219 dev_err(this->dev
, "Show BCH registers :\n");
220 for (i
= 0; i
<= HW_BCH_VERSION
/ 0x10 + 1; i
++) {
221 reg
= readl(r
->bch_regs
+ i
* 0x10);
222 dev_err(this->dev
, "offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
224 dev_err(this->dev
, "BCH Geometry :\n"
226 "ECC Strength : %u\n"
227 "Page Size in Bytes : %u\n"
228 "Metadata Size in Bytes : %u\n"
229 "ECC Chunk Size in Bytes: %u\n"
230 "ECC Chunk Count : %u\n"
231 "Payload Size in Bytes : %u\n"
232 "Auxiliary Size in Bytes: %u\n"
233 "Auxiliary Status Offset: %u\n"
234 "Block Mark Byte Offset : %u\n"
235 "Block Mark Bit Offset : %u\n",
241 geo
->ecc_chunk_count
,
244 geo
->auxiliary_status_offset
,
245 geo
->block_mark_byte_offset
,
246 geo
->block_mark_bit_offset
);
249 /* Configures the geometry for BCH. */
250 int bch_set_geometry(struct gpmi_nand_data
*this)
252 struct resources
*r
= &this->resources
;
253 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
254 unsigned int block_count
;
255 unsigned int block_size
;
256 unsigned int metadata_size
;
257 unsigned int ecc_strength
;
258 unsigned int page_size
;
262 if (common_nfc_set_geometry(this))
265 block_count
= bch_geo
->ecc_chunk_count
- 1;
266 block_size
= bch_geo
->ecc_chunk_size
;
267 metadata_size
= bch_geo
->metadata_size
;
268 ecc_strength
= bch_geo
->ecc_strength
>> 1;
269 page_size
= bch_geo
->page_size
;
270 gf_len
= bch_geo
->gf_len
;
272 ret
= gpmi_enable_clk(this);
277 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
278 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
279 * On the other hand, the MX28 needs the reset, because one case has been
280 * seen where the BCH produced ECC errors constantly after 10000
281 * consecutive reboots. The latter case has not been seen on the MX23
282 * yet, still we don't know if it could happen there as well.
284 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
288 /* Configure layout 0. */
289 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count
)
290 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size
)
291 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength
, this)
292 | BF_BCH_FLASH0LAYOUT0_GF(gf_len
, this)
293 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size
, this),
294 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
296 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size
)
297 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength
, this)
298 | BF_BCH_FLASH0LAYOUT1_GF(gf_len
, this)
299 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size
, this),
300 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
302 /* Set *all* chip selects to use layout 0. */
303 writel(0, r
->bch_regs
+ HW_BCH_LAYOUTSELECT
);
305 /* Enable interrupts. */
306 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN
,
307 r
->bch_regs
+ HW_BCH_CTRL_SET
);
309 gpmi_disable_clk(this);
312 gpmi_disable_clk(this);
316 /* Converts time in nanoseconds to cycles. */
317 static unsigned int ns_to_cycles(unsigned int time
,
318 unsigned int period
, unsigned int min
)
322 k
= (time
+ period
- 1) / period
;
326 #define DEF_MIN_PROP_DELAY 5
327 #define DEF_MAX_PROP_DELAY 9
328 /* Apply timing to current hardware conditions. */
329 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data
*this,
330 struct gpmi_nfc_hardware_timing
*hw
)
332 struct timing_threshold
*nfc
= &timing_default_threshold
;
333 struct resources
*r
= &this->resources
;
334 struct nand_chip
*nand
= &this->nand
;
335 struct nand_timing target
= this->timing
;
336 bool improved_timing_is_available
;
337 unsigned long clock_frequency_in_hz
;
338 unsigned int clock_period_in_ns
;
339 bool dll_use_half_periods
;
340 unsigned int dll_delay_shift
;
341 unsigned int max_sample_delay_in_ns
;
342 unsigned int address_setup_in_cycles
;
343 unsigned int data_setup_in_ns
;
344 unsigned int data_setup_in_cycles
;
345 unsigned int data_hold_in_cycles
;
346 int ideal_sample_delay_in_ns
;
347 unsigned int sample_delay_factor
;
349 unsigned int min_prop_delay_in_ns
= DEF_MIN_PROP_DELAY
;
350 unsigned int max_prop_delay_in_ns
= DEF_MAX_PROP_DELAY
;
353 * If there are multiple chips, we need to relax the timings to allow
354 * for signal distortion due to higher capacitance.
