2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/mtd/partitions.h>
28 #include <linux/of_device.h>
29 #include "gpmi-nand.h"
32 /* Resource names for the GPMI NAND driver. */
33 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
34 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
35 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
37 /* add our owner bbt descriptor */
38 static uint8_t scan_ff_pattern
[] = { 0xff };
39 static struct nand_bbt_descr gpmi_bbt_descr
= {
43 .pattern
= scan_ff_pattern
47 * We may change the layout if we can get the ECC info from the datasheet,
48 * else we will use all the (page + OOB).
50 static int gpmi_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
51 struct mtd_oob_region
*oobregion
)
53 struct nand_chip
*chip
= mtd_to_nand(mtd
);
54 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
55 struct bch_geometry
*geo
= &this->bch_geometry
;
60 oobregion
->offset
= 0;
61 oobregion
->length
= geo
->page_size
- mtd
->writesize
;
66 static int gpmi_ooblayout_free(struct mtd_info
*mtd
, int section
,
67 struct mtd_oob_region
*oobregion
)
69 struct nand_chip
*chip
= mtd_to_nand(mtd
);
70 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
71 struct bch_geometry
*geo
= &this->bch_geometry
;
76 /* The available oob size we have. */
77 if (geo
->page_size
< mtd
->writesize
+ mtd
->oobsize
) {
78 oobregion
->offset
= geo
->page_size
- mtd
->writesize
;
79 oobregion
->length
= mtd
->oobsize
- oobregion
->offset
;
85 static const char * const gpmi_clks_for_mx2x
[] = {
89 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops
= {
90 .ecc
= gpmi_ooblayout_ecc
,
91 .free
= gpmi_ooblayout_free
,
94 static const struct gpmi_devdata gpmi_devdata_imx23
= {
96 .bch_max_ecc_strength
= 20,
97 .max_chain_delay
= 16,
98 .clks
= gpmi_clks_for_mx2x
,
99 .clks_count
= ARRAY_SIZE(gpmi_clks_for_mx2x
),
102 static const struct gpmi_devdata gpmi_devdata_imx28
= {
104 .bch_max_ecc_strength
= 20,
105 .max_chain_delay
= 16,
106 .clks
= gpmi_clks_for_mx2x
,
107 .clks_count
= ARRAY_SIZE(gpmi_clks_for_mx2x
),
110 static const char * const gpmi_clks_for_mx6
[] = {
111 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
114 static const struct gpmi_devdata gpmi_devdata_imx6q
= {
116 .bch_max_ecc_strength
= 40,
117 .max_chain_delay
= 12,
118 .clks
= gpmi_clks_for_mx6
,
119 .clks_count
= ARRAY_SIZE(gpmi_clks_for_mx6
),
122 static const struct gpmi_devdata gpmi_devdata_imx6sx
= {
124 .bch_max_ecc_strength
= 62,
125 .max_chain_delay
= 12,
126 .clks
= gpmi_clks_for_mx6
,
127 .clks_count
= ARRAY_SIZE(gpmi_clks_for_mx6
),
130 static const char * const gpmi_clks_for_mx7d
[] = {
131 "gpmi_io", "gpmi_bch_apb",
134 static const struct gpmi_devdata gpmi_devdata_imx7d
= {
136 .bch_max_ecc_strength
= 62,
137 .max_chain_delay
= 12,
138 .clks
= gpmi_clks_for_mx7d
,
139 .clks_count
= ARRAY_SIZE(gpmi_clks_for_mx7d
),
142 static irqreturn_t
bch_irq(int irq
, void *cookie
)
144 struct gpmi_nand_data
*this = cookie
;
146 gpmi_clear_bch(this);
147 complete(&this->bch_done
);
152 * Calculate the ECC strength by hand:
153 * E : The ECC strength.
154 * G : the length of Galois Field.
155 * N : The chunk count of per page.
156 * O : the oobsize of the NAND chip.
157 * M : the metasize of per page.
161 * ------------ <= (O - M)
169 static inline int get_ecc_strength(struct gpmi_nand_data
*this)
171 struct bch_geometry
*geo
= &this->bch_geometry
;
172 struct mtd_info
*mtd
= nand_to_mtd(&this->nand
);
175 ecc_strength
= ((mtd
->oobsize
- geo
->metadata_size
) * 8)
176 / (geo
->gf_len
* geo
->ecc_chunk_count
);
178 /* We need the minor even number. */
179 return round_down(ecc_strength
, 2);
182 static inline bool gpmi_check_ecc(struct gpmi_nand_data
*this)
184 struct bch_geometry
*geo
= &this->bch_geometry
;
186 /* Do the sanity check. */
187 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
188 /* The mx23/mx28 only support the GF13. */
189 if (geo
->gf_len
== 14)
192 return geo
->ecc_strength
<= this->devdata
->bch_max_ecc_strength
;
196 * If we can get the ECC information from the nand chip, we do not
197 * need to calculate them ourselves.
199 * We may have available oob space in this case.
201 static int set_geometry_by_ecc_info(struct gpmi_nand_data
*this)
203 struct bch_geometry
*geo
= &this->bch_geometry
;
204 struct nand_chip
*chip
= &this->nand
;
205 struct mtd_info
*mtd
= nand_to_mtd(chip
);
206 unsigned int block_mark_bit_offset
;
208 if (!(chip
->ecc_strength_ds
> 0 && chip
->ecc_step_ds
> 0))
211 switch (chip
->ecc_step_ds
) {
220 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
221 chip
->ecc_strength_ds
, chip
->ecc_step_ds
);
224 geo
->ecc_chunk_size
= chip
->ecc_step_ds
;
225 geo
->ecc_strength
= round_up(chip
->ecc_strength_ds
, 2);
226 if (!gpmi_check_ecc(this))
229 /* Keep the C >= O */
230 if (geo
->ecc_chunk_size
< mtd
->oobsize
) {
232 "unsupported nand chip. ecc size: %d, oob size : %d\n",
233 chip
->ecc_step_ds
, mtd
->oobsize
);
237 /* The default value, see comment in the legacy_set_geometry(). */
238 geo
->metadata_size
= 10;
240 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
243 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
246 * |<----------------------------------------------------->|
250 * |<-------------------------------------------->| D | | O' |
253 * +---+----------+-+----------+-+----------+-+----------+-+-----+
254 * | M | data |E| data |E| data |E| data |E| |
255 * +---+----------+-+----------+-+----------+-+----------+-+-----+
261 * P : the page size for BCH module.
262 * E : The ECC strength.
263 * G : the length of Galois Field.
264 * N : The chunk count of per page.
265 * M : the metasize of per page.
266 * C : the ecc chunk size, aka the "data" above.
267 * P': the nand chip's page size.
268 * O : the nand chip's oob size.
271 * The formula for P is :
274 * P = ------------ + P' + M
277 * The position of block mark moves forward in the ECC-based view
278 * of page, and the delta is:
281 * D = (---------------- + M)
284 * Please see the comment in legacy_set_geometry().
285 * With the condition C >= O , we still can get same result.
286 * So the bit position of the physical block mark within the ECC-based
287 * view of the page is :
290 geo
->page_size
= mtd
->writesize
+ geo
->metadata_size
+
291 (geo
->gf_len
* geo
->ecc_strength
* geo
->ecc_chunk_count
) / 8;
293 geo
->payload_size
= mtd
->writesize
;
295 geo
->auxiliary_status_offset
= ALIGN(geo
->metadata_size
, 4);
296 geo
->auxiliary_size
= ALIGN(geo
->metadata_size
, 4)
297 + ALIGN(geo
->ecc_chunk_count
, 4);
299 if (!this->swap_block_mark
)
303 block_mark_bit_offset
= mtd
->writesize
* 8 -
304 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
305 + geo
->metadata_size
* 8);
307 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
308 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
312 static int legacy_set_geometry(struct gpmi_nand_data
*this)
314 struct bch_geometry
*geo
= &this->bch_geometry
;
315 struct mtd_info
*mtd
= nand_to_mtd(&this->nand
);
316 unsigned int metadata_size
;
317 unsigned int status_size
;
318 unsigned int block_mark_bit_offset
;
321 * The size of the metadata can be changed, though we set it to 10
322 * bytes now. But it can't be too large, because we have to save
323 * enough space for BCH.
