Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
blob97787246af41d5ee66ac21d85986fbb34de1c6df
1 /*
2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
27 #include "bch-regs.h"
29 static struct timing_threshold timing_default_threshold = {
30 .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
31 BP_GPMI_TIMING0_DATA_SETUP),
32 .internal_data_setup_in_ns = 0,
33 .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
34 BP_GPMI_CTRL1_RDN_DELAY),
35 .max_dll_clock_period_in_ns = 32,
36 .max_dll_delay_in_ns = 16,
39 #define MXS_SET_ADDR 0x4
40 #define MXS_CLR_ADDR 0x8
42 * Clear the bit and poll it cleared. This is usually called with
43 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44 * (bit 30).
46 static int clear_poll_bit(void __iomem *addr, u32 mask)
48 int timeout = 0x400;
50 /* clear the bit */
51 writel(mask, addr + MXS_CLR_ADDR);
54 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 * recommends to wait 1us.
57 udelay(1);
59 /* poll the bit becoming clear */
60 while ((readl(addr) & mask) && --timeout)
61 /* nothing */;
63 return !timeout;
66 #define MODULE_CLKGATE (1 << 30)
67 #define MODULE_SFTRST (1 << 31)
69 * The current mxs_reset_block() will do two things:
70 * [1] enable the module.
71 * [2] reset the module.
73 * In most of the cases, it's ok.
74 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75 * If you try to soft reset the BCH block, it becomes unusable until
76 * the next hard reset. This case occurs in the NAND boot mode. When the board
77 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79 * You will see a DMA timeout in this case. The bug has been fixed
80 * in the following chips, such as MX28.
82 * To avoid this bug, just add a new parameter `just_enable` for
83 * the mxs_reset_block(), and rewrite it here.
85 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
87 int ret;
88 int timeout = 0x400;
90 /* clear and poll SFTRST */
91 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92 if (unlikely(ret))
93 goto error;
95 /* clear CLKGATE */
96 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
98 if (!just_enable) {
99 /* set SFTRST to reset the block */
100 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101 udelay(1);
103 /* poll CLKGATE becoming set */
104 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105 /* nothing */;
106 if (unlikely(!timeout))
107 goto error;
110 /* clear and poll SFTRST */
111 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112 if (unlikely(ret))
113 goto error;
115 /* clear and poll CLKGATE */
116 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117 if (unlikely(ret))
118 goto error;
120 return 0;
122 error:
123 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124 return -ETIMEDOUT;
127 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
129 struct clk *clk;
130 int ret;
131 int i;
133 for (i = 0; i < GPMI_CLK_MAX; i++) {
134 clk = this->resources.clock[i];
135 if (!clk)
136 break;
138 if (v) {
139 ret = clk_prepare_enable(clk);
140 if (ret)
141 goto err_clk;
142 } else {
143 clk_disable_unprepare(clk);
146 return 0;
148 err_clk:
149 for (; i > 0; i--)
150 clk_disable_unprepare(this->resources.clock[i - 1]);
151 return ret;
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
157 int gpmi_init(struct gpmi_nand_data *this)
159 struct resources *r = &this->resources;
160 int ret;
162 ret = gpmi_enable_clk(this);
163 if (ret)
164 return ret;
165 ret = gpmi_reset_block(r->gpmi_regs, false);
166 if (ret)
167 goto err_out;
170 * Reset BCH here, too. We got failures otherwise :(
171 * See later BCH reset for explanation of MX23 handling
173 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
174 if (ret)
175 goto err_out;
178 /* Choose NAND mode. */
179 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
181 /* Set the IRQ polarity. */
182 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
183 r->gpmi_regs + HW_GPMI_CTRL1_SET);
185 /* Disable Write-Protection. */
186 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
188 /* Select BCH ECC. */
189 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
192 * Decouple the chip select from dma channel. We use dma0 for all
193 * the chips.
195 writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
197 gpmi_disable_clk(this);
198 return 0;
199 err_out:
200 gpmi_disable_clk(this);
201 return ret;
204 /* This function is very useful. It is called only when the bug occur. */
205 void gpmi_dump_info(struct gpmi_nand_data *this)
207 struct resources *r = &this->resources;
208 struct bch_geometry *geo = &this->bch_geometry;
209 u32 reg;
210 int i;
212 dev_err(this->dev, "Show GPMI registers :\n");
213 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
214 reg = readl(r->gpmi_regs + i * 0x10);
215 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
218 /* start to print out the BCH info */
219 dev_err(this->dev, "Show BCH registers :\n");
220 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
221 reg = readl(r->bch_regs + i * 0x10);
222 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
224 dev_err(this->dev, "BCH Geometry :\n"
225 "GF length : %u\n"
226 "ECC Strength : %u\n"
227 "Page Size in Bytes : %u\n"
228 "Metadata Size in Bytes : %u\n"
229 "ECC Chunk Size in Bytes: %u\n"
230 "ECC Chunk Count : %u\n"
231 "Payload Size in Bytes : %u\n"
232 "Auxiliary Size in Bytes: %u\n"
233 "Auxiliary Status Offset: %u\n"
234 "Block Mark Byte Offset : %u\n"
235 "Block Mark Bit Offset : %u\n",
236 geo->gf_len,
237 geo->ecc_strength,
238 geo->page_size,
239 geo->metadata_size,
240 geo->ecc_chunk_size,
241 geo->ecc_chunk_count,
242 geo->payload_size,
243 geo->auxiliary_size,
244 geo->auxiliary_status_offset,
245 geo->block_mark_byte_offset,
246 geo->block_mark_bit_offset);
249 /* Configures the geometry for BCH. */
250 int bch_set_geometry(struct gpmi_nand_data *this)
252 struct resources *r = &this->resources;
253 struct bch_geometry *bch_geo = &this->bch_geometry;
254 unsigned int block_count;
255 unsigned int block_size;
256 unsigned int metadata_size;
257 unsigned int ecc_strength;
258 unsigned int page_size;
259 unsigned int gf_len;
260 int ret;
262 if (common_nfc_set_geometry(this))
263 return !0;
265 block_count = bch_geo->ecc_chunk_count - 1;
266 block_size = bch_geo->ecc_chunk_size;
267 metadata_size = bch_geo->metadata_size;
268 ecc_strength = bch_geo->ecc_strength >> 1;
269 page_size = bch_geo->page_size;
270 gf_len = bch_geo->gf_len;
272 ret = gpmi_enable_clk(this);
273 if (ret)
274 return ret;
277 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
278 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
279 * On the other hand, the MX28 needs the reset, because one case has been
280 * seen where the BCH produced ECC errors constantly after 10000
281 * consecutive reboots. The latter case has not been seen on the MX23
282 * yet, still we don't know if it could happen there as well.
