1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
46 #ifdef CONFIG_IPW2200_DEBUG
52 #ifdef CONFIG_IPW2200_MONITOR
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
64 #ifdef CONFIG_IPW2200_RADIOTAP
70 #ifdef CONFIG_IPW2200_QOS
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION IPW2200_VERSION
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
83 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
84 MODULE_VERSION(DRV_VERSION
);
85 MODULE_AUTHOR(DRV_COPYRIGHT
);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
91 MODULE_FIRMWARE("ipw2200-bss.fw");
93 static int cmdlog
= 0;
95 static int default_channel
= 0;
96 static int network_mode
= 0;
98 static u32 ipw_debug_level
;
100 static int auto_create
= 1;
101 static int led_support
= 1;
102 static int disable
= 0;
103 static int bt_coexist
= 0;
104 static int hwcrypto
= 0;
105 static int roaming
= 1;
106 static const char ipw_modes
[] = {
109 static int antenna
= CFG_SYS_ANTENNA_BOTH
;
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface
= 0; /* def: 0 -- do not create rtap interface */
115 static struct ieee80211_rate ipw2200_rates
[] = {
117 { .bitrate
= 20, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
118 { .bitrate
= 55, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
119 { .bitrate
= 110, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
130 #define ipw2200_a_rates (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates 8
132 #define ipw2200_bg_rates (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates 12
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136 * There are certianly some conditions that will break this (like feeding it '30')
137 * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable
= 0;
145 static int qos_burst_enable
= 0;
146 static int qos_no_ack_mask
= 0;
147 static int burst_duration_CCK
= 0;
148 static int burst_duration_OFDM
= 0;
150 static struct libipw_qos_parameters def_qos_parameters_OFDM
= {
151 {QOS_TX0_CW_MIN_OFDM
, QOS_TX1_CW_MIN_OFDM
, QOS_TX2_CW_MIN_OFDM
,
152 QOS_TX3_CW_MIN_OFDM
},
153 {QOS_TX0_CW_MAX_OFDM
, QOS_TX1_CW_MAX_OFDM
, QOS_TX2_CW_MAX_OFDM
,
154 QOS_TX3_CW_MAX_OFDM
},
155 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
156 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
157 {QOS_TX0_TXOP_LIMIT_OFDM
, QOS_TX1_TXOP_LIMIT_OFDM
,
158 QOS_TX2_TXOP_LIMIT_OFDM
, QOS_TX3_TXOP_LIMIT_OFDM
}
161 static struct libipw_qos_parameters def_qos_parameters_CCK
= {
162 {QOS_TX0_CW_MIN_CCK
, QOS_TX1_CW_MIN_CCK
, QOS_TX2_CW_MIN_CCK
,
164 {QOS_TX0_CW_MAX_CCK
, QOS_TX1_CW_MAX_CCK
, QOS_TX2_CW_MAX_CCK
,
166 {QOS_TX0_AIFS
, QOS_TX1_AIFS
, QOS_TX2_AIFS
, QOS_TX3_AIFS
},
167 {QOS_TX0_ACM
, QOS_TX1_ACM
, QOS_TX2_ACM
, QOS_TX3_ACM
},
168 {QOS_TX0_TXOP_LIMIT_CCK
, QOS_TX1_TXOP_LIMIT_CCK
, QOS_TX2_TXOP_LIMIT_CCK
,
169 QOS_TX3_TXOP_LIMIT_CCK
}
172 static struct libipw_qos_parameters def_parameters_OFDM
= {
173 {DEF_TX0_CW_MIN_OFDM
, DEF_TX1_CW_MIN_OFDM
, DEF_TX2_CW_MIN_OFDM
,
174 DEF_TX3_CW_MIN_OFDM
},
175 {DEF_TX0_CW_MAX_OFDM
, DEF_TX1_CW_MAX_OFDM
, DEF_TX2_CW_MAX_OFDM
,
176 DEF_TX3_CW_MAX_OFDM
},
177 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
178 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
179 {DEF_TX0_TXOP_LIMIT_OFDM
, DEF_TX1_TXOP_LIMIT_OFDM
,
180 DEF_TX2_TXOP_LIMIT_OFDM
, DEF_TX3_TXOP_LIMIT_OFDM
}
183 static struct libipw_qos_parameters def_parameters_CCK
= {
184 {DEF_TX0_CW_MIN_CCK
, DEF_TX1_CW_MIN_CCK
, DEF_TX2_CW_MIN_CCK
,
186 {DEF_TX0_CW_MAX_CCK
, DEF_TX1_CW_MAX_CCK
, DEF_TX2_CW_MAX_CCK
,
188 {DEF_TX0_AIFS
, DEF_TX1_AIFS
, DEF_TX2_AIFS
, DEF_TX3_AIFS
},
189 {DEF_TX0_ACM
, DEF_TX1_ACM
, DEF_TX2_ACM
, DEF_TX3_ACM
},
190 {DEF_TX0_TXOP_LIMIT_CCK
, DEF_TX1_TXOP_LIMIT_CCK
, DEF_TX2_TXOP_LIMIT_CCK
,
191 DEF_TX3_TXOP_LIMIT_CCK
}
194 static u8 qos_oui
[QOS_OUI_LEN
] = { 0x00, 0x50, 0xF2 };
196 static int from_priority_to_tx_queue
[] = {
197 IPW_TX_QUEUE_1
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_2
, IPW_TX_QUEUE_1
,
198 IPW_TX_QUEUE_3
, IPW_TX_QUEUE_3
, IPW_TX_QUEUE_4
, IPW_TX_QUEUE_4
201 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
);
203 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct libipw_qos_parameters
205 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct libipw_qos_information_element
207 #endif /* CONFIG_IPW2200_QOS */
209 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
);
210 static void ipw_remove_current_network(struct ipw_priv
*priv
);
211 static void ipw_rx(struct ipw_priv
*priv
);
212 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
213 struct clx2_tx_queue
*txq
, int qindex
);
214 static int ipw_queue_reset(struct ipw_priv
*priv
);
216 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
219 static void ipw_tx_queue_free(struct ipw_priv
*);
221 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*);
222 static void ipw_rx_queue_free(struct ipw_priv
*, struct ipw_rx_queue
*);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv
*);
225 static void ipw_bg_up(struct work_struct
*work
);
226 static void ipw_down(struct ipw_priv
*);
227 static void ipw_bg_down(struct work_struct
*work
);
228 static int ipw_config(struct ipw_priv
*);
229 static int init_supported_rates(struct ipw_priv
*priv
,
230 struct ipw_supported_rates
*prates
);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv
*);
232 static void ipw_send_wep_keys(struct ipw_priv
*, int);
234 static int snprint_line(char *buf
, size_t count
,
235 const u8
* data
, u32 len
, u32 ofs
)
240 out
= snprintf(buf
, count
, "%08X", ofs
);
242 for (l
= 0, i
= 0; i
< 2; i
++) {
243 out
+= snprintf(buf
+ out
, count
- out
, " ");
244 for (j
= 0; j
< 8 && l
< len
; j
++, l
++)
245 out
+= snprintf(buf
+ out
, count
- out
, "%02X ",
248 out
+= snprintf(buf
+ out
, count
- out
, " ");
251 out
+= snprintf(buf
+ out
, count
- out
, " ");
252 for (l
= 0, i
= 0; i
< 2; i
++) {
253 out
+= snprintf(buf
+ out
, count
- out
, " ");
254 for (j
= 0; j
< 8 && l
< len
; j
++, l
++) {
255 c
= data
[(i
* 8 + j
)];
256 if (!isascii(c
) || !isprint(c
))
259 out
+= snprintf(buf
+ out
, count
- out
, "%c", c
);
263 out
+= snprintf(buf
+ out
, count
- out
, " ");
269 static void printk_buf(int level
, const u8
* data
, u32 len
)
273 if (!(ipw_debug_level
& level
))
277 snprint_line(line
, sizeof(line
), &data
[ofs
],
279 printk(KERN_DEBUG
"%s\n", line
);
281 len
-= min(len
, 16U);
285 static int snprintk_buf(u8
* output
, size_t size
, const u8
* data
, size_t len
)
291 while (size
&& len
) {
292 out
= snprint_line(output
, size
, &data
[ofs
],
293 min_t(size_t, len
, 16U), ofs
);
298 len
-= min_t(size_t, len
, 16U);
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8
_ipw_read_reg8(struct ipw_priv
*ipw
, u32 reg
);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
);
314 static inline void ipw_write_reg8(struct ipw_priv
*a
, u32 b
, u8 c
)
316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__
,
317 __LINE__
, (u32
) (b
), (u32
) (c
));
318 _ipw_write_reg8(a
, b
, c
);
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
);
323 static inline void ipw_write_reg16(struct ipw_priv
*a
, u32 b
, u16 c
)
325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__
,
326 __LINE__
, (u32
) (b
), (u32
) (c
));
327 _ipw_write_reg16(a
, b
, c
);
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
);
332 static inline void ipw_write_reg32(struct ipw_priv
*a
, u32 b
, u32 c
)
334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__
,
335 __LINE__
, (u32
) (b
), (u32
) (c
));
336 _ipw_write_reg32(a
, b
, c
);
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv
*ipw
, unsigned long ofs
,
343 writeb(val
, ipw
->hw_base
+ ofs
);
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write8(ipw, ofs, val); \
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv
*ipw
, unsigned long ofs
,
357 writew(val
, ipw
->hw_base
+ ofs
);
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write16(ipw, ofs, val); \
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv
*ipw
, unsigned long ofs
,
371 writel(val
, ipw
->hw_base
+ ofs
);
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 __LINE__, (u32)(ofs), (u32)(val)); \
378 _ipw_write32(ipw, ofs, val); \
381 /* 8-bit direct read (low 4K) */
382 static inline u8
_ipw_read8(struct ipw_priv
*ipw
, unsigned long ofs
)
384 return readb(ipw
->hw_base
+ ofs
);
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
391 _ipw_read8(ipw, ofs); \
394 /* 16-bit direct read (low 4K) */
395 static inline u16
_ipw_read16(struct ipw_priv
*ipw
, unsigned long ofs
)
397 return readw(ipw
->hw_base
+ ofs
);
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
404 _ipw_read16(ipw, ofs); \
407 /* 32-bit direct read (low 4K) */
408 static inline u32
_ipw_read32(struct ipw_priv
*ipw
, unsigned long ofs
)
410 return readl(ipw
->hw_base
+ ofs
);
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
417 _ipw_read32(ipw, ofs); \
420 static void _ipw_read_indirect(struct ipw_priv
*, u32
, u8
*, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 __LINE__, (u32)(b), (u32)(d)); \
425 _ipw_read_indirect(a, b, c, d); \
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* data
,
431 #define ipw_write_indirect(a, b, c, d) do { \
432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 __LINE__, (u32)(b), (u32)(d)); \
434 _ipw_write_indirect(a, b, c, d); \
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv
*priv
, u32 reg
, u32 value
)
440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv
, reg
, value
);
441 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
442 _ipw_write32(priv
, IPW_INDIRECT_DATA
, value
);
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv
*priv
, u32 reg
, u8 value
)
448 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
449 u32 dif_len
= reg
- aligned_addr
;
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
452 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
453 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv
*priv
, u32 reg
, u16 value
)
459 u32 aligned_addr
= reg
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
460 u32 dif_len
= (reg
- aligned_addr
) & (~0x1ul
);
462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg
, value
);
463 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
464 _ipw_write16(priv
, IPW_INDIRECT_DATA
+ dif_len
, value
);
467 /* 8-bit indirect read (above 4K) */
468 static u8
_ipw_read_reg8(struct ipw_priv
*priv
, u32 reg
)
471 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
& IPW_INDIRECT_ADDR_MASK
);
472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg
);
473 word
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
474 return (word
>> ((reg
& 0x3) * 8)) & 0xff;
477 /* 32-bit indirect read (above 4K) */
478 static u32
_ipw_read_reg32(struct ipw_priv
*priv
, u32 reg
)
482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv
, reg
);
484 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, reg
);
485 value
= _ipw_read32(priv
, IPW_INDIRECT_DATA
);
486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg
, value
);
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /* for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
495 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
496 u32 dif_len
= addr
- aligned_addr
;
499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
505 /* Read the first dword (or portion) byte by byte */
506 if (unlikely(dif_len
)) {
507 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
508 /* Start reading at aligned_addr + dif_len */
509 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--)
510 *buf
++ = _ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
514 /* Read all of the middle dwords as dwords, with auto-increment */
515 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
516 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
517 *(u32
*) buf
= _ipw_read32(priv
, IPW_AUTOINC_DATA
);
519 /* Read the last dword (or portion) byte by byte */
521 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
522 for (i
= 0; num
> 0; i
++, num
--)
523 *buf
++ = ipw_read8(priv
, IPW_INDIRECT_DATA
+ i
);
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /* for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv
*priv
, u32 addr
, u8
* buf
,
532 u32 aligned_addr
= addr
& IPW_INDIRECT_ADDR_MASK
; /* dword align */
533 u32 dif_len
= addr
- aligned_addr
;
536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr
, buf
, num
);
542 /* Write the first dword (or portion) byte by byte */
543 if (unlikely(dif_len
)) {
544 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
545 /* Start writing at aligned_addr + dif_len */
546 for (i
= dif_len
; ((i
< 4) && (num
> 0)); i
++, num
--, buf
++)
547 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
551 /* Write all of the middle dwords as dwords, with auto-increment */
552 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, aligned_addr
);
553 for (; num
>= 4; buf
+= 4, aligned_addr
+= 4, num
-= 4)
554 _ipw_write32(priv
, IPW_AUTOINC_DATA
, *(u32
*) buf
);
556 /* Write the last dword (or portion) byte by byte */
558 _ipw_write32(priv
, IPW_INDIRECT_ADDR
, aligned_addr
);
559 for (i
= 0; num
> 0; i
++, num
--, buf
++)
560 _ipw_write8(priv
, IPW_INDIRECT_DATA
+ i
, *buf
);
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /* for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv
*priv
, u32 addr
, void *buf
,
569 memcpy_toio((priv
->hw_base
+ addr
), buf
, num
);
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
575 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) | mask
);
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv
*priv
, u32 reg
, u32 mask
)
581 ipw_write32(priv
, reg
, ipw_read32(priv
, reg
) & ~mask
);
584 static inline void __ipw_enable_interrupts(struct ipw_priv
*priv
)
586 if (priv
->status
& STATUS_INT_ENABLED
)
588 priv
->status
|= STATUS_INT_ENABLED
;
589 ipw_write32(priv
, IPW_INTA_MASK_R
, IPW_INTA_MASK_ALL
);
592 static inline void __ipw_disable_interrupts(struct ipw_priv
*priv
)
594 if (!(priv
->status
& STATUS_INT_ENABLED
))
596 priv
->status
&= ~STATUS_INT_ENABLED
;
597 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
600 static inline void ipw_enable_interrupts(struct ipw_priv
*priv
)
604 spin_lock_irqsave(&priv
->irq_lock
, flags
);
605 __ipw_enable_interrupts(priv
);
606 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
609 static inline void ipw_disable_interrupts(struct ipw_priv
*priv
)
613 spin_lock_irqsave(&priv
->irq_lock
, flags
);
614 __ipw_disable_interrupts(priv
);
615 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
618 static char *ipw_error_desc(u32 val
)
621 case IPW_FW_ERROR_OK
:
623 case IPW_FW_ERROR_FAIL
:
625 case IPW_FW_ERROR_MEMORY_UNDERFLOW
:
626 return "MEMORY_UNDERFLOW";
627 case IPW_FW_ERROR_MEMORY_OVERFLOW
:
628 return "MEMORY_OVERFLOW";
629 case IPW_FW_ERROR_BAD_PARAM
:
631 case IPW_FW_ERROR_BAD_CHECKSUM
:
632 return "BAD_CHECKSUM";
633 case IPW_FW_ERROR_NMI_INTERRUPT
:
634 return "NMI_INTERRUPT";
635 case IPW_FW_ERROR_BAD_DATABASE
:
636 return "BAD_DATABASE";
637 case IPW_FW_ERROR_ALLOC_FAIL
:
639 case IPW_FW_ERROR_DMA_UNDERRUN
:
640 return "DMA_UNDERRUN";
641 case IPW_FW_ERROR_DMA_STATUS
:
643 case IPW_FW_ERROR_DINO_ERROR
:
645 case IPW_FW_ERROR_EEPROM_ERROR
:
646 return "EEPROM_ERROR";
647 case IPW_FW_ERROR_SYSASSERT
:
649 case IPW_FW_ERROR_FATAL_ERROR
:
650 return "FATAL_ERROR";
652 return "UNKNOWN_ERROR";
656 static void ipw_dump_error_log(struct ipw_priv
*priv
,
657 struct ipw_fw_error
*error
)
662 IPW_ERROR("Error allocating and capturing error log. "
663 "Nothing to dump.\n");
667 IPW_ERROR("Start IPW Error Log Dump:\n");
668 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 error
->status
, error
->config
);
671 for (i
= 0; i
< error
->elem_len
; i
++)
672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
673 ipw_error_desc(error
->elem
[i
].desc
),
675 error
->elem
[i
].blink1
,
676 error
->elem
[i
].blink2
,
677 error
->elem
[i
].link1
,
678 error
->elem
[i
].link2
, error
->elem
[i
].data
);
679 for (i
= 0; i
< error
->log_len
; i
++)
680 IPW_ERROR("%i\t0x%08x\t%i\n",
682 error
->log
[i
].data
, error
->log
[i
].event
);
685 static inline int ipw_is_init(struct ipw_priv
*priv
)
687 return (priv
->status
& STATUS_INIT
) ? 1 : 0;
690 static int ipw_get_ordinal(struct ipw_priv
*priv
, u32 ord
, void *val
, u32
* len
)
692 u32 addr
, field_info
, field_len
, field_count
, total_len
;
694 IPW_DEBUG_ORD("ordinal = %i\n", ord
);
696 if (!priv
|| !val
|| !len
) {
697 IPW_DEBUG_ORD("Invalid argument\n");
701 /* verify device ordinal tables have been initialized */
702 if (!priv
->table0_addr
|| !priv
->table1_addr
|| !priv
->table2_addr
) {
703 IPW_DEBUG_ORD("Access ordinals before initialization\n");
707 switch (IPW_ORD_TABLE_ID_MASK
& ord
) {
708 case IPW_ORD_TABLE_0_MASK
:
710 * TABLE 0: Direct access to a table of 32 bit values
712 * This is a very simple table with the data directly
713 * read from the table
716 /* remove the table id from the ordinal */
717 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
720 if (ord
> priv
->table0_len
) {
721 IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 "max (%i)\n", ord
, priv
->table0_len
);
726 /* verify we have enough room to store the value */
727 if (*len
< sizeof(u32
)) {
728 IPW_DEBUG_ORD("ordinal buffer length too small, "
729 "need %zd\n", sizeof(u32
));
733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 ord
, priv
->table0_addr
+ (ord
<< 2));
738 *((u32
*) val
) = ipw_read32(priv
, priv
->table0_addr
+ ord
);
741 case IPW_ORD_TABLE_1_MASK
:
743 * TABLE 1: Indirect access to a table of 32 bit values
745 * This is a fairly large table of u32 values each
746 * representing starting addr for the data (which is
750 /* remove the table id from the ordinal */
751 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
754 if (ord
> priv
->table1_len
) {
755 IPW_DEBUG_ORD("ordinal value too long\n");
759 /* verify we have enough room to store the value */
760 if (*len
< sizeof(u32
)) {
761 IPW_DEBUG_ORD("ordinal buffer length too small, "
762 "need %zd\n", sizeof(u32
));
767 ipw_read_reg32(priv
, (priv
->table1_addr
+ (ord
<< 2)));
771 case IPW_ORD_TABLE_2_MASK
:
773 * TABLE 2: Indirect access to a table of variable sized values
775 * This table consist of six values, each containing
776 * - dword containing the starting offset of the data
777 * - dword containing the lengh in the first 16bits
778 * and the count in the second 16bits
781 /* remove the table id from the ordinal */
782 ord
&= IPW_ORD_TABLE_VALUE_MASK
;
785 if (ord
> priv
->table2_len
) {
786 IPW_DEBUG_ORD("ordinal value too long\n");
790 /* get the address of statistic */
791 addr
= ipw_read_reg32(priv
, priv
->table2_addr
+ (ord
<< 3));
793 /* get the second DW of statistics ;
794 * two 16-bit words - first is length, second is count */
797 priv
->table2_addr
+ (ord
<< 3) +
800 /* get each entry length */
801 field_len
= *((u16
*) & field_info
);
803 /* get number of entries */
804 field_count
= *(((u16
*) & field_info
) + 1);
806 /* abort if not enough memory */
807 total_len
= field_len
* field_count
;
808 if (total_len
> *len
) {
817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 "field_info = 0x%08x\n",
819 addr
, total_len
, field_info
);
820 ipw_read_indirect(priv
, addr
, val
, total_len
);
824 IPW_DEBUG_ORD("Invalid ordinal!\n");
832 static void ipw_init_ordinals(struct ipw_priv
*priv
)
834 priv
->table0_addr
= IPW_ORDINALS_TABLE_LOWER
;
835 priv
->table0_len
= ipw_read32(priv
, priv
->table0_addr
);
837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 priv
->table0_addr
, priv
->table0_len
);
840 priv
->table1_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_1
);
841 priv
->table1_len
= ipw_read_reg32(priv
, priv
->table1_addr
);
843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 priv
->table1_addr
, priv
->table1_len
);
846 priv
->table2_addr
= ipw_read32(priv
, IPW_ORDINALS_TABLE_2
);
847 priv
->table2_len
= ipw_read_reg32(priv
, priv
->table2_addr
);
848 priv
->table2_len
&= 0x0000ffff; /* use first two bytes */
850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 priv
->table2_addr
, priv
->table2_len
);
855 static u32
ipw_register_toggle(u32 reg
)
857 reg
&= ~IPW_START_STANDBY
;
858 if (reg
& IPW_GATE_ODMA
)
859 reg
&= ~IPW_GATE_ODMA
;
860 if (reg
& IPW_GATE_IDMA
)
861 reg
&= ~IPW_GATE_IDMA
;
862 if (reg
& IPW_GATE_ADMA
)
863 reg
&= ~IPW_GATE_ADMA
;
869 * - On radio ON, turn on any LEDs that require to be on during start
870 * - On initialization, start unassociated blink
871 * - On association, disable unassociated blink
872 * - On disassociation, start unassociated blink
873 * - On radio OFF, turn off any LEDs started during radio on
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
880 static void ipw_led_link_on(struct ipw_priv
*priv
)
885 /* If configured to not use LEDs, or nic_type is 1,
886 * then we don't toggle a LINK led */
887 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
890 spin_lock_irqsave(&priv
->lock
, flags
);
892 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
893 !(priv
->status
& STATUS_LED_LINK_ON
)) {
894 IPW_DEBUG_LED("Link LED On\n");
895 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
896 led
|= priv
->led_association_on
;
898 led
= ipw_register_toggle(led
);
900 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
901 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
903 priv
->status
|= STATUS_LED_LINK_ON
;
905 /* If we aren't associated, schedule turning the LED off */
906 if (!(priv
->status
& STATUS_ASSOCIATED
))
907 schedule_delayed_work(&priv
->led_link_off
,
911 spin_unlock_irqrestore(&priv
->lock
, flags
);
914 static void ipw_bg_led_link_on(struct work_struct
*work
)
916 struct ipw_priv
*priv
=
917 container_of(work
, struct ipw_priv
, led_link_on
.work
);
918 mutex_lock(&priv
->mutex
);
919 ipw_led_link_on(priv
);
920 mutex_unlock(&priv
->mutex
);
923 static void ipw_led_link_off(struct ipw_priv
*priv
)
928 /* If configured not to use LEDs, or nic type is 1,
929 * then we don't goggle the LINK led. */
930 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
== EEPROM_NIC_TYPE_1
)
933 spin_lock_irqsave(&priv
->lock
, flags
);
935 if (priv
->status
& STATUS_LED_LINK_ON
) {
936 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
937 led
&= priv
->led_association_off
;
938 led
= ipw_register_toggle(led
);
940 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
941 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
943 IPW_DEBUG_LED("Link LED Off\n");
945 priv
->status
&= ~STATUS_LED_LINK_ON
;
947 /* If we aren't associated and the radio is on, schedule
948 * turning the LED on (blink while unassociated) */
949 if (!(priv
->status
& STATUS_RF_KILL_MASK
) &&
950 !(priv
->status
& STATUS_ASSOCIATED
))
951 schedule_delayed_work(&priv
->led_link_on
,
956 spin_unlock_irqrestore(&priv
->lock
, flags
);
959 static void ipw_bg_led_link_off(struct work_struct
*work
)
961 struct ipw_priv
*priv
=
962 container_of(work
, struct ipw_priv
, led_link_off
.work
);
963 mutex_lock(&priv
->mutex
);
964 ipw_led_link_off(priv
);
965 mutex_unlock(&priv
->mutex
);
968 static void __ipw_led_activity_on(struct ipw_priv
*priv
)
972 if (priv
->config
& CFG_NO_LED
)
975 if (priv
->status
& STATUS_RF_KILL_MASK
)
978 if (!(priv
->status
& STATUS_LED_ACT_ON
)) {
979 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
980 led
|= priv
->led_activity_on
;
982 led
= ipw_register_toggle(led
);
984 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
985 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
987 IPW_DEBUG_LED("Activity LED On\n");
989 priv
->status
|= STATUS_LED_ACT_ON
;
991 cancel_delayed_work(&priv
->led_act_off
);
992 schedule_delayed_work(&priv
->led_act_off
, LD_TIME_ACT_ON
);
994 /* Reschedule LED off for full time period */
995 cancel_delayed_work(&priv
->led_act_off
);
996 schedule_delayed_work(&priv
->led_act_off
, LD_TIME_ACT_ON
);
1001 void ipw_led_activity_on(struct ipw_priv
*priv
)
1003 unsigned long flags
;
1004 spin_lock_irqsave(&priv
->lock
, flags
);
1005 __ipw_led_activity_on(priv
);
1006 spin_unlock_irqrestore(&priv
->lock
, flags
);
1010 static void ipw_led_activity_off(struct ipw_priv
*priv
)
1012 unsigned long flags
;
1015 if (priv
->config
& CFG_NO_LED
)
1018 spin_lock_irqsave(&priv
->lock
, flags
);
1020 if (priv
->status
& STATUS_LED_ACT_ON
) {
1021 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1022 led
&= priv
->led_activity_off
;
1024 led
= ipw_register_toggle(led
);
1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1027 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1029 IPW_DEBUG_LED("Activity LED Off\n");
1031 priv
->status
&= ~STATUS_LED_ACT_ON
;
1034 spin_unlock_irqrestore(&priv
->lock
, flags
);
1037 static void ipw_bg_led_activity_off(struct work_struct
*work
)
1039 struct ipw_priv
*priv
=
1040 container_of(work
, struct ipw_priv
, led_act_off
.work
);
1041 mutex_lock(&priv
->mutex
);
1042 ipw_led_activity_off(priv
);
1043 mutex_unlock(&priv
->mutex
);
1046 static void ipw_led_band_on(struct ipw_priv
*priv
)
1048 unsigned long flags
;
1051 /* Only nic type 1 supports mode LEDs */
1052 if (priv
->config
& CFG_NO_LED
||
1053 priv
->nic_type
!= EEPROM_NIC_TYPE_1
|| !priv
->assoc_network
)
1056 spin_lock_irqsave(&priv
->lock
, flags
);
1058 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1059 if (priv
->assoc_network
->mode
== IEEE_A
) {
1060 led
|= priv
->led_ofdm_on
;
1061 led
&= priv
->led_association_off
;
1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 } else if (priv
->assoc_network
->mode
== IEEE_G
) {
1064 led
|= priv
->led_ofdm_on
;
1065 led
|= priv
->led_association_on
;
1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1068 led
&= priv
->led_ofdm_off
;
1069 led
|= priv
->led_association_on
;
1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1073 led
= ipw_register_toggle(led
);
1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1076 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1078 spin_unlock_irqrestore(&priv
->lock
, flags
);
1081 static void ipw_led_band_off(struct ipw_priv
*priv
)
1083 unsigned long flags
;
1086 /* Only nic type 1 supports mode LEDs */
1087 if (priv
->config
& CFG_NO_LED
|| priv
->nic_type
!= EEPROM_NIC_TYPE_1
)
1090 spin_lock_irqsave(&priv
->lock
, flags
);
1092 led
= ipw_read_reg32(priv
, IPW_EVENT_REG
);
1093 led
&= priv
->led_ofdm_off
;
1094 led
&= priv
->led_association_off
;
1096 led
= ipw_register_toggle(led
);
1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led
);
1099 ipw_write_reg32(priv
, IPW_EVENT_REG
, led
);
1101 spin_unlock_irqrestore(&priv
->lock
, flags
);
1104 static void ipw_led_radio_on(struct ipw_priv
*priv
)
1106 ipw_led_link_on(priv
);
1109 static void ipw_led_radio_off(struct ipw_priv
*priv
)
1111 ipw_led_activity_off(priv
);
1112 ipw_led_link_off(priv
);
1115 static void ipw_led_link_up(struct ipw_priv
*priv
)
1117 /* Set the Link Led on for all nic types */
1118 ipw_led_link_on(priv
);
1121 static void ipw_led_link_down(struct ipw_priv
*priv
)
1123 ipw_led_activity_off(priv
);
1124 ipw_led_link_off(priv
);
1126 if (priv
->status
& STATUS_RF_KILL_MASK
)
1127 ipw_led_radio_off(priv
);
1130 static void ipw_led_init(struct ipw_priv
*priv
)
1132 priv
->nic_type
= priv
->eeprom
[EEPROM_NIC_TYPE
];
1134 /* Set the default PINs for the link and activity leds */
1135 priv
->led_activity_on
= IPW_ACTIVITY_LED
;
1136 priv
->led_activity_off
= ~(IPW_ACTIVITY_LED
);
1138 priv
->led_association_on
= IPW_ASSOCIATED_LED
;
1139 priv
->led_association_off
= ~(IPW_ASSOCIATED_LED
);
1141 /* Set the default PINs for the OFDM leds */
1142 priv
->led_ofdm_on
= IPW_OFDM_LED
;
1143 priv
->led_ofdm_off
= ~(IPW_OFDM_LED
);
1145 switch (priv
->nic_type
) {
1146 case EEPROM_NIC_TYPE_1
:
1147 /* In this NIC type, the LEDs are reversed.... */
1148 priv
->led_activity_on
= IPW_ASSOCIATED_LED
;
1149 priv
->led_activity_off
= ~(IPW_ASSOCIATED_LED
);
1150 priv
->led_association_on
= IPW_ACTIVITY_LED
;
1151 priv
->led_association_off
= ~(IPW_ACTIVITY_LED
);
1153 if (!(priv
->config
& CFG_NO_LED
))
1154 ipw_led_band_on(priv
);
1156 /* And we don't blink link LEDs for this nic, so
1157 * just return here */
1160 case EEPROM_NIC_TYPE_3
:
1161 case EEPROM_NIC_TYPE_2
:
1162 case EEPROM_NIC_TYPE_4
:
1163 case EEPROM_NIC_TYPE_0
:
1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1169 priv
->nic_type
= EEPROM_NIC_TYPE_0
;
1173 if (!(priv
->config
& CFG_NO_LED
)) {
1174 if (priv
->status
& STATUS_ASSOCIATED
)
1175 ipw_led_link_on(priv
);
1177 ipw_led_link_off(priv
);
1181 static void ipw_led_shutdown(struct ipw_priv
*priv
)
1183 ipw_led_activity_off(priv
);
1184 ipw_led_link_off(priv
);
1185 ipw_led_band_off(priv
);
1186 cancel_delayed_work(&priv
->led_link_on
);
1187 cancel_delayed_work(&priv
->led_link_off
);
1188 cancel_delayed_work(&priv
->led_act_off
);
1192 * The following adds a new attribute to the sysfs representation
1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194 * used for controlling the debug level.
1196 * See the level definitions in ipw for details.
1198 static ssize_t
debug_level_show(struct device_driver
*d
, char *buf
)
1200 return sprintf(buf
, "0x%08X\n", ipw_debug_level
);
1203 static ssize_t
debug_level_store(struct device_driver
*d
, const char *buf
,
1206 char *p
= (char *)buf
;
1209 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1211 if (p
[0] == 'x' || p
[0] == 'X')
1213 val
= simple_strtoul(p
, &p
, 16);
1215 val
= simple_strtoul(p
, &p
, 10);
1217 printk(KERN_INFO DRV_NAME
1218 ": %s is not in hex or decimal form.\n", buf
);
1220 ipw_debug_level
= val
;
1222 return strnlen(buf
, count
);
1224 static DRIVER_ATTR_RW(debug_level
);
1226 static inline u32
ipw_get_event_log_len(struct ipw_priv
*priv
)
1228 /* length = 1st dword in log */
1229 return ipw_read_reg32(priv
, ipw_read32(priv
, IPW_EVENT_LOG
));
1232 static void ipw_capture_event_log(struct ipw_priv
*priv
,
1233 u32 log_len
, struct ipw_event
*log
)
1238 base
= ipw_read32(priv
, IPW_EVENT_LOG
);
1239 ipw_read_indirect(priv
, base
+ sizeof(base
) + sizeof(u32
),
1240 (u8
*) log
, sizeof(*log
) * log_len
);
1244 static struct ipw_fw_error
*ipw_alloc_error_log(struct ipw_priv
*priv
)
1246 struct ipw_fw_error
*error
;
1247 u32 log_len
= ipw_get_event_log_len(priv
);
1248 u32 base
= ipw_read32(priv
, IPW_ERROR_LOG
);
1249 u32 elem_len
= ipw_read_reg32(priv
, base
);
1251 error
= kmalloc(sizeof(*error
) +
1252 sizeof(*error
->elem
) * elem_len
+
1253 sizeof(*error
->log
) * log_len
, GFP_ATOMIC
);
1255 IPW_ERROR("Memory allocation for firmware error log "
1259 error
->jiffies
= jiffies
;
1260 error
->status
= priv
->status
;
1261 error
->config
= priv
->config
;
1262 error
->elem_len
= elem_len
;
1263 error
->log_len
= log_len
;
1264 error
->elem
= (struct ipw_error_elem
*)error
->payload
;
1265 error
->log
= (struct ipw_event
*)(error
->elem
+ elem_len
);
1267 ipw_capture_event_log(priv
, log_len
, error
->log
);
1270 ipw_read_indirect(priv
, base
+ sizeof(base
), (u8
*) error
->elem
,
1271 sizeof(*error
->elem
) * elem_len
);
1276 static ssize_t
show_event_log(struct device
*d
,
1277 struct device_attribute
*attr
, char *buf
)
1279 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1280 u32 log_len
= ipw_get_event_log_len(priv
);
1282 struct ipw_event
*log
;
1285 /* not using min() because of its strict type checking */
1286 log_size
= PAGE_SIZE
/ sizeof(*log
) > log_len
?