325 geo
->metadata_size
= 10;
327 /* The default for the length of Galois Field. */
330 /* The default for chunk size. */
331 geo
->ecc_chunk_size
= 512;
332 while (geo
->ecc_chunk_size
< mtd
->oobsize
) {
333 geo
->ecc_chunk_size
*= 2; /* keep C >= O */
337 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
339 /* We use the same ECC strength for all chunks. */
340 geo
->ecc_strength
= get_ecc_strength(this);
341 if (!gpmi_check_ecc(this)) {
343 "ecc strength: %d cannot be supported by the controller (%d)\n"
344 "try to use minimum ecc strength that NAND chip required\n",
346 this->devdata
->bch_max_ecc_strength
);
350 geo
->page_size
= mtd
->writesize
+ geo
->metadata_size
+
351 (geo
->gf_len
* geo
->ecc_strength
* geo
->ecc_chunk_count
) / 8;
352 geo
->payload_size
= mtd
->writesize
;
355 * The auxiliary buffer contains the metadata and the ECC status. The
356 * metadata is padded to the nearest 32-bit boundary. The ECC status
357 * contains one byte for every ECC chunk, and is also padded to the
358 * nearest 32-bit boundary.
360 metadata_size
= ALIGN(geo
->metadata_size
, 4);
361 status_size
= ALIGN(geo
->ecc_chunk_count
, 4);
363 geo
->auxiliary_size
= metadata_size
+ status_size
;
364 geo
->auxiliary_status_offset
= metadata_size
;
366 if (!this->swap_block_mark
)
370 * We need to compute the byte and bit offsets of
371 * the physical block mark within the ECC-based view of the page.
373 * NAND chip with 2K page shows below:
379 * +---+----------+-+----------+-+----------+-+----------+-+
380 * | M | data |E| data |E| data |E| data |E|
381 * +---+----------+-+----------+-+----------+-+----------+-+
383 * The position of block mark moves forward in the ECC-based view
384 * of page, and the delta is:
387 * D = (---------------- + M)
390 * With the formula to compute the ECC strength, and the condition
391 * : C >= O (C is the ecc chunk size)
393 * It's easy to deduce to the following result:
395 * E * G (O - M) C - M C - M
396 * ----------- <= ------- <= -------- < ---------
402 * D = (---------------- + M) < C
405 * The above inequality means the position of block mark
406 * within the ECC-based view of the page is still in the data chunk,
407 * and it's NOT in the ECC bits of the chunk.
409 * Use the following to compute the bit position of the
410 * physical block mark within the ECC-based view of the page:
411 * (page_size - D) * 8
415 block_mark_bit_offset
= mtd
->writesize
* 8 -
416 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
417 + geo
->metadata_size
* 8);
419 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
420 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
424 int common_nfc_set_geometry(struct gpmi_nand_data
*this)
426 if ((of_property_read_bool(this->dev
->of_node
, "fsl,use-minimum-ecc"))
427 || legacy_set_geometry(this))
428 return set_geometry_by_ecc_info(this);
433 struct dma_chan
*get_dma_chan(struct gpmi_nand_data
*this)
435 /* We use the DMA channel 0 to access all the nand chips. */
436 return this->dma_chans
[0];
439 /* Can we use the upper's buffer directly for DMA? */
440 void prepare_data_dma(struct gpmi_nand_data
*this, enum dma_data_direction dr
)
442 struct scatterlist
*sgl
= &this->data_sgl
;
445 /* first try to map the upper buffer directly */
446 if (virt_addr_valid(this->upper_buf
) &&
447 !object_is_on_stack(this->upper_buf
)) {
448 sg_init_one(sgl
, this->upper_buf
, this->upper_len
);
449 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
453 this->direct_dma_map_ok
= true;
458 /* We have to use our own DMA buffer. */
459 sg_init_one(sgl
, this->data_buffer_dma
, this->upper_len
);
461 if (dr
== DMA_TO_DEVICE
)
462 memcpy(this->data_buffer_dma
, this->upper_buf
, this->upper_len
);
464 dma_map_sg(this->dev
, sgl
, 1, dr
);
466 this->direct_dma_map_ok
= false;
469 /* This will be called after the DMA operation is finished. */
470 static void dma_irq_callback(void *param
)
472 struct gpmi_nand_data
*this = param
;
473 struct completion
*dma_c
= &this->dma_done
;
475 switch (this->dma_type
) {
476 case DMA_FOR_COMMAND
:
477 dma_unmap_sg(this->dev
, &this->cmd_sgl
, 1, DMA_TO_DEVICE
);
480 case DMA_FOR_READ_DATA
:
481 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_FROM_DEVICE
);
482 if (this->direct_dma_map_ok
== false)
483 memcpy(this->upper_buf
, this->data_buffer_dma
,
487 case DMA_FOR_WRITE_DATA
:
488 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_TO_DEVICE
);
491 case DMA_FOR_READ_ECC_PAGE
:
492 case DMA_FOR_WRITE_ECC_PAGE
:
493 /* We have to wait the BCH interrupt to finish. */
497 dev_err(this->dev
, "in wrong DMA operation.\n");
503 int start_dma_without_bch_irq(struct gpmi_nand_data
*this,
504 struct dma_async_tx_descriptor
*desc
)
506 struct completion
*dma_c
= &this->dma_done
;
507 unsigned long timeout
;
509 init_completion(dma_c
);
511 desc
->callback
= dma_irq_callback
;
512 desc
->callback_param
= this;
513 dmaengine_submit(desc
);
514 dma_async_issue_pending(get_dma_chan(this));
516 /* Wait for the interrupt from the DMA block. */
517 timeout
= wait_for_completion_timeout(dma_c
, msecs_to_jiffies(1000));
519 dev_err(this->dev
, "DMA timeout, last DMA :%d\n",
520 this->last_dma_type
);
521 gpmi_dump_info(this);
528 * This function is used in BCH reading or BCH writing pages.
529 * It will wait for the BCH interrupt as long as ONE second.
530 * Actually, we must wait for two interrupts :
531 * [1] firstly the DMA interrupt and
532 * [2] secondly the BCH interrupt.
534 int start_dma_with_bch_irq(struct gpmi_nand_data
*this,
535 struct dma_async_tx_descriptor
*desc
)
537 struct completion
*bch_c
= &this->bch_done
;
538 unsigned long timeout
;
540 /* Prepare to receive an interrupt from the BCH block. */
541 init_completion(bch_c
);
544 start_dma_without_bch_irq(this, desc
);
546 /* Wait for the interrupt from the BCH block. */
547 timeout
= wait_for_completion_timeout(bch_c
, msecs_to_jiffies(1000));
549 dev_err(this->dev
, "BCH timeout, last DMA :%d\n",
550 this->last_dma_type
);
551 gpmi_dump_info(this);
557 static int acquire_register_block(struct gpmi_nand_data
*this,
558 const char *res_name
)
560 struct platform_device
*pdev
= this->pdev
;
561 struct resources
*res
= &this->resources
;
565 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, res_name
);
566 p
= devm_ioremap_resource(&pdev
->dev
, r
);
570 if (!strcmp(res_name
, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
))
572 else if (!strcmp(res_name
, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
))
575 dev_err(this->dev
, "unknown resource name : %s\n", res_name
);
580 static int acquire_bch_irq(struct gpmi_nand_data
*this, irq_handler_t irq_h
)
582 struct platform_device
*pdev
= this->pdev
;
583 const char *res_name
= GPMI_NAND_BCH_INTERRUPT_RES_NAME
;
587 r
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
, res_name
);
589 dev_err(this->dev
, "Can't get resource for %s\n", res_name
);
593 err
= devm_request_irq(this->dev
, r
->start
, irq_h
, 0, res_name
, this);
595 dev_err(this->dev
, "error requesting BCH IRQ\n");
600 static void release_dma_channels(struct gpmi_nand_data
*this)
603 for (i
= 0; i
< DMA_CHANS
; i
++)
604 if (this->dma_chans
[i
]) {
605 dma_release_channel(this->dma_chans
[i
]);
606 this->dma_chans
[i
] = NULL
;
610 static int acquire_dma_channels(struct gpmi_nand_data
*this)
612 struct platform_device
*pdev
= this->pdev
;
613 struct dma_chan
*dma_chan
;
615 /* request dma channel */
616 dma_chan
= dma_request_slave_channel(&pdev
->dev
, "rx-tx");
618 dev_err(this->dev
, "Failed to request DMA channel.\n");
622 this->dma_chans
[0] = dma_chan
;
626 release_dma_channels(this);
630 static int gpmi_get_clks(struct gpmi_nand_data
*this)
632 struct resources
*r
= &this->resources
;
636 for (i
= 0; i
< this->devdata
->clks_count
; i
++) {
637 clk
= devm_clk_get(this->dev
, this->devdata
->clks
[i
]);
646 if (GPMI_IS_MX6(this))
648 * Set the default value for the gpmi clock.