356 if (nand
->numchips
> 2) {
357 target
.data_setup_in_ns
+= 10;
358 target
.data_hold_in_ns
+= 10;
359 target
.address_setup_in_ns
+= 10;
360 } else if (nand
->numchips
> 1) {
361 target
.data_setup_in_ns
+= 5;
362 target
.data_hold_in_ns
+= 5;
363 target
.address_setup_in_ns
+= 5;
366 /* Check if improved timing information is available. */
367 improved_timing_is_available
=
368 (target
.tREA_in_ns
>= 0) &&
369 (target
.tRLOH_in_ns
>= 0) &&
370 (target
.tRHOH_in_ns
>= 0);
372 /* Inspect the clock. */
373 nfc
->clock_frequency_in_hz
= clk_get_rate(r
->clock
[0]);
374 clock_frequency_in_hz
= nfc
->clock_frequency_in_hz
;
375 clock_period_in_ns
= NSEC_PER_SEC
/ clock_frequency_in_hz
;
378 * The NFC quantizes setup and hold parameters in terms of clock cycles.
379 * Here, we quantize the setup and hold timing parameters to the
380 * next-highest clock period to make sure we apply at least the
383 * For data setup and data hold, the hardware interprets a value of zero
384 * as the largest possible delay. This is not what's intended by a zero
385 * in the input parameter, so we impose a minimum of one cycle.
387 data_setup_in_cycles
= ns_to_cycles(target
.data_setup_in_ns
,
388 clock_period_in_ns
, 1);
389 data_hold_in_cycles
= ns_to_cycles(target
.data_hold_in_ns
,
390 clock_period_in_ns
, 1);
391 address_setup_in_cycles
= ns_to_cycles(target
.address_setup_in_ns
,
392 clock_period_in_ns
, 0);
395 * The clock's period affects the sample delay in a number of ways:
397 * (1) The NFC HAL tells us the maximum clock period the sample delay
398 * DLL can tolerate. If the clock period is greater than half that
399 * maximum, we must configure the DLL to be driven by half periods.
401 * (2) We need to convert from an ideal sample delay, in ns, to a
402 * "sample delay factor," which the NFC uses. This factor depends on
403 * whether we're driving the DLL with full or half periods.
404 * Paraphrasing the reference manual:
406 * AD = SDF x 0.125 x RP
410 * AD is the applied delay, in ns.
411 * SDF is the sample delay factor, which is dimensionless.
412 * RP is the reference period, in ns, which is a full clock period
413 * if the DLL is being driven by full periods, or half that if
414 * the DLL is being driven by half periods.
416 * Let's re-arrange this in a way that's more useful to us:
422 * The reference period is either the clock period or half that, so this
426 * SDF = AD x ----- = --------
431 * f is 1 or 1/2, depending on how we're driving the DLL.
432 * P is the clock period.
433 * DDF is the DLL Delay Factor, a dimensionless value that
434 * incorporates all the constants in the conversion.
436 * DDF will be either 8 or 16, both of which are powers of two. We can
437 * reduce the cost of this conversion by using bit shifts instead of
438 * multiplication or division. Thus:
446 * AD = (SDF >> DDS) x P
450 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
452 if (clock_period_in_ns
> (nfc
->max_dll_clock_period_in_ns
>> 1)) {
453 dll_use_half_periods
= true;
454 dll_delay_shift
= 3 + 1;
456 dll_use_half_periods
= false;
461 * Compute the maximum sample delay the NFC allows, under current
462 * conditions. If the clock is running too slowly, no sample delay is
465 if (clock_period_in_ns
> nfc
->max_dll_clock_period_in_ns
)
466 max_sample_delay_in_ns
= 0;
469 * Compute the delay implied by the largest sample delay factor
472 max_sample_delay_in_ns
=
473 (nfc
->max_sample_delay_factor
* clock_period_in_ns
) >>
477 * Check if the implied sample delay larger than the NFC
480 if (max_sample_delay_in_ns
> nfc
->max_dll_delay_in_ns
)
481 max_sample_delay_in_ns
= nfc
->max_dll_delay_in_ns
;
485 * Check if improved timing information is available. If not, we have to
486 * use a less-sophisticated algorithm.
488 if (!improved_timing_is_available
) {
490 * Fold the read setup time required by the NFC into the ideal
493 ideal_sample_delay_in_ns
= target
.gpmi_sample_delay_in_ns
+
494 nfc
->internal_data_setup_in_ns
;
497 * The ideal sample delay may be greater than the maximum
498 * allowed by the NFC. If so, we can trade off sample delay time
499 * for more data setup time.
501 * In each iteration of the following loop, we add a cycle to
502 * the data setup time and subtract a corresponding amount from
503 * the sample delay until we've satisified the constraints or
504 * can't do any better.
506 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
507 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
509 data_setup_in_cycles
++;
510 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
512 if (ideal_sample_delay_in_ns
< 0)
513 ideal_sample_delay_in_ns
= 0;
518 * Compute the sample delay factor that corresponds most closely
519 * to the ideal sample delay. If the result is too large for the
520 * NFC, use the maximum value.
522 * Notice that we use the ns_to_cycles function to compute the
523 * sample delay factor. We do this because the form of the
524 * computation is the same as that for calculating cycles.