284 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
285 if (ret)
286 goto err_out;
288 /* Configure layout 0. */
289 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
290 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
291 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
292 | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
293 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
294 r->bch_regs + HW_BCH_FLASH0LAYOUT0);
296 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
297 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
298 | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
299 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
300 r->bch_regs + HW_BCH_FLASH0LAYOUT1);
302 /* Set *all* chip selects to use layout 0. */
303 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
305 /* Enable interrupts. */
306 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
307 r->bch_regs + HW_BCH_CTRL_SET);
309 gpmi_disable_clk(this);
310 return 0;
311 err_out:
312 gpmi_disable_clk(this);
313 return ret;
316 /* Converts time in nanoseconds to cycles. */
317 static unsigned int ns_to_cycles(unsigned int time,
318 unsigned int period, unsigned int min)
320 unsigned int k;
322 k = (time + period - 1) / period;
323 return max(k, min);
326 #define DEF_MIN_PROP_DELAY 5
327 #define DEF_MAX_PROP_DELAY 9
328 /* Apply timing to current hardware conditions. */
329 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
330 struct gpmi_nfc_hardware_timing *hw)
332 struct timing_threshold *nfc = &timing_default_threshold;
333 struct resources *r = &this->resources;
334 struct nand_chip *nand = &this->nand;
335 struct nand_timing target = this->timing;
336 bool improved_timing_is_available;
337 unsigned long clock_frequency_in_hz;
338 unsigned int clock_period_in_ns;
339 bool dll_use_half_periods;
340 unsigned int dll_delay_shift;
341 unsigned int max_sample_delay_in_ns;
342 unsigned int address_setup_in_cycles;
343 unsigned int data_setup_in_ns;
344 unsigned int data_setup_in_cycles;
345 unsigned int data_hold_in_cycles;
346 int ideal_sample_delay_in_ns;
347 unsigned int sample_delay_factor;
348 int tEYE;
349 unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
350 unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
353 * If there are multiple chips, we need to relax the timings to allow
354 * for signal distortion due to higher capacitance.
356 if (nand->numchips > 2) {
357 target.data_setup_in_ns += 10;
358 target.data_hold_in_ns += 10;
359 target.address_setup_in_ns += 10;
360 } else if (nand->numchips > 1) {
361 target.data_setup_in_ns += 5;
362 target.data_hold_in_ns += 5;
363 target.address_setup_in_ns += 5;
366 /* Check if improved timing information is available. */
367 improved_timing_is_available =
368 (target.tREA_in_ns >= 0) &&
369 (target.tRLOH_in_ns >= 0) &&
370 (target.tRHOH_in_ns >= 0);
372 /* Inspect the clock. */
373 nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
374 clock_frequency_in_hz = nfc->clock_frequency_in_hz;
375 clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
378 * The NFC quantizes setup and hold parameters in terms of clock cycles.
379 * Here, we quantize the setup and hold timing parameters to the
380 * next-highest clock period to make sure we apply at least the
381 * specified times.
383 * For data setup and data hold, the hardware interprets a value of zero
384 * as the largest possible delay. This is not what's intended by a zero
385 * in the input parameter, so we impose a minimum of one cycle.
387 data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
388 clock_period_in_ns, 1);
389 data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
390 clock_period_in_ns, 1);
391 address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
392 clock_period_in_ns, 0);
395 * The clock's period affects the sample delay in a number of ways:
397 * (1) The NFC HAL tells us the maximum clock period the sample delay
398 * DLL can tolerate. If the clock period is greater than half that
399 * maximum, we must configure the DLL to be driven by half periods.
401 * (2) We need to convert from an ideal sample delay, in ns, to a
402 * "sample delay factor," which the NFC uses. This factor depends on
403 * whether we're driving the DLL with full or half periods.
404 * Paraphrasing the reference manual:
406 * AD = SDF x 0.125 x RP
408 * where:
410 * AD is the applied delay, in ns.