650 * If you want to use the ONFI nand which is in the
651 * Synchronous Mode, you should change the clock as you need.
653 clk_set_rate(r
->clock
[0], 22000000);
658 dev_dbg(this->dev
, "failed in finding the clocks.\n");
662 static int acquire_resources(struct gpmi_nand_data
*this)
666 ret
= acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
);
670 ret
= acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
);
674 ret
= acquire_bch_irq(this, bch_irq
);
678 ret
= acquire_dma_channels(this);
682 ret
= gpmi_get_clks(this);
688 release_dma_channels(this);
693 static void release_resources(struct gpmi_nand_data
*this)
695 release_dma_channels(this);
698 static int init_hardware(struct gpmi_nand_data
*this)
703 * This structure contains the "safe" GPMI timing that should succeed
704 * with any NAND Flash device
705 * (although, with less-than-optimal performance).
707 struct nand_timing safe_timing
= {
708 .data_setup_in_ns
= 80,
709 .data_hold_in_ns
= 60,
710 .address_setup_in_ns
= 25,
711 .gpmi_sample_delay_in_ns
= 6,
717 /* Initialize the hardwares. */
718 ret
= gpmi_init(this);
722 this->timing
= safe_timing
;
726 static int read_page_prepare(struct gpmi_nand_data
*this,
727 void *destination
, unsigned length
,
728 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
729 void **use_virt
, dma_addr_t
*use_phys
)
731 struct device
*dev
= this->dev
;
733 if (virt_addr_valid(destination
)) {
734 dma_addr_t dest_phys
;
736 dest_phys
= dma_map_single(dev
, destination
,
737 length
, DMA_FROM_DEVICE
);
738 if (dma_mapping_error(dev
, dest_phys
)) {
739 if (alt_size
< length
) {
740 dev_err(dev
, "Alternate buffer is too small\n");
745 *use_virt
= destination
;
746 *use_phys
= dest_phys
;
747 this->direct_dma_map_ok
= true;
752 *use_virt
= alt_virt
;
753 *use_phys
= alt_phys
;
754 this->direct_dma_map_ok
= false;
758 static inline void read_page_end(struct gpmi_nand_data
*this,
759 void *destination
, unsigned length
,
760 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
761 void *used_virt
, dma_addr_t used_phys
)
763 if (this->direct_dma_map_ok
)
764 dma_unmap_single(this->dev
, used_phys
, length
, DMA_FROM_DEVICE
);
767 static inline void read_page_swap_end(struct gpmi_nand_data
*this,
768 void *destination
, unsigned length
,
769 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
770 void *used_virt
, dma_addr_t used_phys
)
772 if (!this->direct_dma_map_ok
)
773 memcpy(destination
, alt_virt
, length
);
776 static int send_page_prepare(struct gpmi_nand_data
*this,
777 const void *source
, unsigned length
,
778 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
779 const void **use_virt
, dma_addr_t
*use_phys
)
781 struct device
*dev
= this->dev
;
783 if (virt_addr_valid(source
)) {
784 dma_addr_t source_phys
;
786 source_phys
= dma_map_single(dev
, (void *)source
, length
,
788 if (dma_mapping_error(dev
, source_phys
)) {
789 if (alt_size
< length
) {
790 dev_err(dev
, "Alternate buffer is too small\n");
796 *use_phys
= source_phys
;
801 * Copy the content of the source buffer into the alternate
802 * buffer and set up the return values accordingly.
804 memcpy(alt_virt
, source
, length
);
806 *use_virt
= alt_virt
;
807 *use_phys
= alt_phys
;
811 static void send_page_end(struct gpmi_nand_data
*this,
812 const void *source
, unsigned length
,
813 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
814 const void *used_virt
, dma_addr_t used_phys
)
816 struct device
*dev
= this->dev
;
817 if (used_virt
== source
)
818 dma_unmap_single(dev
, used_phys
, length
, DMA_TO_DEVICE
);
821 static void gpmi_free_dma_buffer(struct gpmi_nand_data
*this)
823 struct device
*dev
= this->dev
;
825 if (this->page_buffer_virt
&& virt_addr_valid(this->page_buffer_virt
))
826 dma_free_coherent(dev
, this->page_buffer_size
,
827 this->page_buffer_virt
,
828 this->page_buffer_phys
);
829 kfree(this->cmd_buffer
);
830 kfree(this->data_buffer_dma
);
831 kfree(this->raw_buffer
);
833 this->cmd_buffer
= NULL
;
834 this->data_buffer_dma
= NULL
;
835 this->raw_buffer
= NULL
;
836 this->page_buffer_virt
= NULL
;
837 this->page_buffer_size
= 0;
840 /* Allocate the DMA buffers */
841 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data
*this)
843 struct bch_geometry
*geo
= &this->bch_geometry
;
844 struct device
*dev
= this->dev
;
845 struct mtd_info
*mtd
= nand_to_mtd(&this->nand
);
847 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
848 this->cmd_buffer
= kzalloc(PAGE_SIZE
, GFP_DMA
| GFP_KERNEL
);
849 if (this->cmd_buffer
== NULL
)
853 * [2] Allocate a read/write data buffer.
854 * The gpmi_alloc_dma_buffer can be called twice.
855 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
856 * is called before the nand_scan_ident; and we allocate a buffer
857 * of the real NAND page size when the gpmi_alloc_dma_buffer is
858 * called after the nand_scan_ident.
860 this->data_buffer_dma
= kzalloc(mtd
->writesize
?: PAGE_SIZE
,
861 GFP_DMA
| GFP_KERNEL
);
862 if (this->data_buffer_dma
== NULL
)
866 * [3] Allocate the page buffer.
868 * Both the payload buffer and the auxiliary buffer must appear on
869 * 32-bit boundaries. We presume the size of the payload buffer is a
870 * power of two and is much larger than four, which guarantees the
871 * auxiliary buffer will appear on a 32-bit boundary.
873 this->page_buffer_size
= geo
->payload_size
+ geo
->auxiliary_size
;
874 this->page_buffer_virt
= dma_alloc_coherent(dev
, this->page_buffer_size
,
875 &this->page_buffer_phys
, GFP_DMA
);
876 if (!this->page_buffer_virt
)
879 this->raw_buffer
= kzalloc(mtd
->writesize
+ mtd
->oobsize
, GFP_KERNEL
);
880 if (!this->raw_buffer
)
883 /* Slice up the page buffer. */
884 this->payload_virt
= this->page_buffer_virt
;
885 this->payload_phys
= this->page_buffer_phys
;
886 this->auxiliary_virt
= this->payload_virt
+ geo
->payload_size
;
887 this->auxiliary_phys
= this->payload_phys
+ geo
->payload_size
;
891 gpmi_free_dma_buffer(this);
895 static void gpmi_cmd_ctrl(struct mtd_info
*mtd
, int data
, unsigned int ctrl
)
897 struct nand_chip
*chip
= mtd_to_nand(mtd
);
898 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
902 * Every operation begins with a command byte and a series of zero or
903 * more address bytes. These are distinguished by either the Address
904 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
905 * asserted. When MTD is ready to execute the command, it will deassert
906 * both latch enables.