526 sample_delay_factor
=
528 ideal_sample_delay_in_ns
<< dll_delay_shift
,
529 clock_period_in_ns
, 0);
531 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
532 sample_delay_factor
= nfc
->max_sample_delay_factor
;
534 /* Skip to the part where we return our results. */
539 * If control arrives here, we have more detailed timing information,
540 * so we can use a better algorithm.
544 * Fold the read setup time required by the NFC into the maximum
547 max_prop_delay_in_ns
+= nfc
->internal_data_setup_in_ns
;
550 * Earlier, we computed the number of clock cycles required to satisfy
551 * the data setup time. Now, we need to know the actual nanoseconds.
553 data_setup_in_ns
= clock_period_in_ns
* data_setup_in_cycles
;
556 * Compute tEYE, the width of the data eye when reading from the NAND
557 * Flash. The eye width is fundamentally determined by the data setup
558 * time, perturbed by propagation delays and some characteristics of the
561 * start of the eye = max_prop_delay + tREA
562 * end of the eye = min_prop_delay + tRHOH + data_setup
564 tEYE
= (int)min_prop_delay_in_ns
+ (int)target
.tRHOH_in_ns
+
565 (int)data_setup_in_ns
;
567 tEYE
-= (int)max_prop_delay_in_ns
+ (int)target
.tREA_in_ns
;
570 * The eye must be open. If it's not, we can try to open it by
571 * increasing its main forcer, the data setup time.
573 * In each iteration of the following loop, we increase the data setup
574 * time by a single clock cycle. We do this until either the eye is
575 * open or we run into NFC limits.
577 while ((tEYE
<= 0) &&
578 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
579 /* Give a cycle to data setup. */
580 data_setup_in_cycles
++;
581 /* Synchronize the data setup time with the cycles. */
582 data_setup_in_ns
+= clock_period_in_ns
;
583 /* Adjust tEYE accordingly. */
584 tEYE
+= clock_period_in_ns
;
588 * When control arrives here, the eye is open. The ideal time to sample
589 * the data is in the center of the eye:
591 * end of the eye + start of the eye
592 * --------------------------------- - data_setup
595 * After some algebra, this simplifies to the code immediately below.
597 ideal_sample_delay_in_ns
=
598 ((int)max_prop_delay_in_ns
+
599 (int)target
.tREA_in_ns
+
600 (int)min_prop_delay_in_ns
+
601 (int)target
.tRHOH_in_ns
-
602 (int)data_setup_in_ns
) >> 1;
605 * The following figure illustrates some aspects of a NAND Flash read:
608 * __ _____________________________________
609 * RDN \_________________/
612 * /-----------------\
613 * Read Data ----------------------------< >---------
614 * \-----------------/
617 * |<--Data Setup -->|<--Delay Time -->| |
620 * | |<-- Quantized Delay Time -->|
624 * We have some issues we must now address:
626 * (1) The *ideal* sample delay time must not be negative. If it is, we
629 * (2) The *ideal* sample delay time must not be greater than that
630 * allowed by the NFC. If it is, we can increase the data setup
631 * time, which will reduce the delay between the end of the data
632 * setup and the center of the eye. It will also make the eye
633 * larger, which might help with the next issue...
635 * (3) The *quantized* sample delay time must not fall either before the
636 * eye opens or after it closes (the latter is the problem
637 * illustrated in the above figure).
640 /* Jam a negative ideal sample delay to zero. */
641 if (ideal_sample_delay_in_ns
< 0)
642 ideal_sample_delay_in_ns
= 0;
645 * Extend the data setup as needed to reduce the ideal sample delay
646 * below the maximum permitted by the NFC.
648 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
649 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
651 /* Give a cycle to data setup. */
652 data_setup_in_cycles
++;
653 /* Synchronize the data setup time with the cycles. */
654 data_setup_in_ns
+= clock_period_in_ns
;
655 /* Adjust tEYE accordingly. */
656 tEYE
+= clock_period_in_ns
;
659 * Decrease the ideal sample delay by one half cycle, to keep it
660 * in the middle of the eye.
662 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
664 /* Jam a negative ideal sample delay to zero. */
665 if (ideal_sample_delay_in_ns
< 0)
666 ideal_sample_delay_in_ns
= 0;
670 * Compute the sample delay factor that corresponds to the ideal sample
671 * delay. If the result is too large, then use the maximum allowed
674 * Notice that we use the ns_to_cycles function to compute the sample
675 * delay factor. We do this because the form of the computation is the
676 * same as that for calculating cycles.
678 sample_delay_factor
=
679 ns_to_cycles(ideal_sample_delay_in_ns
<< dll_delay_shift
,
680 clock_period_in_ns
, 0);
682 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
683 sample_delay_factor
= nfc
->max_sample_delay_factor
;
686 * These macros conveniently encapsulate a computation we'll use to
687 * continuously evaluate whether or not the data sample delay is inside
690 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
692 #define QUANTIZED_DELAY \
693 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
696 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
698 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
701 * While the quantized sample time falls outside the eye, reduce the
702 * sample delay or extend the data setup to move the sampling point back
703 * toward the eye. Do not allow the number of data setup cycles to
704 * exceed the maximum allowed by the NFC.