411 * SDF is the sample delay factor, which is dimensionless.
412 * RP is the reference period, in ns, which is a full clock period
413 * if the DLL is being driven by full periods, or half that if
414 * the DLL is being driven by half periods.
416 * Let's re-arrange this in a way that's more useful to us:
419 * SDF = AD x ----
420 * RP
422 * The reference period is either the clock period or half that, so this
423 * is:
425 * 8 AD x DDF
426 * SDF = AD x ----- = --------
427 * f x P P
429 * where:
431 * f is 1 or 1/2, depending on how we're driving the DLL.
432 * P is the clock period.
433 * DDF is the DLL Delay Factor, a dimensionless value that
434 * incorporates all the constants in the conversion.
436 * DDF will be either 8 or 16, both of which are powers of two. We can
437 * reduce the cost of this conversion by using bit shifts instead of
438 * multiplication or division. Thus:
440 * AD << DDS
441 * SDF = ---------
444 * or
446 * AD = (SDF >> DDS) x P
448 * where:
450 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
452 if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
453 dll_use_half_periods = true;
454 dll_delay_shift = 3 + 1;
455 } else {
456 dll_use_half_periods = false;
457 dll_delay_shift = 3;
461 * Compute the maximum sample delay the NFC allows, under current
462 * conditions. If the clock is running too slowly, no sample delay is
463 * possible.
465 if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
466 max_sample_delay_in_ns = 0;
467 else {
469 * Compute the delay implied by the largest sample delay factor
470 * the NFC allows.
472 max_sample_delay_in_ns =
473 (nfc->max_sample_delay_factor * clock_period_in_ns) >>
474 dll_delay_shift;
477 * Check if the implied sample delay larger than the NFC
478 * actually allows.
480 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
481 max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
485 * Check if improved timing information is available. If not, we have to
486 * use a less-sophisticated algorithm.
488 if (!improved_timing_is_available) {
490 * Fold the read setup time required by the NFC into the ideal
491 * sample delay.
493 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
494 nfc->internal_data_setup_in_ns;
497 * The ideal sample delay may be greater than the maximum
498 * allowed by the NFC. If so, we can trade off sample delay time
499 * for more data setup time.
501 * In each iteration of the following loop, we add a cycle to
502 * the data setup time and subtract a corresponding amount from
503 * the sample delay until we've satisified the constraints or
504 * can't do any better.
506 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
507 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
509 data_setup_in_cycles++;
510 ideal_sample_delay_in_ns -= clock_period_in_ns;
512 if (ideal_sample_delay_in_ns < 0)
513 ideal_sample_delay_in_ns = 0;
518 * Compute the sample delay factor that corresponds most closely
519 * to the ideal sample delay. If the result is too large for the
520 * NFC, use the maximum value.
522 * Notice that we use the ns_to_cycles function to compute the
523 * sample delay factor. We do this because the form of the
524 * computation is the same as that for calculating cycles.
526 sample_delay_factor =
527 ns_to_cycles(
528 ideal_sample_delay_in_ns << dll_delay_shift,
529 clock_period_in_ns, 0);
531 if (sample_delay_factor > nfc->max_sample_delay_factor)
532 sample_delay_factor = nfc->max_sample_delay_factor;
534 /* Skip to the part where we return our results. */
535 goto return_results;
539 * If control arrives here, we have more detailed timing information,
540 * so we can use a better algorithm.
544 * Fold the read setup time required by the NFC into the maximum
545 * propagation delay.
547 max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
550 * Earlier, we computed the number of clock cycles required to satisfy
551 * the data setup time. Now, we need to know the actual nanoseconds.
553 data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
556 * Compute tEYE, the width of the data eye when reading from the NAND
557 * Flash. The eye width is fundamentally determined by the data setup
558 * time, perturbed by propagation delays and some characteristics of the
559 * NAND Flash device.
561 * start of the eye = max_prop_delay + tREA
562 * end of the eye = min_prop_delay + tRHOH + data_setup
564 tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
565 (int)data_setup_in_ns;
567 tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
570 * The eye must be open. If it's not, we can try to open it by
571 * increasing its main forcer, the data setup time.
573 * In each iteration of the following loop, we increase the data setup
574 * time by a single clock cycle. We do this until either the eye is
575 * open or we run into NFC limits.
577 while ((tEYE <= 0) &&
578 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
579 /* Give a cycle to data setup. */
580 data_setup_in_cycles++;
581 /* Synchronize the data setup time with the cycles. */
582 data_setup_in_ns += clock_period_in_ns;
583 /* Adjust tEYE accordingly. */
584 tEYE += clock_period_in_ns;
588 * When control arrives here, the eye is open. The ideal time to sample
589 * the data is in the center of the eye:
591 * end of the eye + start of the eye
592 * --------------------------------- - data_setup
595 * After some algebra, this simplifies to the code immediately below.