908 * Rather than run a separate DMA operation for every single byte, we
909 * queue them up and run a single DMA operation for the entire series
910 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
912 if ((ctrl
& (NAND_ALE
| NAND_CLE
))) {
913 if (data
!= NAND_CMD_NONE
)
914 this->cmd_buffer
[this->command_length
++] = data
;
918 if (!this->command_length
)
921 ret
= gpmi_send_command(this);
923 dev_err(this->dev
, "Chip: %u, Error %d\n",
924 this->current_chip
, ret
);
926 this->command_length
= 0;
929 static int gpmi_dev_ready(struct mtd_info
*mtd
)
931 struct nand_chip
*chip
= mtd_to_nand(mtd
);
932 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
934 return gpmi_is_ready(this, this->current_chip
);
937 static void gpmi_select_chip(struct mtd_info
*mtd
, int chipnr
)
939 struct nand_chip
*chip
= mtd_to_nand(mtd
);
940 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
942 if ((this->current_chip
< 0) && (chipnr
>= 0))
944 else if ((this->current_chip
>= 0) && (chipnr
< 0))
947 this->current_chip
= chipnr
;
950 static void gpmi_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
952 struct nand_chip
*chip
= mtd_to_nand(mtd
);
953 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
955 dev_dbg(this->dev
, "len is %d\n", len
);
956 this->upper_buf
= buf
;
957 this->upper_len
= len
;
959 gpmi_read_data(this);
962 static void gpmi_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
964 struct nand_chip
*chip
= mtd_to_nand(mtd
);
965 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
967 dev_dbg(this->dev
, "len is %d\n", len
);
968 this->upper_buf
= (uint8_t *)buf
;
969 this->upper_len
= len
;
971 gpmi_send_data(this);
974 static uint8_t gpmi_read_byte(struct mtd_info
*mtd
)
976 struct nand_chip
*chip
= mtd_to_nand(mtd
);
977 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
978 uint8_t *buf
= this->data_buffer_dma
;
980 gpmi_read_buf(mtd
, buf
, 1);
985 * Handles block mark swapping.
986 * It can be called in swapping the block mark, or swapping it back,
987 * because the the operations are the same.
989 static void block_mark_swapping(struct gpmi_nand_data
*this,
990 void *payload
, void *auxiliary
)
992 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
997 unsigned char from_data
;
998 unsigned char from_oob
;
1000 if (!this->swap_block_mark
)
1004 * If control arrives here, we're swapping. Make some convenience
1007 bit
= nfc_geo
->block_mark_bit_offset
;
1008 p
= payload
+ nfc_geo
->block_mark_byte_offset
;
1012 * Get the byte from the data area that overlays the block mark. Since
1013 * the ECC engine applies its own view to the bits in the page, the
1014 * physical block mark won't (in general) appear on a byte boundary in
1017 from_data
= (p
[0] >> bit
) | (p
[1] << (8 - bit
));
1019 /* Get the byte from the OOB. */
1025 mask
= (0x1 << bit
) - 1;
1026 p
[0] = (p
[0] & mask
) | (from_oob
<< bit
);
1029 p
[1] = (p
[1] & mask
) | (from_oob
>> (8 - bit
));
1032 static int gpmi_ecc_read_page_data(struct nand_chip
*chip
,
1033 uint8_t *buf
, int oob_required
,
1036 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1037 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1038 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1040 dma_addr_t payload_phys
;
1041 void *auxiliary_virt
;
1042 dma_addr_t auxiliary_phys
;
1044 unsigned char *status
;
1045 unsigned int max_bitflips
= 0;
1048 dev_dbg(this->dev
, "page number is : %d\n", page
);
1049 ret
= read_page_prepare(this, buf
, nfc_geo
->payload_size
,
1050 this->payload_virt
, this->payload_phys
,
1051 nfc_geo
->payload_size
,
1052 &payload_virt
, &payload_phys
);
1054 dev_err(this->dev
, "Inadequate DMA buffer\n");
1058 auxiliary_virt
= this->auxiliary_virt
;
1059 auxiliary_phys
= this->auxiliary_phys
;
1062 ret
= gpmi_read_page(this, payload_phys
, auxiliary_phys
);
1063 read_page_end(this, buf
, nfc_geo
->payload_size
,
1064 this->payload_virt
, this->payload_phys
,
1065 nfc_geo
->payload_size
,
1066 payload_virt
, payload_phys
);
1068 dev_err(this->dev
, "Error in ECC-based read: %d\n", ret
);
1072 /* Loop over status bytes, accumulating ECC status. */
1073 status
= auxiliary_virt
+ nfc_geo
->auxiliary_status_offset
;
1075 read_page_swap_end(this, buf
, nfc_geo
->payload_size
,
1076 this->payload_virt
, this->payload_phys
,
1077 nfc_geo
->payload_size
,
1078 payload_virt
, payload_phys
);
1080 for (i
= 0; i
< nfc_geo
->ecc_chunk_count
; i
++, status
++) {
1081 if ((*status
== STATUS_GOOD
) || (*status
== STATUS_ERASED
))
1084 if (*status
== STATUS_UNCORRECTABLE
) {
1085 int eccbits
= nfc_geo
->ecc_strength
* nfc_geo
->gf_len
;
1086 u8
*eccbuf
= this->raw_buffer
;
1087 int offset
, bitoffset
;
1091 /* Read ECC bytes into our internal raw_buffer */
1092 offset
= nfc_geo
->metadata_size
* 8;
1093 offset
+= ((8 * nfc_geo
->ecc_chunk_size
) + eccbits
) * (i
+ 1);
1095 bitoffset
= offset
% 8;
1096 eccbytes
= DIV_ROUND_UP(offset
+ eccbits
, 8);
1099 nand_change_read_column_op(chip
, offset
, eccbuf
,
1103 * ECC data are not byte aligned and we may have
1104 * in-band data in the first and last byte of
1105 * eccbuf. Set non-eccbits to one so that
1106 * nand_check_erased_ecc_chunk() does not count them
1110 eccbuf
[0] |= GENMASK(bitoffset
- 1, 0);
1112 bitoffset
= (bitoffset
+ eccbits
) % 8;
1114 eccbuf
[eccbytes
- 1] |= GENMASK(7, bitoffset
);
1117 * The ECC hardware has an uncorrectable ECC status
1118 * code in case we have bitflips in an erased page. As
1119 * nothing was written into this subpage the ECC is
1120 * obviously wrong and we can not trust it. We assume
1121 * at this point that we are reading an erased page and
1122 * try to correct the bitflips in buffer up to
1123 * ecc_strength bitflips. If this is a page with random
1124 * data, we exceed this number of bitflips and have a
1125 * ECC failure. Otherwise we use the corrected buffer.
1128 /* The first block includes metadata */
1129 flips
= nand_check_erased_ecc_chunk(
1130 buf
+ i
* nfc_geo
->ecc_chunk_size
,
1131 nfc_geo
->ecc_chunk_size
,
1134 nfc_geo
->metadata_size
,
1135 nfc_geo
->ecc_strength
);
1137 flips
= nand_check_erased_ecc_chunk(
1138 buf
+ i
* nfc_geo
->ecc_chunk_size
,
1139 nfc_geo
->ecc_chunk_size
,
1142 nfc_geo
->ecc_strength
);
1146 max_bitflips
= max_t(unsigned int, max_bitflips
,
1148 mtd
->ecc_stats
.corrected
+= flips
;
1152 mtd
->ecc_stats
.failed
++;
1156 mtd
->ecc_stats
.corrected
+= *status
;
1157 max_bitflips
= max_t(unsigned int, max_bitflips
, *status
);
1160 /* handle the block mark swapping */
1161 block_mark_swapping(this, buf
, auxiliary_virt
);
1165 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1166 * for details about our policy for delivering the OOB.