706 while (SAMPLE_IS_NOT_WITHIN_THE_EYE
&&
707 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
709 * If control arrives here, the quantized sample delay falls
710 * outside the eye. Check if it's before the eye opens, or after
713 if (QUANTIZED_DELAY
> IDEAL_DELAY
) {
715 * If control arrives here, the quantized sample delay
716 * falls after the eye closes. Decrease the quantized
717 * delay time and then go back to re-evaluate.
719 if (sample_delay_factor
!= 0)
720 sample_delay_factor
--;
725 * If control arrives here, the quantized sample delay falls
726 * before the eye opens. Shift the sample point by increasing
727 * data setup time. This will also make the eye larger.
730 /* Give a cycle to data setup. */
731 data_setup_in_cycles
++;
732 /* Synchronize the data setup time with the cycles. */
733 data_setup_in_ns
+= clock_period_in_ns
;
734 /* Adjust tEYE accordingly. */
735 tEYE
+= clock_period_in_ns
;
738 * Decrease the ideal sample delay by one half cycle, to keep it
739 * in the middle of the eye.
741 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
743 /* ...and one less period for the delay time. */
744 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
746 /* Jam a negative ideal sample delay to zero. */
747 if (ideal_sample_delay_in_ns
< 0)
748 ideal_sample_delay_in_ns
= 0;
751 * We have a new ideal sample delay, so re-compute the quantized
754 sample_delay_factor
=
756 ideal_sample_delay_in_ns
<< dll_delay_shift
,
757 clock_period_in_ns
, 0);
759 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
760 sample_delay_factor
= nfc
->max_sample_delay_factor
;
763 /* Control arrives here when we're ready to return our results. */
765 hw
->data_setup_in_cycles
= data_setup_in_cycles
;
766 hw
->data_hold_in_cycles
= data_hold_in_cycles
;
767 hw
->address_setup_in_cycles
= address_setup_in_cycles
;
768 hw
->use_half_periods
= dll_use_half_periods
;
769 hw
->sample_delay_factor
= sample_delay_factor
;
770 hw
->device_busy_timeout
= GPMI_DEFAULT_BUSY_TIMEOUT
;
771 hw
->wrn_dly_sel
= BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS
;
773 /* Return success. */
778 * <1> Firstly, we should know what's the GPMI-clock means.
779 * The GPMI-clock is the internal clock in the gpmi nand controller.
780 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
781 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
783 * <2> Secondly, we should know what's the frequency on the nand chip pins.
784 * The frequency on the nand chip pins is derived from the GPMI-clock.
785 * We can get it from the following equation:
789 * F : the frequency on the nand chip pins.
790 * G : the GPMI clock, such as 100MHz.
791 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
792 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
794 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
795 * the nand EDO(extended Data Out) timing could be applied.
796 * The GPMI implements a feedback read strobe to sample the read data.
797 * The feedback read strobe can be delayed to support the nand EDO timing
798 * where the read strobe may deasserts before the read data is valid, and
799 * read data is valid for some time after read strobe.
801 * The following figure illustrates some aspects of a NAND Flash read:
808 * __ ___|__________________________________
812 * Read Data --------------< >---------
816 * FeedbackRDN ________ ____________
819 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
822 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
824 * 4.1) From the aspect of the nand chip pins:
825 * Delay = (tREA + C - tRP) {1}
827 * tREA : the maximum read access time. From the ONFI nand standards,
828 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
829 * Please check it in : www.onfi.org
830 * C : a constant for adjust the delay. default is 4.
831 * tRP : the read pulse width.
832 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
833 * tRP = (GPMI-clock-period) * DATA_SETUP
835 * 4.2) From the aspect of the GPMI nand controller:
836 * Delay = RDN_DELAY * 0.125 * RP {2}
838 * RP : the DLL reference period.
839 * if (GPMI-clock-period > DLL_THRETHOLD)
840 * RP = GPMI-clock-period / 2;
842 * RP = GPMI-clock-period;
844 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
845 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
846 * is 16ns, but in mx6q, we use 12ns.
848 * 4.3) since {1} equals {2}, we get:
850 * (tREA + 4 - tRP) * 8
851 * RDN_DELAY = --------------------- {3}
854 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
855 * For some ONFI nand, the mode 4 is the fastest mode;
856 * while for some ONFI nand, the mode 5 is the fastest mode.
857 * So we only support the mode 4 and mode 5. It is no need to
858 * support other modes.