597 ideal_sample_delay_in_ns =
598 ((int)max_prop_delay_in_ns +
599 (int)target.tREA_in_ns +
600 (int)min_prop_delay_in_ns +
601 (int)target.tRHOH_in_ns -
602 (int)data_setup_in_ns) >> 1;
605 * The following figure illustrates some aspects of a NAND Flash read:
608 * __ _____________________________________
609 * RDN \_________________/
611 * <---- tEYE ----->
612 * /-----------------\
613 * Read Data ----------------------------< >---------
614 * \-----------------/
615 * ^ ^ ^ ^
616 * | | | |
617 * |<--Data Setup -->|<--Delay Time -->| |
618 * | | | |
619 * | | |
620 * | |<-- Quantized Delay Time -->|
621 * | | |
624 * We have some issues we must now address:
626 * (1) The *ideal* sample delay time must not be negative. If it is, we
627 * jam it to zero.
629 * (2) The *ideal* sample delay time must not be greater than that
630 * allowed by the NFC. If it is, we can increase the data setup
631 * time, which will reduce the delay between the end of the data
632 * setup and the center of the eye. It will also make the eye
633 * larger, which might help with the next issue...
635 * (3) The *quantized* sample delay time must not fall either before the
636 * eye opens or after it closes (the latter is the problem
637 * illustrated in the above figure).
640 /* Jam a negative ideal sample delay to zero. */
641 if (ideal_sample_delay_in_ns < 0)
642 ideal_sample_delay_in_ns = 0;
645 * Extend the data setup as needed to reduce the ideal sample delay
646 * below the maximum permitted by the NFC.
648 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
649 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
651 /* Give a cycle to data setup. */
652 data_setup_in_cycles++;
653 /* Synchronize the data setup time with the cycles. */
654 data_setup_in_ns += clock_period_in_ns;
655 /* Adjust tEYE accordingly. */
656 tEYE += clock_period_in_ns;
659 * Decrease the ideal sample delay by one half cycle, to keep it
660 * in the middle of the eye.
662 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
664 /* Jam a negative ideal sample delay to zero. */
665 if (ideal_sample_delay_in_ns < 0)
666 ideal_sample_delay_in_ns = 0;
670 * Compute the sample delay factor that corresponds to the ideal sample
671 * delay. If the result is too large, then use the maximum allowed
672 * value.
674 * Notice that we use the ns_to_cycles function to compute the sample
675 * delay factor. We do this because the form of the computation is the
676 * same as that for calculating cycles.
678 sample_delay_factor =
679 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
680 clock_period_in_ns, 0);
682 if (sample_delay_factor > nfc->max_sample_delay_factor)
683 sample_delay_factor = nfc->max_sample_delay_factor;
686 * These macros conveniently encapsulate a computation we'll use to
687 * continuously evaluate whether or not the data sample delay is inside
688 * the eye.
690 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
692 #define QUANTIZED_DELAY \
693 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
694 dll_delay_shift))
696 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
698 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
701 * While the quantized sample time falls outside the eye, reduce the
702 * sample delay or extend the data setup to move the sampling point back
703 * toward the eye. Do not allow the number of data setup cycles to
704 * exceed the maximum allowed by the NFC.
706 while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
707 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
709 * If control arrives here, the quantized sample delay falls
710 * outside the eye. Check if it's before the eye opens, or after
711 * the eye closes.
713 if (QUANTIZED_DELAY > IDEAL_DELAY) {
715 * If control arrives here, the quantized sample delay
716 * falls after the eye closes. Decrease the quantized
717 * delay time and then go back to re-evaluate.
719 if (sample_delay_factor != 0)
720 sample_delay_factor--;
721 continue;
725 * If control arrives here, the quantized sample delay falls
726 * before the eye opens. Shift the sample point by increasing
727 * data setup time. This will also make the eye larger.
730 /* Give a cycle to data setup. */
731 data_setup_in_cycles++;
732 /* Synchronize the data setup time with the cycles. */
733 data_setup_in_ns += clock_period_in_ns;
734 /* Adjust tEYE accordingly. */
735 tEYE += clock_period_in_ns;
738 * Decrease the ideal sample delay by one half cycle, to keep it
739 * in the middle of the eye.
741 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
743 /* ...and one less period for the delay time. */
744 ideal_sample_delay_in_ns -= clock_period_in_ns;
746 /* Jam a negative ideal sample delay to zero. */
747 if (ideal_sample_delay_in_ns < 0)
748 ideal_sample_delay_in_ns = 0;
751 * We have a new ideal sample delay, so re-compute the quantized
752 * delay.
754 sample_delay_factor =
755 ns_to_cycles(
756 ideal_sample_delay_in_ns << dll_delay_shift,
757 clock_period_in_ns, 0);
759 if (sample_delay_factor > nfc->max_sample_delay_factor)
760 sample_delay_factor = nfc->max_sample_delay_factor;
763 /* Control arrives here when we're ready to return our results. */
764 return_results:
765 hw->data_setup_in_cycles = data_setup_in_cycles;
766 hw->data_hold_in_cycles = data_hold_in_cycles;
767 hw->address_setup_in_cycles = address_setup_in_cycles;
768 hw->use_half_periods = dll_use_half_periods;
769 hw->sample_delay_factor = sample_delay_factor;
770 hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
771 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
773 /* Return success. */
774 return 0;
778 * <1> Firstly, we should know what's the GPMI-clock means.
779 * The GPMI-clock is the internal clock in the gpmi nand controller.
780 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
781 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
783 * <2> Secondly, we should know what's the frequency on the nand chip pins.
784 * The frequency on the nand chip pins is derived from the GPMI-clock.
785 * We can get it from the following equation:
787 * F = G / (DS + DH)
789 * F : the frequency on the nand chip pins.