1168 * We fill the caller's buffer with set bits, and then copy the
1169 * block mark to th caller's buffer. Note that, if block mark
1170 * swapping was necessary, it has already been done, so we can
1171 * rely on the first byte of the auxiliary buffer to contain
1174 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1175 chip
->oob_poi
[0] = ((uint8_t *) auxiliary_virt
)[0];
1178 return max_bitflips
;
1181 static int gpmi_ecc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1182 uint8_t *buf
, int oob_required
, int page
)
1184 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1186 return gpmi_ecc_read_page_data(chip
, buf
, oob_required
, page
);
1189 /* Fake a virtual small page for the subpage read */
1190 static int gpmi_ecc_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1191 uint32_t offs
, uint32_t len
, uint8_t *buf
, int page
)
1193 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1194 void __iomem
*bch_regs
= this->resources
.bch_regs
;
1195 struct bch_geometry old_geo
= this->bch_geometry
;
1196 struct bch_geometry
*geo
= &this->bch_geometry
;
1197 int size
= chip
->ecc
.size
; /* ECC chunk size */
1198 int meta
, n
, page_size
;
1199 u32 r1_old
, r2_old
, r1_new
, r2_new
;
1200 unsigned int max_bitflips
;
1201 int first
, last
, marker_pos
;
1202 int ecc_parity_size
;
1204 int old_swap_block_mark
= this->swap_block_mark
;
1206 /* The size of ECC parity */
1207 ecc_parity_size
= geo
->gf_len
* geo
->ecc_strength
/ 8;
1209 /* Align it with the chunk size */
1210 first
= offs
/ size
;
1211 last
= (offs
+ len
- 1) / size
;
1213 if (this->swap_block_mark
) {
1215 * Find the chunk which contains the Block Marker.
1216 * If this chunk is in the range of [first, last],
1217 * we have to read out the whole page.
1218 * Why? since we had swapped the data at the position of Block
1219 * Marker to the metadata which is bound with the chunk 0.
1221 marker_pos
= geo
->block_mark_byte_offset
/ size
;
1222 if (last
>= marker_pos
&& first
<= marker_pos
) {
1224 "page:%d, first:%d, last:%d, marker at:%d\n",
1225 page
, first
, last
, marker_pos
);
1226 return gpmi_ecc_read_page(mtd
, chip
, buf
, 0, page
);
1230 meta
= geo
->metadata_size
;
1232 col
= meta
+ (size
+ ecc_parity_size
) * first
;
1234 buf
= buf
+ first
* size
;
1237 nand_read_page_op(chip
, page
, col
, NULL
, 0);
1239 /* Save the old environment */
1240 r1_old
= r1_new
= readl(bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
1241 r2_old
= r2_new
= readl(bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
1243 /* change the BCH registers and bch_geometry{} */
1244 n
= last
- first
+ 1;
1245 page_size
= meta
+ (size
+ ecc_parity_size
) * n
;
1247 r1_new
&= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS
|
1248 BM_BCH_FLASH0LAYOUT0_META_SIZE
);
1249 r1_new
|= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n
- 1)
1250 | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta
);
1251 writel(r1_new
, bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
1253 r2_new
&= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE
;
1254 r2_new
|= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size
);
1255 writel(r2_new
, bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
1257 geo
->ecc_chunk_count
= n
;
1258 geo
->payload_size
= n
* size
;
1259 geo
->page_size
= page_size
;
1260 geo
->auxiliary_status_offset
= ALIGN(meta
, 4);
1262 dev_dbg(this->dev
, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1263 page
, offs
, len
, col
, first
, n
, page_size
);
1265 /* Read the subpage now */
1266 this->swap_block_mark
= false;
1267 max_bitflips
= gpmi_ecc_read_page_data(chip
, buf
, 0, page
);
1270 writel(r1_old
, bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
1271 writel(r2_old
, bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
1272 this->bch_geometry
= old_geo
;
1273 this->swap_block_mark
= old_swap_block_mark
;
1275 return max_bitflips
;
1278 static int gpmi_ecc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1279 const uint8_t *buf
, int oob_required
, int page
)
1281 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1282 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1283 const void *payload_virt
;
1284 dma_addr_t payload_phys
;
1285 const void *auxiliary_virt
;
1286 dma_addr_t auxiliary_phys
;
1289 dev_dbg(this->dev
, "ecc write page.\n");
1291 nand_prog_page_begin_op(chip
, page
, 0, NULL
, 0);
1293 if (this->swap_block_mark
) {
1295 * If control arrives here, we're doing block mark swapping.
1296 * Since we can't modify the caller's buffers, we must copy them
1299 memcpy(this->payload_virt
, buf
, mtd
->writesize
);
1300 payload_virt
= this->payload_virt
;
1301 payload_phys
= this->payload_phys
;
1303 memcpy(this->auxiliary_virt
, chip
->oob_poi
,
1304 nfc_geo
->auxiliary_size
);
1305 auxiliary_virt
= this->auxiliary_virt
;
1306 auxiliary_phys
= this->auxiliary_phys
;
1308 /* Handle block mark swapping. */
1309 block_mark_swapping(this,
1310 (void *)payload_virt
, (void *)auxiliary_virt
);
1313 * If control arrives here, we're not doing block mark swapping,
1314 * so we can to try and use the caller's buffers.
1316 ret
= send_page_prepare(this,
1317 buf
, mtd
->writesize
,
1318 this->payload_virt
, this->payload_phys
,
1319 nfc_geo
->payload_size
,
1320 &payload_virt
, &payload_phys
);
1322 dev_err(this->dev
, "Inadequate payload DMA buffer\n");
1326 ret
= send_page_prepare(this,
1327 chip
->oob_poi
, mtd
->oobsize
,
1328 this->auxiliary_virt
, this->auxiliary_phys
,
1329 nfc_geo
->auxiliary_size
,
1330 &auxiliary_virt
, &auxiliary_phys
);
1332 dev_err(this->dev
, "Inadequate auxiliary DMA buffer\n");
1333 goto exit_auxiliary
;
1338 ret
= gpmi_send_page(this, payload_phys
, auxiliary_phys
);
1340 dev_err(this->dev
, "Error in ECC-based write: %d\n", ret
);
1342 if (!this->swap_block_mark
) {
1343 send_page_end(this, chip
->oob_poi
, mtd
->oobsize
,
1344 this->auxiliary_virt
, this->auxiliary_phys
,
1345 nfc_geo
->auxiliary_size
,
1346 auxiliary_virt
, auxiliary_phys
);
1348 send_page_end(this, buf
, mtd
->writesize
,
1349 this->payload_virt
, this->payload_phys
,
1350 nfc_geo
->payload_size
,
1351 payload_virt
, payload_phys
);
1357 return nand_prog_page_end_op(chip
);
1361 * There are several places in this driver where we have to handle the OOB and
1362 * block marks. This is the function where things are the most complicated, so
1363 * this is where we try to explain it all. All the other places refer back to
1366 * These are the rules, in order of decreasing importance:
1368 * 1) Nothing the caller does can be allowed to imperil the block mark.
1370 * 2) In read operations, the first byte of the OOB we return must reflect the
1371 * true state of the block mark, no matter where that block mark appears in
1372 * the physical page.
1374 * 3) ECC-based read operations return an OOB full of set bits (since we never
1375 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1378 * 4) "Raw" read operations return a direct view of the physical bytes in the
1379 * page, using the conventional definition of which bytes are data and which
1380 * are OOB. This gives the caller a way to see the actual, physical bytes
1381 * in the page, without the distortions applied by our ECC engine.
1384 * What we do for this specific read operation depends on two questions:
1386 * 1) Are we doing a "raw" read, or an ECC-based read?
1388 * 2) Are we using block mark swapping or transcription?
1390 * There are four cases, illustrated by the following Karnaugh map:
1392 * | Raw | ECC-based |
1393 * -------------+-------------------------+-------------------------+
1394 * | Read the conventional | |
1395 * | OOB at the end of the | |
1396 * Swapping | page and return it. It | |
1397 * | contains exactly what | |
1398 * | we want. | Read the block mark and |
1399 * -------------+-------------------------+ return it in a buffer |
1400 * | Read the conventional | full of set bits. |
1401 * | OOB at the end of the | |
1402 * | page and also the block | |
1403 * Transcribing | mark in the metadata. | |
1404 * | Copy the block mark | |
1405 * | into the first byte of | |
1407 * -------------+-------------------------+-------------------------+
1409 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1410 * giving an accurate view of the actual, physical bytes in the page (we're
1411 * overwriting the block mark). That's OK because it's more important to follow
1414 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1415 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1416 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1417 * ECC-based or raw view of the page is implicit in which function it calls
1418 * (there is a similar pair of ECC-based/raw functions for writing).