860 static void gpmi_compute_edo_timing(struct gpmi_nand_data
*this,
861 struct gpmi_nfc_hardware_timing
*hw
)
863 struct resources
*r
= &this->resources
;
864 unsigned long rate
= clk_get_rate(r
->clock
[0]);
865 int mode
= this->timing_mode
;
866 int dll_threshold
= this->devdata
->max_chain_delay
;
868 unsigned long clk_period
;
875 * [1] for GPMI_HW_GPMI_TIMING0:
876 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
877 * The GPMI can support 100MHz at most. So if we want to
878 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
879 * Set the ADDRESS_SETUP to 0 in mode 4.
881 hw
->data_setup_in_cycles
= 1;
882 hw
->data_hold_in_cycles
= 1;
883 hw
->address_setup_in_cycles
= ((mode
== 5) ? 1 : 0);
885 /* [2] for GPMI_HW_GPMI_TIMING1 */
886 hw
->device_busy_timeout
= 0x9000;
888 /* [3] for GPMI_HW_GPMI_CTRL1 */
889 hw
->wrn_dly_sel
= BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY
;
892 * Enlarge 10 times for the numerator and denominator in {3}.
893 * This make us to get more accurate result.
895 clk_period
= NSEC_PER_SEC
/ (rate
/ 10);
897 t_rea
= ((mode
== 5) ? 16 : 20) * 10;
900 t_rp
= clk_period
* 1; /* DATA_SETUP is 1 */
902 if (clk_period
> dll_threshold
) {
903 hw
->use_half_periods
= 1;
906 hw
->use_half_periods
= 0;
911 * Multiply the numerator with 10, we could do a round off:
912 * 7.8 round up to 8; 7.4 round down to 7.
914 delay
= (((t_rea
+ c
- t_rp
) * 8) * 10) / rp
;
915 delay
= (delay
+ 5) / 10;
917 hw
->sample_delay_factor
= delay
;
920 static int enable_edo_mode(struct gpmi_nand_data
*this, int mode
)
922 struct resources
*r
= &this->resources
;
923 struct nand_chip
*nand
= &this->nand
;
924 struct mtd_info
*mtd
= nand_to_mtd(nand
);
929 feature
= kzalloc(ONFI_SUBFEATURE_PARAM_LEN
, GFP_KERNEL
);
933 nand
->select_chip(mtd
, 0);
935 /* [1] send SET FEATURE command to NAND */
937 ret
= nand
->onfi_set_features(mtd
, nand
,
938 ONFI_FEATURE_ADDR_TIMING_MODE
, feature
);
942 /* [2] send GET FEATURE command to double-check the timing mode */
943 memset(feature
, 0, ONFI_SUBFEATURE_PARAM_LEN
);
944 ret
= nand
->onfi_get_features(mtd
, nand
,
945 ONFI_FEATURE_ADDR_TIMING_MODE
, feature
);
946 if (ret
|| feature
[0] != mode
)
949 nand
->select_chip(mtd
, -1);
951 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
952 rate
= (mode
== 5) ? 100000000 : 80000000;
953 clk_set_rate(r
->clock
[0], rate
);
955 /* Let the gpmi_begin() re-compute the timing again. */
956 this->flags
&= ~GPMI_TIMING_INIT_OK
;
958 this->flags
|= GPMI_ASYNC_EDO_ENABLED
;
959 this->timing_mode
= mode
;
961 dev_info(this->dev
, "enable the asynchronous EDO mode %d\n", mode
);
965 nand
->select_chip(mtd
, -1);
967 dev_err(this->dev
, "mode:%d ,failed in set feature.\n", mode
);
971 int gpmi_extra_init(struct gpmi_nand_data
*this)
973 struct nand_chip
*chip
= &this->nand
;
975 /* Enable the asynchronous EDO feature. */
976 if (GPMI_IS_MX6(this) && chip
->onfi_version
) {
977 int mode
= onfi_get_async_timing_mode(chip
);
979 /* We only support the timing mode 4 and mode 5. */
980 if (mode
& ONFI_TIMING_MODE_5
)
982 else if (mode
& ONFI_TIMING_MODE_4
)
987 return enable_edo_mode(this, mode
);
993 void gpmi_begin(struct gpmi_nand_data
*this)
995 struct resources
*r
= &this->resources
;
996 void __iomem
*gpmi_regs
= r
->gpmi_regs
;
997 unsigned int clock_period_in_ns
;
999 unsigned int dll_wait_time_in_us
;
1000 struct gpmi_nfc_hardware_timing hw
;
1003 /* Enable the clock. */
1004 ret
= gpmi_enable_clk(this);
1006 dev_err(this->dev
, "We failed in enable the clk\n");
1010 /* Only initialize the timing once */
1011 if (this->flags
& GPMI_TIMING_INIT_OK
)
1013 this->flags
|= GPMI_TIMING_INIT_OK
;
1015 if (this->flags
& GPMI_ASYNC_EDO_ENABLED
)
1016 gpmi_compute_edo_timing(this, &hw
);
1018 gpmi_nfc_compute_hardware_timing(this, &hw
);
1020 /* [1] Set HW_GPMI_TIMING0 */
1021 reg
= BF_GPMI_TIMING0_ADDRESS_SETUP(hw
.address_setup_in_cycles
) |
1022 BF_GPMI_TIMING0_DATA_HOLD(hw
.data_hold_in_cycles
) |
1023 BF_GPMI_TIMING0_DATA_SETUP(hw
.data_setup_in_cycles
);
1025 writel(reg
, gpmi_regs
+ HW_GPMI_TIMING0
);
1027 /* [2] Set HW_GPMI_TIMING1 */
1028 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw
.device_busy_timeout
),
1029 gpmi_regs
+ HW_GPMI_TIMING1
);
1031 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1033 /* Set the WRN_DLY_SEL */
1034 writel(BM_GPMI_CTRL1_WRN_DLY_SEL
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1035 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw
.wrn_dly_sel
),
1036 gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1038 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1039 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1041 /* Clear out the DLL control fields. */
1042 reg
= BM_GPMI_CTRL1_RDN_DELAY
| BM_GPMI_CTRL1_HALF_PERIOD
;
1043 writel(reg
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1045 /* If no sample delay is called for, return immediately. */
1046 if (!hw