1287 sizeof(*log
) * log_len
: PAGE_SIZE
;
1288 log
= kzalloc(log_size
, GFP_KERNEL
);
1290 IPW_ERROR("Unable to allocate memory for log\n");
1293 log_len
= log_size
/ sizeof(*log
);
1294 ipw_capture_event_log(priv
, log_len
, log
);
1296 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "%08X", log_len
);
1297 for (i
= 0; i
< log_len
; i
++)
1298 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1300 log
[i
].time
, log
[i
].event
, log
[i
].data
);
1301 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1306 static DEVICE_ATTR(event_log
, S_IRUGO
, show_event_log
, NULL
);
1308 static ssize_t
show_error(struct device
*d
,
1309 struct device_attribute
*attr
, char *buf
)
1311 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1315 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1316 "%08lX%08X%08X%08X",
1317 priv
->error
->jiffies
,
1318 priv
->error
->status
,
1319 priv
->error
->config
, priv
->error
->elem_len
);
1320 for (i
= 0; i
< priv
->error
->elem_len
; i
++)
1321 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1322 "\n%08X%08X%08X%08X%08X%08X%08X",
1323 priv
->error
->elem
[i
].time
,
1324 priv
->error
->elem
[i
].desc
,
1325 priv
->error
->elem
[i
].blink1
,
1326 priv
->error
->elem
[i
].blink2
,
1327 priv
->error
->elem
[i
].link1
,
1328 priv
->error
->elem
[i
].link2
,
1329 priv
->error
->elem
[i
].data
);
1331 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1332 "\n%08X", priv
->error
->log_len
);
1333 for (i
= 0; i
< priv
->error
->log_len
; i
++)
1334 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
,
1336 priv
->error
->log
[i
].time
,
1337 priv
->error
->log
[i
].event
,
1338 priv
->error
->log
[i
].data
);
1339 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1343 static ssize_t
clear_error(struct device
*d
,
1344 struct device_attribute
*attr
,
1345 const char *buf
, size_t count
)
1347 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1354 static DEVICE_ATTR(error
, S_IRUGO
| S_IWUSR
, show_error
, clear_error
);
1356 static ssize_t
show_cmd_log(struct device
*d
,
1357 struct device_attribute
*attr
, char *buf
)
1359 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1363 for (i
= (priv
->cmdlog_pos
+ 1) % priv
->cmdlog_len
;
1364 (i
!= priv
->cmdlog_pos
) && (len
< PAGE_SIZE
);
1365 i
= (i
+ 1) % priv
->cmdlog_len
) {
1367 snprintf(buf
+ len
, PAGE_SIZE
- len
,
1368 "\n%08lX%08X%08X%08X\n", priv
->cmdlog
[i
].jiffies
,
1369 priv
->cmdlog
[i
].retcode
, priv
->cmdlog
[i
].cmd
.cmd
,
1370 priv
->cmdlog
[i
].cmd
.len
);
1372 snprintk_buf(buf
+ len
, PAGE_SIZE
- len
,
1373 (u8
*) priv
->cmdlog
[i
].cmd
.param
,
1374 priv
->cmdlog
[i
].cmd
.len
);
1375 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1377 len
+= snprintf(buf
+ len
, PAGE_SIZE
- len
, "\n");
1381 static DEVICE_ATTR(cmd_log
, S_IRUGO
, show_cmd_log
, NULL
);
1383 #ifdef CONFIG_IPW2200_PROMISCUOUS
1384 static void ipw_prom_free(struct ipw_priv
*priv
);
1385 static int ipw_prom_alloc(struct ipw_priv
*priv
);
1386 static ssize_t
store_rtap_iface(struct device
*d
,
1387 struct device_attribute
*attr
,
1388 const char *buf
, size_t count
)
1390 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1401 if (netif_running(priv
->prom_net_dev
)) {
1402 IPW_WARNING("Interface is up. Cannot unregister.\n");
1406 ipw_prom_free(priv
);
1414 rc
= ipw_prom_alloc(priv
);
1424 IPW_ERROR("Failed to register promiscuous network "
1425 "device (error %d).\n", rc
);
1431 static ssize_t
show_rtap_iface(struct device
*d
,
1432 struct device_attribute
*attr
,
1435 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1437 return sprintf(buf
, "%s", priv
->prom_net_dev
->name
);
1446 static DEVICE_ATTR(rtap_iface
, S_IWUSR
| S_IRUSR
, show_rtap_iface
,
1449 static ssize_t
store_rtap_filter(struct device
*d
,
1450 struct device_attribute
*attr
,
1451 const char *buf
, size_t count
)
1453 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1455 if (!priv
->prom_priv
) {
1456 IPW_ERROR("Attempting to set filter without "
1457 "rtap_iface enabled.\n");
1461 priv
->prom_priv
->filter
= simple_strtol(buf
, NULL
, 0);
1463 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16
"\n",
1464 BIT_ARG16(priv
->prom_priv
->filter
));
1469 static ssize_t
show_rtap_filter(struct device
*d
,
1470 struct device_attribute
*attr
,
1473 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1474 return sprintf(buf
, "0x%04X",
1475 priv
->prom_priv
? priv
->prom_priv
->filter
: 0);
1478 static DEVICE_ATTR(rtap_filter
, S_IWUSR
| S_IRUSR
, show_rtap_filter
,
1482 static ssize_t
show_scan_age(struct device
*d
, struct device_attribute
*attr
,
1485 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1486 return sprintf(buf
, "%d\n", priv
->ieee
->scan_age
);
1489 static ssize_t
store_scan_age(struct device
*d
, struct device_attribute
*attr
,
1490 const char *buf
, size_t count
)
1492 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1493 struct net_device
*dev
= priv
->net_dev
;
1494 char buffer
[] = "00000000";
1496 (sizeof(buffer
) - 1) > count
? count
: sizeof(buffer
) - 1;
1500 IPW_DEBUG_INFO("enter\n");
1502 strncpy(buffer
, buf
, len
);
1505 if (p
[1] == 'x' || p
[1] == 'X' || p
[0] == 'x' || p
[0] == 'X') {
1507 if (p
[0] == 'x' || p
[0] == 'X')
1509 val
= simple_strtoul(p
, &p
, 16);
1511 val
= simple_strtoul(p
, &p
, 10);
1513 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev
->name
);
1515 priv
->ieee
->scan_age
= val
;
1516 IPW_DEBUG_INFO("set scan_age = %u\n", priv
->ieee
->scan_age
);
1519 IPW_DEBUG_INFO("exit\n");
1523 static DEVICE_ATTR(scan_age
, S_IWUSR
| S_IRUGO
, show_scan_age
, store_scan_age
);
1525 static ssize_t
show_led(struct device
*d
, struct device_attribute
*attr
,
1528 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1529 return sprintf(buf
, "%d\n", (priv
->config
& CFG_NO_LED
) ? 0 : 1);
1532 static ssize_t
store_led(struct device
*d
, struct device_attribute
*attr
,
1533 const char *buf
, size_t count
)
1535 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1537 IPW_DEBUG_INFO("enter\n");
1543 IPW_DEBUG_LED("Disabling LED control.\n");
1544 priv
->config
|= CFG_NO_LED
;
1545 ipw_led_shutdown(priv
);
1547 IPW_DEBUG_LED("Enabling LED control.\n");
1548 priv
->config
&= ~CFG_NO_LED
;
1552 IPW_DEBUG_INFO("exit\n");
1556 static DEVICE_ATTR(led
, S_IWUSR
| S_IRUGO
, show_led
, store_led
);
1558 static ssize_t
show_status(struct device
*d
,
1559 struct device_attribute
*attr
, char *buf
)
1561 struct ipw_priv
*p
= dev_get_drvdata(d
);
1562 return sprintf(buf
, "0x%08x\n", (int)p
->status
);
1565 static DEVICE_ATTR(status
, S_IRUGO
, show_status
, NULL
);
1567 static ssize_t
show_cfg(struct device
*d
, struct device_attribute
*attr
,
1570 struct ipw_priv
*p
= dev_get_drvdata(d
);
1571 return sprintf(buf
, "0x%08x\n", (int)p
->config
);
1574 static DEVICE_ATTR(cfg
, S_IRUGO
, show_cfg
, NULL
);
1576 static ssize_t
show_nic_type(struct device
*d
,
1577 struct device_attribute
*attr
, char *buf
)
1579 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1580 return sprintf(buf
, "TYPE: %d\n", priv
->nic_type
);
1583 static DEVICE_ATTR(nic_type
, S_IRUGO
, show_nic_type
, NULL
);
1585 static ssize_t
show_ucode_version(struct device
*d
,
1586 struct device_attribute
*attr
, char *buf
)
1588 u32 len
= sizeof(u32
), tmp
= 0;
1589 struct ipw_priv
*p
= dev_get_drvdata(d
);
1591 if (ipw_get_ordinal(p
, IPW_ORD_STAT_UCODE_VERSION
, &tmp
, &len
))
1594 return sprintf(buf
, "0x%08x\n", tmp
);
1597 static DEVICE_ATTR(ucode_version
, S_IWUSR
| S_IRUGO
, show_ucode_version
, NULL
);
1599 static ssize_t
show_rtc(struct device
*d
, struct device_attribute
*attr
,
1602 u32 len
= sizeof(u32
), tmp
= 0;
1603 struct ipw_priv
*p
= dev_get_drvdata(d
);
1605 if (ipw_get_ordinal(p
, IPW_ORD_STAT_RTC
, &tmp
, &len
))
1608 return sprintf(buf
, "0x%08x\n", tmp
);
1611 static DEVICE_ATTR(rtc
, S_IWUSR
| S_IRUGO
, show_rtc
, NULL
);
1614 * Add a device attribute to view/control the delay between eeprom
1617 static ssize_t
show_eeprom_delay(struct device
*d
,
1618 struct device_attribute
*attr
, char *buf
)
1620 struct ipw_priv
*p
= dev_get_drvdata(d
);
1621 int n
= p
->eeprom_delay
;
1622 return sprintf(buf
, "%i\n", n
);
1624 static ssize_t
store_eeprom_delay(struct device
*d
,
1625 struct device_attribute
*attr
,
1626 const char *buf
, size_t count
)
1628 struct ipw_priv
*p
= dev_get_drvdata(d
);
1629 sscanf(buf
, "%i", &p
->eeprom_delay
);
1630 return strnlen(buf
, count
);
1633 static DEVICE_ATTR(eeprom_delay
, S_IWUSR
| S_IRUGO
,
1634 show_eeprom_delay
, store_eeprom_delay
);
1636 static ssize_t
show_command_event_reg(struct device
*d
,
1637 struct device_attribute
*attr
, char *buf
)
1640 struct ipw_priv
*p
= dev_get_drvdata(d
);
1642 reg
= ipw_read_reg32(p
, IPW_INTERNAL_CMD_EVENT
);
1643 return sprintf(buf
, "0x%08x\n", reg
);
1645 static ssize_t
store_command_event_reg(struct device
*d
,
1646 struct device_attribute
*attr
,
1647 const char *buf
, size_t count
)
1650 struct ipw_priv
*p
= dev_get_drvdata(d
);
1652 sscanf(buf
, "%x", ®
);
1653 ipw_write_reg32(p
, IPW_INTERNAL_CMD_EVENT
, reg
);
1654 return strnlen(buf
, count
);
1657 static DEVICE_ATTR(command_event_reg
, S_IWUSR
| S_IRUGO
,
1658 show_command_event_reg
, store_command_event_reg
);
1660 static ssize_t
show_mem_gpio_reg(struct device
*d
,
1661 struct device_attribute
*attr
, char *buf
)
1664 struct ipw_priv
*p
= dev_get_drvdata(d
);
1666 reg
= ipw_read_reg32(p
, 0x301100);
1667 return sprintf(buf
, "0x%08x\n", reg
);
1669 static ssize_t
store_mem_gpio_reg(struct device
*d
,
1670 struct device_attribute
*attr
,
1671 const char *buf
, size_t count
)
1674 struct ipw_priv
*p
= dev_get_drvdata(d
);
1676 sscanf(buf
, "%x", ®
);
1677 ipw_write_reg32(p
, 0x301100, reg
);
1678 return strnlen(buf
, count
);
1681 static DEVICE_ATTR(mem_gpio_reg
, S_IWUSR
| S_IRUGO
,
1682 show_mem_gpio_reg
, store_mem_gpio_reg
);
1684 static ssize_t
show_indirect_dword(struct device
*d
,
1685 struct device_attribute
*attr
, char *buf
)
1688 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1690 if (priv
->status
& STATUS_INDIRECT_DWORD
)
1691 reg
= ipw_read_reg32(priv
, priv
->indirect_dword
);
1695 return sprintf(buf
, "0x%08x\n", reg
);
1697 static ssize_t
store_indirect_dword(struct device
*d
,
1698 struct device_attribute
*attr
,
1699 const char *buf
, size_t count
)
1701 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1703 sscanf(buf
, "%x", &priv
->indirect_dword
);
1704 priv
->status
|= STATUS_INDIRECT_DWORD
;
1705 return strnlen(buf
, count
);
1708 static DEVICE_ATTR(indirect_dword
, S_IWUSR
| S_IRUGO
,
1709 show_indirect_dword
, store_indirect_dword
);
1711 static ssize_t
show_indirect_byte(struct device
*d
,
1712 struct device_attribute
*attr
, char *buf
)
1715 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1717 if (priv
->status
& STATUS_INDIRECT_BYTE
)
1718 reg
= ipw_read_reg8(priv
, priv
->indirect_byte
);
1722 return sprintf(buf
, "0x%02x\n", reg
);
1724 static ssize_t
store_indirect_byte(struct device
*d
,
1725 struct device_attribute
*attr
,
1726 const char *buf
, size_t count
)
1728 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1730 sscanf(buf
, "%x", &priv
->indirect_byte
);
1731 priv
->status
|= STATUS_INDIRECT_BYTE
;
1732 return strnlen(buf
, count
);
1735 static DEVICE_ATTR(indirect_byte
, S_IWUSR
| S_IRUGO
,
1736 show_indirect_byte
, store_indirect_byte
);
1738 static ssize_t
show_direct_dword(struct device
*d
,
1739 struct device_attribute
*attr
, char *buf
)
1742 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1744 if (priv
->status
& STATUS_DIRECT_DWORD
)
1745 reg
= ipw_read32(priv
, priv
->direct_dword
);
1749 return sprintf(buf
, "0x%08x\n", reg
);
1751 static ssize_t
store_direct_dword(struct device
*d
,
1752 struct device_attribute
*attr
,
1753 const char *buf
, size_t count
)
1755 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1757 sscanf(buf
, "%x", &priv
->direct_dword
);
1758 priv
->status
|= STATUS_DIRECT_DWORD
;
1759 return strnlen(buf
, count
);
1762 static DEVICE_ATTR(direct_dword
, S_IWUSR
| S_IRUGO
,
1763 show_direct_dword
, store_direct_dword
);
1765 static int rf_kill_active(struct ipw_priv
*priv
)
1767 if (0 == (ipw_read32(priv
, 0x30) & 0x10000)) {
1768 priv
->status
|= STATUS_RF_KILL_HW
;
1769 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, true);
1771 priv
->status
&= ~STATUS_RF_KILL_HW
;
1772 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, false);
1775 return (priv
->status
& STATUS_RF_KILL_HW
) ? 1 : 0;
1778 static ssize_t
show_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1781 /* 0 - RF kill not enabled
1782 1 - SW based RF kill active (sysfs)
1783 2 - HW based RF kill active
1784 3 - Both HW and SW baed RF kill active */
1785 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1786 int val
= ((priv
->status
& STATUS_RF_KILL_SW
) ? 0x1 : 0x0) |
1787 (rf_kill_active(priv
) ? 0x2 : 0x0);
1788 return sprintf(buf
, "%i\n", val
);
1791 static int ipw_radio_kill_sw(struct ipw_priv
*priv
, int disable_radio
)
1793 if ((disable_radio
? 1 : 0) ==
1794 ((priv
->status
& STATUS_RF_KILL_SW
) ? 1 : 0))
1797 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1798 disable_radio
? "OFF" : "ON");
1800 if (disable_radio
) {
1801 priv
->status
|= STATUS_RF_KILL_SW
;
1803 cancel_delayed_work(&priv
->request_scan
);
1804 cancel_delayed_work(&priv
->request_direct_scan
);
1805 cancel_delayed_work(&priv
->request_passive_scan
);
1806 cancel_delayed_work(&priv
->scan_event
);
1807 schedule_work(&priv
->down
);
1809 priv
->status
&= ~STATUS_RF_KILL_SW
;
1810 if (rf_kill_active(priv
)) {
1811 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1812 "disabled by HW switch\n");
1813 /* Make sure the RF_KILL check timer is running */
1814 cancel_delayed_work(&priv
->rf_kill
);
1815 schedule_delayed_work(&priv
->rf_kill
,
1816 round_jiffies_relative(2 * HZ
));
1818 schedule_work(&priv
->up
);
1824 static ssize_t
store_rf_kill(struct device
*d
, struct device_attribute
*attr
,
1825 const char *buf
, size_t count
)
1827 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1829 ipw_radio_kill_sw(priv
, buf
[0] == '1');
1834 static DEVICE_ATTR(rf_kill
, S_IWUSR
| S_IRUGO
, show_rf_kill
, store_rf_kill
);
1836 static ssize_t
show_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1839 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1840 int pos
= 0, len
= 0;
1841 if (priv
->config
& CFG_SPEED_SCAN
) {
1842 while (priv
->speed_scan
[pos
] != 0)
1843 len
+= sprintf(&buf
[len
], "%d ",
1844 priv
->speed_scan
[pos
++]);
1845 return len
+ sprintf(&buf
[len
], "\n");
1848 return sprintf(buf
, "0\n");
1851 static ssize_t
store_speed_scan(struct device
*d
, struct device_attribute
*attr
,
1852 const char *buf
, size_t count
)
1854 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1855 int channel
, pos
= 0;
1856 const char *p
= buf
;
1858 /* list of space separated channels to scan, optionally ending with 0 */
1859 while ((channel
= simple_strtol(p
, NULL
, 0))) {
1860 if (pos
== MAX_SPEED_SCAN
- 1) {
1861 priv
->speed_scan
[pos
] = 0;
1865 if (libipw_is_valid_channel(priv
->ieee
, channel
))
1866 priv
->speed_scan
[pos
++] = channel
;
1868 IPW_WARNING("Skipping invalid channel request: %d\n",
1873 while (*p
== ' ' || *p
== '\t')
1878 priv
->config
&= ~CFG_SPEED_SCAN
;
1880 priv
->speed_scan_pos
= 0;
1881 priv
->config
|= CFG_SPEED_SCAN
;
1887 static DEVICE_ATTR(speed_scan
, S_IWUSR
| S_IRUGO
, show_speed_scan
,
1890 static ssize_t
show_net_stats(struct device
*d
, struct device_attribute
*attr
,
1893 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1894 return sprintf(buf
, "%c\n", (priv
->config
& CFG_NET_STATS
) ? '1' : '0');
1897 static ssize_t
store_net_stats(struct device
*d
, struct device_attribute
*attr
,
1898 const char *buf
, size_t count
)
1900 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1902 priv
->config
|= CFG_NET_STATS
;
1904 priv
->config
&= ~CFG_NET_STATS
;
1909 static DEVICE_ATTR(net_stats
, S_IWUSR
| S_IRUGO
,
1910 show_net_stats
, store_net_stats
);
1912 static ssize_t
show_channels(struct device
*d
,
1913 struct device_attribute
*attr
,
1916 struct ipw_priv
*priv
= dev_get_drvdata(d
);
1917 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
1920 len
= sprintf(&buf
[len
],
1921 "Displaying %d channels in 2.4Ghz band "
1922 "(802.11bg):\n", geo
->bg_channels
);
1924 for (i
= 0; i
< geo
->bg_channels
; i
++) {
1925 len
+= sprintf(&buf
[len
], "%d: BSS%s%s, %s, Band %s.\n",
1927 geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
?
1928 " (radar spectrum)" : "",
1929 ((geo
->bg
[i
].flags
& LIBIPW_CH_NO_IBSS
) ||
1930 (geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
))
1932 geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
?
1933 "passive only" : "active/passive",
1934 geo
->bg
[i
].flags
& LIBIPW_CH_B_ONLY
?
1938 len
+= sprintf(&buf
[len
],
1939 "Displaying %d channels in 5.2Ghz band "
1940 "(802.11a):\n", geo
->a_channels
);
1941 for (i
= 0; i
< geo
->a_channels
; i
++) {
1942 len
+= sprintf(&buf
[len
], "%d: BSS%s%s, %s.\n",
1944 geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
?
1945 " (radar spectrum)" : "",
1946 ((geo
->a
[i
].flags
& LIBIPW_CH_NO_IBSS
) ||
1947 (geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
))
1949 geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
?
1950 "passive only" : "active/passive");
1956 static DEVICE_ATTR(channels
, S_IRUSR
, show_channels
, NULL
);
1958 static void notify_wx_assoc_event(struct ipw_priv
*priv
)
1960 union iwreq_data wrqu
;
1961 wrqu
.ap_addr
.sa_family
= ARPHRD_ETHER
;
1962 if (priv
->status
& STATUS_ASSOCIATED
)
1963 memcpy(wrqu
.ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
1965 eth_zero_addr(wrqu
.ap_addr
.sa_data
);
1966 wireless_send_event(priv
->net_dev
, SIOCGIWAP
, &wrqu
, NULL
);
1969 static void ipw_irq_tasklet(struct ipw_priv
*priv
)
1971 u32 inta
, inta_mask
, handled
= 0;
1972 unsigned long flags
;
1975 spin_lock_irqsave(&priv
->irq_lock
, flags
);
1977 inta
= ipw_read32(priv
, IPW_INTA_RW
);
1978 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
1980 if (inta
== 0xFFFFFFFF) {
1981 /* Hardware disappeared */
1982 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1983 /* Only handle the cached INTA values */
1986 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
1988 /* Add any cached INTA values that need to be handled */
1989 inta
|= priv
->isr_inta
;
1991 spin_unlock_irqrestore(&priv
->irq_lock
, flags
);
1993 spin_lock_irqsave(&priv
->lock
, flags
);
1995 /* handle all the justifications for the interrupt */
1996 if (inta
& IPW_INTA_BIT_RX_TRANSFER
) {
1998 handled
|= IPW_INTA_BIT_RX_TRANSFER
;
2001 if (inta
& IPW_INTA_BIT_TX_CMD_QUEUE
) {
2002 IPW_DEBUG_HC("Command completed.\n");
2003 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq_cmd
, -1);
2004 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2005 wake_up_interruptible(&priv
->wait_command_queue
);
2006 handled
|= IPW_INTA_BIT_TX_CMD_QUEUE
;
2009 if (inta
& IPW_INTA_BIT_TX_QUEUE_1
) {
2010 IPW_DEBUG_TX("TX_QUEUE_1\n");
2011 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[0], 0);
2012 handled
|= IPW_INTA_BIT_TX_QUEUE_1
;
2015 if (inta
& IPW_INTA_BIT_TX_QUEUE_2
) {
2016 IPW_DEBUG_TX("TX_QUEUE_2\n");
2017 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[1], 1);
2018 handled
|= IPW_INTA_BIT_TX_QUEUE_2
;
2021 if (inta
& IPW_INTA_BIT_TX_QUEUE_3
) {
2022 IPW_DEBUG_TX("TX_QUEUE_3\n");
2023 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[2], 2);
2024 handled
|= IPW_INTA_BIT_TX_QUEUE_3
;
2027 if (inta
& IPW_INTA_BIT_TX_QUEUE_4
) {
2028 IPW_DEBUG_TX("TX_QUEUE_4\n");
2029 rc
= ipw_queue_tx_reclaim(priv
, &priv
->txq
[3], 3);
2030 handled
|= IPW_INTA_BIT_TX_QUEUE_4
;
2033 if (inta
& IPW_INTA_BIT_STATUS_CHANGE
) {
2034 IPW_WARNING("STATUS_CHANGE\n");
2035 handled
|= IPW_INTA_BIT_STATUS_CHANGE
;
2038 if (inta
& IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
) {
2039 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2040 handled
|= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED
;
2043 if (inta
& IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
) {
2044 IPW_WARNING("HOST_CMD_DONE\n");
2045 handled
|= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE
;
2048 if (inta
& IPW_INTA_BIT_FW_INITIALIZATION_DONE
) {
2049 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2050 handled
|= IPW_INTA_BIT_FW_INITIALIZATION_DONE
;
2053 if (inta
& IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
) {
2054 IPW_WARNING("PHY_OFF_DONE\n");
2055 handled
|= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE
;
2058 if (inta
& IPW_INTA_BIT_RF_KILL_DONE
) {
2059 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2060 priv
->status
|= STATUS_RF_KILL_HW
;
2061 wiphy_rfkill_set_hw_state(priv
->ieee
->wdev
.wiphy
, true);
2062 wake_up_interruptible(&priv
->wait_command_queue
);
2063 priv
->status
&= ~(STATUS_ASSOCIATED
| STATUS_ASSOCIATING
);
2064 cancel_delayed_work(&priv
->request_scan
);
2065 cancel_delayed_work(&priv
->request_direct_scan
);
2066 cancel_delayed_work(&priv
->request_passive_scan
);
2067 cancel_delayed_work(&priv
->scan_event
);
2068 schedule_work(&priv
->link_down
);
2069 schedule_delayed_work(&priv
->rf_kill
, 2 * HZ
);
2070 handled
|= IPW_INTA_BIT_RF_KILL_DONE
;
2073 if (inta
& IPW_INTA_BIT_FATAL_ERROR
) {
2074 IPW_WARNING("Firmware error detected. Restarting.\n");
2076 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2077 if (ipw_debug_level
& IPW_DL_FW_ERRORS
) {
2078 struct ipw_fw_error
*error
=
2079 ipw_alloc_error_log(priv
);
2080 ipw_dump_error_log(priv
, error
);
2084 priv
->error
= ipw_alloc_error_log(priv
);
2086 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2088 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2090 if (ipw_debug_level
& IPW_DL_FW_ERRORS
)
2091 ipw_dump_error_log(priv
, priv
->error
);
2094 /* XXX: If hardware encryption is for WPA/WPA2,
2095 * we have to notify the supplicant. */
2096 if (priv
->ieee
->sec
.encrypt
) {
2097 priv
->status
&= ~STATUS_ASSOCIATED
;
2098 notify_wx_assoc_event(priv
);
2101 /* Keep the restart process from trying to send host
2102 * commands by clearing the INIT status bit */
2103 priv
->status
&= ~STATUS_INIT
;
2105 /* Cancel currently queued command. */
2106 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2107 wake_up_interruptible(&priv
->wait_command_queue
);
2109 schedule_work(&priv
->adapter_restart
);
2110 handled
|= IPW_INTA_BIT_FATAL_ERROR
;
2113 if (inta
& IPW_INTA_BIT_PARITY_ERROR
) {
2114 IPW_ERROR("Parity error\n");
2115 handled
|= IPW_INTA_BIT_PARITY_ERROR
;
2118 if (handled
!= inta
) {
2119 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
2122 spin_unlock_irqrestore(&priv
->lock
, flags
);
2124 /* enable all interrupts */
2125 ipw_enable_interrupts(priv
);
2128 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2129 static char *get_cmd_string(u8 cmd
)
2132 IPW_CMD(HOST_COMPLETE
);
2133 IPW_CMD(POWER_DOWN
);
2134 IPW_CMD(SYSTEM_CONFIG
);
2135 IPW_CMD(MULTICAST_ADDRESS
);
2137 IPW_CMD(ADAPTER_ADDRESS
);
2139 IPW_CMD(RTS_THRESHOLD
);
2140 IPW_CMD(FRAG_THRESHOLD
);
2141 IPW_CMD(POWER_MODE
);
2143 IPW_CMD(TGI_TX_KEY
);
2144 IPW_CMD(SCAN_REQUEST
);
2145 IPW_CMD(SCAN_REQUEST_EXT
);
2147 IPW_CMD(SUPPORTED_RATES
);
2148 IPW_CMD(SCAN_ABORT
);
2150 IPW_CMD(QOS_PARAMETERS
);
2151 IPW_CMD(DINO_CONFIG
);
2152 IPW_CMD(RSN_CAPABILITIES
);
2154 IPW_CMD(CARD_DISABLE
);
2155 IPW_CMD(SEED_NUMBER
);
2157 IPW_CMD(COUNTRY_INFO
);
2158 IPW_CMD(AIRONET_INFO
);
2159 IPW_CMD(AP_TX_POWER
);
2161 IPW_CMD(CCX_VER_INFO
);
2162 IPW_CMD(SET_CALIBRATION
);
2163 IPW_CMD(SENSITIVITY_CALIB
);
2164 IPW_CMD(RETRY_LIMIT
);
2165 IPW_CMD(IPW_PRE_POWER_DOWN
);
2166 IPW_CMD(VAP_BEACON_TEMPLATE
);
2167 IPW_CMD(VAP_DTIM_PERIOD
);
2168 IPW_CMD(EXT_SUPPORTED_RATES
);
2169 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT
);
2170 IPW_CMD(VAP_QUIET_INTERVALS
);
2171 IPW_CMD(VAP_CHANNEL_SWITCH
);
2172 IPW_CMD(VAP_MANDATORY_CHANNELS
);
2173 IPW_CMD(VAP_CELL_PWR_LIMIT
);
2174 IPW_CMD(VAP_CF_PARAM_SET
);
2175 IPW_CMD(VAP_SET_BEACONING_STATE
);
2176 IPW_CMD(MEASUREMENT
);
2177 IPW_CMD(POWER_CAPABILITY
);
2178 IPW_CMD(SUPPORTED_CHANNELS
);
2179 IPW_CMD(TPC_REPORT
);
2181 IPW_CMD(PRODUCTION_COMMAND
);
2187 #define HOST_COMPLETE_TIMEOUT HZ
2189 static int __ipw_send_cmd(struct ipw_priv
*priv
, struct host_cmd
*cmd
)
2192 unsigned long flags
;
2193 unsigned long now
, end
;
2195 spin_lock_irqsave(&priv
->lock
, flags
);
2196 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
2197 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2198 get_cmd_string(cmd
->cmd
));
2199 spin_unlock_irqrestore(&priv
->lock
, flags
);
2203 priv
->status
|= STATUS_HCMD_ACTIVE
;
2206 priv
->cmdlog
[priv
->cmdlog_pos
].jiffies
= jiffies
;
2207 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.cmd
= cmd
->cmd
;
2208 priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.len
= cmd
->len
;
2209 memcpy(priv
->cmdlog
[priv
->cmdlog_pos
].cmd
.param
, cmd
->param
,
2211 priv
->cmdlog
[priv
->cmdlog_pos
].retcode
= -1;
2214 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2215 get_cmd_string(cmd
->cmd
), cmd
->cmd
, cmd
->len
,
2218 #ifndef DEBUG_CMD_WEP_KEY
2219 if (cmd
->cmd
== IPW_CMD_WEP_KEY
)
2220 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223 printk_buf(IPW_DL_HOST_COMMAND
, (u8
*) cmd
->param
, cmd
->len
);
2225 rc
= ipw_queue_tx_hcmd(priv
, cmd
->cmd
, cmd
->param
, cmd
->len
, 0);
2227 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2228 IPW_ERROR("Failed to send %s: Reason %d\n",
2229 get_cmd_string(cmd
->cmd
), rc
);
2230 spin_unlock_irqrestore(&priv
->lock
, flags
);
2233 spin_unlock_irqrestore(&priv
->lock
, flags
);
2236 end
= now
+ HOST_COMPLETE_TIMEOUT
;
2238 rc
= wait_event_interruptible_timeout(priv
->wait_command_queue
,
2240 status
& STATUS_HCMD_ACTIVE
),
2244 if (time_before(now
, end
))
2250 spin_lock_irqsave(&priv
->lock
, flags
);
2251 if (priv
->status
& STATUS_HCMD_ACTIVE
) {
2252 IPW_ERROR("Failed to send %s: Command timed out.\n",
2253 get_cmd_string(cmd
->cmd
));
2254 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
2255 spin_unlock_irqrestore(&priv
->lock
, flags
);
2259 spin_unlock_irqrestore(&priv
->lock
, flags
);
2263 if (priv
->status
& STATUS_RF_KILL_HW
) {
2264 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2265 get_cmd_string(cmd
->cmd
));
2272 priv
->cmdlog
[priv
->cmdlog_pos
++].retcode
= rc
;
2273 priv
->cmdlog_pos
%= priv
->cmdlog_len
;
2278 static int ipw_send_cmd_simple(struct ipw_priv
*priv
, u8 command
)
2280 struct host_cmd cmd
= {
2284 return __ipw_send_cmd(priv
, &cmd
);
2287 static int ipw_send_cmd_pdu(struct ipw_priv
*priv
, u8 command
, u8 len
,
2290 struct host_cmd cmd
= {
2296 return __ipw_send_cmd(priv
, &cmd
);
2299 static int ipw_send_host_complete(struct ipw_priv
*priv
)
2302 IPW_ERROR("Invalid args\n");
2306 return ipw_send_cmd_simple(priv
, IPW_CMD_HOST_COMPLETE
);
2309 static int ipw_send_system_config(struct ipw_priv
*priv
)
2311 return ipw_send_cmd_pdu(priv
, IPW_CMD_SYSTEM_CONFIG
,
2312 sizeof(priv
->sys_config
),
2316 static int ipw_send_ssid(struct ipw_priv
*priv
, u8
* ssid
, int len
)
2318 if (!priv
|| !ssid
) {
2319 IPW_ERROR("Invalid args\n");
2323 return ipw_send_cmd_pdu(priv
, IPW_CMD_SSID
, min(len
, IW_ESSID_MAX_SIZE
),
2327 static int ipw_send_adapter_address(struct ipw_priv
*priv
, u8
* mac
)
2329 if (!priv
|| !mac
) {
2330 IPW_ERROR("Invalid args\n");
2334 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2335 priv
->net_dev
->name
, mac
);
2337 return ipw_send_cmd_pdu(priv
, IPW_CMD_ADAPTER_ADDRESS
, ETH_ALEN
, mac
);
2340 static void ipw_adapter_restart(void *adapter
)
2342 struct ipw_priv
*priv
= adapter
;
2344 if (priv
->status
& STATUS_RF_KILL_MASK
)
2349 if (priv
->assoc_network
&&
2350 (priv
->assoc_network
->capability
& WLAN_CAPABILITY_IBSS
))
2351 ipw_remove_current_network(priv
);
2354 IPW_ERROR("Failed to up device\n");
2359 static void ipw_bg_adapter_restart(struct work_struct
*work
)
2361 struct ipw_priv
*priv
=
2362 container_of(work
, struct ipw_priv
, adapter_restart
);
2363 mutex_lock(&priv
->mutex
);
2364 ipw_adapter_restart(priv
);
2365 mutex_unlock(&priv
->mutex
);
2368 static void ipw_abort_scan(struct ipw_priv
*priv
);
2370 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2372 static void ipw_scan_check(void *data
)
2374 struct ipw_priv
*priv
= data
;
2376 if (priv
->status
& STATUS_SCAN_ABORTING
) {
2377 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2378 "adapter after (%dms).\n",
2379 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG
));
2380 schedule_work(&priv
->adapter_restart
);
2381 } else if (priv
->status
& STATUS_SCANNING
) {
2382 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2384 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG
));
2385 ipw_abort_scan(priv
);
2386 schedule_delayed_work(&priv
->scan_check
, HZ
);
2390 static void ipw_bg_scan_check(struct work_struct
*work
)
2392 struct ipw_priv
*priv
=
2393 container_of(work
, struct ipw_priv
, scan_check
.work
);
2394 mutex_lock(&priv
->mutex
);
2395 ipw_scan_check(priv
);
2396 mutex_unlock(&priv
->mutex
);
2399 static int ipw_send_scan_request_ext(struct ipw_priv
*priv
,
2400 struct ipw_scan_request_ext
*request
)
2402 return ipw_send_cmd_pdu(priv
, IPW_CMD_SCAN_REQUEST_EXT
,
2403 sizeof(*request
), request
);
2406 static int ipw_send_scan_abort(struct ipw_priv
*priv
)
2409 IPW_ERROR("Invalid args\n");
2413 return ipw_send_cmd_simple(priv
, IPW_CMD_SCAN_ABORT
);
2416 static int ipw_set_sensitivity(struct ipw_priv
*priv
, u16 sens
)
2418 struct ipw_sensitivity_calib calib
= {
2419 .beacon_rssi_raw
= cpu_to_le16(sens
),
2422 return ipw_send_cmd_pdu(priv
, IPW_CMD_SENSITIVITY_CALIB
, sizeof(calib
),
2426 static int ipw_send_associate(struct ipw_priv
*priv
,
2427 struct ipw_associate
*associate
)
2429 if (!priv
|| !associate
) {
2430 IPW_ERROR("Invalid args\n");
2434 return ipw_send_cmd_pdu(priv
, IPW_CMD_ASSOCIATE
, sizeof(*associate
),
2438 static int ipw_send_supported_rates(struct ipw_priv
*priv
,
2439 struct ipw_supported_rates
*rates
)
2441 if (!priv
|| !rates
) {
2442 IPW_ERROR("Invalid args\n");
2446 return ipw_send_cmd_pdu(priv
, IPW_CMD_SUPPORTED_RATES
, sizeof(*rates
),
2450 static int ipw_set_random_seed(struct ipw_priv
*priv
)
2455 IPW_ERROR("Invalid args\n");
2459 get_random_bytes(&val
, sizeof(val
));
2461 return ipw_send_cmd_pdu(priv
, IPW_CMD_SEED_NUMBER
, sizeof(val
), &val
);
2464 static int ipw_send_card_disable(struct ipw_priv
*priv
, u32 phy_off
)
2466 __le32 v
= cpu_to_le32(phy_off
);
2468 IPW_ERROR("Invalid args\n");
2472 return ipw_send_cmd_pdu(priv
, IPW_CMD_CARD_DISABLE
, sizeof(v
), &v
);
2475 static int ipw_send_tx_power(struct ipw_priv
*priv
, struct ipw_tx_power
*power
)
2477 if (!priv
|| !power
) {
2478 IPW_ERROR("Invalid args\n");
2482 return ipw_send_cmd_pdu(priv
, IPW_CMD_TX_POWER
, sizeof(*power
), power
);
2485 static int ipw_set_tx_power(struct ipw_priv
*priv
)
2487 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
2488 struct ipw_tx_power tx_power
;
2492 memset(&tx_power
, 0, sizeof(tx_power
));
2494 /* configure device for 'G' band */
2495 tx_power
.ieee_mode
= IPW_G_MODE
;
2496 tx_power
.num_channels
= geo
->bg_channels
;
2497 for (i
= 0; i
< geo
->bg_channels
; i
++) {
2498 max_power
= geo
->bg
[i
].max_power
;
2499 tx_power
.channels_tx_power
[i
].channel_number
=
2501 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2502 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2504 if (ipw_send_tx_power(priv
, &tx_power
))
2507 /* configure device to also handle 'B' band */
2508 tx_power
.ieee_mode
= IPW_B_MODE
;
2509 if (ipw_send_tx_power(priv
, &tx_power
))
2512 /* configure device to also handle 'A' band */
2513 if (priv
->ieee
->abg_true
) {
2514 tx_power
.ieee_mode
= IPW_A_MODE
;
2515 tx_power
.num_channels
= geo
->a_channels
;
2516 for (i
= 0; i
< tx_power
.num_channels
; i
++) {
2517 max_power
= geo
->a
[i
].max_power
;
2518 tx_power
.channels_tx_power
[i
].channel_number
=
2520 tx_power
.channels_tx_power
[i
].tx_power
= max_power
?
2521 min(max_power
, priv
->tx_power
) : priv
->tx_power
;
2523 if (ipw_send_tx_power(priv
, &tx_power
))
2529 static int ipw_send_rts_threshold(struct ipw_priv
*priv
, u16 rts
)
2531 struct ipw_rts_threshold rts_threshold
= {
2532 .rts_threshold
= cpu_to_le16(rts
),
2536 IPW_ERROR("Invalid args\n");
2540 return ipw_send_cmd_pdu(priv
, IPW_CMD_RTS_THRESHOLD
,
2541 sizeof(rts_threshold
), &rts_threshold
);
2544 static int ipw_send_frag_threshold(struct ipw_priv
*priv
, u16 frag
)
2546 struct ipw_frag_threshold frag_threshold
= {
2547 .frag_threshold
= cpu_to_le16(frag
),
2551 IPW_ERROR("Invalid args\n");
2555 return ipw_send_cmd_pdu(priv
, IPW_CMD_FRAG_THRESHOLD
,
2556 sizeof(frag_threshold
), &frag_threshold
);
2559 static int ipw_send_power_mode(struct ipw_priv
*priv
, u32 mode
)
2564 IPW_ERROR("Invalid args\n");
2568 /* If on battery, set to 3, if AC set to CAM, else user
2571 case IPW_POWER_BATTERY
:
2572 param
= cpu_to_le32(IPW_POWER_INDEX_3
);
2575 param
= cpu_to_le32(IPW_POWER_MODE_CAM
);
2578 param
= cpu_to_le32(mode
);
2582 return ipw_send_cmd_pdu(priv
, IPW_CMD_POWER_MODE
, sizeof(param
),
2586 static int ipw_send_retry_limit(struct ipw_priv
*priv
, u8 slimit
, u8 llimit
)
2588 struct ipw_retry_limit retry_limit
= {
2589 .short_retry_limit
= slimit
,
2590 .long_retry_limit
= llimit
2594 IPW_ERROR("Invalid args\n");
2598 return ipw_send_cmd_pdu(priv
, IPW_CMD_RETRY_LIMIT
, sizeof(retry_limit
),
2603 * The IPW device contains a Microwire compatible EEPROM that stores
2604 * various data like the MAC address. Usually the firmware has exclusive
2605 * access to the eeprom, but during device initialization (before the
2606 * device driver has sent the HostComplete command to the firmware) the
2607 * device driver has read access to the EEPROM by way of indirect addressing
2608 * through a couple of memory mapped registers.
2610 * The following is a simplified implementation for pulling data out of the
2611 * the eeprom, along with some helper functions to find information in
2612 * the per device private data's copy of the eeprom.
2614 * NOTE: To better understand how these functions work (i.e what is a chip
2615 * select and why do have to keep driving the eeprom clock?), read
2616 * just about any data sheet for a Microwire compatible EEPROM.
2619 /* write a 32 bit value into the indirect accessor register */
2620 static inline void eeprom_write_reg(struct ipw_priv
*p
, u32 data
)
2622 ipw_write_reg32(p
, FW_MEM_REG_EEPROM_ACCESS
, data
);
2624 /* the eeprom requires some time to complete the operation */
2625 udelay(p
->eeprom_delay
);
2628 /* perform a chip select operation */
2629 static void eeprom_cs(struct ipw_priv
*priv
)
2631 eeprom_write_reg(priv
, 0);
2632 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2633 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2634 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2637 /* perform a chip select operation */
2638 static void eeprom_disable_cs(struct ipw_priv
*priv
)
2640 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2641 eeprom_write_reg(priv
, 0);
2642 eeprom_write_reg(priv
, EEPROM_BIT_SK
);
2645 /* push a single bit down to the eeprom */
2646 static inline void eeprom_write_bit(struct ipw_priv
*p
, u8 bit
)
2648 int d
= (bit
? EEPROM_BIT_DI
: 0);
2649 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
);
2650 eeprom_write_reg(p
, EEPROM_BIT_CS
| d
| EEPROM_BIT_SK
);
2653 /* push an opcode followed by an address down to the eeprom */
2654 static void eeprom_op(struct ipw_priv
*priv
, u8 op
, u8 addr
)
2659 eeprom_write_bit(priv
, 1);
2660 eeprom_write_bit(priv
, op
& 2);
2661 eeprom_write_bit(priv
, op
& 1);
2662 for (i
= 7; i
>= 0; i
--) {
2663 eeprom_write_bit(priv
, addr
& (1 << i
));
2667 /* pull 16 bits off the eeprom, one bit at a time */
2668 static u16
eeprom_read_u16(struct ipw_priv
*priv
, u8 addr
)
2673 /* Send READ Opcode */
2674 eeprom_op(priv
, EEPROM_CMD_READ
, addr
);
2676 /* Send dummy bit */
2677 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2679 /* Read the byte off the eeprom one bit at a time */
2680 for (i
= 0; i
< 16; i
++) {
2682 eeprom_write_reg(priv
, EEPROM_BIT_CS
| EEPROM_BIT_SK
);
2683 eeprom_write_reg(priv
, EEPROM_BIT_CS
);
2684 data
= ipw_read_reg32(priv
, FW_MEM_REG_EEPROM_ACCESS
);
2685 r
= (r
<< 1) | ((data
& EEPROM_BIT_DO
) ? 1 : 0);
2688 /* Send another dummy bit */
2689 eeprom_write_reg(priv
, 0);
2690 eeprom_disable_cs(priv
);
2695 /* helper function for pulling the mac address out of the private */
2696 /* data's copy of the eeprom data */
2697 static void eeprom_parse_mac(struct ipw_priv
*priv
, u8
* mac
)
2699 memcpy(mac
, &priv
->eeprom
[EEPROM_MAC_ADDRESS
], ETH_ALEN
);
2702 static void ipw_read_eeprom(struct ipw_priv
*priv
)
2705 __le16
*eeprom
= (__le16
*) priv
->eeprom
;
2707 IPW_DEBUG_TRACE(">>\n");
2709 /* read entire contents of eeprom into private buffer */
2710 for (i
= 0; i
< 128; i
++)
2711 eeprom
[i
] = cpu_to_le16(eeprom_read_u16(priv
, (u8
) i
));
2713 IPW_DEBUG_TRACE("<<\n");
2717 * Either the device driver (i.e. the host) or the firmware can
2718 * load eeprom data into the designated region in SRAM. If neither
2719 * happens then the FW will shutdown with a fatal error.
2721 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2722 * bit needs region of shared SRAM needs to be non-zero.