1420 static int gpmi_ecc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1423 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1425 dev_dbg(this->dev
, "page number is %d\n", page
);
1426 /* clear the OOB buffer */
1427 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1429 /* Read out the conventional OOB. */
1430 nand_read_page_op(chip
, page
, mtd
->writesize
, NULL
, 0);
1431 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1434 * Now, we want to make sure the block mark is correct. In the
1435 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1436 * Otherwise, we need to explicitly read it.
1438 if (GPMI_IS_MX23(this)) {
1439 /* Read the block mark into the first byte of the OOB buffer. */
1440 nand_read_page_op(chip
, page
, 0, NULL
, 0);
1441 chip
->oob_poi
[0] = chip
->read_byte(mtd
);
1448 gpmi_ecc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1450 struct mtd_oob_region of
= { };
1452 /* Do we have available oob area? */
1453 mtd_ooblayout_free(mtd
, 0, &of
);
1457 if (!nand_is_slc(chip
))
1460 return nand_prog_page_op(chip
, page
, mtd
->writesize
+ of
.offset
,
1461 chip
->oob_poi
+ of
.offset
, of
.length
);
1465 * This function reads a NAND page without involving the ECC engine (no HW
1467 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1468 * inline (interleaved with payload DATA), and do not align data chunk on
1470 * We thus need to take care moving the payload data and ECC bits stored in the
1471 * page into the provided buffers, which is why we're using gpmi_copy_bits.
1473 * See set_geometry_by_ecc_info inline comments to have a full description
1474 * of the layout used by the GPMI controller.
1476 static int gpmi_ecc_read_page_raw(struct mtd_info
*mtd
,
1477 struct nand_chip
*chip
, uint8_t *buf
,
1478 int oob_required
, int page
)
1480 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1481 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1482 int eccsize
= nfc_geo
->ecc_chunk_size
;
1483 int eccbits
= nfc_geo
->ecc_strength
* nfc_geo
->gf_len
;
1484 u8
*tmp_buf
= this->raw_buffer
;
1487 size_t oob_byte_off
;
1488 uint8_t *oob
= chip
->oob_poi
;
1491 nand_read_page_op(chip
, page
, 0, tmp_buf
,
1492 mtd
->writesize
+ mtd
->oobsize
);
1495 * If required, swap the bad block marker and the data stored in the
1496 * metadata section, so that we don't wrongly consider a block as bad.
1498 * See the layout description for a detailed explanation on why this
1501 if (this->swap_block_mark
)
1502 swap(tmp_buf
[0], tmp_buf
[mtd
->writesize
]);
1505 * Copy the metadata section into the oob buffer (this section is
1506 * guaranteed to be aligned on a byte boundary).
1509 memcpy(oob
, tmp_buf
, nfc_geo
->metadata_size
);
1511 oob_bit_off
= nfc_geo
->metadata_size
* 8;
1512 src_bit_off
= oob_bit_off
;
1514 /* Extract interleaved payload data and ECC bits */
1515 for (step
= 0; step
< nfc_geo
->ecc_chunk_count
; step
++) {
1517 gpmi_copy_bits(buf
, step
* eccsize
* 8,
1518 tmp_buf
, src_bit_off
,
1520 src_bit_off
+= eccsize
* 8;
1522 /* Align last ECC block to align a byte boundary */
1523 if (step
== nfc_geo
->ecc_chunk_count
- 1 &&
1524 (oob_bit_off
+ eccbits
) % 8)
1525 eccbits
+= 8 - ((oob_bit_off
+ eccbits
) % 8);
1528 gpmi_copy_bits(oob
, oob_bit_off
,
1529 tmp_buf
, src_bit_off
,
1532 src_bit_off
+= eccbits
;
1533 oob_bit_off
+= eccbits
;
1537 oob_byte_off
= oob_bit_off
/ 8;
1539 if (oob_byte_off
< mtd
->oobsize
)
1540 memcpy(oob
+ oob_byte_off
,
1541 tmp_buf
+ mtd
->writesize
+ oob_byte_off
,
1542 mtd
->oobsize
- oob_byte_off
);
1549 * This function writes a NAND page without involving the ECC engine (no HW
1551 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1552 * inline (interleaved with payload DATA), and do not align data chunk on
1554 * We thus need to take care moving the OOB area at the right place in the
1555 * final page, which is why we're using gpmi_copy_bits.
1557 * See set_geometry_by_ecc_info inline comments to have a full description
1558 * of the layout used by the GPMI controller.
1560 static int gpmi_ecc_write_page_raw(struct mtd_info
*mtd
,
1561 struct nand_chip
*chip
,
1563 int oob_required
, int page
)
1565 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1566 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1567 int eccsize
= nfc_geo
->ecc_chunk_size
;
1568 int eccbits
= nfc_geo
->ecc_strength
* nfc_geo
->gf_len
;
1569 u8
*tmp_buf
= this->raw_buffer
;
1570 uint8_t *oob
= chip
->oob_poi
;
1573 size_t oob_byte_off
;
1577 * Initialize all bits to 1 in case we don't have a buffer for the
1578 * payload or oob data in order to leave unspecified bits of data
1579 * to their initial state.
1581 if (!buf
|| !oob_required
)
1582 memset(tmp_buf
, 0xff, mtd
->writesize
+ mtd
->oobsize
);
1585 * First copy the metadata section (stored in oob buffer) at the
1586 * beginning of the page, as imposed by the GPMI layout.
1588 memcpy(tmp_buf
, oob
, nfc_geo
->metadata_size
);
1589 oob_bit_off
= nfc_geo
->metadata_size
* 8;
1590 dst_bit_off
= oob_bit_off
;
1592 /* Interleave payload data and ECC bits */
1593 for (step
= 0; step
< nfc_geo
->ecc_chunk_count
; step
++) {
1595 gpmi_copy_bits(tmp_buf
, dst_bit_off
,
1596 buf
, step
* eccsize
* 8, eccsize
* 8);
1597 dst_bit_off
+= eccsize
* 8;
1599 /* Align last ECC block to align a byte boundary */
1600 if (step
== nfc_geo
->ecc_chunk_count
- 1 &&
1601 (oob_bit_off
+ eccbits
) % 8)
1602 eccbits
+= 8 - ((oob_bit_off
+ eccbits
) % 8);
1605 gpmi_copy_bits(tmp_buf
, dst_bit_off
,
1606 oob
, oob_bit_off
, eccbits
);
1608 dst_bit_off
+= eccbits
;
1609 oob_bit_off
+= eccbits
;
1612 oob_byte_off
= oob_bit_off
/ 8;
1614 if (oob_required
&& oob_byte_off
< mtd
->oobsize
)
1615 memcpy(tmp_buf
+ mtd
->writesize
+ oob_byte_off
,
1616 oob
+ oob_byte_off
, mtd
->oobsize
- oob_byte_off
);
1619 * If required, swap the bad block marker and the first byte of the
1620 * metadata section, so that we don't modify the bad block marker.
1622 * See the layout description for a detailed explanation on why this
1625 if (this->swap_block_mark
)
1626 swap(tmp_buf
[0], tmp_buf
[mtd
->writesize
]);
1628 return nand_prog_page_op(chip
, page
, 0, tmp_buf
,
1629 mtd
->writesize
+ mtd
->oobsize
);
1632 static int gpmi_ecc_read_oob_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1635 return gpmi_ecc_read_page_raw(mtd
, chip
, NULL
, 1, page
);
1638 static int gpmi_ecc_write_oob_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1641 return gpmi_ecc_write_page_raw(mtd
, chip
, NULL
, 1, page
);
1644 static int gpmi_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1646 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1647 struct gpmi_nand_data
*this = nand_get_controller_data(chip
);
1649 uint8_t *block_mark
;
1650 int column
, page
, chipnr
;
1652 chipnr
= (int)(ofs
>> chip
->chip_shift
);
1653 chip
->select_chip(mtd
, chipnr
);
1655 column
= !GPMI_IS_MX23(this) ? mtd
->writesize
: 0;
1657 /* Write the block mark. */
1658 block_mark
= this->data_buffer_dma
;
1659 block_mark
[0] = 0; /* bad block marker */
1661 /* Shift to get page */
1662 page
= (int)(ofs
>> chip
->page_shift
);
1664 ret
= nand_prog_page_op(chip
, page
, column
, block_mark
, 1);
1666 chip
->select_chip(mtd
, -1);
1671 static int nand_boot_set_geometry(struct gpmi_nand_data
*this)
1673 struct boot_rom_geometry
*geometry
= &this->rom_geometry
;
1676 * Set the boot block stride size.