.sample_delay_factor
)
1049 /* Set RDN_DELAY or HALF_PERIOD. */
1050 reg
= ((hw
.use_half_periods
) ? BM_GPMI_CTRL1_HALF_PERIOD
: 0)
1051 | BF_GPMI_CTRL1_RDN_DELAY(hw
.sample_delay_factor
);
1053 writel(reg
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1055 /* At last, we enable the DLL. */
1056 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1059 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1060 * we can use the GPMI. Calculate the amount of time we need to wait,
1063 clock_period_in_ns
= NSEC_PER_SEC
/ clk_get_rate(r
->clock
[0]);
1064 dll_wait_time_in_us
= (clock_period_in_ns
* 64) / 1000;
1066 if (!dll_wait_time_in_us
)
1067 dll_wait_time_in_us
= 1;
1069 /* Wait for the DLL to settle. */
1070 udelay(dll_wait_time_in_us
);
1076 void gpmi_end(struct gpmi_nand_data
*this)
1078 gpmi_disable_clk(this);
1081 /* Clears a BCH interrupt. */
1082 void gpmi_clear_bch(struct gpmi_nand_data
*this)
1084 struct resources
*r
= &this->resources
;
1085 writel(BM_BCH_CTRL_COMPLETE_IRQ
, r
->bch_regs
+ HW_BCH_CTRL_CLR
);
1088 /* Returns the Ready/Busy status of the given chip. */
1089 int gpmi_is_ready(struct gpmi_nand_data
*this, unsigned chip
)
1091 struct resources
*r
= &this->resources
;
1095 if (GPMI_IS_MX23(this)) {
1096 mask
= MX23_BM_GPMI_DEBUG_READY0
<< chip
;
1097 reg
= readl(r
->gpmi_regs
+ HW_GPMI_DEBUG
);
1098 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1100 * In the imx6, all the ready/busy pins are bound
1101 * together. So we only need to check chip 0.
1103 if (GPMI_IS_MX6(this))
1106 /* MX28 shares the same R/B register as MX6Q. */
1107 mask
= MX28_BF_GPMI_STAT_READY_BUSY(1 << chip
);
1108 reg
= readl(r
->gpmi_regs
+ HW_GPMI_STAT
);
1110 dev_err(this->dev
, "unknown arch.\n");
1114 static inline void set_dma_type(struct gpmi_nand_data
*this,
1115 enum dma_ops_type type
)
1117 this->last_dma_type
= this->dma_type
;
1118 this->dma_type
= type
;
1121 int gpmi_send_command(struct gpmi_nand_data
*this)
1123 struct dma_chan
*channel
= get_dma_chan(this);
1124 struct dma_async_tx_descriptor
*desc
;
1125 struct scatterlist
*sgl
;
1126 int chip
= this->current_chip
;
1129 /* [1] send out the PIO words */
1130 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE
)
1131 | BM_GPMI_CTRL0_WORD_LENGTH
1132 | BF_GPMI_CTRL0_CS(chip
, this)
1133 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1134 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE
)
1135 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1136 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length
);
1137 pio
[1] = pio
[2] = 0;
1138 desc
= dmaengine_prep_slave_sg(channel
,
1139 (struct scatterlist
*)pio
,
1140 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1144 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1145 sgl
= &this->cmd_sgl
;
1147 sg_init_one(sgl
, this->cmd_buffer
, this->command_length
);
1148 dma_map_sg(this->dev
, sgl
, 1, DMA_TO_DEVICE
);
1149 desc
= dmaengine_prep_slave_sg(channel
,
1150 sgl
, 1, DMA_MEM_TO_DEV
,
1151 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1155 /* [3] submit the DMA */
1156 set_dma_type(this, DMA_FOR_COMMAND
);
1157 return start_dma_without_bch_irq(this, desc
);
1160 int gpmi_send_data(struct gpmi_nand_data
*this)
1162 struct dma_async_tx_descriptor
*desc
;
1163 struct dma_chan
*channel
= get_dma_chan(this);
1164 int chip
= this->current_chip
;
1165 uint32_t command_mode
;
1170 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
1171 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1173 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1174 | BM_GPMI_CTRL0_WORD_LENGTH
1175 | BF_GPMI_CTRL0_CS(chip
, this)
1176 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1177 | BF_GPMI_CTRL0_ADDRESS(address
)
1178 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
1180 desc
= dmaengine_prep_slave_sg(channel
, (struct scatterlist
*)pio
,
1181 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1185 /* [2] send DMA request */
1186 prepare_data_dma(this, DMA_TO_DEVICE
);
1187 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
1189 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1193 /* [3] submit the DMA */
1194 set_dma_type(this, DMA_FOR_WRITE_DATA
);
1195 return start_dma_without_bch_irq(this, desc
);
1198 int gpmi_read_data(struct gpmi_nand_data
*this)
1200 struct dma_async_tx_descriptor
*desc
;
1201 struct dma_chan
*channel
= get_dma_chan(this);
1202 int chip
= this->current_chip
;
1205 /* [1] : send PIO */
1206 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ
)
1207 | BM_GPMI_CTRL0_WORD_LENGTH
1208 | BF_GPMI_CTRL0_CS(chip
, this)
1209 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1210 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA
)
1211 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
1213 desc
= dmaengine_prep_slave_sg(channel
,
1214 (struct scatterlist
*)pio
,
1215 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1219 /* [2] : send DMA request */