2724 static void ipw_eeprom_init_sram(struct ipw_priv
*priv
)
2728 IPW_DEBUG_TRACE(">>\n");
2731 If the data looks correct, then copy it to our private
2732 copy. Otherwise let the firmware know to perform the operation
2735 if (priv
->eeprom
[EEPROM_VERSION
] != 0) {
2736 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2738 /* write the eeprom data to sram */
2739 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
2740 ipw_write8(priv
, IPW_EEPROM_DATA
+ i
, priv
->eeprom
[i
]);
2742 /* Do not load eeprom data on fatal error or suspend */
2743 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
2745 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2747 /* Load eeprom data on fatal error or suspend */
2748 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 1);
2751 IPW_DEBUG_TRACE("<<\n");
2754 static void ipw_zero_memory(struct ipw_priv
*priv
, u32 start
, u32 count
)
2759 _ipw_write32(priv
, IPW_AUTOINC_ADDR
, start
);
2761 _ipw_write32(priv
, IPW_AUTOINC_DATA
, 0);
2764 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv
*priv
)
2766 ipw_zero_memory(priv
, IPW_SHARED_SRAM_DMA_CONTROL
,
2767 CB_NUMBER_OF_ELEMENTS_SMALL
*
2768 sizeof(struct command_block
));
2771 static int ipw_fw_dma_enable(struct ipw_priv
*priv
)
2772 { /* start dma engine but no transfers yet */
2774 IPW_DEBUG_FW(">> :\n");
2777 ipw_fw_dma_reset_command_blocks(priv
);
2779 /* Write CB base address */
2780 ipw_write_reg32(priv
, IPW_DMA_I_CB_BASE
, IPW_SHARED_SRAM_DMA_CONTROL
);
2782 IPW_DEBUG_FW("<< :\n");
2786 static void ipw_fw_dma_abort(struct ipw_priv
*priv
)
2790 IPW_DEBUG_FW(">> :\n");
2792 /* set the Stop and Abort bit */
2793 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_STOP_AND_ABORT
;
2794 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2795 priv
->sram_desc
.last_cb_index
= 0;
2797 IPW_DEBUG_FW("<<\n");
2800 static int ipw_fw_dma_write_command_block(struct ipw_priv
*priv
, int index
,
2801 struct command_block
*cb
)
2804 IPW_SHARED_SRAM_DMA_CONTROL
+
2805 (sizeof(struct command_block
) * index
);
2806 IPW_DEBUG_FW(">> :\n");
2808 ipw_write_indirect(priv
, address
, (u8
*) cb
,
2809 (int)sizeof(struct command_block
));
2811 IPW_DEBUG_FW("<< :\n");
2816 static int ipw_fw_dma_kick(struct ipw_priv
*priv
)
2821 IPW_DEBUG_FW(">> :\n");
2823 for (index
= 0; index
< priv
->sram_desc
.last_cb_index
; index
++)
2824 ipw_fw_dma_write_command_block(priv
, index
,
2825 &priv
->sram_desc
.cb_list
[index
]);
2827 /* Enable the DMA in the CSR register */
2828 ipw_clear_bit(priv
, IPW_RESET_REG
,
2829 IPW_RESET_REG_MASTER_DISABLED
|
2830 IPW_RESET_REG_STOP_MASTER
);
2832 /* Set the Start bit. */
2833 control
= DMA_CONTROL_SMALL_CB_CONST_VALUE
| DMA_CB_START
;
2834 ipw_write_reg32(priv
, IPW_DMA_I_DMA_CONTROL
, control
);
2836 IPW_DEBUG_FW("<< :\n");
2840 static void ipw_fw_dma_dump_command_block(struct ipw_priv
*priv
)
2843 u32 register_value
= 0;
2844 u32 cb_fields_address
= 0;
2846 IPW_DEBUG_FW(">> :\n");
2847 address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2848 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address
);
2850 /* Read the DMA Controlor register */
2851 register_value
= ipw_read_reg32(priv
, IPW_DMA_I_DMA_CONTROL
);
2852 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value
);
2854 /* Print the CB values */
2855 cb_fields_address
= address
;
2856 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2857 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value
);
2859 cb_fields_address
+= sizeof(u32
);
2860 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2861 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value
);
2863 cb_fields_address
+= sizeof(u32
);
2864 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2865 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868 cb_fields_address
+= sizeof(u32
);
2869 register_value
= ipw_read_reg32(priv
, cb_fields_address
);
2870 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value
);
2872 IPW_DEBUG_FW(">> :\n");
2875 static int ipw_fw_dma_command_block_index(struct ipw_priv
*priv
)
2877 u32 current_cb_address
= 0;
2878 u32 current_cb_index
= 0;
2880 IPW_DEBUG_FW("<< :\n");
2881 current_cb_address
= ipw_read_reg32(priv
, IPW_DMA_I_CURRENT_CB
);
2883 current_cb_index
= (current_cb_address
- IPW_SHARED_SRAM_DMA_CONTROL
) /
2884 sizeof(struct command_block
);
2886 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2887 current_cb_index
, current_cb_address
);
2889 IPW_DEBUG_FW(">> :\n");
2890 return current_cb_index
;
2894 static int ipw_fw_dma_add_command_block(struct ipw_priv
*priv
,
2898 int interrupt_enabled
, int is_last
)
2901 u32 control
= CB_VALID
| CB_SRC_LE
| CB_DEST_LE
| CB_SRC_AUTOINC
|
2902 CB_SRC_IO_GATED
| CB_DEST_AUTOINC
| CB_SRC_SIZE_LONG
|
2904 struct command_block
*cb
;
2905 u32 last_cb_element
= 0;
2907 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2908 src_address
, dest_address
, length
);
2910 if (priv
->sram_desc
.last_cb_index
>= CB_NUMBER_OF_ELEMENTS_SMALL
)
2913 last_cb_element
= priv
->sram_desc
.last_cb_index
;
2914 cb
= &priv
->sram_desc
.cb_list
[last_cb_element
];
2915 priv
->sram_desc
.last_cb_index
++;
2917 /* Calculate the new CB control word */
2918 if (interrupt_enabled
)
2919 control
|= CB_INT_ENABLED
;
2922 control
|= CB_LAST_VALID
;
2926 /* Calculate the CB Element's checksum value */
2927 cb
->status
= control
^ src_address
^ dest_address
;
2929 /* Copy the Source and Destination addresses */
2930 cb
->dest_addr
= dest_address
;
2931 cb
->source_addr
= src_address
;
2933 /* Copy the Control Word last */
2934 cb
->control
= control
;
2939 static int ipw_fw_dma_add_buffer(struct ipw_priv
*priv
, dma_addr_t
*src_address
,
2940 int nr
, u32 dest_address
, u32 len
)
2945 IPW_DEBUG_FW(">>\n");
2946 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2947 nr
, dest_address
, len
);
2949 for (i
= 0; i
< nr
; i
++) {
2950 size
= min_t(u32
, len
- i
* CB_MAX_LENGTH
, CB_MAX_LENGTH
);
2951 ret
= ipw_fw_dma_add_command_block(priv
, src_address
[i
],
2953 i
* CB_MAX_LENGTH
, size
,
2956 IPW_DEBUG_FW_INFO(": Failed\n");
2959 IPW_DEBUG_FW_INFO(": Added new cb\n");
2962 IPW_DEBUG_FW("<<\n");
2966 static int ipw_fw_dma_wait(struct ipw_priv
*priv
)
2968 u32 current_index
= 0, previous_index
;
2971 IPW_DEBUG_FW(">> :\n");
2973 current_index
= ipw_fw_dma_command_block_index(priv
);
2974 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2975 (int)priv
->sram_desc
.last_cb_index
);
2977 while (current_index
< priv
->sram_desc
.last_cb_index
) {
2979 previous_index
= current_index
;
2980 current_index
= ipw_fw_dma_command_block_index(priv
);
2982 if (previous_index
< current_index
) {
2986 if (++watchdog
> 400) {
2987 IPW_DEBUG_FW_INFO("Timeout\n");
2988 ipw_fw_dma_dump_command_block(priv
);
2989 ipw_fw_dma_abort(priv
);
2994 ipw_fw_dma_abort(priv
);
2996 /*Disable the DMA in the CSR register */
2997 ipw_set_bit(priv
, IPW_RESET_REG
,
2998 IPW_RESET_REG_MASTER_DISABLED
| IPW_RESET_REG_STOP_MASTER
);
3000 IPW_DEBUG_FW("<< dmaWaitSync\n");
3004 static void ipw_remove_current_network(struct ipw_priv
*priv
)
3006 struct list_head
*element
, *safe
;
3007 struct libipw_network
*network
= NULL
;
3008 unsigned long flags
;
3010 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
3011 list_for_each_safe(element
, safe
, &priv
->ieee
->network_list
) {
3012 network
= list_entry(element
, struct libipw_network
, list
);
3013 if (ether_addr_equal(network
->bssid
, priv
->bssid
)) {
3015 list_add_tail(&network
->list
,
3016 &priv
->ieee
->network_free_list
);
3019 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
3023 * Check that card is still alive.
3024 * Reads debug register from domain0.
3025 * If card is present, pre-defined value should
3029 * @return 1 if card is present, 0 otherwise
3031 static inline int ipw_alive(struct ipw_priv
*priv
)
3033 return ipw_read32(priv
, 0x90) == 0xd55555d5;
3036 /* timeout in msec, attempted in 10-msec quanta */
3037 static int ipw_poll_bit(struct ipw_priv
*priv
, u32 addr
, u32 mask
,
3043 if ((ipw_read32(priv
, addr
) & mask
) == mask
)
3047 } while (i
< timeout
);
3052 /* These functions load the firmware and micro code for the operation of
3053 * the ipw hardware. It assumes the buffer has all the bits for the
3054 * image and the caller is handling the memory allocation and clean up.
3057 static int ipw_stop_master(struct ipw_priv
*priv
)
3061 IPW_DEBUG_TRACE(">>\n");
3062 /* stop master. typical delay - 0 */
3063 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3065 /* timeout is in msec, polled in 10-msec quanta */
3066 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3067 IPW_RESET_REG_MASTER_DISABLED
, 100);
3069 IPW_ERROR("wait for stop master failed after 100ms\n");
3073 IPW_DEBUG_INFO("stop master %dms\n", rc
);
3078 static void ipw_arc_release(struct ipw_priv
*priv
)
3080 IPW_DEBUG_TRACE(">>\n");
3083 ipw_clear_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3085 /* no one knows timing, for safety add some delay */
3094 static int ipw_load_ucode(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3096 int rc
= 0, i
, addr
;
3100 image
= (__le16
*) data
;
3102 IPW_DEBUG_TRACE(">>\n");
3104 rc
= ipw_stop_master(priv
);
3109 for (addr
= IPW_SHARED_LOWER_BOUND
;
3110 addr
< IPW_REGISTER_DOMAIN1_END
; addr
+= 4) {
3111 ipw_write32(priv
, addr
, 0);
3114 /* no ucode (yet) */
3115 memset(&priv
->dino_alive
, 0, sizeof(priv
->dino_alive
));
3116 /* destroy DMA queues */
3117 /* reset sequence */
3119 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_ON
);
3120 ipw_arc_release(priv
);
3121 ipw_write_reg32(priv
, IPW_MEM_HALT_AND_RESET
, IPW_BIT_HALT_RESET_OFF
);
3125 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, IPW_BASEBAND_POWER_DOWN
);
3128 ipw_write_reg32(priv
, IPW_INTERNAL_CMD_EVENT
, 0);
3131 /* enable ucode store */
3132 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0x0);
3133 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_CS
);
3139 * Do NOT set indirect address register once and then
3140 * store data to indirect data register in the loop.
3141 * It seems very reasonable, but in this case DINO do not
3142 * accept ucode. It is essential to set address each time.
3144 /* load new ipw uCode */
3145 for (i
= 0; i
< len
/ 2; i
++)
3146 ipw_write_reg16(priv
, IPW_BASEBAND_CONTROL_STORE
,
3147 le16_to_cpu(image
[i
]));
3150 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3151 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, DINO_ENABLE_SYSTEM
);
3153 /* this is where the igx / win driver deveates from the VAP driver. */
3155 /* wait for alive response */
3156 for (i
= 0; i
< 100; i
++) {
3157 /* poll for incoming data */
3158 cr
= ipw_read_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
);
3159 if (cr
& DINO_RXFIFO_DATA
)
3164 if (cr
& DINO_RXFIFO_DATA
) {
3165 /* alive_command_responce size is NOT multiple of 4 */
3166 __le32 response_buffer
[(sizeof(priv
->dino_alive
) + 3) / 4];
3168 for (i
= 0; i
< ARRAY_SIZE(response_buffer
); i
++)
3169 response_buffer
[i
] =
3170 cpu_to_le32(ipw_read_reg32(priv
,
3171 IPW_BASEBAND_RX_FIFO_READ
));
3172 memcpy(&priv
->dino_alive
, response_buffer
,
3173 sizeof(priv
->dino_alive
));
3174 if (priv
->dino_alive
.alive_command
== 1
3175 && priv
->dino_alive
.ucode_valid
== 1) {
3178 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3179 "of %02d/%02d/%02d %02d:%02d\n",
3180 priv
->dino_alive
.software_revision
,
3181 priv
->dino_alive
.software_revision
,
3182 priv
->dino_alive
.device_identifier
,
3183 priv
->dino_alive
.device_identifier
,
3184 priv
->dino_alive
.time_stamp
[0],
3185 priv
->dino_alive
.time_stamp
[1],
3186 priv
->dino_alive
.time_stamp
[2],
3187 priv
->dino_alive
.time_stamp
[3],
3188 priv
->dino_alive
.time_stamp
[4]);
3190 IPW_DEBUG_INFO("Microcode is not alive\n");
3194 IPW_DEBUG_INFO("No alive response from DINO\n");
3198 /* disable DINO, otherwise for some reason
3199 firmware have problem getting alive resp. */
3200 ipw_write_reg8(priv
, IPW_BASEBAND_CONTROL_STATUS
, 0);
3205 static int ipw_load_firmware(struct ipw_priv
*priv
, u8
* data
, size_t len
)
3209 struct fw_chunk
*chunk
;
3212 struct dma_pool
*pool
;
3216 IPW_DEBUG_TRACE("<< :\n");
3218 virts
= kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL
,
3223 phys
= kmalloc(sizeof(dma_addr_t
) * CB_NUMBER_OF_ELEMENTS_SMALL
,
3229 pool
= dma_pool_create("ipw2200", &priv
->pci_dev
->dev
, CB_MAX_LENGTH
, 0,
3232 IPW_ERROR("dma_pool_create failed\n");
3239 ret
= ipw_fw_dma_enable(priv
);
3241 /* the DMA is already ready this would be a bug. */
3242 BUG_ON(priv
->sram_desc
.last_cb_index
> 0);
3250 chunk
= (struct fw_chunk
*)(data
+ offset
);
3251 offset
+= sizeof(struct fw_chunk
);
3252 chunk_len
= le32_to_cpu(chunk
->length
);
3253 start
= data
+ offset
;
3255 nr
= (chunk_len
+ CB_MAX_LENGTH
- 1) / CB_MAX_LENGTH
;
3256 for (i
= 0; i
< nr
; i
++) {
3257 virts
[total_nr
] = dma_pool_alloc(pool
, GFP_KERNEL
,
3259 if (!virts
[total_nr
]) {
3263 size
= min_t(u32
, chunk_len
- i
* CB_MAX_LENGTH
,
3265 memcpy(virts
[total_nr
], start
, size
);
3268 /* We don't support fw chunk larger than 64*8K */
3269 BUG_ON(total_nr
> CB_NUMBER_OF_ELEMENTS_SMALL
);
3272 /* build DMA packet and queue up for sending */
3273 /* dma to chunk->address, the chunk->length bytes from data +
3276 ret
= ipw_fw_dma_add_buffer(priv
, &phys
[total_nr
- nr
],
3277 nr
, le32_to_cpu(chunk
->address
),
3280 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3284 offset
+= chunk_len
;
3285 } while (offset
< len
);
3287 /* Run the DMA and wait for the answer */
3288 ret
= ipw_fw_dma_kick(priv
);
3290 IPW_ERROR("dmaKick Failed\n");
3294 ret
= ipw_fw_dma_wait(priv
);
3296 IPW_ERROR("dmaWaitSync Failed\n");
3300 for (i
= 0; i
< total_nr
; i
++)
3301 dma_pool_free(pool
, virts
[i
], phys
[i
]);
3303 dma_pool_destroy(pool
);
3311 static int ipw_stop_nic(struct ipw_priv
*priv
)
3316 ipw_write32(priv
, IPW_RESET_REG
, IPW_RESET_REG_STOP_MASTER
);
3318 rc
= ipw_poll_bit(priv
, IPW_RESET_REG
,
3319 IPW_RESET_REG_MASTER_DISABLED
, 500);
3321 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3325 ipw_set_bit(priv
, IPW_RESET_REG
, CBD_RESET_REG_PRINCETON_RESET
);
3330 static void ipw_start_nic(struct ipw_priv
*priv
)
3332 IPW_DEBUG_TRACE(">>\n");
3334 /* prvHwStartNic release ARC */
3335 ipw_clear_bit(priv
, IPW_RESET_REG
,
3336 IPW_RESET_REG_MASTER_DISABLED
|
3337 IPW_RESET_REG_STOP_MASTER
|
3338 CBD_RESET_REG_PRINCETON_RESET
);
3340 /* enable power management */
3341 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
,
3342 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY
);
3344 IPW_DEBUG_TRACE("<<\n");
3347 static int ipw_init_nic(struct ipw_priv
*priv
)
3351 IPW_DEBUG_TRACE(">>\n");
3354 /* set "initialization complete" bit to move adapter to D0 state */
3355 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3357 /* low-level PLL activation */
3358 ipw_write32(priv
, IPW_READ_INT_REGISTER
,
3359 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER
);
3361 /* wait for clock stabilization */
3362 rc
= ipw_poll_bit(priv
, IPW_GP_CNTRL_RW
,
3363 IPW_GP_CNTRL_BIT_CLOCK_READY
, 250);
3365 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367 /* assert SW reset */
3368 ipw_set_bit(priv
, IPW_RESET_REG
, IPW_RESET_REG_SW_RESET
);
3372 /* set "initialization complete" bit to move adapter to D0 state */
3373 ipw_set_bit(priv
, IPW_GP_CNTRL_RW
, IPW_GP_CNTRL_BIT_INIT_DONE
);
3375 IPW_DEBUG_TRACE(">>\n");
3379 /* Call this function from process context, it will sleep in request_firmware.
3380 * Probe is an ok place to call this from.
3382 static int ipw_reset_nic(struct ipw_priv
*priv
)
3385 unsigned long flags
;
3387 IPW_DEBUG_TRACE(">>\n");
3389 rc
= ipw_init_nic(priv
);
3391 spin_lock_irqsave(&priv
->lock
, flags
);
3392 /* Clear the 'host command active' bit... */
3393 priv
->status
&= ~STATUS_HCMD_ACTIVE
;
3394 wake_up_interruptible(&priv
->wait_command_queue
);
3395 priv
->status
&= ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
3396 wake_up_interruptible(&priv
->wait_state
);
3397 spin_unlock_irqrestore(&priv
->lock
, flags
);
3399 IPW_DEBUG_TRACE("<<\n");
3412 static int ipw_get_fw(struct ipw_priv
*priv
,
3413 const struct firmware
**raw
, const char *name
)
3418 /* ask firmware_class module to get the boot firmware off disk */
3419 rc
= request_firmware(raw
, name
, &priv
->pci_dev
->dev
);
3421 IPW_ERROR("%s request_firmware failed: Reason %d\n", name
, rc
);
3425 if ((*raw
)->size
< sizeof(*fw
)) {
3426 IPW_ERROR("%s is too small (%zd)\n", name
, (*raw
)->size
);
3430 fw
= (void *)(*raw
)->data
;
3432 if ((*raw
)->size
< sizeof(*fw
) + le32_to_cpu(fw
->boot_size
) +
3433 le32_to_cpu(fw
->ucode_size
) + le32_to_cpu(fw
->fw_size
)) {
3434 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3435 name
, (*raw
)->size
);
3439 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441 le32_to_cpu(fw
->ver
) >> 16,
3442 le32_to_cpu(fw
->ver
) & 0xff,
3443 (*raw
)->size
- sizeof(*fw
));
3447 #define IPW_RX_BUF_SIZE (3000)
3449 static void ipw_rx_queue_reset(struct ipw_priv
*priv
,
3450 struct ipw_rx_queue
*rxq
)
3452 unsigned long flags
;
3455 spin_lock_irqsave(&rxq
->lock
, flags
);
3457 INIT_LIST_HEAD(&rxq
->rx_free
);
3458 INIT_LIST_HEAD(&rxq
->rx_used
);
3460 /* Fill the rx_used queue with _all_ of the Rx buffers */
3461 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++) {
3462 /* In the reset function, these buffers may have been allocated
3463 * to an SKB, so we need to unmap and free potential storage */
3464 if (rxq
->pool
[i
].skb
!= NULL
) {
3465 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
3466 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
3467 dev_kfree_skb(rxq
->pool
[i
].skb
);
3468 rxq
->pool
[i
].skb
= NULL
;
3470 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
3473 /* Set us so that we have processed and used all buffers, but have
3474 * not restocked the Rx queue with fresh buffers */
3475 rxq
->read
= rxq
->write
= 0;
3476 rxq
->free_count
= 0;
3477 spin_unlock_irqrestore(&rxq
->lock
, flags
);
3481 static int fw_loaded
= 0;
3482 static const struct firmware
*raw
= NULL
;
3484 static void free_firmware(void)
3487 release_firmware(raw
);
3493 #define free_firmware() do {} while (0)
3496 static int ipw_load(struct ipw_priv
*priv
)
3499 const struct firmware
*raw
= NULL
;
3502 u8
*boot_img
, *ucode_img
, *fw_img
;
3504 int rc
= 0, retries
= 3;
3506 switch (priv
->ieee
->iw_mode
) {
3508 name
= "ipw2200-ibss.fw";
3510 #ifdef CONFIG_IPW2200_MONITOR
3511 case IW_MODE_MONITOR
:
3512 name
= "ipw2200-sniffer.fw";
3516 name
= "ipw2200-bss.fw";
3528 rc
= ipw_get_fw(priv
, &raw
, name
);
3535 fw
= (void *)raw
->data
;
3536 boot_img
= &fw
->data
[0];
3537 ucode_img
= &fw
->data
[le32_to_cpu(fw
->boot_size
)];
3538 fw_img
= &fw
->data
[le32_to_cpu(fw
->boot_size
) +
3539 le32_to_cpu(fw
->ucode_size
)];
3542 priv
->rxq
= ipw_rx_queue_alloc(priv
);
3544 ipw_rx_queue_reset(priv
, priv
->rxq
);
3546 IPW_ERROR("Unable to initialize Rx queue\n");
3552 /* Ensure interrupts are disabled */
3553 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3554 priv
->status
&= ~STATUS_INT_ENABLED
;
3556 /* ack pending interrupts */
3557 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3561 rc
= ipw_reset_nic(priv
);
3563 IPW_ERROR("Unable to reset NIC\n");
3567 ipw_zero_memory(priv
, IPW_NIC_SRAM_LOWER_BOUND
,
3568 IPW_NIC_SRAM_UPPER_BOUND
- IPW_NIC_SRAM_LOWER_BOUND
);
3570 /* DMA the initial boot firmware into the device */
3571 rc
= ipw_load_firmware(priv
, boot_img
, le32_to_cpu(fw
->boot_size
));
3573 IPW_ERROR("Unable to load boot firmware: %d\n", rc
);
3577 /* kick start the device */
3578 ipw_start_nic(priv
);
3580 /* wait for the device to finish its initial startup sequence */
3581 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3582 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3584 IPW_ERROR("device failed to boot initial fw image\n");
3587 IPW_DEBUG_INFO("initial device response after %dms\n", rc
);
3589 /* ack fw init done interrupt */
3590 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3592 /* DMA the ucode into the device */
3593 rc
= ipw_load_ucode(priv
, ucode_img
, le32_to_cpu(fw
->ucode_size
));
3595 IPW_ERROR("Unable to load ucode: %d\n", rc
);
3602 /* DMA bss firmware into the device */
3603 rc
= ipw_load_firmware(priv
, fw_img
, le32_to_cpu(fw
->fw_size
));
3605 IPW_ERROR("Unable to load firmware: %d\n", rc
);
3612 ipw_write32(priv
, IPW_EEPROM_LOAD_DISABLE
, 0);
3614 rc
= ipw_queue_reset(priv
);
3616 IPW_ERROR("Unable to initialize queues\n");
3620 /* Ensure interrupts are disabled */
3621 ipw_write32(priv
, IPW_INTA_MASK_R
, ~IPW_INTA_MASK_ALL
);
3622 /* ack pending interrupts */
3623 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3625 /* kick start the device */
3626 ipw_start_nic(priv
);
3628 if (ipw_read32(priv
, IPW_INTA_RW
) & IPW_INTA_BIT_PARITY_ERROR
) {
3630 IPW_WARNING("Parity error. Retrying init.\n");
3635 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3640 /* wait for the device */
3641 rc
= ipw_poll_bit(priv
, IPW_INTA_RW
,
3642 IPW_INTA_BIT_FW_INITIALIZATION_DONE
, 500);
3644 IPW_ERROR("device failed to start within 500ms\n");
3647 IPW_DEBUG_INFO("device response after %dms\n", rc
);
3649 /* ack fw init done interrupt */
3650 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_BIT_FW_INITIALIZATION_DONE
);
3652 /* read eeprom data */
3653 priv
->eeprom_delay
= 1;
3654 ipw_read_eeprom(priv
);
3655 /* initialize the eeprom region of sram */
3656 ipw_eeprom_init_sram(priv
);
3658 /* enable interrupts */
3659 ipw_enable_interrupts(priv
);
3661 /* Ensure our queue has valid packets */
3662 ipw_rx_queue_replenish(priv
);
3664 ipw_write32(priv
, IPW_RX_READ_INDEX
, priv
->rxq
->read
);
3666 /* ack pending interrupts */
3667 ipw_write32(priv
, IPW_INTA_RW
, IPW_INTA_MASK_ALL
);
3670 release_firmware(raw
);
3676 ipw_rx_queue_free(priv
, priv
->rxq
);
3679 ipw_tx_queue_free(priv
);
3680 release_firmware(raw
);
3692 * Theory of operation
3694 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3695 * 2 empty entries always kept in the buffer to protect from overflow.
3697 * For Tx queue, there are low mark and high mark limits. If, after queuing
3698 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3699 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3702 * The IPW operates with six queues, one receive queue in the device's
3703 * sram, one transmit queue for sending commands to the device firmware,
3704 * and four transmit queues for data.
3706 * The four transmit queues allow for performing quality of service (qos)
3707 * transmissions as per the 802.11 protocol. Currently Linux does not
3708 * provide a mechanism to the user for utilizing prioritized queues, so
3709 * we only utilize the first data transmit queue (queue1).
3713 * Driver allocates buffers of this size for Rx
3717 * ipw_rx_queue_space - Return number of free slots available in queue.
3719 static int ipw_rx_queue_space(const struct ipw_rx_queue
*q
)
3721 int s
= q
->read
- q
->write
;
3724 /* keep some buffer to not confuse full and empty queue */
3731 static inline int ipw_tx_queue_space(const struct clx2_queue
*q
)
3733 int s
= q
->last_used
- q
->first_empty
;
3736 s
-= 2; /* keep some reserve to not confuse empty and full situations */
3742 static inline int ipw_queue_inc_wrap(int index
, int n_bd
)
3744 return (++index
== n_bd
) ? 0 : index
;
3748 * Initialize common DMA queue structure
3750 * @param q queue to init
3751 * @param count Number of BD's to allocate. Should be power of 2
3752 * @param read_register Address for 'read' register
3753 * (not offset within BAR, full address)
3754 * @param write_register Address for 'write' register
3755 * (not offset within BAR, full address)
3756 * @param base_register Address for 'base' register
3757 * (not offset within BAR, full address)
3758 * @param size Address for 'size' register
3759 * (not offset within BAR, full address)
3761 static void ipw_queue_init(struct ipw_priv
*priv
, struct clx2_queue
*q
,
3762 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3766 q
->low_mark
= q
->n_bd
/ 4;
3767 if (q
->low_mark
< 4)
3770 q
->high_mark
= q
->n_bd
/ 8;
3771 if (q
->high_mark
< 2)
3774 q
->first_empty
= q
->last_used
= 0;
3778 ipw_write32(priv
, base
, q
->dma_addr
);
3779 ipw_write32(priv
, size
, count
);
3780 ipw_write32(priv
, read
, 0);
3781 ipw_write32(priv
, write
, 0);
3783 _ipw_read32(priv
, 0x90);
3786 static int ipw_queue_tx_init(struct ipw_priv
*priv
,
3787 struct clx2_tx_queue
*q
,
3788 int count
, u32 read
, u32 write
, u32 base
, u32 size
)
3790 struct pci_dev
*dev
= priv
->pci_dev
;
3792 q
->txb
= kmalloc(sizeof(q
->txb
[0]) * count
, GFP_KERNEL
);
3794 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3799 pci_alloc_consistent(dev
, sizeof(q
->bd
[0]) * count
, &q
->q
.dma_addr
);
3801 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3802 sizeof(q
->bd
[0]) * count
);
3808 ipw_queue_init(priv
, &q
->q
, count
, read
, write
, base
, size
);
3813 * Free one TFD, those at index [txq->q.last_used].
3814 * Do NOT advance any indexes
3819 static void ipw_queue_tx_free_tfd(struct ipw_priv
*priv
,
3820 struct clx2_tx_queue
*txq
)
3822 struct tfd_frame
*bd
= &txq
->bd
[txq
->q
.last_used
];
3823 struct pci_dev
*dev
= priv
->pci_dev
;
3827 if (bd
->control_flags
.message_type
== TX_HOST_COMMAND_TYPE
)
3828 /* nothing to cleanup after for host commands */
3832 if (le32_to_cpu(bd
->u
.data
.num_chunks
) > NUM_TFD_CHUNKS
) {
3833 IPW_ERROR("Too many chunks: %i\n",
3834 le32_to_cpu(bd
->u
.data
.num_chunks
));
3835 /** @todo issue fatal error, it is quite serious situation */
3839 /* unmap chunks if any */
3840 for (i
= 0; i
< le32_to_cpu(bd
->u
.data
.num_chunks
); i
++) {
3841 pci_unmap_single(dev
, le32_to_cpu(bd
->u
.data
.chunk_ptr
[i
]),
3842 le16_to_cpu(bd
->u
.data
.chunk_len
[i
]),
3844 if (txq
->txb
[txq
->q
.last_used
]) {
3845 libipw_txb_free(txq
->txb
[txq
->q
.last_used
]);
3846 txq
->txb
[txq
->q
.last_used
] = NULL
;
3852 * Deallocate DMA queue.
3854 * Empty queue by removing and destroying all BD's.
3860 static void ipw_queue_tx_free(struct ipw_priv
*priv
, struct clx2_tx_queue
*txq
)
3862 struct clx2_queue
*q
= &txq
->q
;
3863 struct pci_dev
*dev
= priv
->pci_dev
;
3868 /* first, empty all BD's */
3869 for (; q
->first_empty
!= q
->last_used
;
3870 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
3871 ipw_queue_tx_free_tfd(priv
, txq
);
3874 /* free buffers belonging to queue itself */
3875 pci_free_consistent(dev
, sizeof(txq
->bd
[0]) * q
->n_bd
, txq
->bd
,
3879 /* 0 fill whole structure */
3880 memset(txq
, 0, sizeof(*txq
));
3884 * Destroy all DMA queues and structures
3888 static void ipw_tx_queue_free(struct ipw_priv
*priv
)
3891 ipw_queue_tx_free(priv
, &priv
->txq_cmd
);
3894 ipw_queue_tx_free(priv
, &priv
->txq
[0]);
3895 ipw_queue_tx_free(priv
, &priv
->txq
[1]);
3896 ipw_queue_tx_free(priv
, &priv
->txq
[2]);
3897 ipw_queue_tx_free(priv
, &priv
->txq
[3]);
3900 static void ipw_create_bssid(struct ipw_priv
*priv
, u8
* bssid
)
3902 /* First 3 bytes are manufacturer */
3903 bssid
[0] = priv
->mac_addr
[0];
3904 bssid
[1] = priv
->mac_addr
[1];
3905 bssid
[2] = priv
->mac_addr
[2];
3907 /* Last bytes are random */
3908 get_random_bytes(&bssid
[3], ETH_ALEN
- 3);
3910 bssid
[0] &= 0xfe; /* clear multicast bit */
3911 bssid
[0] |= 0x02; /* set local assignment bit (IEEE802) */
3914 static u8
ipw_add_station(struct ipw_priv
*priv
, u8
* bssid
)
3916 struct ipw_station_entry entry
;
3919 for (i
= 0; i
< priv
->num_stations
; i
++) {
3920 if (ether_addr_equal(priv
->stations
[i
], bssid
)) {
3921 /* Another node is active in network */
3922 priv
->missed_adhoc_beacons
= 0;
3923 if (!(priv
->config
& CFG_STATIC_CHANNEL
))
3924 /* when other nodes drop out, we drop out */
3925 priv
->config
&= ~CFG_ADHOC_PERSIST
;
3931 if (i
== MAX_STATIONS
)
3932 return IPW_INVALID_STATION
;
3934 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid
);
3937 entry
.support_mode
= 0;
3938 memcpy(entry
.mac_addr
, bssid
, ETH_ALEN
);
3939 memcpy(priv
->stations
[i
], bssid
, ETH_ALEN
);
3940 ipw_write_direct(priv
, IPW_STATION_TABLE_LOWER
+ i
* sizeof(entry
),
3941 &entry
, sizeof(entry
));
3942 priv
->num_stations
++;
3947 static u8
ipw_find_station(struct ipw_priv
*priv
, u8
* bssid
)
3951 for (i
= 0; i
< priv
->num_stations
; i
++)
3952 if (ether_addr_equal(priv
->stations
[i
], bssid
))
3955 return IPW_INVALID_STATION
;
3958 static void ipw_send_disassociate(struct ipw_priv
*priv
, int quiet
)
3962 if (priv
->status
& STATUS_ASSOCIATING
) {
3963 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3964 schedule_work(&priv
->disassociate
);
3968 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
3969 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3973 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3975 priv
->assoc_request
.bssid
,
3976 priv
->assoc_request
.channel
);
3978 priv
->status
&= ~(STATUS_ASSOCIATING
| STATUS_ASSOCIATED
);
3979 priv
->status
|= STATUS_DISASSOCIATING
;
3982 priv
->assoc_request
.assoc_type
= HC_DISASSOC_QUIET
;
3984 priv
->assoc_request
.assoc_type
= HC_DISASSOCIATE
;
3986 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
3988 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3995 static int ipw_disassociate(void *data
)
3997 struct ipw_priv
*priv
= data
;
3998 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)))
4000 ipw_send_disassociate(data
, 0);
4001 netif_carrier_off(priv
->net_dev
);
4005 static void ipw_bg_disassociate(struct work_struct
*work
)
4007 struct ipw_priv
*priv
=
4008 container_of(work
, struct ipw_priv
, disassociate
);
4009 mutex_lock(&priv
->mutex
);
4010 ipw_disassociate(priv
);
4011 mutex_unlock(&priv
->mutex
);
4014 static void ipw_system_config(struct work_struct
*work
)
4016 struct ipw_priv
*priv
=
4017 container_of(work
, struct ipw_priv
, system_config
);
4019 #ifdef CONFIG_IPW2200_PROMISCUOUS
4020 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
)) {
4021 priv
->sys_config
.accept_all_data_frames
= 1;
4022 priv
->sys_config
.accept_non_directed_frames
= 1;
4023 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
4024 priv
->sys_config
.accept_all_mgmt_frames
= 1;
4028 ipw_send_system_config(priv
);
4031 struct ipw_status_code
{
4036 static const struct ipw_status_code ipw_status_codes
[] = {
4037 {0x00, "Successful"},
4038 {0x01, "Unspecified failure"},
4039 {0x0A, "Cannot support all requested capabilities in the "
4040 "Capability information field"},
4041 {0x0B, "Reassociation denied due to inability to confirm that "
4042 "association exists"},
4043 {0x0C, "Association denied due to reason outside the scope of this "
4046 "Responding station does not support the specified authentication "
4049 "Received an Authentication frame with authentication sequence "
4050 "transaction sequence number out of expected sequence"},
4051 {0x0F, "Authentication rejected because of challenge failure"},
4052 {0x10, "Authentication rejected due to timeout waiting for next "
4053 "frame in sequence"},
4054 {0x11, "Association denied because AP is unable to handle additional "
4055 "associated stations"},
4057 "Association denied due to requesting station not supporting all "
4058 "of the datarates in the BSSBasicServiceSet Parameter"},
4060 "Association denied due to requesting station not supporting "
4061 "short preamble operation"},
4063 "Association denied due to requesting station not supporting "
4066 "Association denied due to requesting station not supporting "
4069 "Association denied due to requesting station not supporting "
4070 "short slot operation"},
4072 "Association denied due to requesting station not supporting "
4073 "DSSS-OFDM operation"},
4074 {0x28, "Invalid Information Element"},
4075 {0x29, "Group Cipher is not valid"},
4076 {0x2A, "Pairwise Cipher is not valid"},
4077 {0x2B, "AKMP is not valid"},
4078 {0x2C, "Unsupported RSN IE version"},
4079 {0x2D, "Invalid RSN IE Capabilities"},
4080 {0x2E, "Cipher suite is rejected per security policy"},
4083 static const char *ipw_get_status_code(u16 status
)
4086 for (i
= 0; i
< ARRAY_SIZE(ipw_status_codes
); i
++)
4087 if (ipw_status_codes
[i
].status
== (status
& 0xff))
4088 return ipw_status_codes
[i
].reason
;
4089 return "Unknown status value.";
4092 static inline void average_init(struct average
*avg
)
4094 memset(avg
, 0, sizeof(*avg
));
4097 #define DEPTH_RSSI 8
4098 #define DEPTH_NOISE 16
4099 static s16
exponential_average(s16 prev_avg
, s16 val
, u8 depth
)
4101 return ((depth
-1)*prev_avg
+ val
)/depth
;
4104 static void average_add(struct average
*avg
, s16 val
)
4106 avg
->sum
-= avg
->entries
[avg
->pos
];
4108 avg
->entries
[avg
->pos
++] = val
;
4109 if (unlikely(avg
->pos
== AVG_ENTRIES
)) {
4115 static s16
average_value(struct average
*avg
)
4117 if (!unlikely(avg
->init
)) {
4119 return avg
->sum
/ avg
->pos
;
4123 return avg
->sum
/ AVG_ENTRIES
;
4126 static void ipw_reset_stats(struct ipw_priv
*priv
)
4128 u32 len
= sizeof(u32
);
4132 average_init(&priv
->average_missed_beacons
);
4133 priv
->exp_avg_rssi
= -60;
4134 priv
->exp_avg_noise
= -85 + 0x100;
4136 priv
->last_rate
= 0;
4137 priv
->last_missed_beacons
= 0;
4138 priv
->last_rx_packets
= 0;
4139 priv
->last_tx_packets
= 0;
4140 priv
->last_tx_failures
= 0;
4142 /* Firmware managed, reset only when NIC is restarted, so we have to
4143 * normalize on the current value */
4144 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
,
4145 &priv
->last_rx_err
, &len
);
4146 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
,
4147 &priv
->last_tx_failures
, &len
);
4149 /* Driver managed, reset with each association */
4150 priv
->missed_adhoc_beacons
= 0;
4151 priv
->missed_beacons
= 0;
4152 priv
->tx_packets
= 0;
4153 priv
->rx_packets
= 0;
4157 static u32
ipw_get_max_rate(struct ipw_priv
*priv
)
4160 u32 mask
= priv
->rates_mask
;
4161 /* If currently associated in B mode, restrict the maximum
4162 * rate match to B rates */
4163 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
4164 mask
&= LIBIPW_CCK_RATES_MASK
;
4166 /* TODO: Verify that the rate is supported by the current rates
4169 while (i
&& !(mask
& i
))
4172 case LIBIPW_CCK_RATE_1MB_MASK
:
4174 case LIBIPW_CCK_RATE_2MB_MASK
:
4176 case LIBIPW_CCK_RATE_5MB_MASK
:
4178 case LIBIPW_OFDM_RATE_6MB_MASK
:
4180 case LIBIPW_OFDM_RATE_9MB_MASK
:
4182 case LIBIPW_CCK_RATE_11MB_MASK
:
4184 case LIBIPW_OFDM_RATE_12MB_MASK
:
4186 case LIBIPW_OFDM_RATE_18MB_MASK
:
4188 case LIBIPW_OFDM_RATE_24MB_MASK
:
4190 case LIBIPW_OFDM_RATE_36MB_MASK
:
4192 case LIBIPW_OFDM_RATE_48MB_MASK
:
4194 case LIBIPW_OFDM_RATE_54MB_MASK
:
4198 if (priv
->ieee
->mode
== IEEE_B
)
4204 static u32
ipw_get_current_rate(struct ipw_priv
*priv
)
4206 u32 rate
, len
= sizeof(rate
);
4209 if (!(priv
->status
& STATUS_ASSOCIATED
))
4212 if (priv
->tx_packets
> IPW_REAL_RATE_RX_PACKET_THRESHOLD
) {
4213 err
= ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_CURR_RATE
, &rate
,
4216 IPW_DEBUG_INFO("failed querying ordinals.\n");
4220 return ipw_get_max_rate(priv
);
4223 case IPW_TX_RATE_1MB
:
4225 case IPW_TX_RATE_2MB
:
4227 case IPW_TX_RATE_5MB
:
4229 case IPW_TX_RATE_6MB
:
4231 case IPW_TX_RATE_9MB
:
4233 case IPW_TX_RATE_11MB
:
4235 case IPW_TX_RATE_12MB
:
4237 case IPW_TX_RATE_18MB
:
4239 case IPW_TX_RATE_24MB
:
4241 case IPW_TX_RATE_36MB
:
4243 case IPW_TX_RATE_48MB
:
4245 case IPW_TX_RATE_54MB
:
4252 #define IPW_STATS_INTERVAL (2 * HZ)
4253 static void ipw_gather_stats(struct ipw_priv
*priv
)
4255 u32 rx_err
, rx_err_delta
, rx_packets_delta
;
4256 u32 tx_failures
, tx_failures_delta
, tx_packets_delta
;
4257 u32 missed_beacons_percent
, missed_beacons_delta
;
4259 u32 len
= sizeof(u32
);
4261 u32 beacon_quality
, signal_quality
, tx_quality
, rx_quality
,
4265 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
4270 /* Update the statistics */
4271 ipw_get_ordinal(priv
, IPW_ORD_STAT_MISSED_BEACONS
,
4272 &priv
->missed_beacons
, &len
);
4273 missed_beacons_delta
= priv
->missed_beacons
- priv
->last_missed_beacons
;
4274 priv
->last_missed_beacons
= priv
->missed_beacons
;
4275 if (priv
->assoc_request
.beacon_interval
) {
4276 missed_beacons_percent
= missed_beacons_delta
*
4277 (HZ
* le16_to_cpu(priv
->assoc_request
.beacon_interval
)) /
4278 (IPW_STATS_INTERVAL
* 10);
4280 missed_beacons_percent
= 0;
4282 average_add(&priv
->average_missed_beacons
, missed_beacons_percent
);
4284 ipw_get_ordinal(priv
, IPW_ORD_STAT_RX_ERR_CRC
, &rx_err
, &len
);
4285 rx_err_delta
= rx_err
- priv
->last_rx_err
;
4286 priv
->last_rx_err
= rx_err
;
4288 ipw_get_ordinal(priv
, IPW_ORD_STAT_TX_FAILURE
, &tx_failures
, &len
);
4289 tx_failures_delta
= tx_failures
- priv
->last_tx_failures
;
4290 priv
->last_tx_failures
= tx_failures
;
4292 rx_packets_delta
= priv
->rx_packets
- priv
->last_rx_packets
;
4293 priv
->last_rx_packets
= priv
->rx_packets
;
4295 tx_packets_delta
= priv
->tx_packets
- priv
->last_tx_packets
;
4296 priv
->last_tx_packets
= priv
->tx_packets
;
4298 /* Calculate quality based on the following:
4300 * Missed beacon: 100% = 0, 0% = 70% missed
4301 * Rate: 60% = 1Mbs, 100% = Max
4302 * Rx and Tx errors represent a straight % of total Rx/Tx
4303 * RSSI: 100% = > -50, 0% = < -80
4304 * Rx errors: 100% = 0, 0% = 50% missed
4306 * The lowest computed quality is used.