1678 * In principle, we should be reading this from the OTP bits, since
1679 * that's where the ROM is going to get it. In fact, we don't have any
1680 * way to read the OTP bits, so we go with the default and hope for the
1683 geometry
->stride_size_in_pages
= 64;
1686 * Set the search area stride exponent.
1688 * In principle, we should be reading this from the OTP bits, since
1689 * that's where the ROM is going to get it. In fact, we don't have any
1690 * way to read the OTP bits, so we go with the default and hope for the
1693 geometry
->search_area_stride_exponent
= 2;
1697 static const char *fingerprint
= "STMP";
1698 static int mx23_check_transcription_stamp(struct gpmi_nand_data
*this)
1700 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1701 struct device
*dev
= this->dev
;
1702 struct nand_chip
*chip
= &this->nand
;
1703 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1704 unsigned int search_area_size_in_strides
;
1705 unsigned int stride
;
1707 uint8_t *buffer
= chip
->data_buf
;
1708 int saved_chip_number
;
1709 int found_an_ncb_fingerprint
= false;
1711 /* Compute the number of strides in a search area. */
1712 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1714 saved_chip_number
= this->current_chip
;
1715 chip
->select_chip(mtd
, 0);
1718 * Loop through the first search area, looking for the NCB fingerprint.
1720 dev_dbg(dev
, "Scanning for an NCB fingerprint...\n");
1722 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1723 /* Compute the page addresses. */
1724 page
= stride
* rom_geo
->stride_size_in_pages
;
1726 dev_dbg(dev
, "Looking for a fingerprint in page 0x%x\n", page
);
1729 * Read the NCB fingerprint. The fingerprint is four bytes long
1730 * and starts in the 12th byte of the page.
1732 nand_read_page_op(chip
, page
, 12, NULL
, 0);
1733 chip
->read_buf(mtd
, buffer
, strlen(fingerprint
));
1735 /* Look for the fingerprint. */
1736 if (!memcmp(buffer
, fingerprint
, strlen(fingerprint
))) {
1737 found_an_ncb_fingerprint
= true;
1743 chip
->select_chip(mtd
, saved_chip_number
);
1745 if (found_an_ncb_fingerprint
)
1746 dev_dbg(dev
, "\tFound a fingerprint\n");
1748 dev_dbg(dev
, "\tNo fingerprint found\n");
1749 return found_an_ncb_fingerprint
;
1752 /* Writes a transcription stamp. */
1753 static int mx23_write_transcription_stamp(struct gpmi_nand_data
*this)
1755 struct device
*dev
= this->dev
;
1756 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1757 struct nand_chip
*chip
= &this->nand
;
1758 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1759 unsigned int block_size_in_pages
;
1760 unsigned int search_area_size_in_strides
;
1761 unsigned int search_area_size_in_pages
;
1762 unsigned int search_area_size_in_blocks
;
1764 unsigned int stride
;
1766 uint8_t *buffer
= chip
->data_buf
;
1767 int saved_chip_number
;
1770 /* Compute the search area geometry. */
1771 block_size_in_pages
= mtd
->erasesize
/ mtd
->writesize
;
1772 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1773 search_area_size_in_pages
= search_area_size_in_strides
*
1774 rom_geo
->stride_size_in_pages
;
1775 search_area_size_in_blocks
=
1776 (search_area_size_in_pages
+ (block_size_in_pages
- 1)) /
1777 block_size_in_pages
;
1779 dev_dbg(dev
, "Search Area Geometry :\n");
1780 dev_dbg(dev
, "\tin Blocks : %u\n", search_area_size_in_blocks
);
1781 dev_dbg(dev
, "\tin Strides: %u\n", search_area_size_in_strides
);
1782 dev_dbg(dev
, "\tin Pages : %u\n", search_area_size_in_pages
);
1784 /* Select chip 0. */
1785 saved_chip_number
= this->current_chip
;
1786 chip
->select_chip(mtd
, 0);
1788 /* Loop over blocks in the first search area, erasing them. */
1789 dev_dbg(dev
, "Erasing the search area...\n");
1791 for (block
= 0; block
< search_area_size_in_blocks
; block
++) {
1792 /* Erase this block. */
1793 dev_dbg(dev
, "\tErasing block 0x%x\n", block
);
1794 status
= nand_erase_op(chip
, block
);
1796 dev_err(dev
, "[%s] Erase failed.\n", __func__
);
1799 /* Write the NCB fingerprint into the page buffer. */
1800 memset(buffer
, ~0, mtd
->writesize
);
1801 memcpy(buffer
+ 12, fingerprint
, strlen(fingerprint
));
1803 /* Loop through the first search area, writing NCB fingerprints. */
1804 dev_dbg(dev
, "Writing NCB fingerprints...\n");
1805 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1806 /* Compute the page addresses. */
1807 page
= stride
* rom_geo
->stride_size_in_pages
;
1809 /* Write the first page of the current stride. */
1810 dev_dbg(dev
, "Writing an NCB fingerprint in page 0x%x\n", page
);
1812 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buffer
, 0, page
);
1814 dev_err(dev
, "[%s] Write failed.\n", __func__
);
1817 /* Deselect chip 0. */
1818 chip
->select_chip(mtd
, saved_chip_number
);
1822 static int mx23_boot_init(struct gpmi_nand_data
*this)
1824 struct device
*dev
= this->dev
;
1825 struct nand_chip
*chip
= &this->nand
;
1826 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1827 unsigned int block_count
;
1836 * If control arrives here, we can't use block mark swapping, which
1837 * means we're forced to use transcription. First, scan for the
1838 * transcription stamp. If we find it, then we don't have to do
1839 * anything -- the block marks are already transcribed.
1841 if (mx23_check_transcription_stamp(this))
1845 * If control arrives here, we couldn't find a transcription stamp, so
1846 * so we presume the block marks are in the conventional location.
1848 dev_dbg(dev
, "Transcribing bad block marks...\n");
1850 /* Compute the number of blocks in the entire medium. */
1851 block_count
= chip
->chipsize
>> chip
->phys_erase_shift
;
1854 * Loop over all the blocks in the medium, transcribing block marks as
1857 for (block
= 0; block
< block_count
; block
++) {
1859 * Compute the chip, page and byte addresses for this block's
1860 * conventional mark.
1862 chipnr
= block
>> (chip
->chip_shift
- chip
->phys_erase_shift
);
1863 page
= block
<< (chip
->phys_erase_shift
- chip
->page_shift
);
1864 byte
= block
<< chip
->phys_erase_shift
;
1866 /* Send the command to read the conventional block mark. */
1867 chip
->select_chip(mtd
, chipnr
);
1868 nand_read_page_op(chip
, page
, mtd
->writesize
, NULL
, 0);
1869 block_mark
= chip
->read_byte(mtd
);
1870 chip
->select_chip(mtd
, -1);
1873 * Check if the block is marked bad. If so, we need to mark it
1874 * again, but this time the result will be a mark in the
1875 * location where we transcribe block marks.