1220 prepare_data_dma(this, DMA_FROM_DEVICE
);
1221 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
1223 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1227 /* [3] : submit the DMA */
1228 set_dma_type(this, DMA_FOR_READ_DATA
);
1229 return start_dma_without_bch_irq(this, desc
);
1232 int gpmi_send_page(struct gpmi_nand_data
*this,
1233 dma_addr_t payload
, dma_addr_t auxiliary
)
1235 struct bch_geometry
*geo
= &this->bch_geometry
;
1236 uint32_t command_mode
;
1238 uint32_t ecc_command
;
1239 uint32_t buffer_mask
;
1240 struct dma_async_tx_descriptor
*desc
;
1241 struct dma_chan
*channel
= get_dma_chan(this);
1242 int chip
= this->current_chip
;
1245 /* A DMA descriptor that does an ECC page read. */
1246 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
1247 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1248 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE
;
1249 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
|
1250 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1252 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1253 | BM_GPMI_CTRL0_WORD_LENGTH
1254 | BF_GPMI_CTRL0_CS(chip
, this)
1255 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1256 | BF_GPMI_CTRL0_ADDRESS(address
)
1257 | BF_GPMI_CTRL0_XFER_COUNT(0);
1259 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1260 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1261 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1262 pio
[3] = geo
->page_size
;
1266 desc
= dmaengine_prep_slave_sg(channel
,
1267 (struct scatterlist
*)pio
,
1268 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1273 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE
);
1274 return start_dma_with_bch_irq(this, desc
);
1277 int gpmi_read_page(struct gpmi_nand_data
*this,
1278 dma_addr_t payload
, dma_addr_t auxiliary
)
1280 struct bch_geometry
*geo
= &this->bch_geometry
;
1281 uint32_t command_mode
;
1283 uint32_t ecc_command
;
1284 uint32_t buffer_mask
;
1285 struct dma_async_tx_descriptor
*desc
;
1286 struct dma_chan
*channel
= get_dma_chan(this);
1287 int chip
= this->current_chip
;
1290 /* [1] Wait for the chip to report ready. */
1291 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1292 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1294 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1295 | BM_GPMI_CTRL0_WORD_LENGTH
1296 | BF_GPMI_CTRL0_CS(chip
, this)
1297 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1298 | BF_GPMI_CTRL0_ADDRESS(address
)
1299 | BF_GPMI_CTRL0_XFER_COUNT(0);
1301 desc
= dmaengine_prep_slave_sg(channel
,
1302 (struct scatterlist
*)pio
, 2,
1307 /* [2] Enable the BCH block and read. */
1308 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__READ
;
1309 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1310 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE
;
1311 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1312 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1314 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1315 | BM_GPMI_CTRL0_WORD_LENGTH
1316 | BF_GPMI_CTRL0_CS(chip
, this)
1317 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1318 | BF_GPMI_CTRL0_ADDRESS(address
)
1319 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1322 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1323 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1324 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1325 pio
[3] = geo
->page_size
;
1328 desc
= dmaengine_prep_slave_sg(channel
,
1329 (struct scatterlist
*)pio
,
1330 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1331 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1335 /* [3] Disable the BCH block */
1336 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1337 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1339 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1340 | BM_GPMI_CTRL0_WORD_LENGTH
1341 | BF_GPMI_CTRL0_CS(chip
, this)
1342 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1343 | BF_GPMI_CTRL0_ADDRESS(address
)
1344 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1346 pio
[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1347 desc
= dmaengine_prep_slave_sg(channel
,
1348 (struct scatterlist
*)pio
, 3,
1350 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1354 /* [4] submit the DMA */
1355 set_dma_type(this, DMA_FOR_READ_ECC_PAGE
);
1356 return start_dma_with_bch_irq(this, desc
);
1360 * gpmi_copy_bits - copy bits from one memory region to another
1361 * @dst: destination buffer
1362 * @dst_bit_off: bit offset we're starting to write at
1363 * @src: source buffer
1364 * @src_bit_off: bit offset we're starting to read from
1365 * @nbits: number of bits to copy
1367 * This functions copies bits from one memory region to another, and is used by
1368 * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1371 * src and dst should not overlap.