4309 #define BEACON_THRESHOLD 5
4310 beacon_quality
= 100 - missed_beacons_percent
;
4311 if (beacon_quality
< BEACON_THRESHOLD
)
4314 beacon_quality
= (beacon_quality
- BEACON_THRESHOLD
) * 100 /
4315 (100 - BEACON_THRESHOLD
);
4316 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4317 beacon_quality
, missed_beacons_percent
);
4319 priv
->last_rate
= ipw_get_current_rate(priv
);
4320 max_rate
= ipw_get_max_rate(priv
);
4321 rate_quality
= priv
->last_rate
* 40 / max_rate
+ 60;
4322 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4323 rate_quality
, priv
->last_rate
/ 1000000);
4325 if (rx_packets_delta
> 100 && rx_packets_delta
+ rx_err_delta
)
4326 rx_quality
= 100 - (rx_err_delta
* 100) /
4327 (rx_packets_delta
+ rx_err_delta
);
4330 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4331 rx_quality
, rx_err_delta
, rx_packets_delta
);
4333 if (tx_packets_delta
> 100 && tx_packets_delta
+ tx_failures_delta
)
4334 tx_quality
= 100 - (tx_failures_delta
* 100) /
4335 (tx_packets_delta
+ tx_failures_delta
);
4338 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4339 tx_quality
, tx_failures_delta
, tx_packets_delta
);
4341 rssi
= priv
->exp_avg_rssi
;
4344 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4345 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) -
4346 (priv
->ieee
->perfect_rssi
- rssi
) *
4347 (15 * (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) +
4348 62 * (priv
->ieee
->perfect_rssi
- rssi
))) /
4349 ((priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
) *
4350 (priv
->ieee
->perfect_rssi
- priv
->ieee
->worst_rssi
));
4351 if (signal_quality
> 100)
4352 signal_quality
= 100;
4353 else if (signal_quality
< 1)
4356 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4357 signal_quality
, rssi
);
4359 quality
= min(rx_quality
, signal_quality
);
4360 quality
= min(tx_quality
, quality
);
4361 quality
= min(rate_quality
, quality
);
4362 quality
= min(beacon_quality
, quality
);
4363 if (quality
== beacon_quality
)
4364 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4366 if (quality
== rate_quality
)
4367 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4369 if (quality
== tx_quality
)
4370 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4372 if (quality
== rx_quality
)
4373 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4375 if (quality
== signal_quality
)
4376 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4379 priv
->quality
= quality
;
4381 schedule_delayed_work(&priv
->gather_stats
, IPW_STATS_INTERVAL
);
4384 static void ipw_bg_gather_stats(struct work_struct
*work
)
4386 struct ipw_priv
*priv
=
4387 container_of(work
, struct ipw_priv
, gather_stats
.work
);
4388 mutex_lock(&priv
->mutex
);
4389 ipw_gather_stats(priv
);
4390 mutex_unlock(&priv
->mutex
);
4393 /* Missed beacon behavior:
4394 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4395 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4396 * Above disassociate threshold, give up and stop scanning.
4397 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4398 static void ipw_handle_missed_beacon(struct ipw_priv
*priv
,
4401 priv
->notif_missed_beacons
= missed_count
;
4403 if (missed_count
> priv
->disassociate_threshold
&&
4404 priv
->status
& STATUS_ASSOCIATED
) {
4405 /* If associated and we've hit the missed
4406 * beacon threshold, disassociate, turn
4407 * off roaming, and abort any active scans */
4408 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4409 IPW_DL_STATE
| IPW_DL_ASSOC
,
4410 "Missed beacon: %d - disassociate\n", missed_count
);
4411 priv
->status
&= ~STATUS_ROAMING
;
4412 if (priv
->status
& STATUS_SCANNING
) {
4413 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
4415 "Aborting scan with missed beacon.\n");
4416 schedule_work(&priv
->abort_scan
);
4419 schedule_work(&priv
->disassociate
);
4423 if (priv
->status
& STATUS_ROAMING
) {
4424 /* If we are currently roaming, then just
4425 * print a debug statement... */
4426 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4427 "Missed beacon: %d - roam in progress\n",
4433 (missed_count
> priv
->roaming_threshold
&&
4434 missed_count
<= priv
->disassociate_threshold
)) {
4435 /* If we are not already roaming, set the ROAM
4436 * bit in the status and kick off a scan.
4437 * This can happen several times before we reach
4438 * disassociate_threshold. */
4439 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4440 "Missed beacon: %d - initiate "
4441 "roaming\n", missed_count
);
4442 if (!(priv
->status
& STATUS_ROAMING
)) {
4443 priv
->status
|= STATUS_ROAMING
;
4444 if (!(priv
->status
& STATUS_SCANNING
))
4445 schedule_delayed_work(&priv
->request_scan
, 0);
4450 if (priv
->status
& STATUS_SCANNING
&&
4451 missed_count
> IPW_MB_SCAN_CANCEL_THRESHOLD
) {
4452 /* Stop scan to keep fw from getting
4453 * stuck (only if we aren't roaming --
4454 * otherwise we'll never scan more than 2 or 3
4456 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
| IPW_DL_STATE
,
4457 "Aborting scan with missed beacon.\n");
4458 schedule_work(&priv
->abort_scan
);
4461 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count
);
4464 static void ipw_scan_event(struct work_struct
*work
)
4466 union iwreq_data wrqu
;
4468 struct ipw_priv
*priv
=
4469 container_of(work
, struct ipw_priv
, scan_event
.work
);
4471 wrqu
.data
.length
= 0;
4472 wrqu
.data
.flags
= 0;
4473 wireless_send_event(priv
->net_dev
, SIOCGIWSCAN
, &wrqu
, NULL
);
4476 static void handle_scan_event(struct ipw_priv
*priv
)
4478 /* Only userspace-requested scan completion events go out immediately */
4479 if (!priv
->user_requested_scan
) {
4480 schedule_delayed_work(&priv
->scan_event
,
4481 round_jiffies_relative(msecs_to_jiffies(4000)));
4483 priv
->user_requested_scan
= 0;
4484 mod_delayed_work(system_wq
, &priv
->scan_event
, 0);
4489 * Handle host notification packet.
4490 * Called from interrupt routine
4492 static void ipw_rx_notification(struct ipw_priv
*priv
,
4493 struct ipw_rx_notification
*notif
)
4495 u16 size
= le16_to_cpu(notif
->size
);
4497 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif
->subtype
, size
);
4499 switch (notif
->subtype
) {
4500 case HOST_NOTIFICATION_STATUS_ASSOCIATED
:{
4501 struct notif_association
*assoc
= ¬if
->u
.assoc
;
4503 switch (assoc
->state
) {
4504 case CMAS_ASSOCIATED
:{
4505 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4507 "associated: '%*pE' %pM\n",
4508 priv
->essid_len
, priv
->essid
,
4511 switch (priv
->ieee
->iw_mode
) {
4513 memcpy(priv
->ieee
->bssid
,
4514 priv
->bssid
, ETH_ALEN
);
4518 memcpy(priv
->ieee
->bssid
,
4519 priv
->bssid
, ETH_ALEN
);
4521 /* clear out the station table */
4522 priv
->num_stations
= 0;
4525 ("queueing adhoc check\n");
4526 schedule_delayed_work(
4534 priv
->status
&= ~STATUS_ASSOCIATING
;
4535 priv
->status
|= STATUS_ASSOCIATED
;
4536 schedule_work(&priv
->system_config
);
4538 #ifdef CONFIG_IPW2200_QOS
4539 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4540 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4541 if ((priv
->status
& STATUS_AUTH
) &&
4542 (IPW_GET_PACKET_STYPE(¬if
->u
.raw
)
4543 == IEEE80211_STYPE_ASSOC_RESP
)) {
4546 libipw_assoc_response
)
4548 && (size
<= 2314)) {
4558 libipw_rx_mgt(priv
->
4563 ¬if
->u
.raw
, &stats
);
4568 schedule_work(&priv
->link_up
);
4573 case CMAS_AUTHENTICATED
:{
4575 status
& (STATUS_ASSOCIATED
|
4577 struct notif_authenticate
*auth
4579 IPW_DEBUG(IPW_DL_NOTIF
|
4582 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4586 le16_to_cpu(auth
->status
),
4592 ~(STATUS_ASSOCIATING
|
4596 schedule_work(&priv
->link_down
);
4600 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4602 "authenticated: '%*pE' %pM\n",
4603 priv
->essid_len
, priv
->essid
,
4609 if (priv
->status
& STATUS_AUTH
) {
4611 libipw_assoc_response
4615 libipw_assoc_response
4617 IPW_DEBUG(IPW_DL_NOTIF
|
4620 "association failed (0x%04X): %s\n",
4621 le16_to_cpu(resp
->status
),
4627 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4629 "disassociated: '%*pE' %pM\n",
4630 priv
->essid_len
, priv
->essid
,
4634 ~(STATUS_DISASSOCIATING
|
4635 STATUS_ASSOCIATING
|
4636 STATUS_ASSOCIATED
| STATUS_AUTH
);
4637 if (priv
->assoc_network
4638 && (priv
->assoc_network
->
4640 WLAN_CAPABILITY_IBSS
))
4641 ipw_remove_current_network
4644 schedule_work(&priv
->link_down
);
4649 case CMAS_RX_ASSOC_RESP
:
4653 IPW_ERROR("assoc: unknown (%d)\n",
4661 case HOST_NOTIFICATION_STATUS_AUTHENTICATE
:{
4662 struct notif_authenticate
*auth
= ¬if
->u
.auth
;
4663 switch (auth
->state
) {
4664 case CMAS_AUTHENTICATED
:
4665 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4666 "authenticated: '%*pE' %pM\n",
4667 priv
->essid_len
, priv
->essid
,
4669 priv
->status
|= STATUS_AUTH
;
4673 if (priv
->status
& STATUS_AUTH
) {
4674 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4676 "authentication failed (0x%04X): %s\n",
4677 le16_to_cpu(auth
->status
),
4678 ipw_get_status_code(le16_to_cpu
4682 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4684 "deauthenticated: '%*pE' %pM\n",
4685 priv
->essid_len
, priv
->essid
,
4688 priv
->status
&= ~(STATUS_ASSOCIATING
|
4692 schedule_work(&priv
->link_down
);
4695 case CMAS_TX_AUTH_SEQ_1
:
4696 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4697 IPW_DL_ASSOC
, "AUTH_SEQ_1\n");
4699 case CMAS_RX_AUTH_SEQ_2
:
4700 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4701 IPW_DL_ASSOC
, "AUTH_SEQ_2\n");
4703 case CMAS_AUTH_SEQ_1_PASS
:
4704 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4705 IPW_DL_ASSOC
, "AUTH_SEQ_1_PASS\n");
4707 case CMAS_AUTH_SEQ_1_FAIL
:
4708 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4709 IPW_DL_ASSOC
, "AUTH_SEQ_1_FAIL\n");
4711 case CMAS_TX_AUTH_SEQ_3
:
4712 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4713 IPW_DL_ASSOC
, "AUTH_SEQ_3\n");
4715 case CMAS_RX_AUTH_SEQ_4
:
4716 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4717 IPW_DL_ASSOC
, "RX_AUTH_SEQ_4\n");
4719 case CMAS_AUTH_SEQ_2_PASS
:
4720 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4721 IPW_DL_ASSOC
, "AUTH_SEQ_2_PASS\n");
4723 case CMAS_AUTH_SEQ_2_FAIL
:
4724 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4725 IPW_DL_ASSOC
, "AUT_SEQ_2_FAIL\n");
4728 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4729 IPW_DL_ASSOC
, "TX_ASSOC\n");
4731 case CMAS_RX_ASSOC_RESP
:
4732 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4733 IPW_DL_ASSOC
, "RX_ASSOC_RESP\n");
4736 case CMAS_ASSOCIATED
:
4737 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
|
4738 IPW_DL_ASSOC
, "ASSOCIATED\n");
4741 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4748 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT
:{
4749 struct notif_channel_result
*x
=
4750 ¬if
->u
.channel_result
;
4752 if (size
== sizeof(*x
)) {
4753 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4756 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4757 "(should be %zd)\n",
4763 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED
:{
4764 struct notif_scan_complete
*x
= ¬if
->u
.scan_complete
;
4765 if (size
== sizeof(*x
)) {
4767 ("Scan completed: type %d, %d channels, "
4768 "%d status\n", x
->scan_type
,
4769 x
->num_channels
, x
->status
);
4771 IPW_ERROR("Scan completed of wrong size %d "
4772 "(should be %zd)\n",
4777 ~(STATUS_SCANNING
| STATUS_SCAN_ABORTING
);
4779 wake_up_interruptible(&priv
->wait_state
);
4780 cancel_delayed_work(&priv
->scan_check
);
4782 if (priv
->status
& STATUS_EXIT_PENDING
)
4785 priv
->ieee
->scans
++;
4787 #ifdef CONFIG_IPW2200_MONITOR
4788 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
4789 priv
->status
|= STATUS_SCAN_FORCED
;
4790 schedule_delayed_work(&priv
->request_scan
, 0);
4793 priv
->status
&= ~STATUS_SCAN_FORCED
;
4794 #endif /* CONFIG_IPW2200_MONITOR */
4796 /* Do queued direct scans first */
4797 if (priv
->status
& STATUS_DIRECT_SCAN_PENDING
)
4798 schedule_delayed_work(&priv
->request_direct_scan
, 0);
4800 if (!(priv
->status
& (STATUS_ASSOCIATED
|
4801 STATUS_ASSOCIATING
|
4803 STATUS_DISASSOCIATING
)))
4804 schedule_work(&priv
->associate
);
4805 else if (priv
->status
& STATUS_ROAMING
) {
4806 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4807 /* If a scan completed and we are in roam mode, then
4808 * the scan that completed was the one requested as a
4809 * result of entering roam... so, schedule the
4811 schedule_work(&priv
->roam
);
4813 /* Don't schedule if we aborted the scan */
4814 priv
->status
&= ~STATUS_ROAMING
;
4815 } else if (priv
->status
& STATUS_SCAN_PENDING
)
4816 schedule_delayed_work(&priv
->request_scan
, 0);
4817 else if (priv
->config
& CFG_BACKGROUND_SCAN
4818 && priv
->status
& STATUS_ASSOCIATED
)
4819 schedule_delayed_work(&priv
->request_scan
,
4820 round_jiffies_relative(HZ
));
4822 /* Send an empty event to user space.
4823 * We don't send the received data on the event because
4824 * it would require us to do complex transcoding, and
4825 * we want to minimise the work done in the irq handler
4826 * Use a request to extract the data.
4827 * Also, we generate this even for any scan, regardless
4828 * on how the scan was initiated. User space can just
4829 * sync on periodic scan to get fresh data...
4831 if (x
->status
== SCAN_COMPLETED_STATUS_COMPLETE
)
4832 handle_scan_event(priv
);
4836 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH
:{
4837 struct notif_frag_length
*x
= ¬if
->u
.frag_len
;
4839 if (size
== sizeof(*x
))
4840 IPW_ERROR("Frag length: %d\n",
4841 le16_to_cpu(x
->frag_length
));
4843 IPW_ERROR("Frag length of wrong size %d "
4844 "(should be %zd)\n",
4849 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION
:{
4850 struct notif_link_deterioration
*x
=
4851 ¬if
->u
.link_deterioration
;
4853 if (size
== sizeof(*x
)) {
4854 IPW_DEBUG(IPW_DL_NOTIF
| IPW_DL_STATE
,
4855 "link deterioration: type %d, cnt %d\n",
4856 x
->silence_notification_type
,
4858 memcpy(&priv
->last_link_deterioration
, x
,
4861 IPW_ERROR("Link Deterioration of wrong size %d "
4862 "(should be %zd)\n",
4868 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE
:{
4869 IPW_ERROR("Dino config\n");
4871 && priv
->hcmd
->cmd
!= HOST_CMD_DINO_CONFIG
)
4872 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4877 case HOST_NOTIFICATION_STATUS_BEACON_STATE
:{
4878 struct notif_beacon_state
*x
= ¬if
->u
.beacon_state
;
4879 if (size
!= sizeof(*x
)) {
4881 ("Beacon state of wrong size %d (should "
4882 "be %zd)\n", size
, sizeof(*x
));
4886 if (le32_to_cpu(x
->state
) ==
4887 HOST_NOTIFICATION_STATUS_BEACON_MISSING
)
4888 ipw_handle_missed_beacon(priv
,
4895 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY
:{
4896 struct notif_tgi_tx_key
*x
= ¬if
->u
.tgi_tx_key
;
4897 if (size
== sizeof(*x
)) {
4898 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4899 "0x%02x station %d\n",
4900 x
->key_state
, x
->security_type
,
4906 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4911 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS
:{
4912 struct notif_calibration
*x
= ¬if
->u
.calibration
;
4914 if (size
== sizeof(*x
)) {
4915 memcpy(&priv
->calib
, x
, sizeof(*x
));
4916 IPW_DEBUG_INFO("TODO: Calibration\n");
4921 ("Calibration of wrong size %d (should be %zd)\n",
4926 case HOST_NOTIFICATION_NOISE_STATS
:{
4927 if (size
== sizeof(u32
)) {
4928 priv
->exp_avg_noise
=
4929 exponential_average(priv
->exp_avg_noise
,
4930 (u8
) (le32_to_cpu(notif
->u
.noise
.value
) & 0xff),
4936 ("Noise stat is wrong size %d (should be %zd)\n",
4942 IPW_DEBUG_NOTIF("Unknown notification: "
4943 "subtype=%d,flags=0x%2x,size=%d\n",
4944 notif
->subtype
, notif
->flags
, size
);
4949 * Destroys all DMA structures and initialise them again
4952 * @return error code
4954 static int ipw_queue_reset(struct ipw_priv
*priv
)
4957 /** @todo customize queue sizes */
4958 int nTx
= 64, nTxCmd
= 8;
4959 ipw_tx_queue_free(priv
);
4961 rc
= ipw_queue_tx_init(priv
, &priv
->txq_cmd
, nTxCmd
,
4962 IPW_TX_CMD_QUEUE_READ_INDEX
,
4963 IPW_TX_CMD_QUEUE_WRITE_INDEX
,
4964 IPW_TX_CMD_QUEUE_BD_BASE
,
4965 IPW_TX_CMD_QUEUE_BD_SIZE
);
4967 IPW_ERROR("Tx Cmd queue init failed\n");
4971 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[0], nTx
,
4972 IPW_TX_QUEUE_0_READ_INDEX
,
4973 IPW_TX_QUEUE_0_WRITE_INDEX
,
4974 IPW_TX_QUEUE_0_BD_BASE
, IPW_TX_QUEUE_0_BD_SIZE
);
4976 IPW_ERROR("Tx 0 queue init failed\n");
4979 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[1], nTx
,
4980 IPW_TX_QUEUE_1_READ_INDEX
,
4981 IPW_TX_QUEUE_1_WRITE_INDEX
,
4982 IPW_TX_QUEUE_1_BD_BASE
, IPW_TX_QUEUE_1_BD_SIZE
);
4984 IPW_ERROR("Tx 1 queue init failed\n");
4987 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[2], nTx
,
4988 IPW_TX_QUEUE_2_READ_INDEX
,
4989 IPW_TX_QUEUE_2_WRITE_INDEX
,
4990 IPW_TX_QUEUE_2_BD_BASE
, IPW_TX_QUEUE_2_BD_SIZE
);
4992 IPW_ERROR("Tx 2 queue init failed\n");
4995 rc
= ipw_queue_tx_init(priv
, &priv
->txq
[3], nTx
,
4996 IPW_TX_QUEUE_3_READ_INDEX
,
4997 IPW_TX_QUEUE_3_WRITE_INDEX
,
4998 IPW_TX_QUEUE_3_BD_BASE
, IPW_TX_QUEUE_3_BD_SIZE
);
5000 IPW_ERROR("Tx 3 queue init failed\n");
5004 priv
->rx_bufs_min
= 0;
5005 priv
->rx_pend_max
= 0;
5009 ipw_tx_queue_free(priv
);
5014 * Reclaim Tx queue entries no more used by NIC.
5016 * When FW advances 'R' index, all entries between old and
5017 * new 'R' index need to be reclaimed. As result, some free space
5018 * forms. If there is enough free space (> low mark), wake Tx queue.
5020 * @note Need to protect against garbage in 'R' index
5024 * @return Number of used entries remains in the queue
5026 static int ipw_queue_tx_reclaim(struct ipw_priv
*priv
,
5027 struct clx2_tx_queue
*txq
, int qindex
)
5031 struct clx2_queue
*q
= &txq
->q
;
5033 hw_tail
= ipw_read32(priv
, q
->reg_r
);
5034 if (hw_tail
>= q
->n_bd
) {
5036 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5040 for (; q
->last_used
!= hw_tail
;
5041 q
->last_used
= ipw_queue_inc_wrap(q
->last_used
, q
->n_bd
)) {
5042 ipw_queue_tx_free_tfd(priv
, txq
);
5046 if ((ipw_tx_queue_space(q
) > q
->low_mark
) &&
5048 netif_wake_queue(priv
->net_dev
);
5049 used
= q
->first_empty
- q
->last_used
;
5056 static int ipw_queue_tx_hcmd(struct ipw_priv
*priv
, int hcmd
, void *buf
,
5059 struct clx2_tx_queue
*txq
= &priv
->txq_cmd
;
5060 struct clx2_queue
*q
= &txq
->q
;
5061 struct tfd_frame
*tfd
;
5063 if (ipw_tx_queue_space(q
) < (sync
? 1 : 2)) {
5064 IPW_ERROR("No space for Tx\n");
5068 tfd
= &txq
->bd
[q
->first_empty
];
5069 txq
->txb
[q
->first_empty
] = NULL
;
5071 memset(tfd
, 0, sizeof(*tfd
));
5072 tfd
->control_flags
.message_type
= TX_HOST_COMMAND_TYPE
;
5073 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
5075 tfd
->u
.cmd
.index
= hcmd
;
5076 tfd
->u
.cmd
.length
= len
;
5077 memcpy(tfd
->u
.cmd
.payload
, buf
, len
);
5078 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
5079 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
5080 _ipw_read32(priv
, 0x90);
5086 * Rx theory of operation
5088 * The host allocates 32 DMA target addresses and passes the host address
5089 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5093 * The host/firmware share two index registers for managing the Rx buffers.
5095 * The READ index maps to the first position that the firmware may be writing
5096 * to -- the driver can read up to (but not including) this position and get
5098 * The READ index is managed by the firmware once the card is enabled.
5100 * The WRITE index maps to the last position the driver has read from -- the
5101 * position preceding WRITE is the last slot the firmware can place a packet.
5103 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5106 * During initialization the host sets up the READ queue position to the first
5107 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5109 * When the firmware places a packet in a buffer it will advance the READ index
5110 * and fire the RX interrupt. The driver can then query the READ index and
5111 * process as many packets as possible, moving the WRITE index forward as it
5112 * resets the Rx queue buffers with new memory.
5114 * The management in the driver is as follows:
5115 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5116 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5117 * to replensish the ipw->rxq->rx_free.
5118 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5119 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5120 * 'processed' and 'read' driver indexes as well)
5121 * + A received packet is processed and handed to the kernel network stack,
5122 * detached from the ipw->rxq. The driver 'processed' index is updated.
5123 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5124 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5125 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5126 * were enough free buffers and RX_STALLED is set it is cleared.
5131 * ipw_rx_queue_alloc() Allocates rx_free
5132 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5133 * ipw_rx_queue_restock
5134 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5135 * queue, updates firmware pointers, and updates
5136 * the WRITE index. If insufficient rx_free buffers
5137 * are available, schedules ipw_rx_queue_replenish
5139 * -- enable interrupts --
5140 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5141 * READ INDEX, detaching the SKB from the pool.
5142 * Moves the packet buffer from queue to rx_used.
5143 * Calls ipw_rx_queue_restock to refill any empty
5150 * If there are slots in the RX queue that need to be restocked,
5151 * and we have free pre-allocated buffers, fill the ranks as much
5152 * as we can pulling from rx_free.
5154 * This moves the 'write' index forward to catch up with 'processed', and
5155 * also updates the memory address in the firmware to reference the new
5158 static void ipw_rx_queue_restock(struct ipw_priv
*priv
)
5160 struct ipw_rx_queue
*rxq
= priv
->rxq
;
5161 struct list_head
*element
;
5162 struct ipw_rx_mem_buffer
*rxb
;
5163 unsigned long flags
;
5166 spin_lock_irqsave(&rxq
->lock
, flags
);
5168 while ((ipw_rx_queue_space(rxq
) > 0) && (rxq
->free_count
)) {
5169 element
= rxq
->rx_free
.next
;
5170 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
5173 ipw_write32(priv
, IPW_RFDS_TABLE_LOWER
+ rxq
->write
* RFD_SIZE
,
5175 rxq
->queue
[rxq
->write
] = rxb
;
5176 rxq
->write
= (rxq
->write
+ 1) % RX_QUEUE_SIZE
;
5179 spin_unlock_irqrestore(&rxq
->lock
, flags
);
5181 /* If the pre-allocated buffer pool is dropping low, schedule to
5183 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
5184 schedule_work(&priv
->rx_replenish
);
5186 /* If we've added more space for the firmware to place data, tell it */
5187 if (write
!= rxq
->write
)
5188 ipw_write32(priv
, IPW_RX_WRITE_INDEX
, rxq
->write
);
5192 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5193 * Also restock the Rx queue via ipw_rx_queue_restock.
5195 * This is called as a scheduled work item (except for during initialization)
5197 static void ipw_rx_queue_replenish(void *data
)
5199 struct ipw_priv
*priv
= data
;
5200 struct ipw_rx_queue
*rxq
= priv
->rxq
;
5201 struct list_head
*element
;
5202 struct ipw_rx_mem_buffer
*rxb
;
5203 unsigned long flags
;
5205 spin_lock_irqsave(&rxq
->lock
, flags
);
5206 while (!list_empty(&rxq
->rx_used
)) {
5207 element
= rxq
->rx_used
.next
;
5208 rxb
= list_entry(element
, struct ipw_rx_mem_buffer
, list
);
5209 rxb
->skb
= alloc_skb(IPW_RX_BUF_SIZE
, GFP_ATOMIC
);
5211 printk(KERN_CRIT
"%s: Can not allocate SKB buffers.\n",
5212 priv
->net_dev
->name
);
5213 /* We don't reschedule replenish work here -- we will
5214 * call the restock method and if it still needs
5215 * more buffers it will schedule replenish */
5221 pci_map_single(priv
->pci_dev
, rxb
->skb
->data
,
5222 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
5224 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
5227 spin_unlock_irqrestore(&rxq
->lock
, flags
);
5229 ipw_rx_queue_restock(priv
);
5232 static void ipw_bg_rx_queue_replenish(struct work_struct
*work
)
5234 struct ipw_priv
*priv
=
5235 container_of(work
, struct ipw_priv
, rx_replenish
);
5236 mutex_lock(&priv
->mutex
);
5237 ipw_rx_queue_replenish(priv
);
5238 mutex_unlock(&priv
->mutex
);
5241 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5242 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5243 * This free routine walks the list of POOL entries and if SKB is set to
5244 * non NULL it is unmapped and freed
5246 static void ipw_rx_queue_free(struct ipw_priv
*priv
, struct ipw_rx_queue
*rxq
)
5253 for (i
= 0; i
< RX_QUEUE_SIZE
+ RX_FREE_BUFFERS
; i
++) {
5254 if (rxq
->pool
[i
].skb
!= NULL
) {
5255 pci_unmap_single(priv
->pci_dev
, rxq
->pool
[i
].dma_addr
,
5256 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
5257 dev_kfree_skb(rxq
->pool
[i
].skb
);
5264 static struct ipw_rx_queue
*ipw_rx_queue_alloc(struct ipw_priv
*priv
)
5266 struct ipw_rx_queue
*rxq
;
5269 rxq
= kzalloc(sizeof(*rxq
), GFP_KERNEL
);
5270 if (unlikely(!rxq
)) {
5271 IPW_ERROR("memory allocation failed\n");
5274 spin_lock_init(&rxq
->lock
);
5275 INIT_LIST_HEAD(&rxq
->rx_free
);
5276 INIT_LIST_HEAD(&rxq
->rx_used
);
5278 /* Fill the rx_used queue with _all_ of the Rx buffers */
5279 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++)
5280 list_add_tail(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
5282 /* Set us so that we have processed and used all buffers, but have
5283 * not restocked the Rx queue with fresh buffers */
5284 rxq
->read
= rxq
->write
= 0;
5285 rxq
->free_count
= 0;
5290 static int ipw_is_rate_in_mask(struct ipw_priv
*priv
, int ieee_mode
, u8 rate
)
5292 rate
&= ~LIBIPW_BASIC_RATE_MASK
;
5293 if (ieee_mode
== IEEE_A
) {
5295 case LIBIPW_OFDM_RATE_6MB
:
5296 return priv
->rates_mask
& LIBIPW_OFDM_RATE_6MB_MASK
?
5298 case LIBIPW_OFDM_RATE_9MB
:
5299 return priv
->rates_mask
& LIBIPW_OFDM_RATE_9MB_MASK
?
5301 case LIBIPW_OFDM_RATE_12MB
:
5303 rates_mask
& LIBIPW_OFDM_RATE_12MB_MASK
? 1 : 0;
5304 case LIBIPW_OFDM_RATE_18MB
:
5306 rates_mask
& LIBIPW_OFDM_RATE_18MB_MASK
? 1 : 0;
5307 case LIBIPW_OFDM_RATE_24MB
:
5309 rates_mask
& LIBIPW_OFDM_RATE_24MB_MASK
? 1 : 0;
5310 case LIBIPW_OFDM_RATE_36MB
:
5312 rates_mask
& LIBIPW_OFDM_RATE_36MB_MASK
? 1 : 0;
5313 case LIBIPW_OFDM_RATE_48MB
:
5315 rates_mask
& LIBIPW_OFDM_RATE_48MB_MASK
? 1 : 0;
5316 case LIBIPW_OFDM_RATE_54MB
:
5318 rates_mask
& LIBIPW_OFDM_RATE_54MB_MASK
? 1 : 0;
5326 case LIBIPW_CCK_RATE_1MB
:
5327 return priv
->rates_mask
& LIBIPW_CCK_RATE_1MB_MASK
? 1 : 0;
5328 case LIBIPW_CCK_RATE_2MB
:
5329 return priv
->rates_mask
& LIBIPW_CCK_RATE_2MB_MASK
? 1 : 0;
5330 case LIBIPW_CCK_RATE_5MB
:
5331 return priv
->rates_mask
& LIBIPW_CCK_RATE_5MB_MASK
? 1 : 0;
5332 case LIBIPW_CCK_RATE_11MB
:
5333 return priv
->rates_mask
& LIBIPW_CCK_RATE_11MB_MASK
? 1 : 0;
5336 /* If we are limited to B modulations, bail at this point */
5337 if (ieee_mode
== IEEE_B
)
5342 case LIBIPW_OFDM_RATE_6MB
:
5343 return priv
->rates_mask
& LIBIPW_OFDM_RATE_6MB_MASK
? 1 : 0;
5344 case LIBIPW_OFDM_RATE_9MB
:
5345 return priv
->rates_mask
& LIBIPW_OFDM_RATE_9MB_MASK
? 1 : 0;
5346 case LIBIPW_OFDM_RATE_12MB
:
5347 return priv
->rates_mask
& LIBIPW_OFDM_RATE_12MB_MASK
? 1 : 0;
5348 case LIBIPW_OFDM_RATE_18MB
:
5349 return priv
->rates_mask
& LIBIPW_OFDM_RATE_18MB_MASK
? 1 : 0;
5350 case LIBIPW_OFDM_RATE_24MB
:
5351 return priv
->rates_mask
& LIBIPW_OFDM_RATE_24MB_MASK
? 1 : 0;
5352 case LIBIPW_OFDM_RATE_36MB
:
5353 return priv
->rates_mask
& LIBIPW_OFDM_RATE_36MB_MASK
? 1 : 0;
5354 case LIBIPW_OFDM_RATE_48MB
:
5355 return priv
->rates_mask
& LIBIPW_OFDM_RATE_48MB_MASK
? 1 : 0;
5356 case LIBIPW_OFDM_RATE_54MB
:
5357 return priv
->rates_mask
& LIBIPW_OFDM_RATE_54MB_MASK
? 1 : 0;
5363 static int ipw_compatible_rates(struct ipw_priv
*priv
,
5364 const struct libipw_network
*network
,
5365 struct ipw_supported_rates
*rates
)
5369 memset(rates
, 0, sizeof(*rates
));
5370 num_rates
= min(network
->rates_len
, (u8
) IPW_MAX_RATES
);
5371 rates
->num_rates
= 0;
5372 for (i
= 0; i
< num_rates
; i
++) {
5373 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5374 network
->rates
[i
])) {
5376 if (network
->rates
[i
] & LIBIPW_BASIC_RATE_MASK
) {
5377 IPW_DEBUG_SCAN("Adding masked mandatory "
5380 rates
->supported_rates
[rates
->num_rates
++] =
5385 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5386 network
->rates
[i
], priv
->rates_mask
);
5390 rates
->supported_rates
[rates
->num_rates
++] = network
->rates
[i
];
5393 num_rates
= min(network
->rates_ex_len
,
5394 (u8
) (IPW_MAX_RATES
- num_rates
));
5395 for (i
= 0; i
< num_rates
; i
++) {
5396 if (!ipw_is_rate_in_mask(priv
, network
->mode
,
5397 network
->rates_ex
[i
])) {
5398 if (network
->rates_ex
[i
] & LIBIPW_BASIC_RATE_MASK
) {
5399 IPW_DEBUG_SCAN("Adding masked mandatory "
5401 network
->rates_ex
[i
]);
5402 rates
->supported_rates
[rates
->num_rates
++] =
5407 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5408 network
->rates_ex
[i
], priv
->rates_mask
);
5412 rates
->supported_rates
[rates
->num_rates
++] =
5413 network
->rates_ex
[i
];
5419 static void ipw_copy_rates(struct ipw_supported_rates
*dest
,
5420 const struct ipw_supported_rates
*src
)
5423 for (i
= 0; i
< src
->num_rates
; i
++)
5424 dest
->supported_rates
[i
] = src
->supported_rates
[i
];
5425 dest
->num_rates
= src
->num_rates
;
5428 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5429 * mask should ever be used -- right now all callers to add the scan rates are
5430 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5431 static void ipw_add_cck_scan_rates(struct ipw_supported_rates
*rates
,
5432 u8 modulation
, u32 rate_mask
)
5434 u8 basic_mask
= (LIBIPW_OFDM_MODULATION
== modulation
) ?
5435 LIBIPW_BASIC_RATE_MASK
: 0;
5437 if (rate_mask
& LIBIPW_CCK_RATE_1MB_MASK
)
5438 rates
->supported_rates
[rates
->num_rates
++] =
5439 LIBIPW_BASIC_RATE_MASK
| LIBIPW_CCK_RATE_1MB
;
5441 if (rate_mask
& LIBIPW_CCK_RATE_2MB_MASK
)
5442 rates
->supported_rates
[rates
->num_rates
++] =
5443 LIBIPW_BASIC_RATE_MASK
| LIBIPW_CCK_RATE_2MB
;
5445 if (rate_mask
& LIBIPW_CCK_RATE_5MB_MASK
)
5446 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5447 LIBIPW_CCK_RATE_5MB
;
5449 if (rate_mask
& LIBIPW_CCK_RATE_11MB_MASK
)
5450 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5451 LIBIPW_CCK_RATE_11MB
;
5454 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates
*rates
,
5455 u8 modulation
, u32 rate_mask
)
5457 u8 basic_mask
= (LIBIPW_OFDM_MODULATION
== modulation
) ?