1877 if (block_mark
!= 0xff) {
1878 dev_dbg(dev
, "Transcribing mark in block %u\n", block
);
1879 ret
= chip
->block_markbad(mtd
, byte
);
1882 "Failed to mark block bad with ret %d\n",
1887 /* Write the stamp that indicates we've transcribed the block marks. */
1888 mx23_write_transcription_stamp(this);
1892 static int nand_boot_init(struct gpmi_nand_data
*this)
1894 nand_boot_set_geometry(this);
1896 /* This is ROM arch-specific initilization before the BBT scanning. */
1897 if (GPMI_IS_MX23(this))
1898 return mx23_boot_init(this);
1902 static int gpmi_set_geometry(struct gpmi_nand_data
*this)
1906 /* Free the temporary DMA memory for reading ID. */
1907 gpmi_free_dma_buffer(this);
1909 /* Set up the NFC geometry which is used by BCH. */
1910 ret
= bch_set_geometry(this);
1912 dev_err(this->dev
, "Error setting BCH geometry : %d\n", ret
);
1916 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1917 return gpmi_alloc_dma_buffer(this);
1920 static int gpmi_init_last(struct gpmi_nand_data
*this)
1922 struct nand_chip
*chip
= &this->nand
;
1923 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1924 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1925 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
1928 /* Set up the medium geometry */
1929 ret
= gpmi_set_geometry(this);
1933 /* Init the nand_ecc_ctrl{} */
1934 ecc
->read_page
= gpmi_ecc_read_page
;
1935 ecc
->write_page
= gpmi_ecc_write_page
;
1936 ecc
->read_oob
= gpmi_ecc_read_oob
;
1937 ecc
->write_oob
= gpmi_ecc_write_oob
;
1938 ecc
->read_page_raw
= gpmi_ecc_read_page_raw
;
1939 ecc
->write_page_raw
= gpmi_ecc_write_page_raw
;
1940 ecc
->read_oob_raw
= gpmi_ecc_read_oob_raw
;
1941 ecc
->write_oob_raw
= gpmi_ecc_write_oob_raw
;
1942 ecc
->mode
= NAND_ECC_HW
;
1943 ecc
->size
= bch_geo
->ecc_chunk_size
;
1944 ecc
->strength
= bch_geo
->ecc_strength
;
1945 mtd_set_ooblayout(mtd
, &gpmi_ooblayout_ops
);
1948 * We only enable the subpage read when:
1949 * (1) the chip is imx6, and
1950 * (2) the size of the ECC parity is byte aligned.
1952 if (GPMI_IS_MX6(this) &&
1953 ((bch_geo
->gf_len
* bch_geo
->ecc_strength
) % 8) == 0) {
1954 ecc
->read_subpage
= gpmi_ecc_read_subpage
;
1955 chip
->options
|= NAND_SUBPAGE_READ
;
1959 * Can we enable the extra features? such as EDO or Sync mode.
1961 * We do not check the return value now. That's means if we fail in
1962 * enable the extra features, we still can run in the normal way.
1964 gpmi_extra_init(this);
1969 static int gpmi_nand_init(struct gpmi_nand_data
*this)
1971 struct nand_chip
*chip
= &this->nand
;
1972 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1975 /* init current chip */
1976 this->current_chip
= -1;
1978 /* init the MTD data structures */
1979 mtd
->name
= "gpmi-nand";
1980 mtd
->dev
.parent
= this->dev
;
1982 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1983 nand_set_controller_data(chip
, this);
1984 nand_set_flash_node(chip
, this->pdev
->dev
.of_node
);
1985 chip
->select_chip
= gpmi_select_chip
;
1986 chip
->cmd_ctrl
= gpmi_cmd_ctrl
;
1987 chip
->dev_ready
= gpmi_dev_ready
;
1988 chip
->read_byte
= gpmi_read_byte
;
1989 chip
->read_buf
= gpmi_read_buf
;
1990 chip
->write_buf
= gpmi_write_buf
;
1991 chip
->badblock_pattern
= &gpmi_bbt_descr
;
1992 chip
->block_markbad
= gpmi_block_markbad
;
1993 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1995 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1996 this->swap_block_mark
= !GPMI_IS_MX23(this);
1999 * Allocate a temporary DMA buffer for reading ID in the
2000 * nand_scan_ident().
2002 this->bch_geometry
.payload_size
= 1024;
2003 this->bch_geometry
.auxiliary_size
= 128;
2004 ret
= gpmi_alloc_dma_buffer(this);
2008 ret
= nand_scan_ident(mtd
, GPMI_IS_MX6(this) ? 2 : 1, NULL
);
2012 if (chip
->bbt_options
& NAND_BBT_USE_FLASH
) {
2013 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
2015 if (of_property_read_bool(this->dev
->of_node
,
2016 "fsl,no-blockmark-swap"))
2017 this->swap_block_mark
= false;
2019 dev_dbg(this->dev
, "Blockmark swapping %sabled\n",
2020 this->swap_block_mark
? "en" : "dis");
2022 ret
= gpmi_init_last(this);
2026 chip
->options
|= NAND_SKIP_BBTSCAN
;
2027 ret
= nand_scan_tail(mtd
);
2031 ret
= nand_boot_init(this);
2033 goto err_nand_cleanup
;
2034 ret
= chip
->scan_bbt(mtd
);
2036 goto err_nand_cleanup
;
2038 ret
= mtd_device_register(mtd
, NULL
, 0);
2040 goto err_nand_cleanup
;
2046 gpmi_free_dma_buffer(this);
2050 static const struct of_device_id gpmi_nand_id_table
[] = {
2052 .compatible
= "fsl,imx23-gpmi-nand",
2053 .data
= &gpmi_devdata_imx23
,
2055 .compatible
= "fsl,imx28-gpmi-nand",
2056 .data
= &gpmi_devdata_imx28
,
2058 .compatible
= "fsl,imx6q-gpmi-nand",
2059 .data
= &gpmi_devdata_imx6q
,
2061 .compatible
= "fsl,imx6sx-gpmi-nand",
2062 .data
= &gpmi_devdata_imx6sx
,
2064 .compatible
= "fsl,imx7d-gpmi-nand",
2065 .data
= &gpmi_devdata_imx7d
,
2068 MODULE_DEVICE_TABLE(of
, gpmi_nand_id_table
);
2070 static int gpmi_nand_probe(struct platform_device
*pdev
)
2072 struct gpmi_nand_data
*this;
2073 const struct of_device_id
*of_id
;
2076 this = devm_kzalloc(&pdev
->dev
, sizeof(*this), GFP_KERNEL
);
2080 of_id
= of_match_device(gpmi_nand_id_table
, &pdev
->dev
);
2082 this->devdata
= of_id
->data
;
2084 dev_err(&pdev
->dev
, "Failed to find the right device id.\n");
2088 platform_set_drvdata(pdev
, this);
2090 this->dev
= &pdev
->dev
;
2092 ret
= acquire_resources(this);
2094 goto exit_acquire_resources
;
2096 ret
= init_hardware(this);
2100 ret
= gpmi_nand_init(this);
2104 dev_info(this->dev
, "driver registered.\n");
2109 release_resources(this);
2110 exit_acquire_resources
:
2115 static int gpmi_nand_remove(struct platform_device
*pdev
)
2117 struct gpmi_nand_data
*this = platform_get_drvdata(pdev
);
2119 nand_release(nand_to_mtd(&this->nand
));
2120 gpmi_free_dma_buffer(this);
2121 release_resources(this);
2125 #ifdef CONFIG_PM_SLEEP
2126 static int gpmi_pm_suspend(struct device
*dev
)
2128 struct gpmi_nand_data
*this = dev_get_drvdata(dev
);
2130 release_dma_channels(this);
2134 static int gpmi_pm_resume(struct device
*dev
)
2136 struct gpmi_nand_data
*this = dev_get_drvdata(dev
);
2139 ret
= acquire_dma_channels(this);
2143 /* re-init the GPMI registers */
2144 this->flags
&= ~GPMI_TIMING_INIT_OK
;
2145 ret
= gpmi_init(this);
2147 dev_err(this->dev
, "Error setting GPMI : %d\n", ret
);
2151 /* re-init the BCH registers */
2152 ret
= bch_set_geometry(this);
2154 dev_err(this->dev
, "Error setting BCH : %d\n", ret
);
2158 /* re-init others */
2159 gpmi_extra_init(this);
2163 #endif /* CONFIG_PM_SLEEP */
2165 static const struct dev_pm_ops gpmi_pm_ops
= {
2166 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend
, gpmi_pm_resume
)
2169 static struct platform_driver gpmi_nand_driver
= {
2171 .name
= "gpmi-nand",
2173 .of_match_table
= gpmi_nand_id_table
,
2175 .probe
= gpmi_nand_probe
,
2176 .remove
= gpmi_nand_remove
,
2178 module_platform_driver(gpmi_nand_driver
);
2180 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2181 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2182 MODULE_LICENSE("GPL");