790 * G : the GPMI clock, such as 100MHz.
791 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
792 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
794 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
795 * the nand EDO(extended Data Out) timing could be applied.
796 * The GPMI implements a feedback read strobe to sample the read data.
797 * The feedback read strobe can be delayed to support the nand EDO timing
798 * where the read strobe may deasserts before the read data is valid, and
799 * read data is valid for some time after read strobe.
801 * The following figure illustrates some aspects of a NAND Flash read:
803 * |<---tREA---->|
804 * | |
805 * | | |
806 * |<--tRP-->| |
807 * | | |
808 * __ ___|__________________________________
809 * RDN \________/ |
811 * /---------\
812 * Read Data --------------< >---------
813 * \---------/
814 * | |
815 * |<-D->|
816 * FeedbackRDN ________ ____________
817 * \___________/
819 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
822 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
824 * 4.1) From the aspect of the nand chip pins:
825 * Delay = (tREA + C - tRP) {1}
827 * tREA : the maximum read access time. From the ONFI nand standards,
828 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
829 * Please check it in : www.onfi.org
830 * C : a constant for adjust the delay. default is 4.
831 * tRP : the read pulse width.
832 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
833 * tRP = (GPMI-clock-period) * DATA_SETUP
835 * 4.2) From the aspect of the GPMI nand controller:
836 * Delay = RDN_DELAY * 0.125 * RP {2}
838 * RP : the DLL reference period.
839 * if (GPMI-clock-period > DLL_THRETHOLD)
840 * RP = GPMI-clock-period / 2;
841 * else
842 * RP = GPMI-clock-period;
844 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
845 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
846 * is 16ns, but in mx6q, we use 12ns.
848 * 4.3) since {1} equals {2}, we get:
850 * (tREA + 4 - tRP) * 8
851 * RDN_DELAY = --------------------- {3}
852 * RP
854 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
855 * For some ONFI nand, the mode 4 is the fastest mode;
856 * while for some ONFI nand, the mode 5 is the fastest mode.
857 * So we only support the mode 4 and mode 5. It is no need to
858 * support other modes.
860 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
861 struct gpmi_nfc_hardware_timing *hw)
863 struct resources *r = &this->resources;
864 unsigned long rate = clk_get_rate(r->clock[0]);
865 int mode = this->timing_mode;
866 int dll_threshold = this->devdata->max_chain_delay;
867 unsigned long delay;
868 unsigned long clk_period;
869 int t_rea;
870 int c = 4;
871 int t_rp;
872 int rp;
875 * [1] for GPMI_HW_GPMI_TIMING0:
876 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
877 * The GPMI can support 100MHz at most. So if we want to
878 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
879 * Set the ADDRESS_SETUP to 0 in mode 4.
881 hw->data_setup_in_cycles = 1;
882 hw->data_hold_in_cycles = 1;
883 hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
885 /* [2] for GPMI_HW_GPMI_TIMING1 */
886 hw->device_busy_timeout = 0x9000;
888 /* [3] for GPMI_HW_GPMI_CTRL1 */
889 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
892 * Enlarge 10 times for the numerator and denominator in {3}.
893 * This make us to get more accurate result.
895 clk_period = NSEC_PER_SEC / (rate / 10);
896 dll_threshold *= 10;
897 t_rea = ((mode == 5) ? 16 : 20) * 10;
898 c *= 10;
900 t_rp = clk_period * 1; /* DATA_SETUP is 1 */
902 if (clk_period > dll_threshold) {
903 hw->use_half_periods = 1;
904 rp = clk_period / 2;
905 } else {
906 hw->use_half_periods = 0;
907 rp = clk_period;
911 * Multiply the numerator with 10, we could do a round off:
912 * 7.8 round up to 8; 7.4 round down to 7.