5458 LIBIPW_BASIC_RATE_MASK
: 0;
5460 if (rate_mask
& LIBIPW_OFDM_RATE_6MB_MASK
)
5461 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5462 LIBIPW_OFDM_RATE_6MB
;
5464 if (rate_mask
& LIBIPW_OFDM_RATE_9MB_MASK
)
5465 rates
->supported_rates
[rates
->num_rates
++] =
5466 LIBIPW_OFDM_RATE_9MB
;
5468 if (rate_mask
& LIBIPW_OFDM_RATE_12MB_MASK
)
5469 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5470 LIBIPW_OFDM_RATE_12MB
;
5472 if (rate_mask
& LIBIPW_OFDM_RATE_18MB_MASK
)
5473 rates
->supported_rates
[rates
->num_rates
++] =
5474 LIBIPW_OFDM_RATE_18MB
;
5476 if (rate_mask
& LIBIPW_OFDM_RATE_24MB_MASK
)
5477 rates
->supported_rates
[rates
->num_rates
++] = basic_mask
|
5478 LIBIPW_OFDM_RATE_24MB
;
5480 if (rate_mask
& LIBIPW_OFDM_RATE_36MB_MASK
)
5481 rates
->supported_rates
[rates
->num_rates
++] =
5482 LIBIPW_OFDM_RATE_36MB
;
5484 if (rate_mask
& LIBIPW_OFDM_RATE_48MB_MASK
)
5485 rates
->supported_rates
[rates
->num_rates
++] =
5486 LIBIPW_OFDM_RATE_48MB
;
5488 if (rate_mask
& LIBIPW_OFDM_RATE_54MB_MASK
)
5489 rates
->supported_rates
[rates
->num_rates
++] =
5490 LIBIPW_OFDM_RATE_54MB
;
5493 struct ipw_network_match
{
5494 struct libipw_network
*network
;
5495 struct ipw_supported_rates rates
;
5498 static int ipw_find_adhoc_network(struct ipw_priv
*priv
,
5499 struct ipw_network_match
*match
,
5500 struct libipw_network
*network
,
5503 struct ipw_supported_rates rates
;
5505 /* Verify that this network's capability is compatible with the
5506 * current mode (AdHoc or Infrastructure) */
5507 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5508 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5509 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5510 network
->ssid_len
, network
->ssid
,
5515 if (unlikely(roaming
)) {
5516 /* If we are roaming, then ensure check if this is a valid
5517 * network to try and roam to */
5518 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5519 memcmp(network
->ssid
, match
->network
->ssid
,
5520 network
->ssid_len
)) {
5521 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5522 network
->ssid_len
, network
->ssid
,
5527 /* If an ESSID has been configured then compare the broadcast
5529 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5530 ((network
->ssid_len
!= priv
->essid_len
) ||
5531 memcmp(network
->ssid
, priv
->essid
,
5532 min(network
->ssid_len
, priv
->essid_len
)))) {
5533 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5534 network
->ssid_len
, network
->ssid
,
5535 network
->bssid
, priv
->essid_len
,
5541 /* If the old network rate is better than this one, don't bother
5542 * testing everything else. */
5544 if (network
->time_stamp
[0] < match
->network
->time_stamp
[0]) {
5545 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5546 match
->network
->ssid_len
, match
->network
->ssid
);
5548 } else if (network
->time_stamp
[1] < match
->network
->time_stamp
[1]) {
5549 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5550 match
->network
->ssid_len
, match
->network
->ssid
);
5554 /* Now go through and see if the requested network is valid... */
5555 if (priv
->ieee
->scan_age
!= 0 &&
5556 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5557 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5558 network
->ssid_len
, network
->ssid
,
5560 jiffies_to_msecs(jiffies
-
5561 network
->last_scanned
));
5565 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5566 (network
->channel
!= priv
->channel
)) {
5567 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5568 network
->ssid_len
, network
->ssid
,
5570 network
->channel
, priv
->channel
);
5574 /* Verify privacy compatibility */
5575 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5576 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5577 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5578 network
->ssid_len
, network
->ssid
,
5581 capability
& CAP_PRIVACY_ON
? "on" : "off",
5583 capability
& WLAN_CAPABILITY_PRIVACY
? "on" :
5588 if (ether_addr_equal(network
->bssid
, priv
->bssid
)) {
5589 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5590 network
->ssid_len
, network
->ssid
,
5591 network
->bssid
, priv
->bssid
);
5595 /* Filter out any incompatible freq / mode combinations */
5596 if (!libipw_is_valid_mode(priv
->ieee
, network
->mode
)) {
5597 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5598 network
->ssid_len
, network
->ssid
,
5603 /* Ensure that the rates supported by the driver are compatible with
5604 * this AP, including verification of basic rates (mandatory) */
5605 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5606 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5607 network
->ssid_len
, network
->ssid
,
5612 if (rates
.num_rates
== 0) {
5613 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5614 network
->ssid_len
, network
->ssid
,
5619 /* TODO: Perform any further minimal comparititive tests. We do not
5620 * want to put too much policy logic here; intelligent scan selection
5621 * should occur within a generic IEEE 802.11 user space tool. */
5623 /* Set up 'new' AP to this network */
5624 ipw_copy_rates(&match
->rates
, &rates
);
5625 match
->network
= network
;
5626 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5627 network
->ssid_len
, network
->ssid
, network
->bssid
);
5632 static void ipw_merge_adhoc_network(struct work_struct
*work
)
5634 struct ipw_priv
*priv
=
5635 container_of(work
, struct ipw_priv
, merge_networks
);
5636 struct libipw_network
*network
= NULL
;
5637 struct ipw_network_match match
= {
5638 .network
= priv
->assoc_network
5641 if ((priv
->status
& STATUS_ASSOCIATED
) &&
5642 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5643 /* First pass through ROAM process -- look for a better
5645 unsigned long flags
;
5647 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
5648 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
5649 if (network
!= priv
->assoc_network
)
5650 ipw_find_adhoc_network(priv
, &match
, network
,
5653 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
5655 if (match
.network
== priv
->assoc_network
) {
5656 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5661 mutex_lock(&priv
->mutex
);
5662 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)) {
5663 IPW_DEBUG_MERGE("remove network %*pE\n",
5664 priv
->essid_len
, priv
->essid
);
5665 ipw_remove_current_network(priv
);
5668 ipw_disassociate(priv
);
5669 priv
->assoc_network
= match
.network
;
5670 mutex_unlock(&priv
->mutex
);
5675 static int ipw_best_network(struct ipw_priv
*priv
,
5676 struct ipw_network_match
*match
,
5677 struct libipw_network
*network
, int roaming
)
5679 struct ipw_supported_rates rates
;
5681 /* Verify that this network's capability is compatible with the
5682 * current mode (AdHoc or Infrastructure) */
5683 if ((priv
->ieee
->iw_mode
== IW_MODE_INFRA
&&
5684 !(network
->capability
& WLAN_CAPABILITY_ESS
)) ||
5685 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
5686 !(network
->capability
& WLAN_CAPABILITY_IBSS
))) {
5687 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5688 network
->ssid_len
, network
->ssid
,
5693 if (unlikely(roaming
)) {
5694 /* If we are roaming, then ensure check if this is a valid
5695 * network to try and roam to */
5696 if ((network
->ssid_len
!= match
->network
->ssid_len
) ||
5697 memcmp(network
->ssid
, match
->network
->ssid
,
5698 network
->ssid_len
)) {
5699 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5700 network
->ssid_len
, network
->ssid
,
5705 /* If an ESSID has been configured then compare the broadcast
5707 if ((priv
->config
& CFG_STATIC_ESSID
) &&
5708 ((network
->ssid_len
!= priv
->essid_len
) ||
5709 memcmp(network
->ssid
, priv
->essid
,
5710 min(network
->ssid_len
, priv
->essid_len
)))) {
5711 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5712 network
->ssid_len
, network
->ssid
,
5713 network
->bssid
, priv
->essid_len
,
5719 /* If the old network rate is better than this one, don't bother
5720 * testing everything else. */
5721 if (match
->network
&& match
->network
->stats
.rssi
> network
->stats
.rssi
) {
5722 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5723 network
->ssid_len
, network
->ssid
,
5724 network
->bssid
, match
->network
->ssid_len
,
5725 match
->network
->ssid
, match
->network
->bssid
);
5729 /* If this network has already had an association attempt within the
5730 * last 3 seconds, do not try and associate again... */
5731 if (network
->last_associate
&&
5732 time_after(network
->last_associate
+ (HZ
* 3UL), jiffies
)) {
5733 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5734 network
->ssid_len
, network
->ssid
,
5736 jiffies_to_msecs(jiffies
-
5737 network
->last_associate
));
5741 /* Now go through and see if the requested network is valid... */
5742 if (priv
->ieee
->scan_age
!= 0 &&
5743 time_after(jiffies
, network
->last_scanned
+ priv
->ieee
->scan_age
)) {
5744 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5745 network
->ssid_len
, network
->ssid
,
5747 jiffies_to_msecs(jiffies
-
5748 network
->last_scanned
));
5752 if ((priv
->config
& CFG_STATIC_CHANNEL
) &&
5753 (network
->channel
!= priv
->channel
)) {
5754 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5755 network
->ssid_len
, network
->ssid
,
5757 network
->channel
, priv
->channel
);
5761 /* Verify privacy compatibility */
5762 if (((priv
->capability
& CAP_PRIVACY_ON
) ? 1 : 0) !=
5763 ((network
->capability
& WLAN_CAPABILITY_PRIVACY
) ? 1 : 0)) {
5764 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5765 network
->ssid_len
, network
->ssid
,
5767 priv
->capability
& CAP_PRIVACY_ON
? "on" :
5769 network
->capability
&
5770 WLAN_CAPABILITY_PRIVACY
? "on" : "off");
5774 if ((priv
->config
& CFG_STATIC_BSSID
) &&
5775 !ether_addr_equal(network
->bssid
, priv
->bssid
)) {
5776 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5777 network
->ssid_len
, network
->ssid
,
5778 network
->bssid
, priv
->bssid
);
5782 /* Filter out any incompatible freq / mode combinations */
5783 if (!libipw_is_valid_mode(priv
->ieee
, network
->mode
)) {
5784 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5785 network
->ssid_len
, network
->ssid
,
5790 /* Filter out invalid channel in current GEO */
5791 if (!libipw_is_valid_channel(priv
->ieee
, network
->channel
)) {
5792 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5793 network
->ssid_len
, network
->ssid
,
5798 /* Ensure that the rates supported by the driver are compatible with
5799 * this AP, including verification of basic rates (mandatory) */
5800 if (!ipw_compatible_rates(priv
, network
, &rates
)) {
5801 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5802 network
->ssid_len
, network
->ssid
,
5807 if (rates
.num_rates
== 0) {
5808 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5809 network
->ssid_len
, network
->ssid
,
5814 /* TODO: Perform any further minimal comparititive tests. We do not
5815 * want to put too much policy logic here; intelligent scan selection
5816 * should occur within a generic IEEE 802.11 user space tool. */
5818 /* Set up 'new' AP to this network */
5819 ipw_copy_rates(&match
->rates
, &rates
);
5820 match
->network
= network
;
5822 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5823 network
->ssid_len
, network
->ssid
, network
->bssid
);
5828 static void ipw_adhoc_create(struct ipw_priv
*priv
,
5829 struct libipw_network
*network
)
5831 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
5835 * For the purposes of scanning, we can set our wireless mode
5836 * to trigger scans across combinations of bands, but when it
5837 * comes to creating a new ad-hoc network, we have tell the FW
5838 * exactly which band to use.
5840 * We also have the possibility of an invalid channel for the
5841 * chossen band. Attempting to create a new ad-hoc network
5842 * with an invalid channel for wireless mode will trigger a
5846 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
5847 case LIBIPW_52GHZ_BAND
:
5848 network
->mode
= IEEE_A
;
5849 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
5851 if (geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
) {
5852 IPW_WARNING("Overriding invalid channel\n");
5853 priv
->channel
= geo
->a
[0].channel
;
5857 case LIBIPW_24GHZ_BAND
:
5858 if (priv
->ieee
->mode
& IEEE_G
)
5859 network
->mode
= IEEE_G
;
5861 network
->mode
= IEEE_B
;
5862 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
5864 if (geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
) {
5865 IPW_WARNING("Overriding invalid channel\n");
5866 priv
->channel
= geo
->bg
[0].channel
;
5871 IPW_WARNING("Overriding invalid channel\n");
5872 if (priv
->ieee
->mode
& IEEE_A
) {
5873 network
->mode
= IEEE_A
;
5874 priv
->channel
= geo
->a
[0].channel
;
5875 } else if (priv
->ieee
->mode
& IEEE_G
) {
5876 network
->mode
= IEEE_G
;
5877 priv
->channel
= geo
->bg
[0].channel
;
5879 network
->mode
= IEEE_B
;
5880 priv
->channel
= geo
->bg
[0].channel
;
5885 network
->channel
= priv
->channel
;
5886 priv
->config
|= CFG_ADHOC_PERSIST
;
5887 ipw_create_bssid(priv
, network
->bssid
);
5888 network
->ssid_len
= priv
->essid_len
;
5889 memcpy(network
->ssid
, priv
->essid
, priv
->essid_len
);
5890 memset(&network
->stats
, 0, sizeof(network
->stats
));
5891 network
->capability
= WLAN_CAPABILITY_IBSS
;
5892 if (!(priv
->config
& CFG_PREAMBLE_LONG
))
5893 network
->capability
|= WLAN_CAPABILITY_SHORT_PREAMBLE
;
5894 if (priv
->capability
& CAP_PRIVACY_ON
)
5895 network
->capability
|= WLAN_CAPABILITY_PRIVACY
;
5896 network
->rates_len
= min(priv
->rates
.num_rates
, MAX_RATES_LENGTH
);
5897 memcpy(network
->rates
, priv
->rates
.supported_rates
, network
->rates_len
);
5898 network
->rates_ex_len
= priv
->rates
.num_rates
- network
->rates_len
;
5899 memcpy(network
->rates_ex
,
5900 &priv
->rates
.supported_rates
[network
->rates_len
],
5901 network
->rates_ex_len
);
5902 network
->last_scanned
= 0;
5904 network
->last_associate
= 0;
5905 network
->time_stamp
[0] = 0;
5906 network
->time_stamp
[1] = 0;
5907 network
->beacon_interval
= 100; /* Default */
5908 network
->listen_interval
= 10; /* Default */
5909 network
->atim_window
= 0; /* Default */
5910 network
->wpa_ie_len
= 0;
5911 network
->rsn_ie_len
= 0;
5914 static void ipw_send_tgi_tx_key(struct ipw_priv
*priv
, int type
, int index
)
5916 struct ipw_tgi_tx_key key
;
5918 if (!(priv
->ieee
->sec
.flags
& (1 << index
)))
5922 memcpy(key
.key
, priv
->ieee
->sec
.keys
[index
], SCM_TEMPORAL_KEY_LENGTH
);
5923 key
.security_type
= type
;
5924 key
.station_index
= 0; /* always 0 for BSS */
5926 /* 0 for new key; previous value of counter (after fatal error) */
5927 key
.tx_counter
[0] = cpu_to_le32(0);
5928 key
.tx_counter
[1] = cpu_to_le32(0);
5930 ipw_send_cmd_pdu(priv
, IPW_CMD_TGI_TX_KEY
, sizeof(key
), &key
);
5933 static void ipw_send_wep_keys(struct ipw_priv
*priv
, int type
)
5935 struct ipw_wep_key key
;
5938 key
.cmd_id
= DINO_CMD_WEP_KEY
;
5941 /* Note: AES keys cannot be set for multiple times.
5942 * Only set it at the first time. */
5943 for (i
= 0; i
< 4; i
++) {
5944 key
.key_index
= i
| type
;
5945 if (!(priv
->ieee
->sec
.flags
& (1 << i
))) {
5950 key
.key_size
= priv
->ieee
->sec
.key_sizes
[i
];
5951 memcpy(key
.key
, priv
->ieee
->sec
.keys
[i
], key
.key_size
);
5953 ipw_send_cmd_pdu(priv
, IPW_CMD_WEP_KEY
, sizeof(key
), &key
);
5957 static void ipw_set_hw_decrypt_unicast(struct ipw_priv
*priv
, int level
)
5959 if (priv
->ieee
->host_encrypt
)
5964 priv
->sys_config
.disable_unicast_decryption
= 0;
5965 priv
->ieee
->host_decrypt
= 0;
5968 priv
->sys_config
.disable_unicast_decryption
= 1;
5969 priv
->ieee
->host_decrypt
= 1;
5972 priv
->sys_config
.disable_unicast_decryption
= 0;
5973 priv
->ieee
->host_decrypt
= 0;
5976 priv
->sys_config
.disable_unicast_decryption
= 1;
5983 static void ipw_set_hw_decrypt_multicast(struct ipw_priv
*priv
, int level
)
5985 if (priv
->ieee
->host_encrypt
)
5990 priv
->sys_config
.disable_multicast_decryption
= 0;
5993 priv
->sys_config
.disable_multicast_decryption
= 1;
5996 priv
->sys_config
.disable_multicast_decryption
= 0;
5999 priv
->sys_config
.disable_multicast_decryption
= 1;
6006 static void ipw_set_hwcrypto_keys(struct ipw_priv
*priv
)
6008 switch (priv
->ieee
->sec
.level
) {
6010 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
6011 ipw_send_tgi_tx_key(priv
,
6012 DCT_FLAG_EXT_SECURITY_CCM
,
6013 priv
->ieee
->sec
.active_key
);
6015 if (!priv
->ieee
->host_mc_decrypt
)
6016 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_CCM
);
6019 if (priv
->ieee
->sec
.flags
& SEC_ACTIVE_KEY
)
6020 ipw_send_tgi_tx_key(priv
,
6021 DCT_FLAG_EXT_SECURITY_TKIP
,
6022 priv
->ieee
->sec
.active_key
);
6025 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
6026 ipw_set_hw_decrypt_unicast(priv
, priv
->ieee
->sec
.level
);
6027 ipw_set_hw_decrypt_multicast(priv
, priv
->ieee
->sec
.level
);
6035 static void ipw_adhoc_check(void *data
)
6037 struct ipw_priv
*priv
= data
;
6039 if (priv
->missed_adhoc_beacons
++ > priv
->disassociate_threshold
&&
6040 !(priv
->config
& CFG_ADHOC_PERSIST
)) {
6041 IPW_DEBUG(IPW_DL_INFO
| IPW_DL_NOTIF
|
6042 IPW_DL_STATE
| IPW_DL_ASSOC
,
6043 "Missed beacon: %d - disassociate\n",
6044 priv
->missed_adhoc_beacons
);
6045 ipw_remove_current_network(priv
);
6046 ipw_disassociate(priv
);
6050 schedule_delayed_work(&priv
->adhoc_check
,
6051 le16_to_cpu(priv
->assoc_request
.beacon_interval
));
6054 static void ipw_bg_adhoc_check(struct work_struct
*work
)
6056 struct ipw_priv
*priv
=
6057 container_of(work
, struct ipw_priv
, adhoc_check
.work
);
6058 mutex_lock(&priv
->mutex
);
6059 ipw_adhoc_check(priv
);
6060 mutex_unlock(&priv
->mutex
);
6063 static void ipw_debug_config(struct ipw_priv
*priv
)
6065 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6066 "[CFG 0x%08X]\n", priv
->config
);
6067 if (priv
->config
& CFG_STATIC_CHANNEL
)
6068 IPW_DEBUG_INFO("Channel locked to %d\n", priv
->channel
);
6070 IPW_DEBUG_INFO("Channel unlocked.\n");
6071 if (priv
->config
& CFG_STATIC_ESSID
)
6072 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6073 priv
->essid_len
, priv
->essid
);
6075 IPW_DEBUG_INFO("ESSID unlocked.\n");
6076 if (priv
->config
& CFG_STATIC_BSSID
)
6077 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv
->bssid
);
6079 IPW_DEBUG_INFO("BSSID unlocked.\n");
6080 if (priv
->capability
& CAP_PRIVACY_ON
)
6081 IPW_DEBUG_INFO("PRIVACY on\n");
6083 IPW_DEBUG_INFO("PRIVACY off\n");
6084 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv
->rates_mask
);
6087 static void ipw_set_fixed_rate(struct ipw_priv
*priv
, int mode
)
6089 /* TODO: Verify that this works... */
6090 struct ipw_fixed_rate fr
;
6093 u16 new_tx_rates
= priv
->rates_mask
;
6095 /* Identify 'current FW band' and match it with the fixed
6098 switch (priv
->ieee
->freq_band
) {
6099 case LIBIPW_52GHZ_BAND
: /* A only */
6101 if (priv
->rates_mask
& ~LIBIPW_OFDM_RATES_MASK
) {
6102 /* Invalid fixed rate mask */
6104 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6109 new_tx_rates
>>= LIBIPW_OFDM_SHIFT_MASK_A
;
6112 default: /* 2.4Ghz or Mixed */
6114 if (mode
== IEEE_B
) {
6115 if (new_tx_rates
& ~LIBIPW_CCK_RATES_MASK
) {
6116 /* Invalid fixed rate mask */
6118 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6125 if (new_tx_rates
& ~(LIBIPW_CCK_RATES_MASK
|
6126 LIBIPW_OFDM_RATES_MASK
)) {
6127 /* Invalid fixed rate mask */
6129 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6134 if (LIBIPW_OFDM_RATE_6MB_MASK
& new_tx_rates
) {
6135 mask
|= (LIBIPW_OFDM_RATE_6MB_MASK
>> 1);
6136 new_tx_rates
&= ~LIBIPW_OFDM_RATE_6MB_MASK
;
6139 if (LIBIPW_OFDM_RATE_9MB_MASK
& new_tx_rates
) {
6140 mask
|= (LIBIPW_OFDM_RATE_9MB_MASK
>> 1);
6141 new_tx_rates
&= ~LIBIPW_OFDM_RATE_9MB_MASK
;
6144 if (LIBIPW_OFDM_RATE_12MB_MASK
& new_tx_rates
) {
6145 mask
|= (LIBIPW_OFDM_RATE_12MB_MASK
>> 1);
6146 new_tx_rates
&= ~LIBIPW_OFDM_RATE_12MB_MASK
;
6149 new_tx_rates
|= mask
;
6153 fr
.tx_rates
= cpu_to_le16(new_tx_rates
);
6155 reg
= ipw_read32(priv
, IPW_MEM_FIXED_OVERRIDE
);
6156 ipw_write_reg32(priv
, reg
, *(u32
*) & fr
);
6159 static void ipw_abort_scan(struct ipw_priv
*priv
)
6163 if (priv
->status
& STATUS_SCAN_ABORTING
) {
6164 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6167 priv
->status
|= STATUS_SCAN_ABORTING
;
6169 err
= ipw_send_scan_abort(priv
);
6171 IPW_DEBUG_HC("Request to abort scan failed.\n");
6174 static void ipw_add_scan_channels(struct ipw_priv
*priv
,
6175 struct ipw_scan_request_ext
*scan
,
6178 int channel_index
= 0;
6179 const struct libipw_geo
*geo
;
6182 geo
= libipw_get_geo(priv
->ieee
);
6184 if (priv
->ieee
->freq_band
& LIBIPW_52GHZ_BAND
) {
6185 int start
= channel_index
;
6186 for (i
= 0; i
< geo
->a_channels
; i
++) {
6187 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6188 geo
->a
[i
].channel
== priv
->channel
)
6191 scan
->channels_list
[channel_index
] = geo
->a
[i
].channel
;
6192 ipw_set_scan_type(scan
, channel_index
,
6194 flags
& LIBIPW_CH_PASSIVE_ONLY
?
6195 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
:
6199 if (start
!= channel_index
) {
6200 scan
->channels_list
[start
] = (u8
) (IPW_A_MODE
<< 6) |
6201 (channel_index
- start
);
6206 if (priv
->ieee
->freq_band
& LIBIPW_24GHZ_BAND
) {
6207 int start
= channel_index
;
6208 if (priv
->config
& CFG_SPEED_SCAN
) {
6210 u8 channels
[LIBIPW_24GHZ_CHANNELS
] = {
6211 /* nop out the list */
6216 while (channel_index
< IPW_SCAN_CHANNELS
- 1) {
6218 priv
->speed_scan
[priv
->speed_scan_pos
];
6220 priv
->speed_scan_pos
= 0;
6221 channel
= priv
->speed_scan
[0];
6223 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6224 channel
== priv
->channel
) {
6225 priv
->speed_scan_pos
++;
6229 /* If this channel has already been
6230 * added in scan, break from loop
6231 * and this will be the first channel
6234 if (channels
[channel
- 1] != 0)
6237 channels
[channel
- 1] = 1;
6238 priv
->speed_scan_pos
++;
6240 scan
->channels_list
[channel_index
] = channel
;
6242 libipw_channel_to_index(priv
->ieee
, channel
);
6243 ipw_set_scan_type(scan
, channel_index
,
6246 LIBIPW_CH_PASSIVE_ONLY
?
6247 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6251 for (i
= 0; i
< geo
->bg_channels
; i
++) {
6252 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6253 geo
->bg
[i
].channel
== priv
->channel
)
6256 scan
->channels_list
[channel_index
] =
6258 ipw_set_scan_type(scan
, channel_index
,
6261 LIBIPW_CH_PASSIVE_ONLY
?
6262 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6267 if (start
!= channel_index
) {
6268 scan
->channels_list
[start
] = (u8
) (IPW_B_MODE
<< 6) |
6269 (channel_index
- start
);
6274 static int ipw_passive_dwell_time(struct ipw_priv
*priv
)
6276 /* staying on passive channels longer than the DTIM interval during a
6277 * scan, while associated, causes the firmware to cancel the scan
6278 * without notification. Hence, don't stay on passive channels longer
6279 * than the beacon interval.
6281 if (priv
->status
& STATUS_ASSOCIATED
6282 && priv
->assoc_network
->beacon_interval
> 10)
6283 return priv
->assoc_network
->beacon_interval
- 10;
6288 static int ipw_request_scan_helper(struct ipw_priv
*priv
, int type
, int direct
)
6290 struct ipw_scan_request_ext scan
;
6291 int err
= 0, scan_type
;
6293 if (!(priv
->status
& STATUS_INIT
) ||
6294 (priv
->status
& STATUS_EXIT_PENDING
))
6297 mutex_lock(&priv
->mutex
);
6299 if (direct
&& (priv
->direct_scan_ssid_len
== 0)) {
6300 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6301 priv
->status
&= ~STATUS_DIRECT_SCAN_PENDING
;
6305 if (priv
->status
& STATUS_SCANNING
) {
6306 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6307 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6308 STATUS_SCAN_PENDING
;
6312 if (!(priv
->status
& STATUS_SCAN_FORCED
) &&
6313 priv
->status
& STATUS_SCAN_ABORTING
) {
6314 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6315 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6316 STATUS_SCAN_PENDING
;
6320 if (priv
->status
& STATUS_RF_KILL_MASK
) {
6321 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6322 priv
->status
|= direct
? STATUS_DIRECT_SCAN_PENDING
:
6323 STATUS_SCAN_PENDING
;
6327 memset(&scan
, 0, sizeof(scan
));
6328 scan
.full_scan_index
= cpu_to_le32(libipw_get_scans(priv
->ieee
));
6330 if (type
== IW_SCAN_TYPE_PASSIVE
) {
6331 IPW_DEBUG_WX("use passive scanning\n");
6332 scan_type
= IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
;
6333 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6334 cpu_to_le16(ipw_passive_dwell_time(priv
));
6335 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6339 /* Use active scan by default. */
6340 if (priv
->config
& CFG_SPEED_SCAN
)
6341 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6344 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_SCAN
] =
6347 scan
.dwell_time
[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
] =
6350 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6351 cpu_to_le16(ipw_passive_dwell_time(priv
));
6352 scan
.dwell_time
[IPW_SCAN_ACTIVE_DIRECT_SCAN
] = cpu_to_le16(20);
6354 #ifdef CONFIG_IPW2200_MONITOR
6355 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
6359 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
6360 case LIBIPW_52GHZ_BAND
:
6361 band
= (u8
) (IPW_A_MODE
<< 6) | 1;
6362 channel
= priv
->channel
;
6365 case LIBIPW_24GHZ_BAND
:
6366 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6367 channel
= priv
->channel
;
6371 band
= (u8
) (IPW_B_MODE
<< 6) | 1;
6376 scan
.channels_list
[0] = band
;
6377 scan
.channels_list
[1] = channel
;
6378 ipw_set_scan_type(&scan
, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
);
6380 /* NOTE: The card will sit on this channel for this time
6381 * period. Scan aborts are timing sensitive and frequently
6382 * result in firmware restarts. As such, it is best to
6383 * set a small dwell_time here and just keep re-issuing
6384 * scans. Otherwise fast channel hopping will not actually
6387 * TODO: Move SPEED SCAN support to all modes and bands */
6388 scan
.dwell_time
[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
] =
6391 #endif /* CONFIG_IPW2200_MONITOR */
6392 /* Honor direct scans first, otherwise if we are roaming make
6393 * this a direct scan for the current network. Finally,
6394 * ensure that every other scan is a fast channel hop scan */
6396 err
= ipw_send_ssid(priv
, priv
->direct_scan_ssid
,
6397 priv
->direct_scan_ssid_len
);
6399 IPW_DEBUG_HC("Attempt to send SSID command "
6404 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6405 } else if ((priv
->status
& STATUS_ROAMING
)
6406 || (!(priv
->status
& STATUS_ASSOCIATED
)
6407 && (priv
->config
& CFG_STATIC_ESSID
)
6408 && (le32_to_cpu(scan
.full_scan_index
) % 2))) {
6409 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
6411 IPW_DEBUG_HC("Attempt to send SSID command "
6416 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN
;
6418 scan_type
= IPW_SCAN_ACTIVE_BROADCAST_SCAN
;
6420 ipw_add_scan_channels(priv
, &scan
, scan_type
);
6421 #ifdef CONFIG_IPW2200_MONITOR
6426 err
= ipw_send_scan_request_ext(priv
, &scan
);
6428 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err
);
6432 priv
->status
|= STATUS_SCANNING
;
6434 priv
->status
&= ~STATUS_DIRECT_SCAN_PENDING
;
6435 priv
->direct_scan_ssid_len
= 0;
6437 priv
->status
&= ~STATUS_SCAN_PENDING
;
6439 schedule_delayed_work(&priv
->scan_check
, IPW_SCAN_CHECK_WATCHDOG
);
6441 mutex_unlock(&priv
->mutex
);
6445 static void ipw_request_passive_scan(struct work_struct
*work
)
6447 struct ipw_priv
*priv
=
6448 container_of(work
, struct ipw_priv
, request_passive_scan
.work
);
6449 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_PASSIVE
, 0);
6452 static void ipw_request_scan(struct work_struct
*work
)
6454 struct ipw_priv
*priv
=
6455 container_of(work
, struct ipw_priv
, request_scan
.work
);
6456 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_ACTIVE
, 0);
6459 static void ipw_request_direct_scan(struct work_struct
*work
)
6461 struct ipw_priv
*priv
=
6462 container_of(work
, struct ipw_priv
, request_direct_scan
.work
);
6463 ipw_request_scan_helper(priv
, IW_SCAN_TYPE_ACTIVE
, 1);
6466 static void ipw_bg_abort_scan(struct work_struct
*work
)
6468 struct ipw_priv
*priv
=
6469 container_of(work
, struct ipw_priv
, abort_scan
);
6470 mutex_lock(&priv
->mutex
);
6471 ipw_abort_scan(priv
);
6472 mutex_unlock(&priv
->mutex
);
6475 static int ipw_wpa_enable(struct ipw_priv
*priv
, int value
)
6477 /* This is called when wpa_supplicant loads and closes the driver
6479 priv
->ieee
->wpa_enabled
= value
;
6483 static int ipw_wpa_set_auth_algs(struct ipw_priv
*priv
, int value
)
6485 struct libipw_device
*ieee
= priv
->ieee
;
6486 struct libipw_security sec
= {
6487 .flags
= SEC_AUTH_MODE
,
6491 if (value
& IW_AUTH_ALG_SHARED_KEY
) {
6492 sec
.auth_mode
= WLAN_AUTH_SHARED_KEY
;
6494 } else if (value
& IW_AUTH_ALG_OPEN_SYSTEM
) {
6495 sec
.auth_mode
= WLAN_AUTH_OPEN
;
6497 } else if (value
& IW_AUTH_ALG_LEAP
) {
6498 sec
.auth_mode
= WLAN_AUTH_LEAP
;
6503 if (ieee
->set_security
)
6504 ieee
->set_security(ieee
->dev
, &sec
);
6511 static void ipw_wpa_assoc_frame(struct ipw_priv
*priv
, char *wpa_ie
,
6514 /* make sure WPA is enabled */
6515 ipw_wpa_enable(priv
, 1);
6518 static int ipw_set_rsn_capa(struct ipw_priv
*priv
,
6519 char *capabilities
, int length
)
6521 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6523 return ipw_send_cmd_pdu(priv
, IPW_CMD_RSN_CAPABILITIES
, length
,
6532 static int ipw_wx_set_genie(struct net_device
*dev
,
6533 struct iw_request_info
*info
,
6534 union iwreq_data
*wrqu
, char *extra
)
6536 struct ipw_priv
*priv
= libipw_priv(dev
);
6537 struct libipw_device
*ieee
= priv
->ieee
;
6541 if (wrqu
->data
.length
> MAX_WPA_IE_LEN
||
6542 (wrqu
->data
.length
&& extra
== NULL
))
6545 if (wrqu
->data
.length
) {
6546 buf
= kmemdup(extra
, wrqu
->data
.length
, GFP_KERNEL
);
6552 kfree(ieee
->wpa_ie
);
6554 ieee
->wpa_ie_len
= wrqu
->data
.length
;
6556 kfree(ieee
->wpa_ie
);
6557 ieee
->wpa_ie
= NULL
;
6558 ieee
->wpa_ie_len
= 0;
6561 ipw_wpa_assoc_frame(priv
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6567 static int ipw_wx_get_genie(struct net_device
*dev
,
6568 struct iw_request_info
*info
,
6569 union iwreq_data
*wrqu
, char *extra
)
6571 struct ipw_priv
*priv
= libipw_priv(dev
);
6572 struct libipw_device
*ieee
= priv
->ieee
;
6575 if (ieee
->wpa_ie_len
== 0 || ieee
->wpa_ie
== NULL
) {
6576 wrqu
->data
.length
= 0;
6580 if (wrqu
->data
.length
< ieee
->wpa_ie_len
) {
6585 wrqu
->data
.length
= ieee
->wpa_ie_len
;
6586 memcpy(extra
, ieee
->wpa_ie
, ieee
->wpa_ie_len
);
6592 static int wext_cipher2level(int cipher
)
6595 case IW_AUTH_CIPHER_NONE
:
6597 case IW_AUTH_CIPHER_WEP40
:
6598 case IW_AUTH_CIPHER_WEP104
:
6600 case IW_AUTH_CIPHER_TKIP
:
6602 case IW_AUTH_CIPHER_CCMP
:
6610 static int ipw_wx_set_auth(struct net_device
*dev
,
6611 struct iw_request_info
*info
,
6612 union iwreq_data
*wrqu
, char *extra
)
6614 struct ipw_priv
*priv
= libipw_priv(dev
);
6615 struct libipw_device
*ieee
= priv
->ieee
;
6616 struct iw_param
*param
= &wrqu
->param
;
6617 struct lib80211_crypt_data
*crypt
;
6618 unsigned long flags
;
6621 switch (param
->flags
& IW_AUTH_INDEX
) {
6622 case IW_AUTH_WPA_VERSION
:
6624 case IW_AUTH_CIPHER_PAIRWISE
:
6625 ipw_set_hw_decrypt_unicast(priv
,
6626 wext_cipher2level(param
->value
));
6628 case IW_AUTH_CIPHER_GROUP
:
6629 ipw_set_hw_decrypt_multicast(priv
,
6630 wext_cipher2level(param
->value
));
6632 case IW_AUTH_KEY_MGMT
:
6634 * ipw2200 does not use these parameters
6638 case IW_AUTH_TKIP_COUNTERMEASURES
:
6639 crypt
= priv
->ieee
->crypt_info
.crypt
[priv
->ieee
->crypt_info
.tx_keyidx
];
6640 if (!crypt
|| !crypt
->ops
->set_flags
|| !crypt
->ops
->get_flags
)
6643 flags
= crypt
->ops
->get_flags(crypt
->priv
);
6646 flags
|= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6648 flags
&= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
;
6650 crypt
->ops
->set_flags(flags
, crypt
->priv
);
6654 case IW_AUTH_DROP_UNENCRYPTED
:{
6657 * wpa_supplicant calls set_wpa_enabled when the driver
6658 * is loaded and unloaded, regardless of if WPA is being
6659 * used. No other calls are made which can be used to
6660 * determine if encryption will be used or not prior to
6661 * association being expected. If encryption is not being
6662 * used, drop_unencrypted is set to false, else true -- we
6663 * can use this to determine if the CAP_PRIVACY_ON bit should
6666 struct libipw_security sec
= {
6667 .flags
= SEC_ENABLED
,
6668 .enabled
= param
->value
,
6670 priv
->ieee
->drop_unencrypted
= param
->value
;
6671 /* We only change SEC_LEVEL for open mode. Others
6672 * are set by ipw_wpa_set_encryption.