1374 void gpmi_copy_bits(u8
*dst
, size_t dst_bit_off
,
1375 const u8
*src
, size_t src_bit_off
,
1381 size_t bits_in_src_buffer
= 0;
1387 * Move src and dst pointers to the closest byte pointer and store bit
1388 * offsets within a byte.
1390 src
+= src_bit_off
/ 8;
1393 dst
+= dst_bit_off
/ 8;
1397 * Initialize the src_buffer value with bits available in the first
1398 * byte of data so that we end up with a byte aligned src pointer.
1401 src_buffer
= src
[0] >> src_bit_off
;
1402 if (nbits
>= (8 - src_bit_off
)) {
1403 bits_in_src_buffer
+= 8 - src_bit_off
;
1405 src_buffer
&= GENMASK(nbits
- 1, 0);
1406 bits_in_src_buffer
+= nbits
;
1408 nbits
-= bits_in_src_buffer
;
1412 /* Calculate the number of bytes that can be copied from src to dst. */
1415 /* Try to align dst to a byte boundary. */
1417 if (bits_in_src_buffer
< (8 - dst_bit_off
) && nbytes
) {
1418 src_buffer
|= src
[0] << bits_in_src_buffer
;
1419 bits_in_src_buffer
+= 8;
1424 if (bits_in_src_buffer
>= (8 - dst_bit_off
)) {
1425 dst
[0] &= GENMASK(dst_bit_off
- 1, 0);
1426 dst
[0] |= src_buffer
<< dst_bit_off
;
1427 src_buffer
>>= (8 - dst_bit_off
);
1428 bits_in_src_buffer
-= (8 - dst_bit_off
);
1431 if (bits_in_src_buffer
> 7) {
1432 bits_in_src_buffer
-= 8;
1433 dst
[0] = src_buffer
;
1440 if (!bits_in_src_buffer
&& !dst_bit_off
) {
1442 * Both src and dst pointers are byte aligned, thus we can
1443 * just use the optimized memcpy function.
1446 memcpy(dst
, src
, nbytes
);
1449 * src buffer is not byte aligned, hence we have to copy each
1450 * src byte to the src_buffer variable before extracting a byte
1453 for (i
= 0; i
< nbytes
; i
++) {
1454 src_buffer
|= src
[i
] << bits_in_src_buffer
;
1455 dst
[i
] = src_buffer
;
1459 /* Update dst and src pointers */
1464 * nbits is the number of remaining bits. It should not exceed 8 as
1465 * we've already copied as much bytes as possible.
1470 * If there's no more bits to copy to the destination and src buffer
1471 * was already byte aligned, then we're done.
1473 if (!nbits
&& !bits_in_src_buffer
)
1476 /* Copy the remaining bits to src_buffer */
1478 src_buffer
|= (*src
& GENMASK(nbits
- 1, 0)) <<
1480 bits_in_src_buffer
+= nbits
;
1483 * In case there were not enough bits to get a byte aligned dst buffer
1484 * prepare the src_buffer variable to match the dst organization (shift
1485 * src_buffer by dst_bit_off and retrieve the least significant bits
1489 src_buffer
= (src_buffer
<< dst_bit_off
) |
1490 (*dst
& GENMASK(dst_bit_off
- 1, 0));
1491 bits_in_src_buffer
+= dst_bit_off
;
1494 * Keep most significant bits from dst if we end up with an unaligned
1497 nbytes
= bits_in_src_buffer
/ 8;
1498 if (bits_in_src_buffer
% 8) {
1499 src_buffer
|= (dst
[nbytes
] &
1500 GENMASK(7, bits_in_src_buffer
% 8)) <<
1505 /* Copy the remaining bytes to dst */
1506 for (i
= 0; i
< nbytes
; i
++) {
1507 dst
[i
] = src_buffer
;