914 delay = (((t_rea + c - t_rp) * 8) * 10) / rp;
915 delay = (delay + 5) / 10;
917 hw->sample_delay_factor = delay;
920 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
922 struct resources *r = &this->resources;
923 struct nand_chip *nand = &this->nand;
924 struct mtd_info *mtd = nand_to_mtd(nand);
925 uint8_t *feature;
926 unsigned long rate;
927 int ret;
929 feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
930 if (!feature)
931 return -ENOMEM;
933 nand->select_chip(mtd, 0);
935 /* [1] send SET FEATURE command to NAND */
936 feature[0] = mode;
937 ret = nand->onfi_set_features(mtd, nand,
938 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
939 if (ret)
940 goto err_out;
942 /* [2] send GET FEATURE command to double-check the timing mode */
943 memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
944 ret = nand->onfi_get_features(mtd, nand,
945 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
946 if (ret || feature[0] != mode)
947 goto err_out;
949 nand->select_chip(mtd, -1);
951 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
952 rate = (mode == 5) ? 100000000 : 80000000;
953 clk_set_rate(r->clock[0], rate);
955 /* Let the gpmi_begin() re-compute the timing again. */
956 this->flags &= ~GPMI_TIMING_INIT_OK;
958 this->flags |= GPMI_ASYNC_EDO_ENABLED;
959 this->timing_mode = mode;
960 kfree(feature);
961 dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
962 return 0;
964 err_out:
965 nand->select_chip(mtd, -1);
966 kfree(feature);
967 dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
968 return -EINVAL;
971 int gpmi_extra_init(struct gpmi_nand_data *this)
973 struct nand_chip *chip = &this->nand;
975 /* Enable the asynchronous EDO feature. */
976 if (GPMI_IS_MX6(this) && chip->onfi_version) {
977 int mode = onfi_get_async_timing_mode(chip);
979 /* We only support the timing mode 4 and mode 5. */
980 if (mode & ONFI_TIMING_MODE_5)
981 mode = 5;
982 else if (mode & ONFI_TIMING_MODE_4)
983 mode = 4;
984 else
985 return 0;
987 return enable_edo_mode(this, mode);
989 return 0;
992 /* Begin the I/O */
993 void gpmi_begin(struct gpmi_nand_data *this)
995 struct resources *r = &this->resources;
996 void __iomem *gpmi_regs = r->gpmi_regs;
997 unsigned int clock_period_in_ns;
998 uint32_t reg;
999 unsigned int dll_wait_time_in_us;
1000 struct gpmi_nfc_hardware_timing hw;
1001 int ret;
1003 /* Enable the clock. */
1004 ret = gpmi_enable_clk(this);
1005 if (ret) {
1006 dev_err(this->dev, "We failed in enable the clk\n");
1007 goto err_out;
1010 /* Only initialize the timing once */
1011 if (this->flags & GPMI_TIMING_INIT_OK)
1012 return;
1013 this->flags |= GPMI_TIMING_INIT_OK;
1015 if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1016 gpmi_compute_edo_timing(this, &hw);
1017 else
1018 gpmi_nfc_compute_hardware_timing(this, &hw);
1020 /* [1] Set HW_GPMI_TIMING0 */
1021 reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1022 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
1023 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1025 writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1027 /* [2] Set HW_GPMI_TIMING1 */
1028 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1029 gpmi_regs + HW_GPMI_TIMING1);
1031 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1033 /* Set the WRN_DLY_SEL */
1034 writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1035 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1036 gpmi_regs + HW_GPMI_CTRL1_SET);
1038 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1039 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1041 /* Clear out the DLL control fields. */
1042 reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1043 writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1045 /* If no sample delay is called for, return immediately. */
1046 if (!hw.sample_delay_factor)
1047 return;
1049 /* Set RDN_DELAY or HALF_PERIOD. */
1050 reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1051 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1053 writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1055 /* At last, we enable the DLL. */
1056 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1059 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1060 * we can use the GPMI. Calculate the amount of time we need to wait,
1061 * in microseconds.
1063 clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1064 dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1066 if (!dll_wait_time_in_us)
1067 dll_wait_time_in_us = 1;
1069 /* Wait for the DLL to settle. */
1070 udelay(dll_wait_time_in_us);
1072 err_out:
1073 return;
1076 void gpmi_end(struct gpmi_nand_data *this)
1078 gpmi_disable_clk(this);
1081 /* Clears a BCH interrupt. */
1082 void gpmi_clear_bch(struct gpmi_nand_data *this)
1084 struct resources *r = &this->resources;
1085 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1088 /* Returns the Ready/Busy status of the given chip. */
1089 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1091 struct resources *r = &this->resources;
1092 uint32_t mask = 0;
1093 uint32_t reg = 0;
1095 if (GPMI_IS_MX23(this)) {
1096 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1097 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1098 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1100 * In the imx6, all the ready/busy pins are bound
1101 * together. So we only need to check chip 0.
1103 if (GPMI_IS_MX6(this))
1104 chip = 0;
1106 /* MX28 shares the same R/B register as MX6Q. */
1107 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1108 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1109 } else
1110 dev_err(this->dev, "unknown arch.\n");
1111 return reg & mask;
1114 static inline void set_dma_type(struct gpmi_nand_data *this,
1115 enum dma_ops_type type)
1117 this->last_dma_type = this->dma_type;
1118 this->dma_type = type;
1121 int gpmi_send_command(struct gpmi_nand_data *this)
1123 struct dma_chan *channel = get_dma_chan(this);
1124 struct dma_async_tx_descriptor *desc;
1125 struct scatterlist *sgl;
1126 int chip = this->current_chip;
1127 u32 pio[3];
1129 /* [1] send out the PIO words */
1130 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1131 | BM_GPMI_CTRL0_WORD_LENGTH
1132 | BF_GPMI_CTRL0_CS(chip, this)
1133 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1134 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1135 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1136 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1137 pio[1] = pio[2] = 0;
1138 desc = dmaengine_prep_slave_sg(channel,
1139 (struct scatterlist *)pio,
1140 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1141 if (!desc)
1142 return -EINVAL;
1144 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1145 sgl = &this->cmd_sgl;
1147 sg_init_one(sgl, this->cmd_buffer, this->command_length);
1148 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1149 desc = dmaengine_prep_slave_sg(channel,
1150 sgl, 1, DMA_MEM_TO_DEV,
1151 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1152 if (!desc)
1153 return -EINVAL;
1155 /* [3] submit the DMA */
1156 set_dma_type(this, DMA_FOR_COMMAND);
1157 return start_dma_without_bch_irq(this, desc);
1160 int gpmi_send_data(struct gpmi_nand_data *this)