6674 if (!param
->value
) {
6675 sec
.flags
|= SEC_LEVEL
;
6676 sec
.level
= SEC_LEVEL_0
;
6678 sec
.flags
|= SEC_LEVEL
;
6679 sec
.level
= SEC_LEVEL_1
;
6681 if (priv
->ieee
->set_security
)
6682 priv
->ieee
->set_security(priv
->ieee
->dev
, &sec
);
6686 case IW_AUTH_80211_AUTH_ALG
:
6687 ret
= ipw_wpa_set_auth_algs(priv
, param
->value
);
6690 case IW_AUTH_WPA_ENABLED
:
6691 ret
= ipw_wpa_enable(priv
, param
->value
);
6692 ipw_disassociate(priv
);
6695 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6696 ieee
->ieee802_1x
= param
->value
;
6699 case IW_AUTH_PRIVACY_INVOKED
:
6700 ieee
->privacy_invoked
= param
->value
;
6710 static int ipw_wx_get_auth(struct net_device
*dev
,
6711 struct iw_request_info
*info
,
6712 union iwreq_data
*wrqu
, char *extra
)
6714 struct ipw_priv
*priv
= libipw_priv(dev
);
6715 struct libipw_device
*ieee
= priv
->ieee
;
6716 struct lib80211_crypt_data
*crypt
;
6717 struct iw_param
*param
= &wrqu
->param
;
6719 switch (param
->flags
& IW_AUTH_INDEX
) {
6720 case IW_AUTH_WPA_VERSION
:
6721 case IW_AUTH_CIPHER_PAIRWISE
:
6722 case IW_AUTH_CIPHER_GROUP
:
6723 case IW_AUTH_KEY_MGMT
:
6725 * wpa_supplicant will control these internally
6729 case IW_AUTH_TKIP_COUNTERMEASURES
:
6730 crypt
= priv
->ieee
->crypt_info
.crypt
[priv
->ieee
->crypt_info
.tx_keyidx
];
6731 if (!crypt
|| !crypt
->ops
->get_flags
)
6734 param
->value
= (crypt
->ops
->get_flags(crypt
->priv
) &
6735 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES
) ? 1 : 0;
6739 case IW_AUTH_DROP_UNENCRYPTED
:
6740 param
->value
= ieee
->drop_unencrypted
;
6743 case IW_AUTH_80211_AUTH_ALG
:
6744 param
->value
= ieee
->sec
.auth_mode
;
6747 case IW_AUTH_WPA_ENABLED
:
6748 param
->value
= ieee
->wpa_enabled
;
6751 case IW_AUTH_RX_UNENCRYPTED_EAPOL
:
6752 param
->value
= ieee
->ieee802_1x
;
6755 case IW_AUTH_ROAMING_CONTROL
:
6756 case IW_AUTH_PRIVACY_INVOKED
:
6757 param
->value
= ieee
->privacy_invoked
;
6766 /* SIOCSIWENCODEEXT */
6767 static int ipw_wx_set_encodeext(struct net_device
*dev
,
6768 struct iw_request_info
*info
,
6769 union iwreq_data
*wrqu
, char *extra
)
6771 struct ipw_priv
*priv
= libipw_priv(dev
);
6772 struct iw_encode_ext
*ext
= (struct iw_encode_ext
*)extra
;
6775 if (ext
->alg
== IW_ENCODE_ALG_TKIP
) {
6776 /* IPW HW can't build TKIP MIC,
6777 host decryption still needed */
6778 if (ext
->ext_flags
& IW_ENCODE_EXT_GROUP_KEY
)
6779 priv
->ieee
->host_mc_decrypt
= 1;
6781 priv
->ieee
->host_encrypt
= 0;
6782 priv
->ieee
->host_encrypt_msdu
= 1;
6783 priv
->ieee
->host_decrypt
= 1;
6786 priv
->ieee
->host_encrypt
= 0;
6787 priv
->ieee
->host_encrypt_msdu
= 0;
6788 priv
->ieee
->host_decrypt
= 0;
6789 priv
->ieee
->host_mc_decrypt
= 0;
6793 return libipw_wx_set_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6796 /* SIOCGIWENCODEEXT */
6797 static int ipw_wx_get_encodeext(struct net_device
*dev
,
6798 struct iw_request_info
*info
,
6799 union iwreq_data
*wrqu
, char *extra
)
6801 struct ipw_priv
*priv
= libipw_priv(dev
);
6802 return libipw_wx_get_encodeext(priv
->ieee
, info
, wrqu
, extra
);
6806 static int ipw_wx_set_mlme(struct net_device
*dev
,
6807 struct iw_request_info
*info
,
6808 union iwreq_data
*wrqu
, char *extra
)
6810 struct ipw_priv
*priv
= libipw_priv(dev
);
6811 struct iw_mlme
*mlme
= (struct iw_mlme
*)extra
;
6814 reason
= cpu_to_le16(mlme
->reason_code
);
6816 switch (mlme
->cmd
) {
6817 case IW_MLME_DEAUTH
:
6818 /* silently ignore */
6821 case IW_MLME_DISASSOC
:
6822 ipw_disassociate(priv
);
6831 #ifdef CONFIG_IPW2200_QOS
6835 * get the modulation type of the current network or
6836 * the card current mode
6838 static u8
ipw_qos_current_mode(struct ipw_priv
* priv
)
6842 if (priv
->status
& STATUS_ASSOCIATED
) {
6843 unsigned long flags
;
6845 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6846 mode
= priv
->assoc_network
->mode
;
6847 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6849 mode
= priv
->ieee
->mode
;
6851 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode
);
6856 * Handle management frame beacon and probe response
6858 static int ipw_qos_handle_probe_response(struct ipw_priv
*priv
,
6860 struct libipw_network
*network
)
6862 u32 size
= sizeof(struct libipw_qos_parameters
);
6864 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6865 network
->qos_data
.active
= network
->qos_data
.supported
;
6867 if (network
->flags
& NETWORK_HAS_QOS_MASK
) {
6868 if (active_network
&&
6869 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
))
6870 network
->qos_data
.active
= network
->qos_data
.supported
;
6872 if ((network
->qos_data
.active
== 1) && (active_network
== 1) &&
6873 (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) &&
6874 (network
->qos_data
.old_param_count
!=
6875 network
->qos_data
.param_count
)) {
6876 network
->qos_data
.old_param_count
=
6877 network
->qos_data
.param_count
;
6878 schedule_work(&priv
->qos_activate
);
6879 IPW_DEBUG_QOS("QoS parameters change call "
6883 if ((priv
->ieee
->mode
== IEEE_B
) || (network
->mode
== IEEE_B
))
6884 memcpy(&network
->qos_data
.parameters
,
6885 &def_parameters_CCK
, size
);
6887 memcpy(&network
->qos_data
.parameters
,
6888 &def_parameters_OFDM
, size
);
6890 if ((network
->qos_data
.active
== 1) && (active_network
== 1)) {
6891 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6892 schedule_work(&priv
->qos_activate
);
6895 network
->qos_data
.active
= 0;
6896 network
->qos_data
.supported
= 0;
6898 if ((priv
->status
& STATUS_ASSOCIATED
) &&
6899 (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) && (active_network
== 0)) {
6900 if (!ether_addr_equal(network
->bssid
, priv
->bssid
))
6901 if (network
->capability
& WLAN_CAPABILITY_IBSS
)
6902 if ((network
->ssid_len
==
6903 priv
->assoc_network
->ssid_len
) &&
6904 !memcmp(network
->ssid
,
6905 priv
->assoc_network
->ssid
,
6906 network
->ssid_len
)) {
6907 schedule_work(&priv
->merge_networks
);
6915 * This function set up the firmware to support QoS. It sends
6916 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6918 static int ipw_qos_activate(struct ipw_priv
*priv
,
6919 struct libipw_qos_data
*qos_network_data
)
6922 struct libipw_qos_parameters qos_parameters
[QOS_QOS_SETS
];
6923 struct libipw_qos_parameters
*active_one
= NULL
;
6924 u32 size
= sizeof(struct libipw_qos_parameters
);
6929 type
= ipw_qos_current_mode(priv
);
6931 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_CCK
]);
6932 memcpy(active_one
, priv
->qos_data
.def_qos_parm_CCK
, size
);
6933 active_one
= &(qos_parameters
[QOS_PARAM_SET_DEF_OFDM
]);
6934 memcpy(active_one
, priv
->qos_data
.def_qos_parm_OFDM
, size
);
6936 if (qos_network_data
== NULL
) {
6937 if (type
== IEEE_B
) {
6938 IPW_DEBUG_QOS("QoS activate network mode %d\n", type
);
6939 active_one
= &def_parameters_CCK
;
6941 active_one
= &def_parameters_OFDM
;
6943 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
6944 burst_duration
= ipw_qos_get_burst_duration(priv
);
6945 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
6946 qos_parameters
[QOS_PARAM_SET_ACTIVE
].tx_op_limit
[i
] =
6947 cpu_to_le16(burst_duration
);
6948 } else if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
6949 if (type
== IEEE_B
) {
6950 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6952 if (priv
->qos_data
.qos_enable
== 0)
6953 active_one
= &def_parameters_CCK
;
6955 active_one
= priv
->qos_data
.def_qos_parm_CCK
;
6957 if (priv
->qos_data
.qos_enable
== 0)
6958 active_one
= &def_parameters_OFDM
;
6960 active_one
= priv
->qos_data
.def_qos_parm_OFDM
;
6962 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
6964 unsigned long flags
;
6967 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
6968 active_one
= &(qos_network_data
->parameters
);
6969 qos_network_data
->old_param_count
=
6970 qos_network_data
->param_count
;
6971 memcpy(&qos_parameters
[QOS_PARAM_SET_ACTIVE
], active_one
, size
);
6972 active
= qos_network_data
->supported
;
6973 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
6976 burst_duration
= ipw_qos_get_burst_duration(priv
);
6977 for (i
= 0; i
< QOS_QUEUE_NUM
; i
++)
6978 qos_parameters
[QOS_PARAM_SET_ACTIVE
].
6979 tx_op_limit
[i
] = cpu_to_le16(burst_duration
);
6983 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6984 err
= ipw_send_qos_params_command(priv
, &qos_parameters
[0]);
6986 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6992 * send IPW_CMD_WME_INFO to the firmware
6994 static int ipw_qos_set_info_element(struct ipw_priv
*priv
)
6997 struct libipw_qos_information_element qos_info
;
7002 qos_info
.elementID
= QOS_ELEMENT_ID
;
7003 qos_info
.length
= sizeof(struct libipw_qos_information_element
) - 2;
7005 qos_info
.version
= QOS_VERSION_1
;
7006 qos_info
.ac_info
= 0;
7008 memcpy(qos_info
.qui
, qos_oui
, QOS_OUI_LEN
);
7009 qos_info
.qui_type
= QOS_OUI_TYPE
;
7010 qos_info
.qui_subtype
= QOS_OUI_INFO_SUB_TYPE
;
7012 ret
= ipw_send_qos_info_command(priv
, &qos_info
);
7014 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7020 * Set the QoS parameter with the association request structure
7022 static int ipw_qos_association(struct ipw_priv
*priv
,
7023 struct libipw_network
*network
)
7026 struct libipw_qos_data
*qos_data
= NULL
;
7027 struct libipw_qos_data ibss_data
= {
7032 switch (priv
->ieee
->iw_mode
) {
7034 BUG_ON(!(network
->capability
& WLAN_CAPABILITY_IBSS
));
7036 qos_data
= &ibss_data
;
7040 qos_data
= &network
->qos_data
;
7048 err
= ipw_qos_activate(priv
, qos_data
);
7050 priv
->assoc_request
.policy_support
&= ~HC_QOS_SUPPORT_ASSOC
;
7054 if (priv
->qos_data
.qos_enable
&& qos_data
->supported
) {
7055 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7056 priv
->assoc_request
.policy_support
|= HC_QOS_SUPPORT_ASSOC
;
7057 return ipw_qos_set_info_element(priv
);
7064 * handling the beaconing responses. if we get different QoS setting
7065 * off the network from the associated setting, adjust the QoS
7068 static int ipw_qos_association_resp(struct ipw_priv
*priv
,
7069 struct libipw_network
*network
)
7072 unsigned long flags
;
7073 u32 size
= sizeof(struct libipw_qos_parameters
);
7074 int set_qos_param
= 0;
7076 if ((priv
== NULL
) || (network
== NULL
) ||
7077 (priv
->assoc_network
== NULL
))
7080 if (!(priv
->status
& STATUS_ASSOCIATED
))
7083 if ((priv
->ieee
->iw_mode
!= IW_MODE_INFRA
))
7086 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7087 if (network
->flags
& NETWORK_HAS_QOS_PARAMETERS
) {
7088 memcpy(&priv
->assoc_network
->qos_data
, &network
->qos_data
,
7089 sizeof(struct libipw_qos_data
));
7090 priv
->assoc_network
->qos_data
.active
= 1;
7091 if ((network
->qos_data
.old_param_count
!=
7092 network
->qos_data
.param_count
)) {
7094 network
->qos_data
.old_param_count
=
7095 network
->qos_data
.param_count
;
7099 if ((network
->mode
== IEEE_B
) || (priv
->ieee
->mode
== IEEE_B
))
7100 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
7101 &def_parameters_CCK
, size
);
7103 memcpy(&priv
->assoc_network
->qos_data
.parameters
,
7104 &def_parameters_OFDM
, size
);
7105 priv
->assoc_network
->qos_data
.active
= 0;
7106 priv
->assoc_network
->qos_data
.supported
= 0;
7110 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7112 if (set_qos_param
== 1)
7113 schedule_work(&priv
->qos_activate
);
7118 static u32
ipw_qos_get_burst_duration(struct ipw_priv
*priv
)
7125 if (!(priv
->ieee
->modulation
& LIBIPW_OFDM_MODULATION
))
7126 ret
= priv
->qos_data
.burst_duration_CCK
;
7128 ret
= priv
->qos_data
.burst_duration_OFDM
;
7134 * Initialize the setting of QoS global
7136 static void ipw_qos_init(struct ipw_priv
*priv
, int enable
,
7137 int burst_enable
, u32 burst_duration_CCK
,
7138 u32 burst_duration_OFDM
)
7140 priv
->qos_data
.qos_enable
= enable
;
7142 if (priv
->qos_data
.qos_enable
) {
7143 priv
->qos_data
.def_qos_parm_CCK
= &def_qos_parameters_CCK
;
7144 priv
->qos_data
.def_qos_parm_OFDM
= &def_qos_parameters_OFDM
;
7145 IPW_DEBUG_QOS("QoS is enabled\n");
7147 priv
->qos_data
.def_qos_parm_CCK
= &def_parameters_CCK
;
7148 priv
->qos_data
.def_qos_parm_OFDM
= &def_parameters_OFDM
;
7149 IPW_DEBUG_QOS("QoS is not enabled\n");
7152 priv
->qos_data
.burst_enable
= burst_enable
;
7155 priv
->qos_data
.burst_duration_CCK
= burst_duration_CCK
;
7156 priv
->qos_data
.burst_duration_OFDM
= burst_duration_OFDM
;
7158 priv
->qos_data
.burst_duration_CCK
= 0;
7159 priv
->qos_data
.burst_duration_OFDM
= 0;
7164 * map the packet priority to the right TX Queue
7166 static int ipw_get_tx_queue_number(struct ipw_priv
*priv
, u16 priority
)
7168 if (priority
> 7 || !priv
->qos_data
.qos_enable
)
7171 return from_priority_to_tx_queue
[priority
] - 1;
7174 static int ipw_is_qos_active(struct net_device
*dev
,
7175 struct sk_buff
*skb
)
7177 struct ipw_priv
*priv
= libipw_priv(dev
);
7178 struct libipw_qos_data
*qos_data
= NULL
;
7179 int active
, supported
;
7180 u8
*daddr
= skb
->data
+ ETH_ALEN
;
7181 int unicast
= !is_multicast_ether_addr(daddr
);
7183 if (!(priv
->status
& STATUS_ASSOCIATED
))
7186 qos_data
= &priv
->assoc_network
->qos_data
;
7188 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7190 qos_data
->active
= 0;
7192 qos_data
->active
= qos_data
->supported
;
7194 active
= qos_data
->active
;
7195 supported
= qos_data
->supported
;
7196 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7198 priv
->qos_data
.qos_enable
, active
, supported
, unicast
);
7199 if (active
&& priv
->qos_data
.qos_enable
)
7206 * add QoS parameter to the TX command
7208 static int ipw_qos_set_tx_queue_command(struct ipw_priv
*priv
,
7210 struct tfd_data
*tfd
)
7212 int tx_queue_id
= 0;
7215 tx_queue_id
= from_priority_to_tx_queue
[priority
] - 1;
7216 tfd
->tx_flags_ext
|= DCT_FLAG_EXT_QOS_ENABLED
;
7218 if (priv
->qos_data
.qos_no_ack_mask
& (1UL << tx_queue_id
)) {
7219 tfd
->tx_flags
&= ~DCT_FLAG_ACK_REQD
;
7220 tfd
->tfd
.tfd_26
.mchdr
.qos_ctrl
|= cpu_to_le16(CTRL_QOS_NO_ACK
);
7226 * background support to run QoS activate functionality
7228 static void ipw_bg_qos_activate(struct work_struct
*work
)
7230 struct ipw_priv
*priv
=
7231 container_of(work
, struct ipw_priv
, qos_activate
);
7233 mutex_lock(&priv
->mutex
);
7235 if (priv
->status
& STATUS_ASSOCIATED
)
7236 ipw_qos_activate(priv
, &(priv
->assoc_network
->qos_data
));
7238 mutex_unlock(&priv
->mutex
);
7241 static int ipw_handle_probe_response(struct net_device
*dev
,
7242 struct libipw_probe_response
*resp
,
7243 struct libipw_network
*network
)
7245 struct ipw_priv
*priv
= libipw_priv(dev
);
7246 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7247 (network
== priv
->assoc_network
));
7249 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7254 static int ipw_handle_beacon(struct net_device
*dev
,
7255 struct libipw_beacon
*resp
,
7256 struct libipw_network
*network
)
7258 struct ipw_priv
*priv
= libipw_priv(dev
);
7259 int active_network
= ((priv
->status
& STATUS_ASSOCIATED
) &&
7260 (network
== priv
->assoc_network
));
7262 ipw_qos_handle_probe_response(priv
, active_network
, network
);
7267 static int ipw_handle_assoc_response(struct net_device
*dev
,
7268 struct libipw_assoc_response
*resp
,
7269 struct libipw_network
*network
)
7271 struct ipw_priv
*priv
= libipw_priv(dev
);
7272 ipw_qos_association_resp(priv
, network
);
7276 static int ipw_send_qos_params_command(struct ipw_priv
*priv
, struct libipw_qos_parameters
7279 return ipw_send_cmd_pdu(priv
, IPW_CMD_QOS_PARAMETERS
,
7280 sizeof(*qos_param
) * 3, qos_param
);
7283 static int ipw_send_qos_info_command(struct ipw_priv
*priv
, struct libipw_qos_information_element
7286 return ipw_send_cmd_pdu(priv
, IPW_CMD_WME_INFO
, sizeof(*qos_param
),
7290 #endif /* CONFIG_IPW2200_QOS */
7292 static int ipw_associate_network(struct ipw_priv
*priv
,
7293 struct libipw_network
*network
,
7294 struct ipw_supported_rates
*rates
, int roaming
)
7298 if (priv
->config
& CFG_FIXED_RATE
)
7299 ipw_set_fixed_rate(priv
, network
->mode
);
7301 if (!(priv
->config
& CFG_STATIC_ESSID
)) {
7302 priv
->essid_len
= min(network
->ssid_len
,
7303 (u8
) IW_ESSID_MAX_SIZE
);
7304 memcpy(priv
->essid
, network
->ssid
, priv
->essid_len
);
7307 network
->last_associate
= jiffies
;
7309 memset(&priv
->assoc_request
, 0, sizeof(priv
->assoc_request
));
7310 priv
->assoc_request
.channel
= network
->channel
;
7311 priv
->assoc_request
.auth_key
= 0;
7313 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7314 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_SHARED_KEY
)) {
7315 priv
->assoc_request
.auth_type
= AUTH_SHARED_KEY
;
7316 priv
->assoc_request
.auth_key
= priv
->ieee
->sec
.active_key
;
7318 if (priv
->ieee
->sec
.level
== SEC_LEVEL_1
)
7319 ipw_send_wep_keys(priv
, DCW_WEP_KEY_SEC_TYPE_WEP
);
7321 } else if ((priv
->capability
& CAP_PRIVACY_ON
) &&
7322 (priv
->ieee
->sec
.auth_mode
== WLAN_AUTH_LEAP
))
7323 priv
->assoc_request
.auth_type
= AUTH_LEAP
;
7325 priv
->assoc_request
.auth_type
= AUTH_OPEN
;
7327 if (priv
->ieee
->wpa_ie_len
) {
7328 priv
->assoc_request
.policy_support
= cpu_to_le16(0x02); /* RSN active */
7329 ipw_set_rsn_capa(priv
, priv
->ieee
->wpa_ie
,
7330 priv
->ieee
->wpa_ie_len
);
7334 * It is valid for our ieee device to support multiple modes, but
7335 * when it comes to associating to a given network we have to choose
7338 if (network
->mode
& priv
->ieee
->mode
& IEEE_A
)
7339 priv
->assoc_request
.ieee_mode
= IPW_A_MODE
;
7340 else if (network
->mode
& priv
->ieee
->mode
& IEEE_G
)
7341 priv
->assoc_request
.ieee_mode
= IPW_G_MODE
;
7342 else if (network
->mode
& priv
->ieee
->mode
& IEEE_B
)
7343 priv
->assoc_request
.ieee_mode
= IPW_B_MODE
;
7345 priv
->assoc_request
.capability
= cpu_to_le16(network
->capability
);
7346 if ((network
->capability
& WLAN_CAPABILITY_SHORT_PREAMBLE
)
7347 && !(priv
->config
& CFG_PREAMBLE_LONG
)) {
7348 priv
->assoc_request
.preamble_length
= DCT_FLAG_SHORT_PREAMBLE
;
7350 priv
->assoc_request
.preamble_length
= DCT_FLAG_LONG_PREAMBLE
;
7352 /* Clear the short preamble if we won't be supporting it */
7353 priv
->assoc_request
.capability
&=
7354 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE
);
7357 /* Clear capability bits that aren't used in Ad Hoc */
7358 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7359 priv
->assoc_request
.capability
&=
7360 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME
);
7362 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7363 roaming
? "Rea" : "A",
7364 priv
->essid_len
, priv
->essid
,
7366 ipw_modes
[priv
->assoc_request
.ieee_mode
],
7368 (priv
->assoc_request
.preamble_length
==
7369 DCT_FLAG_LONG_PREAMBLE
) ? "long" : "short",
7370 network
->capability
&
7371 WLAN_CAPABILITY_SHORT_PREAMBLE
? "short" : "long",
7372 priv
->capability
& CAP_PRIVACY_ON
? "on " : "off",
7373 priv
->capability
& CAP_PRIVACY_ON
?
7374 (priv
->capability
& CAP_SHARED_KEY
? "(shared)" :
7376 priv
->capability
& CAP_PRIVACY_ON
? " key=" : "",
7377 priv
->capability
& CAP_PRIVACY_ON
?
7378 '1' + priv
->ieee
->sec
.active_key
: '.',
7379 priv
->capability
& CAP_PRIVACY_ON
? '.' : ' ');
7381 priv
->assoc_request
.beacon_interval
= cpu_to_le16(network
->beacon_interval
);
7382 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
7383 (network
->time_stamp
[0] == 0) && (network
->time_stamp
[1] == 0)) {
7384 priv
->assoc_request
.assoc_type
= HC_IBSS_START
;
7385 priv
->assoc_request
.assoc_tsf_msw
= 0;
7386 priv
->assoc_request
.assoc_tsf_lsw
= 0;
7388 if (unlikely(roaming
))
7389 priv
->assoc_request
.assoc_type
= HC_REASSOCIATE
;
7391 priv
->assoc_request
.assoc_type
= HC_ASSOCIATE
;
7392 priv
->assoc_request
.assoc_tsf_msw
= cpu_to_le32(network
->time_stamp
[1]);
7393 priv
->assoc_request
.assoc_tsf_lsw
= cpu_to_le32(network
->time_stamp
[0]);
7396 memcpy(priv
->assoc_request
.bssid
, network
->bssid
, ETH_ALEN
);
7398 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
7399 eth_broadcast_addr(priv
->assoc_request
.dest
);
7400 priv
->assoc_request
.atim_window
= cpu_to_le16(network
->atim_window
);
7402 memcpy(priv
->assoc_request
.dest
, network
->bssid
, ETH_ALEN
);
7403 priv
->assoc_request
.atim_window
= 0;
7406 priv
->assoc_request
.listen_interval
= cpu_to_le16(network
->listen_interval
);
7408 err
= ipw_send_ssid(priv
, priv
->essid
, priv
->essid_len
);
7410 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7414 rates
->ieee_mode
= priv
->assoc_request
.ieee_mode
;
7415 rates
->purpose
= IPW_RATE_CONNECT
;
7416 ipw_send_supported_rates(priv
, rates
);
7418 if (priv
->assoc_request
.ieee_mode
== IPW_G_MODE
)
7419 priv
->sys_config
.dot11g_auto_detection
= 1;
7421 priv
->sys_config
.dot11g_auto_detection
= 0;
7423 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
7424 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
7426 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
7428 err
= ipw_send_system_config(priv
);
7430 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7434 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network
->stats
.rssi
);
7435 err
= ipw_set_sensitivity(priv
, network
->stats
.rssi
+ IPW_RSSI_TO_DBM
);
7437 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7442 * If preemption is enabled, it is possible for the association
7443 * to complete before we return from ipw_send_associate. Therefore
7444 * we have to be sure and update our priviate data first.
7446 priv
->channel
= network
->channel
;
7447 memcpy(priv
->bssid
, network
->bssid
, ETH_ALEN
);
7448 priv
->status
|= STATUS_ASSOCIATING
;
7449 priv
->status
&= ~STATUS_SECURITY_UPDATED
;
7451 priv
->assoc_network
= network
;
7453 #ifdef CONFIG_IPW2200_QOS
7454 ipw_qos_association(priv
, network
);
7457 err
= ipw_send_associate(priv
, &priv
->assoc_request
);
7459 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7463 IPW_DEBUG(IPW_DL_STATE
, "associating: '%*pE' %pM\n",
7464 priv
->essid_len
, priv
->essid
, priv
->bssid
);
7469 static void ipw_roam(void *data
)
7471 struct ipw_priv
*priv
= data
;
7472 struct libipw_network
*network
= NULL
;
7473 struct ipw_network_match match
= {
7474 .network
= priv
->assoc_network
7477 /* The roaming process is as follows:
7479 * 1. Missed beacon threshold triggers the roaming process by
7480 * setting the status ROAM bit and requesting a scan.
7481 * 2. When the scan completes, it schedules the ROAM work
7482 * 3. The ROAM work looks at all of the known networks for one that
7483 * is a better network than the currently associated. If none
7484 * found, the ROAM process is over (ROAM bit cleared)
7485 * 4. If a better network is found, a disassociation request is
7487 * 5. When the disassociation completes, the roam work is again
7488 * scheduled. The second time through, the driver is no longer
7489 * associated, and the newly selected network is sent an
7490 * association request.
7491 * 6. At this point ,the roaming process is complete and the ROAM
7492 * status bit is cleared.
7495 /* If we are no longer associated, and the roaming bit is no longer
7496 * set, then we are not actively roaming, so just return */
7497 if (!(priv
->status
& (STATUS_ASSOCIATED
| STATUS_ROAMING
)))
7500 if (priv
->status
& STATUS_ASSOCIATED
) {
7501 /* First pass through ROAM process -- look for a better
7503 unsigned long flags
;
7504 u8 rssi
= priv
->assoc_network
->stats
.rssi
;
7505 priv
->assoc_network
->stats
.rssi
= -128;
7506 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7507 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
) {
7508 if (network
!= priv
->assoc_network
)
7509 ipw_best_network(priv
, &match
, network
, 1);
7511 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7512 priv
->assoc_network
->stats
.rssi
= rssi
;
7514 if (match
.network
== priv
->assoc_network
) {
7515 IPW_DEBUG_ASSOC("No better APs in this network to "
7517 priv
->status
&= ~STATUS_ROAMING
;
7518 ipw_debug_config(priv
);
7522 ipw_send_disassociate(priv
, 1);
7523 priv
->assoc_network
= match
.network
;
7528 /* Second pass through ROAM process -- request association */
7529 ipw_compatible_rates(priv
, priv
->assoc_network
, &match
.rates
);
7530 ipw_associate_network(priv
, priv
->assoc_network
, &match
.rates
, 1);
7531 priv
->status
&= ~STATUS_ROAMING
;
7534 static void ipw_bg_roam(struct work_struct
*work
)
7536 struct ipw_priv
*priv
=
7537 container_of(work
, struct ipw_priv
, roam
);
7538 mutex_lock(&priv
->mutex
);
7540 mutex_unlock(&priv
->mutex
);
7543 static int ipw_associate(void *data
)
7545 struct ipw_priv
*priv
= data
;
7547 struct libipw_network
*network
= NULL
;
7548 struct ipw_network_match match
= {
7551 struct ipw_supported_rates
*rates
;
7552 struct list_head
*element
;
7553 unsigned long flags
;
7555 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
7556 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7560 if (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
7561 IPW_DEBUG_ASSOC("Not attempting association (already in "
7566 if (priv
->status
& STATUS_DISASSOCIATING
) {
7567 IPW_DEBUG_ASSOC("Not attempting association (in "
7568 "disassociating)\n ");
7569 schedule_work(&priv
->associate
);
7573 if (!ipw_is_init(priv
) || (priv
->status
& STATUS_SCANNING
)) {
7574 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7579 if (!(priv
->config
& CFG_ASSOCIATE
) &&
7580 !(priv
->config
& (CFG_STATIC_ESSID
| CFG_STATIC_BSSID
))) {
7581 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7585 /* Protect our use of the network_list */
7586 spin_lock_irqsave(&priv
->ieee
->lock
, flags
);
7587 list_for_each_entry(network
, &priv
->ieee
->network_list
, list
)
7588 ipw_best_network(priv
, &match
, network
, 0);
7590 network
= match
.network
;
7591 rates
= &match
.rates
;
7593 if (network
== NULL
&&
7594 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
7595 priv
->config
& CFG_ADHOC_CREATE
&&
7596 priv
->config
& CFG_STATIC_ESSID
&&
7597 priv
->config
& CFG_STATIC_CHANNEL
) {
7598 /* Use oldest network if the free list is empty */
7599 if (list_empty(&priv
->ieee
->network_free_list
)) {
7600 struct libipw_network
*oldest
= NULL
;
7601 struct libipw_network
*target
;
7603 list_for_each_entry(target
, &priv
->ieee
->network_list
, list
) {
7604 if ((oldest
== NULL
) ||
7605 (target
->last_scanned
< oldest
->last_scanned
))
7609 /* If there are no more slots, expire the oldest */
7610 list_del(&oldest
->list
);
7612 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7613 target
->ssid_len
, target
->ssid
,
7615 list_add_tail(&target
->list
,
7616 &priv
->ieee
->network_free_list
);
7619 element
= priv
->ieee
->network_free_list
.next
;
7620 network
= list_entry(element
, struct libipw_network
, list
);
7621 ipw_adhoc_create(priv
, network
);
7622 rates
= &priv
->rates
;
7624 list_add_tail(&network
->list
, &priv
->ieee
->network_list
);
7626 spin_unlock_irqrestore(&priv
->ieee
->lock
, flags
);
7628 /* If we reached the end of the list, then we don't have any valid
7631 ipw_debug_config(priv
);
7633 if (!(priv
->status
& STATUS_SCANNING
)) {
7634 if (!(priv
->config
& CFG_SPEED_SCAN
))
7635 schedule_delayed_work(&priv
->request_scan
,
7638 schedule_delayed_work(&priv
->request_scan
, 0);
7644 ipw_associate_network(priv
, network
, rates
, 0);
7649 static void ipw_bg_associate(struct work_struct
*work
)
7651 struct ipw_priv
*priv
=
7652 container_of(work
, struct ipw_priv
, associate
);
7653 mutex_lock(&priv
->mutex
);
7654 ipw_associate(priv
);
7655 mutex_unlock(&priv
->mutex
);
7658 static void ipw_rebuild_decrypted_skb(struct ipw_priv
*priv
,
7659 struct sk_buff
*skb
)
7661 struct ieee80211_hdr
*hdr
;
7664 hdr
= (struct ieee80211_hdr
*)skb
->data
;
7665 fc
= le16_to_cpu(hdr
->frame_control
);
7666 if (!(fc
& IEEE80211_FCTL_PROTECTED
))
7669 fc
&= ~IEEE80211_FCTL_PROTECTED
;
7670 hdr
->frame_control
= cpu_to_le16(fc
);
7671 switch (priv
->ieee
->sec
.level
) {
7673 /* Remove CCMP HDR */
7674 memmove(skb
->data
+ LIBIPW_3ADDR_LEN
,
7675 skb
->data
+ LIBIPW_3ADDR_LEN
+ 8,
7676 skb
->len
- LIBIPW_3ADDR_LEN
- 8);
7677 skb_trim(skb
, skb
->len
- 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7683 memmove(skb
->data
+ LIBIPW_3ADDR_LEN
,
7684 skb
->data
+ LIBIPW_3ADDR_LEN
+ 4,
7685 skb
->len
- LIBIPW_3ADDR_LEN
- 4);
7686 skb_trim(skb
, skb
->len
- 8); /* IV + ICV */
7691 printk(KERN_ERR
"Unknown security level %d\n",
7692 priv
->ieee
->sec
.level
);
7697 static void ipw_handle_data_packet(struct ipw_priv
*priv
,
7698 struct ipw_rx_mem_buffer
*rxb
,
7699 struct libipw_rx_stats
*stats
)
7701 struct net_device
*dev
= priv
->net_dev
;
7702 struct libipw_hdr_4addr
*hdr
;
7703 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7705 /* We received data from the HW, so stop the watchdog */
7706 netif_trans_update(dev
);
7708 /* We only process data packets if the
7709 * interface is open */
7710 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7711 skb_tailroom(rxb
->skb
))) {
7712 dev
->stats
.rx_errors
++;
7713 priv
->wstats
.discard
.misc
++;
7714 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7716 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7717 dev
->stats
.rx_dropped
++;
7718 priv
->wstats
.discard
.misc
++;
7719 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7723 /* Advance skb->data to the start of the actual payload */
7724 skb_reserve(rxb
->skb
, offsetof(struct ipw_rx_packet
, u
.frame
.data
));
7726 /* Set the size of the skb to the size of the frame */
7727 skb_put(rxb
->skb
, le16_to_cpu(pkt
->u
.frame
.length
));
7729 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7731 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7732 hdr
= (struct libipw_hdr_4addr
*)rxb
->skb
->data
;
7733 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
&&
7734 (is_multicast_ether_addr(hdr
->addr1
) ?
7735 !priv
->ieee
->host_mc_decrypt
: !priv
->ieee
->host_decrypt
))
7736 ipw_rebuild_decrypted_skb(priv
, rxb
->skb
);
7738 if (!libipw_rx(priv
->ieee
, rxb
->skb
, stats
))
7739 dev
->stats
.rx_errors
++;
7740 else { /* libipw_rx succeeded, so it now owns the SKB */
7742 __ipw_led_activity_on(priv
);
7746 #ifdef CONFIG_IPW2200_RADIOTAP
7747 static void ipw_handle_data_packet_monitor(struct ipw_priv
*priv
,
7748 struct ipw_rx_mem_buffer
*rxb
,
7749 struct libipw_rx_stats
*stats
)
7751 struct net_device
*dev
= priv
->net_dev
;
7752 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7753 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
7755 /* initial pull of some data */
7756 u16 received_channel
= frame
->received_channel
;
7757 u8 antennaAndPhy
= frame
->antennaAndPhy
;
7758 s8 antsignal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
; /* call it signed anyhow */
7759 u16 pktrate
= frame
->rate
;
7761 /* Magic struct that slots into the radiotap header -- no reason
7762 * to build this manually element by element, we can write it much
7763 * more efficiently than we can parse it. ORDER MATTERS HERE */
7764 struct ipw_rt_hdr
*ipw_rt
;
7766 unsigned short len
= le16_to_cpu(pkt
->u
.frame
.length
);
7768 /* We received data from the HW, so stop the watchdog */
7769 netif_trans_update(dev
);
7771 /* We only process data packets if the
7772 * interface is open */
7773 if (unlikely((le16_to_cpu(pkt
->u
.frame
.length
) + IPW_RX_FRAME_SIZE
) >
7774 skb_tailroom(rxb
->skb
))) {
7775 dev
->stats
.rx_errors
++;
7776 priv
->wstats
.discard
.misc
++;
7777 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7779 } else if (unlikely(!netif_running(priv
->net_dev
))) {
7780 dev
->stats
.rx_dropped
++;
7781 priv
->wstats
.discard
.misc
++;
7782 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7786 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7788 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
7789 /* FIXME: Should alloc bigger skb instead */
7790 dev
->stats
.rx_dropped
++;
7791 priv
->wstats
.discard
.misc
++;
7792 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7796 /* copy the frame itself */
7797 memmove(rxb
->skb
->data
+ sizeof(struct ipw_rt_hdr
),
7798 rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
, len
);
7800 ipw_rt
= (struct ipw_rt_hdr
*)rxb
->skb
->data
;
7802 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
7803 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
7804 ipw_rt
->rt_hdr
.it_len
= cpu_to_le16(sizeof(struct ipw_rt_hdr
)); /* total header+data */
7806 /* Big bitfield of all the fields we provide in radiotap */
7807 ipw_rt
->rt_hdr
.it_present
= cpu_to_le32(
7808 (1 << IEEE80211_RADIOTAP_TSFT
) |
7809 (1 << IEEE80211_RADIOTAP_FLAGS
) |
7810 (1 << IEEE80211_RADIOTAP_RATE
) |
7811 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
7812 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
7813 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
) |
7814 (1 << IEEE80211_RADIOTAP_ANTENNA
));
7816 /* Zero the flags, we'll add to them as we go */
7817 ipw_rt
->rt_flags
= 0;
7818 ipw_rt
->rt_tsf
= (u64
)(frame
->parent_tsf
[3] << 24 |
7819 frame
->parent_tsf
[2] << 16 |
7820 frame
->parent_tsf
[1] << 8 |
7821 frame
->parent_tsf
[0]);
7823 /* Convert signal to DBM */
7824 ipw_rt
->rt_dbmsignal
= antsignal
;
7825 ipw_rt
->rt_dbmnoise
= (s8
) le16_to_cpu(frame
->noise
);
7827 /* Convert the channel data and set the flags */
7828 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(received_channel
));
7829 if (received_channel
> 14) { /* 802.11a */
7830 ipw_rt
->rt_chbitmask
=
7831 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
7832 } else if (antennaAndPhy
& 32) { /* 802.11b */
7833 ipw_rt
->rt_chbitmask
=
7834 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
7835 } else { /* 802.11g */
7836 ipw_rt
->rt_chbitmask
=
7837 cpu_to_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
7840 /* set the rate in multiples of 500k/s */
7842 case IPW_TX_RATE_1MB
:
7843 ipw_rt
->rt_rate
= 2;
7845 case IPW_TX_RATE_2MB
:
7846 ipw_rt
->rt_rate
= 4;
7848 case IPW_TX_RATE_5MB
:
7849 ipw_rt
->rt_rate
= 10;
7851 case IPW_TX_RATE_6MB
:
7852 ipw_rt
->rt_rate
= 12;
7854 case IPW_TX_RATE_9MB
:
7855 ipw_rt
->rt_rate
= 18;
7857 case IPW_TX_RATE_11MB
:
7858 ipw_rt
->rt_rate
= 22;
7860 case IPW_TX_RATE_12MB
:
7861 ipw_rt
->rt_rate
= 24;
7863 case IPW_TX_RATE_18MB
:
7864 ipw_rt
->rt_rate
= 36;
7866 case IPW_TX_RATE_24MB
:
7867 ipw_rt
->rt_rate
= 48;
7869 case IPW_TX_RATE_36MB
:
7870 ipw_rt
->rt_rate
= 72;
7872 case IPW_TX_RATE_48MB
:
7873 ipw_rt
->rt_rate
= 96;
7875 case IPW_TX_RATE_54MB
:
7876 ipw_rt
->rt_rate
= 108;
7879 ipw_rt
->rt_rate
= 0;
7883 /* antenna number */
7884 ipw_rt
->rt_antenna
= (antennaAndPhy
& 3); /* Is this right? */
7886 /* set the preamble flag if we have it */
7887 if ((antennaAndPhy
& 64))
7888 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
7890 /* Set the size of the skb to the size of the frame */
7891 skb_put(rxb
->skb
, len
+ sizeof(struct ipw_rt_hdr
));
7893 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb
->skb
->len
);
7895 if (!libipw_rx(priv
->ieee
, rxb
->skb
, stats
))
7896 dev
->stats
.rx_errors
++;
7897 else { /* libipw_rx succeeded, so it now owns the SKB */
7899 /* no LED during capture */
7904 #ifdef CONFIG_IPW2200_PROMISCUOUS
7905 #define libipw_is_probe_response(fc) \
7906 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7907 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7909 #define libipw_is_management(fc) \
7910 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7912 #define libipw_is_control(fc) \
7913 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7915 #define libipw_is_data(fc) \
7916 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7918 #define libipw_is_assoc_request(fc) \
7919 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7921 #define libipw_is_reassoc_request(fc) \
7922 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7924 static void ipw_handle_promiscuous_rx(struct ipw_priv
*priv
,
7925 struct ipw_rx_mem_buffer
*rxb
,
7926 struct libipw_rx_stats
*stats
)
7928 struct net_device
*dev
= priv
->prom_net_dev
;
7929 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
7930 struct ipw_rx_frame
*frame
= &pkt
->u
.frame
;
7931 struct ipw_rt_hdr
*ipw_rt
;
7933 /* First cache any information we need before we overwrite
7934 * the information provided in the skb from the hardware */
7935 struct ieee80211_hdr
*hdr
;
7936 u16 channel
= frame
->received_channel
;
7937 u8 phy_flags
= frame
->antennaAndPhy
;
7938 s8 signal
= frame
->rssi_dbm
- IPW_RSSI_TO_DBM
;
7939 s8 noise
= (s8
) le16_to_cpu(frame
->noise
);
7940 u8 rate
= frame
->rate
;
7941 unsigned short len
= le16_to_cpu(pkt
->u
.frame
.length
);
7942 struct sk_buff
*skb
;
7944 u16 filter
= priv
->prom_priv
->filter
;
7946 /* If the filter is set to not include Rx frames then return */
7947 if (filter
& IPW_PROM_NO_RX
)
7950 /* We received data from the HW, so stop the watchdog */
7951 netif_trans_update(dev
);
7953 if (unlikely((len
+ IPW_RX_FRAME_SIZE
) > skb_tailroom(rxb
->skb
))) {
7954 dev
->stats
.rx_errors
++;
7955 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7959 /* We only process data packets if the interface is open */
7960 if (unlikely(!netif_running(dev
))) {
7961 dev
->stats
.rx_dropped
++;
7962 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7966 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7968 if (len
> IPW_RX_BUF_SIZE
- sizeof(struct ipw_rt_hdr
)) {
7969 /* FIXME: Should alloc bigger skb instead */
7970 dev
->stats
.rx_dropped
++;
7971 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7975 hdr
= (void *)rxb
->skb
->data
+ IPW_RX_FRAME_SIZE
;
7976 if (libipw_is_management(le16_to_cpu(hdr
->frame_control
))) {
7977 if (filter
& IPW_PROM_NO_MGMT
)
7979 if (filter
& IPW_PROM_MGMT_HEADER_ONLY
)
7981 } else if (libipw_is_control(le16_to_cpu(hdr
->frame_control
))) {
7982 if (filter
& IPW_PROM_NO_CTL
)
7984 if (filter
& IPW_PROM_CTL_HEADER_ONLY
)
7986 } else if (libipw_is_data(le16_to_cpu(hdr
->frame_control
))) {
7987 if (filter
& IPW_PROM_NO_DATA
)
7989 if (filter
& IPW_PROM_DATA_HEADER_ONLY
)
7993 /* Copy the SKB since this is for the promiscuous side */
7994 skb
= skb_copy(rxb
->skb
, GFP_ATOMIC
);
7996 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8000 /* copy the frame data to write after where the radiotap header goes */
8001 ipw_rt
= (void *)skb
->data
;
8004 len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_control
));
8006 memcpy(ipw_rt
->payload
, hdr
, len
);
8008 ipw_rt
->rt_hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
8009 ipw_rt
->rt_hdr
.it_pad
= 0; /* always good to zero */
8010 ipw_rt
->rt_hdr
.it_len
= cpu_to_le16(sizeof(*ipw_rt
)); /* total header+data */
8012 /* Set the size of the skb to the size of the frame */
8013 skb_put(skb
, sizeof(*ipw_rt
) + len
);
8015 /* Big bitfield of all the fields we provide in radiotap */
8016 ipw_rt
->rt_hdr
.it_present
= cpu_to_le32(
8017 (1 << IEEE80211_RADIOTAP_TSFT
) |
8018 (1 << IEEE80211_RADIOTAP_FLAGS
) |
8019 (1 << IEEE80211_RADIOTAP_RATE
) |
8020 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
8021 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
) |
8022 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE
) |
8023 (1 << IEEE80211_RADIOTAP_ANTENNA
));
8025 /* Zero the flags, we'll add to them as we go */
8026 ipw_rt
->rt_flags
= 0;
8027 ipw_rt
->rt_tsf
= (u64
)(frame
->parent_tsf
[3] << 24 |
8028 frame
->parent_tsf
[2] << 16 |
8029 frame
->parent_tsf
[1] << 8 |
8030 frame
->parent_tsf
[0]);
8032 /* Convert to DBM */
8033 ipw_rt
->rt_dbmsignal
= signal
;
8034 ipw_rt
->rt_dbmnoise
= noise
;
8036 /* Convert the channel data and set the flags */
8037 ipw_rt
->rt_channel
= cpu_to_le16(ieee80211chan2mhz(channel
));
8038 if (channel
> 14) { /* 802.11a */
8039 ipw_rt
->rt_chbitmask
=
8040 cpu_to_le16((IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
));
8041 } else if (phy_flags
& (1 << 5)) { /* 802.11b */
8042 ipw_rt
->rt_chbitmask
=
8043 cpu_to_le16((IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
));
8044 } else { /* 802.11g */
8045 ipw_rt
->rt_chbitmask
=
8046 cpu_to_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
);
8049 /* set the rate in multiples of 500k/s */
8051 case IPW_TX_RATE_1MB
:
8052 ipw_rt
->rt_rate
= 2;
8054 case IPW_TX_RATE_2MB
:
8055 ipw_rt
->rt_rate
= 4;
8057 case IPW_TX_RATE_5MB
:
8058 ipw_rt
->rt_rate
= 10;
8060 case IPW_TX_RATE_6MB
:
8061 ipw_rt
->rt_rate
= 12;
8063 case IPW_TX_RATE_9MB
:
8064 ipw_rt
->rt_rate
= 18;
8066 case IPW_TX_RATE_11MB
:
8067 ipw_rt
->rt_rate
= 22;
8069 case IPW_TX_RATE_12MB
:
8070 ipw_rt
->rt_rate
= 24;
8072 case IPW_TX_RATE_18MB
:
8073 ipw_rt
->rt_rate
= 36;
8075 case IPW_TX_RATE_24MB
:
8076 ipw_rt
->rt_rate
= 48;
8078 case IPW_TX_RATE_36MB
:
8079 ipw_rt
->rt_rate
= 72;
8081 case IPW_TX_RATE_48MB
:
8082 ipw_rt
->rt_rate
= 96;
8084 case IPW_TX_RATE_54MB
:
8085 ipw_rt
->rt_rate
= 108;
8088 ipw_rt
->rt_rate
= 0;
8092 /* antenna number */
8093 ipw_rt
->rt_antenna
= (phy_flags
& 3);
8095 /* set the preamble flag if we have it */
8096 if (phy_flags
& (1 << 6))
8097 ipw_rt
->rt_flags
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
8099 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb
->len
);
8101 if (!libipw_rx(priv
->prom_priv
->ieee
, skb
, stats
)) {
8102 dev
->stats
.rx_errors
++;
8103 dev_kfree_skb_any(skb
);
8108 static int is_network_packet(struct ipw_priv
*priv
,
8109 struct libipw_hdr_4addr
*header
)
8111 /* Filter incoming packets to determine if they are targeted toward
8112 * this network, discarding packets coming from ourselves */
8113 switch (priv
->ieee
->iw_mode
) {
8114 case IW_MODE_ADHOC
: /* Header: Dest. | Source | BSSID */
8115 /* packets from our adapter are dropped (echo) */
8116 if (ether_addr_equal(header
->addr2
, priv
->net_dev
->dev_addr
))
8119 /* {broad,multi}cast packets to our BSSID go through */
8120 if (is_multicast_ether_addr(header
->addr1
))
8121 return ether_addr_equal(header
->addr3
, priv
->bssid
);
8123 /* packets to our adapter go through */
8124 return ether_addr_equal(header
->addr1
,
8125 priv
->net_dev
->dev_addr
);
8127 case IW_MODE_INFRA
: /* Header: Dest. | BSSID | Source */
8128 /* packets from our adapter are dropped (echo) */
8129 if (ether_addr_equal(header
->addr3
, priv
->net_dev
->dev_addr
))
8132 /* {broad,multi}cast packets to our BSS go through */
8133 if (is_multicast_ether_addr(header
->addr1
))
8134 return ether_addr_equal(header
->addr2
, priv
->bssid
);
8136 /* packets to our adapter go through */
8137 return ether_addr_equal(header
->addr1
,
8138 priv
->net_dev
->dev_addr
);
8144 #define IPW_PACKET_RETRY_TIME HZ
8146 static int is_duplicate_packet(struct ipw_priv
*priv
,
8147 struct libipw_hdr_4addr
*header
)
8149 u16 sc
= le16_to_cpu(header
->seq_ctl
);
8150 u16 seq
= WLAN_GET_SEQ_SEQ(sc
);
8151 u16 frag
= WLAN_GET_SEQ_FRAG(sc
);
8152 u16
*last_seq
, *last_frag
;
8153 unsigned long *last_time
;
8155 switch (priv
->ieee
->iw_mode
) {
8158 struct list_head
*p
;
8159 struct ipw_ibss_seq
*entry
= NULL
;
8160 u8
*mac
= header
->addr2
;
8161 int index
= mac
[5] % IPW_IBSS_MAC_HASH_SIZE
;
8163 list_for_each(p
, &priv
->ibss_mac_hash
[index
]) {
8165 list_entry(p
, struct ipw_ibss_seq
, list
);
8166 if (ether_addr_equal(entry
->mac
, mac
))
8169 if (p
== &priv
->ibss_mac_hash
[index
]) {
8170 entry
= kmalloc(sizeof(*entry
), GFP_ATOMIC
);
8173 ("Cannot malloc new mac entry\n");
8176 memcpy(entry
->mac
, mac
, ETH_ALEN
);
8177 entry
->seq_num
= seq
;
8178 entry
->frag_num
= frag
;
8179 entry
->packet_time
= jiffies
;
8180 list_add(&entry
->list
,
8181 &priv
->ibss_mac_hash
[index
]);
8184 last_seq
= &entry
->seq_num
;
8185 last_frag
= &entry
->frag_num
;
8186 last_time
= &entry
->packet_time
;
8190 last_seq
= &priv
->last_seq_num
;
8191 last_frag
= &priv
->last_frag_num
;
8192 last_time
= &priv
->last_packet_time
;
8197 if ((*last_seq
== seq
) &&
8198 time_after(*last_time
+ IPW_PACKET_RETRY_TIME
, jiffies
)) {
8199 if (*last_frag
== frag
)
8201 if (*last_frag
+ 1 != frag
)
8202 /* out-of-order fragment */
8208 *last_time
= jiffies
;
8212 /* Comment this line now since we observed the card receives
8213 * duplicate packets but the FCTL_RETRY bit is not set in the
8214 * IBSS mode with fragmentation enabled.
8215 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8219 static void ipw_handle_mgmt_packet(struct ipw_priv
*priv
,
8220 struct ipw_rx_mem_buffer
*rxb
,
8221 struct libipw_rx_stats
*stats
)
8223 struct sk_buff
*skb
= rxb
->skb
;
8224 struct ipw_rx_packet
*pkt
= (struct ipw_rx_packet
*)skb
->data
;
8225 struct libipw_hdr_4addr
*header
= (struct libipw_hdr_4addr
*)
8226 (skb
->data
+ IPW_RX_FRAME_SIZE
);
8228 libipw_rx_mgt(priv
->ieee
, header
, stats
);
8230 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
8231 ((WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
8232 IEEE80211_STYPE_PROBE_RESP
) ||
8233 (WLAN_FC_GET_STYPE(le16_to_cpu(header
->frame_ctl
)) ==
8234 IEEE80211_STYPE_BEACON
))) {
8235 if (ether_addr_equal(header
->addr3
, priv
->bssid
))
8236 ipw_add_station(priv
, header
->addr2
);
8239 if (priv
->config
& CFG_NET_STATS
) {
8240 IPW_DEBUG_HC("sending stat packet\n");
8242 /* Set the size of the skb to the size of the full
8243 * ipw header and 802.11 frame */
8244 skb_put(skb
, le16_to_cpu(pkt
->u
.frame
.length
) +
8247 /* Advance past the ipw packet header to the 802.11 frame */
8248 skb_pull(skb
, IPW_RX_FRAME_SIZE
);
8250 /* Push the libipw_rx_stats before the 802.11 frame */
8251 memcpy(skb_push(skb
, sizeof(*stats
)), stats
, sizeof(*stats
));
8253 skb
->dev
= priv
->ieee
->dev
;
8255 /* Point raw at the libipw_stats */
8256 skb_reset_mac_header(skb
);
8258 skb
->pkt_type
= PACKET_OTHERHOST
;
8259 skb
->protocol
= cpu_to_be16(ETH_P_80211_STATS
);
8260 memset(skb
->cb
, 0, sizeof(rxb
->skb
->cb
));
8267 * Main entry function for receiving a packet with 80211 headers. This
8268 * should be called when ever the FW has notified us that there is a new
8269 * skb in the receive queue.
8271 static void ipw_rx(struct ipw_priv
*priv
)
8273 struct ipw_rx_mem_buffer
*rxb
;
8274 struct ipw_rx_packet
*pkt
;
8275 struct libipw_hdr_4addr
*header
;
8280 r
= ipw_read32(priv
, IPW_RX_READ_INDEX
);
8281 w
= ipw_read32(priv
, IPW_RX_WRITE_INDEX
);
8282 i
= priv
->rxq
->read
;
8284 if (ipw_rx_queue_space (priv
->rxq
) > (RX_QUEUE_SIZE
/ 2))
8288 rxb
= priv
->rxq
->queue
[i
];
8289 if (unlikely(rxb
== NULL
)) {
8290 printk(KERN_CRIT
"Queue not allocated!\n");
8293 priv
->rxq
->queue
[i
] = NULL
;
8295 pci_dma_sync_single_for_cpu(priv
->pci_dev
, rxb
->dma_addr
,
8297 PCI_DMA_FROMDEVICE
);
8299 pkt
= (struct ipw_rx_packet
*)rxb
->skb
->data
;
8300 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8301 pkt
->header
.message_type
,
8302 pkt
->header
.rx_seq_num
, pkt
->header
.control_bits
);
8304 switch (pkt
->header
.message_type
) {
8305 case RX_FRAME_TYPE
: /* 802.11 frame */ {
8306 struct libipw_rx_stats stats
= {
8307 .rssi
= pkt
->u
.frame
.rssi_dbm
-
8310 pkt
->u
.frame
.rssi_dbm
-
8311 IPW_RSSI_TO_DBM
+ 0x100,
8313 le16_to_cpu(pkt
->u
.frame
.noise
),
8314 .rate
= pkt
->u
.frame
.rate
,
8315 .mac_time
= jiffies
,
8317 pkt
->u
.frame
.received_channel
,
8320 control
& (1 << 0)) ?
8323 .len
= le16_to_cpu(pkt
->u
.frame
.length
),
8326 if (stats
.rssi
!= 0)
8327 stats
.mask
|= LIBIPW_STATMASK_RSSI
;
8328 if (stats
.signal
!= 0)
8329 stats
.mask
|= LIBIPW_STATMASK_SIGNAL
;
8330 if (stats
.noise
!= 0)
8331 stats
.mask
|= LIBIPW_STATMASK_NOISE
;
8332 if (stats
.rate
!= 0)
8333 stats
.mask
|= LIBIPW_STATMASK_RATE
;
8337 #ifdef CONFIG_IPW2200_PROMISCUOUS
8338 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
))
8339 ipw_handle_promiscuous_rx(priv
, rxb
, &stats
);
8342 #ifdef CONFIG_IPW2200_MONITOR
8343 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8344 #ifdef CONFIG_IPW2200_RADIOTAP
8346 ipw_handle_data_packet_monitor(priv
,
8350 ipw_handle_data_packet(priv
, rxb
,
8358 (struct libipw_hdr_4addr
*)(rxb
->skb
->
8361 /* TODO: Check Ad-Hoc dest/source and make sure
8362 * that we are actually parsing these packets
8363 * correctly -- we should probably use the
8364 * frame control of the packet and disregard
8365 * the current iw_mode */
8368 is_network_packet(priv
, header
);
8369 if (network_packet
&& priv
->assoc_network
) {
8370 priv
->assoc_network
->stats
.rssi
=
8372 priv
->exp_avg_rssi
=
8373 exponential_average(priv
->exp_avg_rssi
,
8374 stats
.rssi
, DEPTH_RSSI
);
8377 IPW_DEBUG_RX("Frame: len=%u\n",
8378 le16_to_cpu(pkt
->u
.frame
.length
));
8380 if (le16_to_cpu(pkt
->u
.frame
.length
) <
8381 libipw_get_hdrlen(le16_to_cpu(
8382 header
->frame_ctl
))) {
8384 ("Received packet is too small. "
8386 priv
->net_dev
->stats
.rx_errors
++;
8387 priv
->wstats
.discard
.misc
++;
8391 switch (WLAN_FC_GET_TYPE
8392 (le16_to_cpu(header
->frame_ctl
))) {
8394 case IEEE80211_FTYPE_MGMT
:
8395 ipw_handle_mgmt_packet(priv
, rxb
,
8399 case IEEE80211_FTYPE_CTL
:
8402 case IEEE80211_FTYPE_DATA
:
8403 if (unlikely(!network_packet
||
8404 is_duplicate_packet(priv
,
8407 IPW_DEBUG_DROP("Dropping: "
8417 ipw_handle_data_packet(priv
, rxb
,
8425 case RX_HOST_NOTIFICATION_TYPE
:{
8427 ("Notification: subtype=%02X flags=%02X size=%d\n",
8428 pkt
->u
.notification
.subtype
,
8429 pkt
->u
.notification
.flags
,
8430 le16_to_cpu(pkt
->u
.notification
.size
));
8431 ipw_rx_notification(priv
, &pkt
->u
.notification
);
8436 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8437 pkt
->header
.message_type
);
8441 /* For now we just don't re-use anything. We can tweak this
8442 * later to try and re-use notification packets and SKBs that
8443 * fail to Rx correctly */
8444 if (rxb
->skb
!= NULL
) {
8445 dev_kfree_skb_any(rxb
->skb
);
8449 pci_unmap_single(priv
->pci_dev
, rxb
->dma_addr
,
8450 IPW_RX_BUF_SIZE
, PCI_DMA_FROMDEVICE
);
8451 list_add_tail(&rxb
->list
, &priv
->rxq
->rx_used
);
8453 i
= (i
+ 1) % RX_QUEUE_SIZE
;
8455 /* If there are a lot of unsued frames, restock the Rx queue
8456 * so the ucode won't assert */
8458 priv
->rxq
->read
= i
;
8459 ipw_rx_queue_replenish(priv
);
8463 /* Backtrack one entry */
8464 priv
->rxq
->read
= i
;
8465 ipw_rx_queue_restock(priv
);
8468 #define DEFAULT_RTS_THRESHOLD 2304U
8469 #define MIN_RTS_THRESHOLD 1U
8470 #define MAX_RTS_THRESHOLD 2304U
8471 #define DEFAULT_BEACON_INTERVAL 100U
8472 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8473 #define DEFAULT_LONG_RETRY_LIMIT 4U
8477 * @option: options to control different reset behaviour
8478 * 0 = reset everything except the 'disable' module_param
8479 * 1 = reset everything and print out driver info (for probe only)
8480 * 2 = reset everything
8482 static int ipw_sw_reset(struct ipw_priv
*priv
, int option
)
8484 int band
, modulation
;
8485 int old_mode
= priv
->ieee
->iw_mode
;
8487 /* Initialize module parameter values here */
8490 /* We default to disabling the LED code as right now it causes
8491 * too many systems to lock up... */
8493 priv
->config
|= CFG_NO_LED
;
8496 priv
->config
|= CFG_ASSOCIATE
;
8498 IPW_DEBUG_INFO("Auto associate disabled.\n");
8501 priv
->config
|= CFG_ADHOC_CREATE
;
8503 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8505 priv
->config
&= ~CFG_STATIC_ESSID
;
8506 priv
->essid_len
= 0;
8507 memset(priv
->essid
, 0, IW_ESSID_MAX_SIZE
);
8509 if (disable
&& option
) {
8510 priv
->status
|= STATUS_RF_KILL_SW
;
8511 IPW_DEBUG_INFO("Radio disabled.\n");
8514 if (default_channel
!= 0) {
8515 priv
->config
|= CFG_STATIC_CHANNEL
;
8516 priv
->channel
= default_channel
;
8517 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel
);
8518 /* TODO: Validate that provided channel is in range */
8520 #ifdef CONFIG_IPW2200_QOS
8521 ipw_qos_init(priv
, qos_enable
, qos_burst_enable
,
8522 burst_duration_CCK
, burst_duration_OFDM
);
8523 #endif /* CONFIG_IPW2200_QOS */
8525 switch (network_mode
) {
8527 priv
->ieee
->iw_mode
= IW_MODE_ADHOC
;
8528 priv
->net_dev
->type
= ARPHRD_ETHER
;
8531 #ifdef CONFIG_IPW2200_MONITOR
8533 priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
8534 #ifdef CONFIG_IPW2200_RADIOTAP
8535 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8537 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8543 priv
->net_dev
->type
= ARPHRD_ETHER
;
8544 priv
->ieee
->iw_mode
= IW_MODE_INFRA
;
8549 priv
->ieee
->host_encrypt
= 0;
8550 priv
->ieee
->host_encrypt_msdu
= 0;
8551 priv
->ieee
->host_decrypt
= 0;
8552 priv
->ieee
->host_mc_decrypt
= 0;
8554 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto
? "on" : "off");
8556 /* IPW2200/2915 is abled to do hardware fragmentation. */
8557 priv
->ieee
->host_open_frag
= 0;
8559 if ((priv
->pci_dev
->device
== 0x4223) ||
8560 (priv
->pci_dev
->device
== 0x4224)) {
8562 printk(KERN_INFO DRV_NAME
8563 ": Detected Intel PRO/Wireless 2915ABG Network "
8565 priv
->ieee
->abg_true
= 1;
8566 band
= LIBIPW_52GHZ_BAND
| LIBIPW_24GHZ_BAND
;
8567 modulation
= LIBIPW_OFDM_MODULATION
|
8568 LIBIPW_CCK_MODULATION
;
8569 priv
->adapter
= IPW_2915ABG
;
8570 priv
->ieee
->mode
= IEEE_A
| IEEE_G
| IEEE_B
;
8573 printk(KERN_INFO DRV_NAME
8574 ": Detected Intel PRO/Wireless 2200BG Network "
8577 priv
->ieee
->abg_true
= 0;
8578 band
= LIBIPW_24GHZ_BAND
;
8579 modulation
= LIBIPW_OFDM_MODULATION
|
8580 LIBIPW_CCK_MODULATION
;
8581 priv
->adapter
= IPW_2200BG
;
8582 priv
->ieee
->mode
= IEEE_G
| IEEE_B
;
8585 priv
->ieee
->freq_band
= band
;
8586 priv
->ieee
->modulation
= modulation
;
8588 priv
->rates_mask
= LIBIPW_DEFAULT_RATES_MASK
;
8590 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
8591 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
8593 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
8594 priv
->short_retry_limit
= DEFAULT_SHORT_RETRY_LIMIT
;
8595 priv
->long_retry_limit
= DEFAULT_LONG_RETRY_LIMIT
;
8597 /* If power management is turned on, default to AC mode */
8598 priv
->power_mode
= IPW_POWER_AC
;
8599 priv
->tx_power
= IPW_TX_POWER_DEFAULT
;
8601 return old_mode
== priv
->ieee
->iw_mode
;
8605 * This file defines the Wireless Extension handlers. It does not
8606 * define any methods of hardware manipulation and relies on the
8607 * functions defined in ipw_main to provide the HW interaction.
8609 * The exception to this is the use of the ipw_get_ordinal()
8610 * function used to poll the hardware vs. making unnecessary calls.
8614 static int ipw_set_channel(struct ipw_priv
*priv
, u8 channel
)
8617 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8618 priv
->config
&= ~CFG_STATIC_CHANNEL
;
8619 IPW_DEBUG_ASSOC("Attempting to associate with new "
8621 ipw_associate(priv
);
8625 priv
->config
|= CFG_STATIC_CHANNEL
;
8627 if (priv
->channel
== channel
) {
8628 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8633 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel
);
8634 priv
->channel
= channel
;
8636 #ifdef CONFIG_IPW2200_MONITOR
8637 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
) {
8639 if (priv
->status
& STATUS_SCANNING
) {
8640 IPW_DEBUG_SCAN("Scan abort triggered due to "
8641 "channel change.\n");
8642 ipw_abort_scan(priv
);
8645 for (i
= 1000; i
&& (priv
->status
& STATUS_SCANNING
); i
--)
8648 if (priv
->status
& STATUS_SCANNING
)
8649 IPW_DEBUG_SCAN("Still scanning...\n");
8651 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8656 #endif /* CONFIG_IPW2200_MONITOR */
8658 /* Network configuration changed -- force [re]association */
8659 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8660 if (!ipw_disassociate(priv
))
8661 ipw_associate(priv
);
8666 static int ipw_wx_set_freq(struct net_device
*dev
,
8667 struct iw_request_info
*info
,
8668 union iwreq_data
*wrqu
, char *extra
)
8670 struct ipw_priv
*priv
= libipw_priv(dev
);
8671 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
8672 struct iw_freq
*fwrq
= &wrqu
->freq
;
8678 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8679 mutex_lock(&priv
->mutex
);
8680 ret
= ipw_set_channel(priv
, 0);
8681 mutex_unlock(&priv
->mutex
);
8684 /* if setting by freq convert to channel */
8686 channel
= libipw_freq_to_channel(priv
->ieee
, fwrq
->m
);
8692 if (!(band
= libipw_is_valid_channel(priv
->ieee
, channel
)))
8695 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) {
8696 i
= libipw_channel_to_index(priv
->ieee
, channel
);
8700 flags
= (band
== LIBIPW_24GHZ_BAND
) ?
8701 geo
->bg
[i
].flags
: geo
->a
[i
].flags
;
8702 if (flags
& LIBIPW_CH_PASSIVE_ONLY
) {
8703 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8708 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq
->m
);
8709 mutex_lock(&priv
->mutex
);
8710 ret
= ipw_set_channel(priv
, channel
);
8711 mutex_unlock(&priv
->mutex
);
8715 static int ipw_wx_get_freq(struct net_device
*dev
,
8716 struct iw_request_info
*info
,
8717 union iwreq_data
*wrqu
, char *extra
)
8719 struct ipw_priv
*priv
= libipw_priv(dev
);
8723 /* If we are associated, trying to associate, or have a statically
8724 * configured CHANNEL then return that; otherwise return ANY */
8725 mutex_lock(&priv
->mutex
);
8726 if (priv
->config
& CFG_STATIC_CHANNEL
||
8727 priv
->status
& (STATUS_ASSOCIATING
| STATUS_ASSOCIATED
)) {
8730 i
= libipw_channel_to_index(priv
->ieee
, priv
->channel
);
8734 switch (libipw_is_valid_channel(priv
->ieee
, priv
->channel
)) {
8735 case LIBIPW_52GHZ_BAND
:
8736 wrqu
->freq
.m
= priv
->ieee
->geo
.a
[i
].freq
* 100000;
8739 case LIBIPW_24GHZ_BAND
:
8740 wrqu
->freq
.m
= priv
->ieee
->geo
.bg
[i
].freq
* 100000;
8749 mutex_unlock(&priv
->mutex
);
8750 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv
->channel
);
8754 static int ipw_wx_set_mode(struct net_device
*dev
,
8755 struct iw_request_info
*info
,
8756 union iwreq_data
*wrqu
, char *extra
)
8758 struct ipw_priv
*priv
= libipw_priv(dev
);
8761 IPW_DEBUG_WX("Set MODE: %d\n", wrqu
->mode
);
8763 switch (wrqu
->mode
) {
8764 #ifdef CONFIG_IPW2200_MONITOR
8765 case IW_MODE_MONITOR
:
8771 wrqu
->mode
= IW_MODE_INFRA
;
8776 if (wrqu
->mode
== priv
->ieee
->iw_mode
)
8779 mutex_lock(&priv
->mutex
);
8781 ipw_sw_reset(priv
, 0);
8783 #ifdef CONFIG_IPW2200_MONITOR
8784 if (priv
->ieee
->iw_mode
== IW_MODE_MONITOR
)
8785 priv
->net_dev
->type
= ARPHRD_ETHER
;
8787 if (wrqu
->mode
== IW_MODE_MONITOR
)
8788 #ifdef CONFIG_IPW2200_RADIOTAP
8789 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
8791 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
8793 #endif /* CONFIG_IPW2200_MONITOR */
8795 /* Free the existing firmware and reset the fw_loaded
8796 * flag so ipw_load() will bring in the new firmware */
8799 priv
->ieee
->iw_mode
= wrqu
->mode
;
8801 schedule_work(&priv
->adapter_restart
);
8802 mutex_unlock(&priv
->mutex
);
8806 static int ipw_wx_get_mode(struct net_device
*dev
,
8807 struct iw_request_info
*info
,
8808 union iwreq_data
*wrqu
, char *extra
)
8810 struct ipw_priv
*priv
= libipw_priv(dev
);
8811 mutex_lock(&priv
->mutex
);
8812 wrqu
->mode
= priv
->ieee
->iw_mode
;
8813 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu
->mode
);
8814 mutex_unlock(&priv
->mutex
);
8818 /* Values are in microsecond */
8819 static const s32 timeout_duration
[] = {
8827 static const s32 period_duration
[] = {
8835 static int ipw_wx_get_range(struct net_device
*dev
,
8836 struct iw_request_info
*info
,
8837 union iwreq_data
*wrqu
, char *extra
)
8839 struct ipw_priv
*priv
= libipw_priv(dev
);
8840 struct iw_range
*range
= (struct iw_range
*)extra
;
8841 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
8844 wrqu
->data
.length
= sizeof(*range
);
8845 memset(range
, 0, sizeof(*range
));
8847 /* 54Mbs == ~27 Mb/s real (802.11g) */
8848 range
->throughput
= 27 * 1000 * 1000;
8850 range
->max_qual
.qual
= 100;
8851 /* TODO: Find real max RSSI and stick here */
8852 range
->max_qual
.level
= 0;
8853 range
->max_qual
.noise
= 0;
8854 range
->max_qual
.updated
= 7; /* Updated all three */
8856 range
->avg_qual
.qual
= 70;
8857 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8858 range
->avg_qual
.level
= 0; /* FIXME to real average level */
8859 range
->avg_qual
.noise
= 0;
8860 range
->avg_qual
.updated
= 7; /* Updated all three */
8861 mutex_lock(&priv
->mutex
);
8862 range
->num_bitrates
= min(priv
->rates
.num_rates
, (u8
) IW_MAX_BITRATES
);
8864 for (i
= 0; i
< range
->num_bitrates
; i
++)
8865 range
->bitrate
[i
] = (priv
->rates
.supported_rates
[i
] & 0x7F) *
8868 range
->max_rts
= DEFAULT_RTS_THRESHOLD
;
8869 range
->min_frag
= MIN_FRAG_THRESHOLD
;
8870 range
->max_frag
= MAX_FRAG_THRESHOLD
;
8872 range
->encoding_size
[0] = 5;
8873 range
->encoding_size
[1] = 13;
8874 range
->num_encoding_sizes
= 2;
8875 range
->max_encoding_tokens
= WEP_KEYS
;
8877 /* Set the Wireless Extension versions */
8878 range
->we_version_compiled
= WIRELESS_EXT
;
8879 range
->we_version_source
= 18;
8882 if (priv
->ieee
->mode
& (IEEE_B
| IEEE_G
)) {
8883 for (j
= 0; j
< geo
->bg_channels
&& i
< IW_MAX_FREQUENCIES
; j
++) {
8884 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
8885 (geo
->bg
[j
].flags
& LIBIPW_CH_PASSIVE_ONLY
))
8888 range
->freq
[i
].i
= geo
->bg
[j
].channel
;
8889 range
->freq
[i
].m
= geo
->bg
[j
].freq
* 100000;
8890 range
->freq
[i
].e
= 1;
8895 if (priv
->ieee
->mode
& IEEE_A
) {
8896 for (j
= 0; j
< geo
->a_channels
&& i
< IW_MAX_FREQUENCIES
; j
++) {
8897 if ((priv
->ieee
->iw_mode
== IW_MODE_ADHOC
) &&
8898 (geo
->a
[j
].flags
& LIBIPW_CH_PASSIVE_ONLY
))
8901 range
->freq
[i
].i
= geo
->a
[j
].channel
;
8902 range
->freq
[i
].m
= geo
->a
[j
].freq
* 100000;
8903 range
->freq
[i
].e
= 1;
8908 range
->num_channels
= i
;
8909 range
->num_frequency
= i
;
8911 mutex_unlock(&priv
->mutex
);
8913 /* Event capability (kernel + driver) */
8914 range
->event_capa
[0] = (IW_EVENT_CAPA_K_0
|
8915 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY
) |
8916 IW_EVENT_CAPA_MASK(SIOCGIWAP
) |
8917 IW_EVENT_CAPA_MASK(SIOCGIWSCAN
));
8918 range
->event_capa
[1] = IW_EVENT_CAPA_K_1
;
8920 range
->enc_capa
= IW_ENC_CAPA_WPA
| IW_ENC_CAPA_WPA2
|
8921 IW_ENC_CAPA_CIPHER_TKIP
| IW_ENC_CAPA_CIPHER_CCMP
;
8923 range
->scan_capa
= IW_SCAN_CAPA_ESSID
| IW_SCAN_CAPA_TYPE
;
8925 IPW_DEBUG_WX("GET Range\n");
8929 static int ipw_wx_set_wap(struct net_device
*dev
,
8930 struct iw_request_info
*info
,
8931 union iwreq_data
*wrqu
, char *extra
)
8933 struct ipw_priv
*priv
= libipw_priv(dev
);
8935 if (wrqu
->ap_addr
.sa_family
!= ARPHRD_ETHER
)
8937 mutex_lock(&priv
->mutex
);
8938 if (is_broadcast_ether_addr(wrqu
->ap_addr
.sa_data
) ||
8939 is_zero_ether_addr(wrqu
->ap_addr
.sa_data
)) {
8940 /* we disable mandatory BSSID association */
8941 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8942 priv
->config
&= ~CFG_STATIC_BSSID
;
8943 IPW_DEBUG_ASSOC("Attempting to associate with new "
8945 ipw_associate(priv
);
8946 mutex_unlock(&priv
->mutex
);
8950 priv
->config
|= CFG_STATIC_BSSID
;
8951 if (ether_addr_equal(priv
->bssid
, wrqu
->ap_addr
.sa_data
)) {
8952 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8953 mutex_unlock(&priv
->mutex
);
8957 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8958 wrqu
->ap_addr
.sa_data
);
8960 memcpy(priv
->bssid
, wrqu
->ap_addr
.sa_data
, ETH_ALEN
);
8962 /* Network configuration changed -- force [re]association */
8963 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8964 if (!ipw_disassociate(priv
))
8965 ipw_associate(priv
);
8967 mutex_unlock(&priv
->mutex
);
8971 static int ipw_wx_get_wap(struct net_device
*dev
,
8972 struct iw_request_info
*info
,
8973 union iwreq_data
*wrqu
, char *extra
)
8975 struct ipw_priv
*priv
= libipw_priv(dev
);
8977 /* If we are associated, trying to associate, or have a statically
8978 * configured BSSID then return that; otherwise return ANY */
8979 mutex_lock(&priv
->mutex
);
8980 if (priv
->config
& CFG_STATIC_BSSID
||
8981 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
8982 wrqu
->ap_addr
.sa_family
= ARPHRD_ETHER
;
8983 memcpy(wrqu
->ap_addr
.sa_data
, priv
->bssid
, ETH_ALEN
);
8985 eth_zero_addr(wrqu
->ap_addr
.sa_data
);
8987 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8988 wrqu
->ap_addr
.sa_data
);
8989 mutex_unlock(&priv
->mutex
);
8993 static int ipw_wx_set_essid(struct net_device
*dev
,
8994 struct iw_request_info
*info
,
8995 union iwreq_data
*wrqu
, char *extra
)
8997 struct ipw_priv
*priv
= libipw_priv(dev
);
9000 mutex_lock(&priv
->mutex
);
9002 if (!wrqu
->essid
.flags
)
9004 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9005 ipw_disassociate(priv
);
9006 priv
->config
&= ~CFG_STATIC_ESSID
;
9007 ipw_associate(priv
);
9008 mutex_unlock(&priv
->mutex
);
9012 length
= min((int)wrqu
->essid
.length
, IW_ESSID_MAX_SIZE
);
9014 priv
->config
|= CFG_STATIC_ESSID
;
9016 if (priv
->essid_len
== length
&& !memcmp(priv
->essid
, extra
, length
)
9017 && (priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
))) {
9018 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9019 mutex_unlock(&priv
->mutex
);
9023 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length
, extra
, length
);
9025 priv
->essid_len
= length
;
9026 memcpy(priv
->essid
, extra
, priv
->essid_len
);
9028 /* Network configuration changed -- force [re]association */
9029 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9030 if (!ipw_disassociate(priv
))
9031 ipw_associate(priv
);
9033 mutex_unlock(&priv
->mutex
);
9037 static int ipw_wx_get_essid(struct net_device
*dev
,
9038 struct iw_request_info
*info
,
9039 union iwreq_data
*wrqu
, char *extra
)
9041 struct ipw_priv
*priv
= libipw_priv(dev
);
9043 /* If we are associated, trying to associate, or have a statically
9044 * configured ESSID then return that; otherwise return ANY */
9045 mutex_lock(&priv
->mutex
);
9046 if (priv
->config
& CFG_STATIC_ESSID
||
9047 priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) {
9048 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9049 priv
->essid_len
, priv
->essid
);
9050 memcpy(extra
, priv
->essid
, priv
->essid_len
);
9051 wrqu
->essid
.length
= priv
->essid_len
;
9052 wrqu
->essid
.flags
= 1; /* active */
9054 IPW_DEBUG_WX("Getting essid: ANY\n");
9055 wrqu
->essid
.length
= 0;
9056 wrqu
->essid
.flags
= 0; /* active */
9058 mutex_unlock(&priv
->mutex
);
9062 static int ipw_wx_set_nick(struct net_device
*dev
,
9063 struct iw_request_info
*info
,
9064 union iwreq_data
*wrqu
, char *extra
)
9066 struct ipw_priv
*priv
= libipw_priv(dev
);
9068 IPW_DEBUG_WX("Setting nick to '%s'\n", extra
);
9069 if (wrqu
->data
.length
> IW_ESSID_MAX_SIZE
)
9071 mutex_lock(&priv
->mutex
);
9072 wrqu
->data
.length
= min_t(size_t, wrqu
->data
.length
, sizeof(priv
->nick
));
9073 memset(priv
->nick
, 0, sizeof(priv
->nick
));
9074 memcpy(priv
->nick
, extra
, wrqu
->data
.length
);
9075 IPW_DEBUG_TRACE("<<\n");
9076 mutex_unlock(&priv
->mutex
);
9081 static int ipw_wx_get_nick(struct net_device
*dev
,
9082 struct iw_request_info
*info
,
9083 union iwreq_data
*wrqu
, char *extra
)
9085 struct ipw_priv
*priv
= libipw_priv(dev
);
9086 IPW_DEBUG_WX("Getting nick\n");
9087 mutex_lock(&priv
->mutex
);
9088 wrqu
->data
.length
= strlen(priv
->nick
);
9089 memcpy(extra
, priv
->nick
, wrqu
->data
.length
);
9090 wrqu
->data
.flags
= 1; /* active */
9091 mutex_unlock(&priv
->mutex
);
9095 static int ipw_wx_set_sens(struct net_device
*dev
,
9096 struct iw_request_info
*info
,
9097 union iwreq_data
*wrqu
, char *extra
)
9099 struct ipw_priv
*priv
= libipw_priv(dev
);
9102 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu
->sens
.value
);
9103 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu
->sens
.value
);
9104 mutex_lock(&priv
->mutex
);
9106 if (wrqu
->sens
.fixed
== 0)
9108 priv
->roaming_threshold
= IPW_MB_ROAMING_THRESHOLD_DEFAULT
;
9109 priv
->disassociate_threshold
= IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT
;
9112 if ((wrqu
->sens
.value
> IPW_MB_ROAMING_THRESHOLD_MAX
) ||
9113 (wrqu
->sens
.value
< IPW_MB_ROAMING_THRESHOLD_MIN
)) {
9118 priv
->roaming_threshold
= wrqu
->sens
.value
;
9119 priv
->disassociate_threshold
= 3*wrqu
->sens
.value
;
9121 mutex_unlock(&priv
->mutex
);
9125 static int ipw_wx_get_sens(struct net_device
*dev
,
9126 struct iw_request_info
*info
,
9127 union iwreq_data
*wrqu
, char *extra
)
9129 struct ipw_priv
*priv
= libipw_priv(dev
);
9130 mutex_lock(&priv
->mutex
);
9131 wrqu
->sens
.fixed
= 1;
9132 wrqu
->sens
.value
= priv
->roaming_threshold
;
9133 mutex_unlock(&priv
->mutex
);
9135 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9136 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
9141 static int ipw_wx_set_rate(struct net_device
*dev
,
9142 struct iw_request_info
*info
,
9143 union iwreq_data
*wrqu
, char *extra
)
9145 /* TODO: We should use semaphores or locks for access to priv */
9146 struct ipw_priv
*priv
= libipw_priv(dev
);
9147 u32 target_rate
= wrqu
->bitrate
.value
;
9150 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9151 /* value = X, fixed = 1 means only rate X */
9152 /* value = X, fixed = 0 means all rates lower equal X */
9154 if (target_rate
== -1) {
9156 mask
= LIBIPW_DEFAULT_RATES_MASK
;
9157 /* Now we should reassociate */
9162 fixed
= wrqu
->bitrate
.fixed
;
9164 if (target_rate
== 1000000 || !fixed
)
9165 mask
|= LIBIPW_CCK_RATE_1MB_MASK
;
9166 if (target_rate
== 1000000)
9169 if (target_rate
== 2000000 || !fixed
)
9170 mask
|= LIBIPW_CCK_RATE_2MB_MASK
;
9171 if (target_rate
== 2000000)
9174 if (target_rate
== 5500000 || !fixed
)
9175 mask
|= LIBIPW_CCK_RATE_5MB_MASK
;
9176 if (target_rate
== 5500000)
9179 if (target_rate
== 6000000 || !fixed
)
9180 mask
|= LIBIPW_OFDM_RATE_6MB_MASK
;
9181 if (target_rate
== 6000000)
9184 if (target_rate
== 9000000 || !fixed
)
9185 mask
|= LIBIPW_OFDM_RATE_9MB_MASK
;
9186 if (target_rate
== 9000000)
9189 if (target_rate
== 11000000 || !fixed
)
9190 mask
|= LIBIPW_CCK_RATE_11MB_MASK
;
9191 if (target_rate
== 11000000)
9194 if (target_rate
== 12000000 || !fixed
)
9195 mask
|= LIBIPW_OFDM_RATE_12MB_MASK
;
9196 if (target_rate
== 12000000)
9199 if (target_rate
== 18000000 || !fixed
)
9200 mask
|= LIBIPW_OFDM_RATE_18MB_MASK
;
9201 if (target_rate
== 18000000)
9204 if (target_rate
== 24000000 || !fixed
)
9205 mask
|= LIBIPW_OFDM_RATE_24MB_MASK
;
9206 if (target_rate
== 24000000)
9209 if (target_rate
== 36000000 || !fixed
)
9210 mask
|= LIBIPW_OFDM_RATE_36MB_MASK
;
9211 if (target_rate
== 36000000)
9214 if (target_rate
== 48000000 || !fixed
)
9215 mask
|= LIBIPW_OFDM_RATE_48MB_MASK
;
9216 if (target_rate
== 48000000)
9219 if (target_rate
== 54000000 || !fixed
)
9220 mask
|= LIBIPW_OFDM_RATE_54MB_MASK
;
9221 if (target_rate
== 54000000)
9224 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9228 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9229 mask
, fixed
? "fixed" : "sub-rates");
9230 mutex_lock(&priv
->mutex
);
9231 if (mask
== LIBIPW_DEFAULT_RATES_MASK
) {
9232 priv
->config
&= ~CFG_FIXED_RATE
;
9233 ipw_set_fixed_rate(priv
, priv
->ieee
->mode
);
9235 priv
->config
|= CFG_FIXED_RATE
;
9237 if (priv
->rates_mask
== mask
) {
9238 IPW_DEBUG_WX("Mask set to current mask.\n");
9239 mutex_unlock(&priv
->mutex
);
9243 priv
->rates_mask
= mask
;
9245 /* Network configuration changed -- force [re]association */
9246 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9247 if (!ipw_disassociate(priv
))
9248 ipw_associate(priv
);
9250 mutex_unlock(&priv
->mutex
);
9254 static int ipw_wx_get_rate(struct net_device
*dev
,
9255 struct iw_request_info
*info
,
9256 union iwreq_data
*wrqu
, char *extra
)
9258 struct ipw_priv
*priv
= libipw_priv(dev
);
9259 mutex_lock(&priv
->mutex
);
9260 wrqu
->bitrate
.value
= priv
->last_rate
;
9261 wrqu
->bitrate
.fixed
= (priv
->config
& CFG_FIXED_RATE
) ? 1 : 0;
9262 mutex_unlock(&priv
->mutex
);
9263 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu
->bitrate
.value
);
9267 static int ipw_wx_set_rts(struct net_device
*dev
,
9268 struct iw_request_info
*info
,
9269 union iwreq_data
*wrqu
, char *extra
)
9271 struct ipw_priv
*priv
= libipw_priv(dev
);
9272 mutex_lock(&priv
->mutex
);
9273 if (wrqu
->rts
.disabled
|| !wrqu
->rts
.fixed
)
9274 priv
->rts_threshold
= DEFAULT_RTS_THRESHOLD
;
9276 if (wrqu
->rts
.value
< MIN_RTS_THRESHOLD
||
9277 wrqu
->rts
.value
> MAX_RTS_THRESHOLD
) {
9278 mutex_unlock(&priv
->mutex
);
9281 priv
->rts_threshold
= wrqu
->rts
.value
;
9284 ipw_send_rts_threshold(priv
, priv
->rts_threshold
);
9285 mutex_unlock(&priv
->mutex
);
9286 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv
->rts_threshold
);
9290 static int ipw_wx_get_rts(struct net_device
*dev
,
9291 struct iw_request_info
*info
,
9292 union iwreq_data
*wrqu
, char *extra
)
9294 struct ipw_priv
*priv
= libipw_priv(dev
);
9295 mutex_lock(&priv
->mutex
);
9296 wrqu
->rts
.value
= priv
->rts_threshold
;
9297 wrqu
->rts
.fixed
= 0; /* no auto select */
9298 wrqu
->rts
.disabled
= (wrqu
->rts
.value