1162 struct dma_async_tx_descriptor *desc;
1163 struct dma_chan *channel = get_dma_chan(this);
1164 int chip = this->current_chip;
1165 uint32_t command_mode;
1166 uint32_t address;
1167 u32 pio[2];
1169 /* [1] PIO */
1170 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1171 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1173 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1174 | BM_GPMI_CTRL0_WORD_LENGTH
1175 | BF_GPMI_CTRL0_CS(chip, this)
1176 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1177 | BF_GPMI_CTRL0_ADDRESS(address)
1178 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1179 pio[1] = 0;
1180 desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1181 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1182 if (!desc)
1183 return -EINVAL;
1185 /* [2] send DMA request */
1186 prepare_data_dma(this, DMA_TO_DEVICE);
1187 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1188 1, DMA_MEM_TO_DEV,
1189 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1190 if (!desc)
1191 return -EINVAL;
1193 /* [3] submit the DMA */
1194 set_dma_type(this, DMA_FOR_WRITE_DATA);
1195 return start_dma_without_bch_irq(this, desc);
1198 int gpmi_read_data(struct gpmi_nand_data *this)
1200 struct dma_async_tx_descriptor *desc;
1201 struct dma_chan *channel = get_dma_chan(this);
1202 int chip = this->current_chip;
1203 u32 pio[2];
1205 /* [1] : send PIO */
1206 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1207 | BM_GPMI_CTRL0_WORD_LENGTH
1208 | BF_GPMI_CTRL0_CS(chip, this)
1209 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1210 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1211 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1212 pio[1] = 0;
1213 desc = dmaengine_prep_slave_sg(channel,
1214 (struct scatterlist *)pio,
1215 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1216 if (!desc)
1217 return -EINVAL;
1219 /* [2] : send DMA request */
1220 prepare_data_dma(this, DMA_FROM_DEVICE);
1221 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1222 1, DMA_DEV_TO_MEM,
1223 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1224 if (!desc)
1225 return -EINVAL;
1227 /* [3] : submit the DMA */
1228 set_dma_type(this, DMA_FOR_READ_DATA);
1229 return start_dma_without_bch_irq(this, desc);
1232 int gpmi_send_page(struct gpmi_nand_data *this,
1233 dma_addr_t payload, dma_addr_t auxiliary)
1235 struct bch_geometry *geo = &this->bch_geometry;
1236 uint32_t command_mode;
1237 uint32_t address;
1238 uint32_t ecc_command;
1239 uint32_t buffer_mask;
1240 struct dma_async_tx_descriptor *desc;
1241 struct dma_chan *channel = get_dma_chan(this);
1242 int chip = this->current_chip;
1243 u32 pio[6];
1245 /* A DMA descriptor that does an ECC page read. */
1246 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1247 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1248 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1249 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1250 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1252 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1253 | BM_GPMI_CTRL0_WORD_LENGTH
1254 | BF_GPMI_CTRL0_CS(chip, this)
1255 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1256 | BF_GPMI_CTRL0_ADDRESS(address)
1257 | BF_GPMI_CTRL0_XFER_COUNT(0);
1258 pio[1] = 0;
1259 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1260 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1261 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1262 pio[3] = geo->page_size;
1263 pio[4] = payload;
1264 pio[5] = auxiliary;
1266 desc = dmaengine_prep_slave_sg(channel,
1267 (struct scatterlist *)pio,
1268 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1269 DMA_CTRL_ACK);
1270 if (!desc)
1271 return -EINVAL;
1273 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1274 return start_dma_with_bch_irq(this, desc);
1277 int gpmi_read_page(struct gpmi_nand_data *this,
1278 dma_addr_t payload, dma_addr_t auxiliary)
1280 struct bch_geometry *geo = &this->bch_geometry;
1281 uint32_t command_mode;
1282 uint32_t address;
1283 uint32_t ecc_command;
1284 uint32_t buffer_mask;
1285 struct dma_async_tx_descriptor *desc;
1286 struct dma_chan *channel = get_dma_chan(this);
1287 int chip = this->current_chip;
1288 u32 pio[6];
1290 /* [1] Wait for the chip to report ready. */
1291 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1292 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1294 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1295 | BM_GPMI_CTRL0_WORD_LENGTH
1296 | BF_GPMI_CTRL0_CS(chip, this)
1297 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1298 | BF_GPMI_CTRL0_ADDRESS(address)
1299 | BF_GPMI_CTRL0_XFER_COUNT(0);
1300 pio[1] = 0;
1301 desc = dmaengine_prep_slave_sg(channel,
1302 (struct scatterlist *)pio, 2,
1303 DMA_TRANS_NONE, 0);
1304 if (!desc)
1305 return -EINVAL;
1307 /* [2] Enable the BCH block and read. */
1308 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1309 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1310 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1311 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1312 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1314 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1315 | BM_GPMI_CTRL0_WORD_LENGTH
1316 | BF_GPMI_CTRL0_CS(chip, this)
1317 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1318 | BF_GPMI_CTRL0_ADDRESS(address)
1319 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1321 pio[1] = 0;
1322 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1323 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1324 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1325 pio[3] = geo->page_size;
1326 pio[4] = payload;
1327 pio[5] = auxiliary;
1328 desc = dmaengine_prep_slave_sg(channel,
1329 (struct scatterlist *)pio,
1330 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1331 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1332 if (!desc)
1333 return -EINVAL;
1335 /* [3] Disable the BCH block */
1336 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1337 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1339 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1340 | BM_GPMI_CTRL0_WORD_LENGTH
1341 | BF_GPMI_CTRL0_CS(chip, this)
1342 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1343 | BF_GPMI_CTRL0_ADDRESS(address)
1344 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1345 pio[1] = 0;
1346 pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1347 desc = dmaengine_prep_slave_sg(channel,
1348 (struct scatterlist *)pio, 3,
1349 DMA_TRANS_NONE,
1350 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1351 if (!desc)
1352 return -EINVAL;
1354 /* [4] submit the DMA */
1355 set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1356 return start_dma_with_bch_irq(this, desc);
1360 * gpmi_copy_bits - copy bits from one memory region to another
1361 * @dst: destination buffer
1362 * @dst_bit_off: bit offset we're starting to write at
1363 * @src: source buffer
1364 * @src_bit_off: bit offset we're starting to read from
1365 * @nbits: number of bits to copy
1367 * This functions copies bits from one memory region to another, and is used by
1368 * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1369 * aligned.
1371 * src and dst should not overlap.
1374 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1375 const u8 *src, size_t src_bit_off,
1376 size_t nbits)
1378 size_t i;
1379 size_t nbytes;
1380 u32 src_buffer = 0;
1381 size_t bits_in_src_buffer = 0;
1383 if (!nbits)
1384 return;
1387 * Move src and dst pointers to the closest byte pointer and store bit
1388 * offsets within a byte.
1390 src += src_bit_off / 8;
1391 src_bit_off %= 8;
1393 dst += dst_bit_off / 8;
1394 dst_bit_off %= 8;
1397 * Initialize the src_buffer value with bits available in the first
1398 * byte of data so that we end up with a byte aligned src pointer.
1400 if (src_bit_off) {
1401 src_buffer = src[0] >> src_bit_off;
1402 if (nbits >= (8 - src_bit_off)) {
1403 bits_in_src_buffer += 8 - src_bit_off;
1404 } else {
1405 src_buffer &= GENMASK(nbits - 1, 0);
1406 bits_in_src_buffer += nbits;
1408 nbits -= bits_in_src_buffer;
1409 src++;
1412 /* Calculate the number of bytes that can be copied from src to dst. */
1413 nbytes = nbits / 8;
1415 /* Try to align dst to a byte boundary. */
1416 if (dst_bit_off) {
1417 if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1418 src_buffer |= src[0] << bits_in_src_buffer;
1419 bits_in_src_buffer += 8;
1420 src++;
1421 nbytes--;
1424 if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1425 dst[0] &= GENMASK(dst_bit_off - 1, 0);
1426 dst[0] |= src_buffer << dst_bit_off;
1427 src_buffer >>= (8 - dst_bit_off);
1428 bits_in_src_buffer -= (8 - dst_bit_off);
1429 dst_bit_off = 0;
1430 dst++;
1431 if (bits_in_src_buffer > 7) {
1432 bits_in_src_buffer -= 8;
1433 dst[0] = src_buffer;
1434 dst++;
1435 src_buffer >>= 8;
1440 if (!bits_in_src_buffer && !dst_bit_off) {
1442 * Both src and dst pointers are byte aligned, thus we can
1443 * just use the optimized memcpy function.
1445 if (nbytes)
1446 memcpy(dst, src, nbytes);
1447 } else {
1449 * src buffer is not byte aligned, hence we have to copy each
1450 * src byte to the src_buffer variable before extracting a byte
1451 * to store in dst.
1453 for (i = 0; i < nbytes; i++) {
1454 src_buffer |= src[i] << bits_in_src_buffer;
1455 dst[i] = src_buffer;
1456 src_buffer >>= 8;
1459 /* Update dst and src pointers */
1460 dst += nbytes;
1461 src += nbytes;
1464 * nbits is the number of remaining bits. It should not exceed 8 as
1465 * we've already copied as much bytes as possible.
1467 nbits %= 8;
1470 * If there's no more bits to copy to the destination and src buffer
1471 * was already byte aligned, then we're done.
1473 if (!nbits && !bits_in_src_buffer)
1474 return;
1476 /* Copy the remaining bits to src_buffer */
1477 if (nbits)
1478 src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1479 bits_in_src_buffer;
1480 bits_in_src_buffer += nbits;
1483 * In case there were not enough bits to get a byte aligned dst buffer
1484 * prepare the src_buffer variable to match the dst organization (shift
1485 * src_buffer by dst_bit_off and retrieve the least significant bits
1486 * from dst).
1488 if (dst_bit_off)
1489 src_buffer = (src_buffer << dst_bit_off) |
1490 (*dst & GENMASK(dst_bit_off - 1, 0));
1491 bits_in_src_buffer += dst_bit_off;
1494 * Keep most significant bits from dst if we end up with an unaligned
1495 * number of bits.
1497 nbytes = bits_in_src_buffer / 8;
1498 if (bits_in_src_buffer % 8) {
1499 src_buffer |= (dst[nbytes] &
1500 GENMASK(7, bits_in_src_buffer % 8)) <<
1501 (nbytes * 8);
1502 nbytes++;
1505 /* Copy the remaining bytes to dst */
1506 for (i = 0; i < nbytes; i++) {
1507 dst[i] = src_buffer;
1508 src_buffer >>= 8;