== DEFAULT_RTS_THRESHOLD
);
9299 mutex_unlock(&priv
->mutex
);
9300 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu
->rts
.value
);
9304 static int ipw_wx_set_txpow(struct net_device
*dev
,
9305 struct iw_request_info
*info
,
9306 union iwreq_data
*wrqu
, char *extra
)
9308 struct ipw_priv
*priv
= libipw_priv(dev
);
9311 mutex_lock(&priv
->mutex
);
9312 if (ipw_radio_kill_sw(priv
, wrqu
->power
.disabled
)) {
9317 if (!wrqu
->power
.fixed
)
9318 wrqu
->power
.value
= IPW_TX_POWER_DEFAULT
;
9320 if (wrqu
->power
.flags
!= IW_TXPOW_DBM
) {
9325 if ((wrqu
->power
.value
> IPW_TX_POWER_MAX
) ||
9326 (wrqu
->power
.value
< IPW_TX_POWER_MIN
)) {
9331 priv
->tx_power
= wrqu
->power
.value
;
9332 err
= ipw_set_tx_power(priv
);
9334 mutex_unlock(&priv
->mutex
);
9338 static int ipw_wx_get_txpow(struct net_device
*dev
,
9339 struct iw_request_info
*info
,
9340 union iwreq_data
*wrqu
, char *extra
)
9342 struct ipw_priv
*priv
= libipw_priv(dev
);
9343 mutex_lock(&priv
->mutex
);
9344 wrqu
->power
.value
= priv
->tx_power
;
9345 wrqu
->power
.fixed
= 1;
9346 wrqu
->power
.flags
= IW_TXPOW_DBM
;
9347 wrqu
->power
.disabled
= (priv
->status
& STATUS_RF_KILL_MASK
) ? 1 : 0;
9348 mutex_unlock(&priv
->mutex
);
9350 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9351 wrqu
->power
.disabled
? "OFF" : "ON", wrqu
->power
.value
);
9356 static int ipw_wx_set_frag(struct net_device
*dev
,
9357 struct iw_request_info
*info
,
9358 union iwreq_data
*wrqu
, char *extra
)
9360 struct ipw_priv
*priv
= libipw_priv(dev
);
9361 mutex_lock(&priv
->mutex
);
9362 if (wrqu
->frag
.disabled
|| !wrqu
->frag
.fixed
)
9363 priv
->ieee
->fts
= DEFAULT_FTS
;
9365 if (wrqu
->frag
.value
< MIN_FRAG_THRESHOLD
||
9366 wrqu
->frag
.value
> MAX_FRAG_THRESHOLD
) {
9367 mutex_unlock(&priv
->mutex
);
9371 priv
->ieee
->fts
= wrqu
->frag
.value
& ~0x1;
9374 ipw_send_frag_threshold(priv
, wrqu
->frag
.value
);
9375 mutex_unlock(&priv
->mutex
);
9376 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu
->frag
.value
);
9380 static int ipw_wx_get_frag(struct net_device
*dev
,
9381 struct iw_request_info
*info
,
9382 union iwreq_data
*wrqu
, char *extra
)
9384 struct ipw_priv
*priv
= libipw_priv(dev
);
9385 mutex_lock(&priv
->mutex
);
9386 wrqu
->frag
.value
= priv
->ieee
->fts
;
9387 wrqu
->frag
.fixed
= 0; /* no auto select */
9388 wrqu
->frag
.disabled
= (wrqu
->frag
.value
== DEFAULT_FTS
);
9389 mutex_unlock(&priv
->mutex
);
9390 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu
->frag
.value
);
9395 static int ipw_wx_set_retry(struct net_device
*dev
,
9396 struct iw_request_info
*info
,
9397 union iwreq_data
*wrqu
, char *extra
)
9399 struct ipw_priv
*priv
= libipw_priv(dev
);
9401 if (wrqu
->retry
.flags
& IW_RETRY_LIFETIME
|| wrqu
->retry
.disabled
)
9404 if (!(wrqu
->retry
.flags
& IW_RETRY_LIMIT
))
9407 if (wrqu
->retry
.value
< 0 || wrqu
->retry
.value
>= 255)
9410 mutex_lock(&priv
->mutex
);
9411 if (wrqu
->retry
.flags
& IW_RETRY_SHORT
)
9412 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
9413 else if (wrqu
->retry
.flags
& IW_RETRY_LONG
)
9414 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
9416 priv
->short_retry_limit
= (u8
) wrqu
->retry
.value
;
9417 priv
->long_retry_limit
= (u8
) wrqu
->retry
.value
;
9420 ipw_send_retry_limit(priv
, priv
->short_retry_limit
,
9421 priv
->long_retry_limit
);
9422 mutex_unlock(&priv
->mutex
);
9423 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9424 priv
->short_retry_limit
, priv
->long_retry_limit
);
9428 static int ipw_wx_get_retry(struct net_device
*dev
,
9429 struct iw_request_info
*info
,
9430 union iwreq_data
*wrqu
, char *extra
)
9432 struct ipw_priv
*priv
= libipw_priv(dev
);
9434 mutex_lock(&priv
->mutex
);
9435 wrqu
->retry
.disabled
= 0;
9437 if ((wrqu
->retry
.flags
& IW_RETRY_TYPE
) == IW_RETRY_LIFETIME
) {
9438 mutex_unlock(&priv
->mutex
);
9442 if (wrqu
->retry
.flags
& IW_RETRY_LONG
) {
9443 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_LONG
;
9444 wrqu
->retry
.value
= priv
->long_retry_limit
;
9445 } else if (wrqu
->retry
.flags
& IW_RETRY_SHORT
) {
9446 wrqu
->retry
.flags
= IW_RETRY_LIMIT
| IW_RETRY_SHORT
;
9447 wrqu
->retry
.value
= priv
->short_retry_limit
;
9449 wrqu
->retry
.flags
= IW_RETRY_LIMIT
;
9450 wrqu
->retry
.value
= priv
->short_retry_limit
;
9452 mutex_unlock(&priv
->mutex
);
9454 IPW_DEBUG_WX("GET retry -> %d\n", wrqu
->retry
.value
);
9459 static int ipw_wx_set_scan(struct net_device
*dev
,
9460 struct iw_request_info
*info
,
9461 union iwreq_data
*wrqu
, char *extra
)
9463 struct ipw_priv
*priv
= libipw_priv(dev
);
9464 struct iw_scan_req
*req
= (struct iw_scan_req
*)extra
;
9465 struct delayed_work
*work
= NULL
;
9467 mutex_lock(&priv
->mutex
);
9469 priv
->user_requested_scan
= 1;
9471 if (wrqu
->data
.length
== sizeof(struct iw_scan_req
)) {
9472 if (wrqu
->data
.flags
& IW_SCAN_THIS_ESSID
) {
9473 int len
= min((int)req
->essid_len
,
9474 (int)sizeof(priv
->direct_scan_ssid
));
9475 memcpy(priv
->direct_scan_ssid
, req
->essid
, len
);
9476 priv
->direct_scan_ssid_len
= len
;
9477 work
= &priv
->request_direct_scan
;
9478 } else if (req
->scan_type
== IW_SCAN_TYPE_PASSIVE
) {
9479 work
= &priv
->request_passive_scan
;
9482 /* Normal active broadcast scan */
9483 work
= &priv
->request_scan
;
9486 mutex_unlock(&priv
->mutex
);
9488 IPW_DEBUG_WX("Start scan\n");
9490 schedule_delayed_work(work
, 0);
9495 static int ipw_wx_get_scan(struct net_device
*dev
,
9496 struct iw_request_info
*info
,
9497 union iwreq_data
*wrqu
, char *extra
)
9499 struct ipw_priv
*priv
= libipw_priv(dev
);
9500 return libipw_wx_get_scan(priv
->ieee
, info
, wrqu
, extra
);
9503 static int ipw_wx_set_encode(struct net_device
*dev
,
9504 struct iw_request_info
*info
,
9505 union iwreq_data
*wrqu
, char *key
)
9507 struct ipw_priv
*priv
= libipw_priv(dev
);
9509 u32 cap
= priv
->capability
;
9511 mutex_lock(&priv
->mutex
);
9512 ret
= libipw_wx_set_encode(priv
->ieee
, info
, wrqu
, key
);
9514 /* In IBSS mode, we need to notify the firmware to update
9515 * the beacon info after we changed the capability. */
9516 if (cap
!= priv
->capability
&&
9517 priv
->ieee
->iw_mode
== IW_MODE_ADHOC
&&
9518 priv
->status
& STATUS_ASSOCIATED
)
9519 ipw_disassociate(priv
);
9521 mutex_unlock(&priv
->mutex
);
9525 static int ipw_wx_get_encode(struct net_device
*dev
,
9526 struct iw_request_info
*info
,
9527 union iwreq_data
*wrqu
, char *key
)
9529 struct ipw_priv
*priv
= libipw_priv(dev
);
9530 return libipw_wx_get_encode(priv
->ieee
, info
, wrqu
, key
);
9533 static int ipw_wx_set_power(struct net_device
*dev
,
9534 struct iw_request_info
*info
,
9535 union iwreq_data
*wrqu
, char *extra
)
9537 struct ipw_priv
*priv
= libipw_priv(dev
);
9539 mutex_lock(&priv
->mutex
);
9540 if (wrqu
->power
.disabled
) {
9541 priv
->power_mode
= IPW_POWER_LEVEL(priv
->power_mode
);
9542 err
= ipw_send_power_mode(priv
, IPW_POWER_MODE_CAM
);
9544 IPW_DEBUG_WX("failed setting power mode.\n");
9545 mutex_unlock(&priv
->mutex
);
9548 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9549 mutex_unlock(&priv
->mutex
);
9553 switch (wrqu
->power
.flags
& IW_POWER_MODE
) {
9554 case IW_POWER_ON
: /* If not specified */
9555 case IW_POWER_MODE
: /* If set all mask */
9556 case IW_POWER_ALL_R
: /* If explicitly state all */
9558 default: /* Otherwise we don't support it */
9559 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9561 mutex_unlock(&priv
->mutex
);
9565 /* If the user hasn't specified a power management mode yet, default
9567 if (IPW_POWER_LEVEL(priv
->power_mode
) == IPW_POWER_AC
)
9568 priv
->power_mode
= IPW_POWER_ENABLED
| IPW_POWER_BATTERY
;
9570 priv
->power_mode
= IPW_POWER_ENABLED
| priv
->power_mode
;
9572 err
= ipw_send_power_mode(priv
, IPW_POWER_LEVEL(priv
->power_mode
));
9574 IPW_DEBUG_WX("failed setting power mode.\n");
9575 mutex_unlock(&priv
->mutex
);
9579 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv
->power_mode
);
9580 mutex_unlock(&priv
->mutex
);
9584 static int ipw_wx_get_power(struct net_device
*dev
,
9585 struct iw_request_info
*info
,
9586 union iwreq_data
*wrqu
, char *extra
)
9588 struct ipw_priv
*priv
= libipw_priv(dev
);
9589 mutex_lock(&priv
->mutex
);
9590 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9591 wrqu
->power
.disabled
= 1;
9593 wrqu
->power
.disabled
= 0;
9595 mutex_unlock(&priv
->mutex
);
9596 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv
->power_mode
);
9601 static int ipw_wx_set_powermode(struct net_device
*dev
,
9602 struct iw_request_info
*info
,
9603 union iwreq_data
*wrqu
, char *extra
)
9605 struct ipw_priv
*priv
= libipw_priv(dev
);
9606 int mode
= *(int *)extra
;
9609 mutex_lock(&priv
->mutex
);
9610 if ((mode
< 1) || (mode
> IPW_POWER_LIMIT
))
9611 mode
= IPW_POWER_AC
;
9613 if (IPW_POWER_LEVEL(priv
->power_mode
) != mode
) {
9614 err
= ipw_send_power_mode(priv
, mode
);
9616 IPW_DEBUG_WX("failed setting power mode.\n");
9617 mutex_unlock(&priv
->mutex
);
9620 priv
->power_mode
= IPW_POWER_ENABLED
| mode
;
9622 mutex_unlock(&priv
->mutex
);
9626 #define MAX_WX_STRING 80
9627 static int ipw_wx_get_powermode(struct net_device
*dev
,
9628 struct iw_request_info
*info
,
9629 union iwreq_data
*wrqu
, char *extra
)
9631 struct ipw_priv
*priv
= libipw_priv(dev
);
9632 int level
= IPW_POWER_LEVEL(priv
->power_mode
);
9635 p
+= snprintf(p
, MAX_WX_STRING
, "Power save level: %d ", level
);
9639 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(AC)");
9641 case IPW_POWER_BATTERY
:
9642 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), "(BATTERY)");
9645 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
),
9646 "(Timeout %dms, Period %dms)",
9647 timeout_duration
[level
- 1] / 1000,
9648 period_duration
[level
- 1] / 1000);
9651 if (!(priv
->power_mode
& IPW_POWER_ENABLED
))
9652 p
+= snprintf(p
, MAX_WX_STRING
- (p
- extra
), " OFF");
9654 wrqu
->data
.length
= p
- extra
+ 1;
9659 static int ipw_wx_set_wireless_mode(struct net_device
*dev
,
9660 struct iw_request_info
*info
,
9661 union iwreq_data
*wrqu
, char *extra
)
9663 struct ipw_priv
*priv
= libipw_priv(dev
);
9664 int mode
= *(int *)extra
;
9665 u8 band
= 0, modulation
= 0;
9667 if (mode
== 0 || mode
& ~IEEE_MODE_MASK
) {
9668 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode
);
9671 mutex_lock(&priv
->mutex
);
9672 if (priv
->adapter
== IPW_2915ABG
) {
9673 priv
->ieee
->abg_true
= 1;
9674 if (mode
& IEEE_A
) {
9675 band
|= LIBIPW_52GHZ_BAND
;
9676 modulation
|= LIBIPW_OFDM_MODULATION
;
9678 priv
->ieee
->abg_true
= 0;
9680 if (mode
& IEEE_A
) {
9681 IPW_WARNING("Attempt to set 2200BG into "
9683 mutex_unlock(&priv
->mutex
);
9687 priv
->ieee
->abg_true
= 0;
9690 if (mode
& IEEE_B
) {
9691 band
|= LIBIPW_24GHZ_BAND
;
9692 modulation
|= LIBIPW_CCK_MODULATION
;
9694 priv
->ieee
->abg_true
= 0;
9696 if (mode
& IEEE_G
) {
9697 band
|= LIBIPW_24GHZ_BAND
;
9698 modulation
|= LIBIPW_OFDM_MODULATION
;
9700 priv
->ieee
->abg_true
= 0;
9702 priv
->ieee
->mode
= mode
;
9703 priv
->ieee
->freq_band
= band
;
9704 priv
->ieee
->modulation
= modulation
;
9705 init_supported_rates(priv
, &priv
->rates
);
9707 /* Network configuration changed -- force [re]association */
9708 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9709 if (!ipw_disassociate(priv
)) {
9710 ipw_send_supported_rates(priv
, &priv
->rates
);
9711 ipw_associate(priv
);
9714 /* Update the band LEDs */
9715 ipw_led_band_on(priv
);
9717 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9718 mode
& IEEE_A
? 'a' : '.',
9719 mode
& IEEE_B
? 'b' : '.', mode
& IEEE_G
? 'g' : '.');
9720 mutex_unlock(&priv
->mutex
);
9724 static int ipw_wx_get_wireless_mode(struct net_device
*dev
,
9725 struct iw_request_info
*info
,
9726 union iwreq_data
*wrqu
, char *extra
)
9728 struct ipw_priv
*priv
= libipw_priv(dev
);
9729 mutex_lock(&priv
->mutex
);
9730 switch (priv
->ieee
->mode
) {
9732 strncpy(extra
, "802.11a (1)", MAX_WX_STRING
);
9735 strncpy(extra
, "802.11b (2)", MAX_WX_STRING
);
9737 case IEEE_A
| IEEE_B
:
9738 strncpy(extra
, "802.11ab (3)", MAX_WX_STRING
);
9741 strncpy(extra
, "802.11g (4)", MAX_WX_STRING
);
9743 case IEEE_A
| IEEE_G
:
9744 strncpy(extra
, "802.11ag (5)", MAX_WX_STRING
);
9746 case IEEE_B
| IEEE_G
:
9747 strncpy(extra
, "802.11bg (6)", MAX_WX_STRING
);
9749 case IEEE_A
| IEEE_B
| IEEE_G
:
9750 strncpy(extra
, "802.11abg (7)", MAX_WX_STRING
);
9753 strncpy(extra
, "unknown", MAX_WX_STRING
);
9756 extra
[MAX_WX_STRING
- 1] = '\0';
9758 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra
);
9760 wrqu
->data
.length
= strlen(extra
) + 1;
9761 mutex_unlock(&priv
->mutex
);
9766 static int ipw_wx_set_preamble(struct net_device
*dev
,
9767 struct iw_request_info
*info
,
9768 union iwreq_data
*wrqu
, char *extra
)
9770 struct ipw_priv
*priv
= libipw_priv(dev
);
9771 int mode
= *(int *)extra
;
9772 mutex_lock(&priv
->mutex
);
9773 /* Switching from SHORT -> LONG requires a disassociation */
9775 if (!(priv
->config
& CFG_PREAMBLE_LONG
)) {
9776 priv
->config
|= CFG_PREAMBLE_LONG
;
9778 /* Network configuration changed -- force [re]association */
9780 ("[re]association triggered due to preamble change.\n");
9781 if (!ipw_disassociate(priv
))
9782 ipw_associate(priv
);
9788 priv
->config
&= ~CFG_PREAMBLE_LONG
;
9791 mutex_unlock(&priv
->mutex
);
9795 mutex_unlock(&priv
->mutex
);
9799 static int ipw_wx_get_preamble(struct net_device
*dev
,
9800 struct iw_request_info
*info
,
9801 union iwreq_data
*wrqu
, char *extra
)
9803 struct ipw_priv
*priv
= libipw_priv(dev
);
9804 mutex_lock(&priv
->mutex
);
9805 if (priv
->config
& CFG_PREAMBLE_LONG
)
9806 snprintf(wrqu
->name
, IFNAMSIZ
, "long (1)");
9808 snprintf(wrqu
->name
, IFNAMSIZ
, "auto (0)");
9809 mutex_unlock(&priv
->mutex
);
9813 #ifdef CONFIG_IPW2200_MONITOR
9814 static int ipw_wx_set_monitor(struct net_device
*dev
,
9815 struct iw_request_info
*info
,
9816 union iwreq_data
*wrqu
, char *extra
)
9818 struct ipw_priv
*priv
= libipw_priv(dev
);
9819 int *parms
= (int *)extra
;
9820 int enable
= (parms
[0] > 0);
9821 mutex_lock(&priv
->mutex
);
9822 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable
, parms
[1]);
9824 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9825 #ifdef CONFIG_IPW2200_RADIOTAP
9826 priv
->net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
9828 priv
->net_dev
->type
= ARPHRD_IEEE80211
;
9830 schedule_work(&priv
->adapter_restart
);
9833 ipw_set_channel(priv
, parms
[1]);
9835 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
9836 mutex_unlock(&priv
->mutex
);
9839 priv
->net_dev
->type
= ARPHRD_ETHER
;
9840 schedule_work(&priv
->adapter_restart
);
9842 mutex_unlock(&priv
->mutex
);
9846 #endif /* CONFIG_IPW2200_MONITOR */
9848 static int ipw_wx_reset(struct net_device
*dev
,
9849 struct iw_request_info
*info
,
9850 union iwreq_data
*wrqu
, char *extra
)
9852 struct ipw_priv
*priv
= libipw_priv(dev
);
9853 IPW_DEBUG_WX("RESET\n");
9854 schedule_work(&priv
->adapter_restart
);
9858 static int ipw_wx_sw_reset(struct net_device
*dev
,
9859 struct iw_request_info
*info
,
9860 union iwreq_data
*wrqu
, char *extra
)
9862 struct ipw_priv
*priv
= libipw_priv(dev
);
9863 union iwreq_data wrqu_sec
= {
9865 .flags
= IW_ENCODE_DISABLED
,
9870 IPW_DEBUG_WX("SW_RESET\n");
9872 mutex_lock(&priv
->mutex
);
9874 ret
= ipw_sw_reset(priv
, 2);
9877 ipw_adapter_restart(priv
);
9880 /* The SW reset bit might have been toggled on by the 'disable'
9881 * module parameter, so take appropriate action */
9882 ipw_radio_kill_sw(priv
, priv
->status
& STATUS_RF_KILL_SW
);
9884 mutex_unlock(&priv
->mutex
);
9885 libipw_wx_set_encode(priv
->ieee
, info
, &wrqu_sec
, NULL
);
9886 mutex_lock(&priv
->mutex
);
9888 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
9889 /* Configuration likely changed -- force [re]association */
9890 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9892 if (!ipw_disassociate(priv
))
9893 ipw_associate(priv
);
9896 mutex_unlock(&priv
->mutex
);
9901 /* Rebase the WE IOCTLs to zero for the handler array */
9902 static iw_handler ipw_wx_handlers
[] = {
9903 IW_HANDLER(SIOCGIWNAME
, (iw_handler
)cfg80211_wext_giwname
),
9904 IW_HANDLER(SIOCSIWFREQ
, ipw_wx_set_freq
),
9905 IW_HANDLER(SIOCGIWFREQ
, ipw_wx_get_freq
),
9906 IW_HANDLER(SIOCSIWMODE
, ipw_wx_set_mode
),
9907 IW_HANDLER(SIOCGIWMODE
, ipw_wx_get_mode
),
9908 IW_HANDLER(SIOCSIWSENS
, ipw_wx_set_sens
),
9909 IW_HANDLER(SIOCGIWSENS
, ipw_wx_get_sens
),
9910 IW_HANDLER(SIOCGIWRANGE
, ipw_wx_get_range
),
9911 IW_HANDLER(SIOCSIWAP
, ipw_wx_set_wap
),
9912 IW_HANDLER(SIOCGIWAP
, ipw_wx_get_wap
),
9913 IW_HANDLER(SIOCSIWSCAN
, ipw_wx_set_scan
),
9914 IW_HANDLER(SIOCGIWSCAN
, ipw_wx_get_scan
),
9915 IW_HANDLER(SIOCSIWESSID
, ipw_wx_set_essid
),
9916 IW_HANDLER(SIOCGIWESSID
, ipw_wx_get_essid
),
9917 IW_HANDLER(SIOCSIWNICKN
, ipw_wx_set_nick
),
9918 IW_HANDLER(SIOCGIWNICKN
, ipw_wx_get_nick
),
9919 IW_HANDLER(SIOCSIWRATE
, ipw_wx_set_rate
),
9920 IW_HANDLER(SIOCGIWRATE
, ipw_wx_get_rate
),
9921 IW_HANDLER(SIOCSIWRTS
, ipw_wx_set_rts
),
9922 IW_HANDLER(SIOCGIWRTS
, ipw_wx_get_rts
),
9923 IW_HANDLER(SIOCSIWFRAG
, ipw_wx_set_frag
),
9924 IW_HANDLER(SIOCGIWFRAG
, ipw_wx_get_frag
),
9925 IW_HANDLER(SIOCSIWTXPOW
, ipw_wx_set_txpow
),
9926 IW_HANDLER(SIOCGIWTXPOW
, ipw_wx_get_txpow
),
9927 IW_HANDLER(SIOCSIWRETRY
, ipw_wx_set_retry
),
9928 IW_HANDLER(SIOCGIWRETRY
, ipw_wx_get_retry
),
9929 IW_HANDLER(SIOCSIWENCODE
, ipw_wx_set_encode
),
9930 IW_HANDLER(SIOCGIWENCODE
, ipw_wx_get_encode
),
9931 IW_HANDLER(SIOCSIWPOWER
, ipw_wx_set_power
),
9932 IW_HANDLER(SIOCGIWPOWER
, ipw_wx_get_power
),
9933 IW_HANDLER(SIOCSIWSPY
, iw_handler_set_spy
),
9934 IW_HANDLER(SIOCGIWSPY
, iw_handler_get_spy
),
9935 IW_HANDLER(SIOCSIWTHRSPY
, iw_handler_set_thrspy
),
9936 IW_HANDLER(SIOCGIWTHRSPY
, iw_handler_get_thrspy
),
9937 IW_HANDLER(SIOCSIWGENIE
, ipw_wx_set_genie
),
9938 IW_HANDLER(SIOCGIWGENIE
, ipw_wx_get_genie
),
9939 IW_HANDLER(SIOCSIWMLME
, ipw_wx_set_mlme
),
9940 IW_HANDLER(SIOCSIWAUTH
, ipw_wx_set_auth
),
9941 IW_HANDLER(SIOCGIWAUTH
, ipw_wx_get_auth
),
9942 IW_HANDLER(SIOCSIWENCODEEXT
, ipw_wx_set_encodeext
),
9943 IW_HANDLER(SIOCGIWENCODEEXT
, ipw_wx_get_encodeext
),
9947 IPW_PRIV_SET_POWER
= SIOCIWFIRSTPRIV
,
9951 IPW_PRIV_SET_PREAMBLE
,
9952 IPW_PRIV_GET_PREAMBLE
,
9955 #ifdef CONFIG_IPW2200_MONITOR
9956 IPW_PRIV_SET_MONITOR
,
9960 static struct iw_priv_args ipw_priv_args
[] = {
9962 .cmd
= IPW_PRIV_SET_POWER
,
9963 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
9964 .name
= "set_power"},
9966 .cmd
= IPW_PRIV_GET_POWER
,
9967 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
9968 .name
= "get_power"},
9970 .cmd
= IPW_PRIV_SET_MODE
,
9971 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
9972 .name
= "set_mode"},
9974 .cmd
= IPW_PRIV_GET_MODE
,
9975 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| MAX_WX_STRING
,
9976 .name
= "get_mode"},
9978 .cmd
= IPW_PRIV_SET_PREAMBLE
,
9979 .set_args
= IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 1,
9980 .name
= "set_preamble"},
9982 .cmd
= IPW_PRIV_GET_PREAMBLE
,
9983 .get_args
= IW_PRIV_TYPE_CHAR
| IW_PRIV_SIZE_FIXED
| IFNAMSIZ
,
9984 .name
= "get_preamble"},
9987 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "reset"},
9990 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 0, 0, "sw_reset"},
9991 #ifdef CONFIG_IPW2200_MONITOR
9993 IPW_PRIV_SET_MONITOR
,
9994 IW_PRIV_TYPE_INT
| IW_PRIV_SIZE_FIXED
| 2, 0, "monitor"},
9995 #endif /* CONFIG_IPW2200_MONITOR */
9998 static iw_handler ipw_priv_handler
[] = {
9999 ipw_wx_set_powermode
,
10000 ipw_wx_get_powermode
,
10001 ipw_wx_set_wireless_mode
,
10002 ipw_wx_get_wireless_mode
,
10003 ipw_wx_set_preamble
,
10004 ipw_wx_get_preamble
,
10007 #ifdef CONFIG_IPW2200_MONITOR
10008 ipw_wx_set_monitor
,
10012 static const struct iw_handler_def ipw_wx_handler_def
= {
10013 .standard
= ipw_wx_handlers
,
10014 .num_standard
= ARRAY_SIZE(ipw_wx_handlers
),
10015 .num_private
= ARRAY_SIZE(ipw_priv_handler
),
10016 .num_private_args
= ARRAY_SIZE(ipw_priv_args
),
10017 .private = ipw_priv_handler
,
10018 .private_args
= ipw_priv_args
,
10019 .get_wireless_stats
= ipw_get_wireless_stats
,
10023 * Get wireless statistics.
10024 * Called by /proc/net/wireless
10025 * Also called by SIOCGIWSTATS
10027 static struct iw_statistics
*ipw_get_wireless_stats(struct net_device
*dev
)
10029 struct ipw_priv
*priv
= libipw_priv(dev
);
10030 struct iw_statistics
*wstats
;
10032 wstats
= &priv
->wstats
;
10034 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10035 * netdev->get_wireless_stats seems to be called before fw is
10036 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10037 * and associated; if not associcated, the values are all meaningless
10038 * anyway, so set them all to NULL and INVALID */
10039 if (!(priv
->status
& STATUS_ASSOCIATED
)) {
10040 wstats
->miss
.beacon
= 0;
10041 wstats
->discard
.retries
= 0;
10042 wstats
->qual
.qual
= 0;
10043 wstats
->qual
.level
= 0;
10044 wstats
->qual
.noise
= 0;
10045 wstats
->qual
.updated
= 7;
10046 wstats
->qual
.updated
|= IW_QUAL_NOISE_INVALID
|
10047 IW_QUAL_QUAL_INVALID
| IW_QUAL_LEVEL_INVALID
;
10051 wstats
->qual
.qual
= priv
->quality
;
10052 wstats
->qual
.level
= priv
->exp_avg_rssi
;
10053 wstats
->qual
.noise
= priv
->exp_avg_noise
;
10054 wstats
->qual
.updated
= IW_QUAL_QUAL_UPDATED
| IW_QUAL_LEVEL_UPDATED
|
10055 IW_QUAL_NOISE_UPDATED
| IW_QUAL_DBM
;
10057 wstats
->miss
.beacon
= average_value(&priv
->average_missed_beacons
);
10058 wstats
->discard
.retries
= priv
->last_tx_failures
;
10059 wstats
->discard
.code
= priv
->ieee
->ieee_stats
.rx_discards_undecryptable
;
10061 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10062 goto fail_get_ordinal;
10063 wstats->discard.retries += tx_retry; */
10068 /* net device stuff */
10070 static void init_sys_config(struct ipw_sys_config
*sys_config
)
10072 memset(sys_config
, 0, sizeof(struct ipw_sys_config
));
10073 sys_config
->bt_coexistence
= 0;
10074 sys_config
->answer_broadcast_ssid_probe
= 0;
10075 sys_config
->accept_all_data_frames
= 0;
10076 sys_config
->accept_non_directed_frames
= 1;
10077 sys_config
->exclude_unicast_unencrypted
= 0;
10078 sys_config
->disable_unicast_decryption
= 1;
10079 sys_config
->exclude_multicast_unencrypted
= 0;
10080 sys_config
->disable_multicast_decryption
= 1;
10081 if (antenna
< CFG_SYS_ANTENNA_BOTH
|| antenna
> CFG_SYS_ANTENNA_B
)
10082 antenna
= CFG_SYS_ANTENNA_BOTH
;
10083 sys_config
->antenna_diversity
= antenna
;
10084 sys_config
->pass_crc_to_host
= 0; /* TODO: See if 1 gives us FCS */
10085 sys_config
->dot11g_auto_detection
= 0;
10086 sys_config
->enable_cts_to_self
= 0;
10087 sys_config
->bt_coexist_collision_thr
= 0;
10088 sys_config
->pass_noise_stats_to_host
= 1; /* 1 -- fix for 256 */
10089 sys_config
->silence_threshold
= 0x1e;
10092 static int ipw_net_open(struct net_device
*dev
)
10094 IPW_DEBUG_INFO("dev->open\n");
10095 netif_start_queue(dev
);
10099 static int ipw_net_stop(struct net_device
*dev
)
10101 IPW_DEBUG_INFO("dev->close\n");
10102 netif_stop_queue(dev
);
10109 modify to send one tfd per fragment instead of using chunking. otherwise
10110 we need to heavily modify the libipw_skb_to_txb.
10113 static int ipw_tx_skb(struct ipw_priv
*priv
, struct libipw_txb
*txb
,
10116 struct libipw_hdr_3addrqos
*hdr
= (struct libipw_hdr_3addrqos
*)
10117 txb
->fragments
[0]->data
;
10119 struct tfd_frame
*tfd
;
10120 #ifdef CONFIG_IPW2200_QOS
10121 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
10122 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
10124 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
10126 struct clx2_queue
*q
= &txq
->q
;
10127 u8 id
, hdr_len
, unicast
;
10130 if (!(priv
->status
& STATUS_ASSOCIATED
))
10133 hdr_len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_ctl
));
10134 switch (priv
->ieee
->iw_mode
) {
10135 case IW_MODE_ADHOC
:
10136 unicast
= !is_multicast_ether_addr(hdr
->addr1
);
10137 id
= ipw_find_station(priv
, hdr
->addr1
);
10138 if (id
== IPW_INVALID_STATION
) {
10139 id
= ipw_add_station(priv
, hdr
->addr1
);
10140 if (id
== IPW_INVALID_STATION
) {
10141 IPW_WARNING("Attempt to send data to "
10142 "invalid cell: %pM\n",
10149 case IW_MODE_INFRA
:
10151 unicast
= !is_multicast_ether_addr(hdr
->addr3
);
10156 tfd
= &txq
->bd
[q
->first_empty
];
10157 txq
->txb
[q
->first_empty
] = txb
;
10158 memset(tfd
, 0, sizeof(*tfd
));
10159 tfd
->u
.data
.station_number
= id
;
10161 tfd
->control_flags
.message_type
= TX_FRAME_TYPE
;
10162 tfd
->control_flags
.control_bits
= TFD_NEED_IRQ_MASK
;
10164 tfd
->u
.data
.cmd_id
= DINO_CMD_TX
;
10165 tfd
->u
.data
.len
= cpu_to_le16(txb
->payload_size
);
10167 if (priv
->assoc_request
.ieee_mode
== IPW_B_MODE
)
10168 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_CCK
;
10170 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_MODE_OFDM
;
10172 if (priv
->assoc_request
.preamble_length
== DCT_FLAG_SHORT_PREAMBLE
)
10173 tfd
->u
.data
.tx_flags
|= DCT_FLAG_SHORT_PREAMBLE
;
10175 fc
= le16_to_cpu(hdr
->frame_ctl
);
10176 hdr
->frame_ctl
= cpu_to_le16(fc
& ~IEEE80211_FCTL_MOREFRAGS
);
10178 memcpy(&tfd
->u
.data
.tfd
.tfd_24
.mchdr
, hdr
, hdr_len
);
10180 if (likely(unicast
))
10181 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
10183 if (txb
->encrypted
&& !priv
->ieee
->host_encrypt
) {
10184 switch (priv
->ieee
->sec
.level
) {
10186 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10187 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10188 /* XXX: ACK flag must be set for CCMP even if it
10189 * is a multicast/broadcast packet, because CCMP
10190 * group communication encrypted by GTK is
10191 * actually done by the AP. */
10193 tfd
->u
.data
.tx_flags
|= DCT_FLAG_ACK_REQD
;
10195 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
10196 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_CCM
;
10197 tfd
->u
.data
.key_index
= 0;
10198 tfd
->u
.data
.key_index
|= DCT_WEP_INDEX_USE_IMMEDIATE
;
10201 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10202 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10203 tfd
->u
.data
.tx_flags
&= ~DCT_FLAG_NO_WEP
;
10204 tfd
->u
.data
.tx_flags_ext
|= DCT_FLAG_EXT_SECURITY_TKIP
;
10205 tfd
->u
.data
.key_index
= DCT_WEP_INDEX_USE_IMMEDIATE
;
10208 tfd
->u
.data
.tfd
.tfd_24
.mchdr
.frame_ctl
|=
10209 cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
10210 tfd
->u
.data
.key_index
= priv
->ieee
->crypt_info
.tx_keyidx
;
10211 if (priv
->ieee
->sec
.key_sizes
[priv
->ieee
->crypt_info
.tx_keyidx
] <=
10213 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_64Bit
;
10215 tfd
->u
.data
.key_index
|= DCT_WEP_KEY_128Bit
;
10220 printk(KERN_ERR
"Unknown security level %d\n",
10221 priv
->ieee
->sec
.level
);
10225 /* No hardware encryption */
10226 tfd
->u
.data
.tx_flags
|= DCT_FLAG_NO_WEP
;
10228 #ifdef CONFIG_IPW2200_QOS
10229 if (fc
& IEEE80211_STYPE_QOS_DATA
)
10230 ipw_qos_set_tx_queue_command(priv
, pri
, &(tfd
->u
.data
));
10231 #endif /* CONFIG_IPW2200_QOS */
10234 tfd
->u
.data
.num_chunks
= cpu_to_le32(min((u8
) (NUM_TFD_CHUNKS
- 2),
10236 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10237 txb
->nr_frags
, le32_to_cpu(tfd
->u
.data
.num_chunks
));
10238 for (i
= 0; i
< le32_to_cpu(tfd
->u
.data
.num_chunks
); i
++) {
10239 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10240 i
, le32_to_cpu(tfd
->u
.data
.num_chunks
),
10241 txb
->fragments
[i
]->len
- hdr_len
);
10242 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10243 i
, tfd
->u
.data
.num_chunks
,
10244 txb
->fragments
[i
]->len
- hdr_len
);
10245 printk_buf(IPW_DL_TX
, txb
->fragments
[i
]->data
+ hdr_len
,
10246 txb
->fragments
[i
]->len
- hdr_len
);
10248 tfd
->u
.data
.chunk_ptr
[i
] =
10249 cpu_to_le32(pci_map_single
10251 txb
->fragments
[i
]->data
+ hdr_len
,
10252 txb
->fragments
[i
]->len
- hdr_len
,
10253 PCI_DMA_TODEVICE
));
10254 tfd
->u
.data
.chunk_len
[i
] =
10255 cpu_to_le16(txb
->fragments
[i
]->len
- hdr_len
);
10258 if (i
!= txb
->nr_frags
) {
10259 struct sk_buff
*skb
;
10260 u16 remaining_bytes
= 0;
10263 for (j
= i
; j
< txb
->nr_frags
; j
++)
10264 remaining_bytes
+= txb
->fragments
[j
]->len
- hdr_len
;
10266 printk(KERN_INFO
"Trying to reallocate for %d bytes\n",
10268 skb
= alloc_skb(remaining_bytes
, GFP_ATOMIC
);
10270 tfd
->u
.data
.chunk_len
[i
] = cpu_to_le16(remaining_bytes
);
10271 for (j
= i
; j
< txb
->nr_frags
; j
++) {
10272 int size
= txb
->fragments
[j
]->len
- hdr_len
;
10274 printk(KERN_INFO
"Adding frag %d %d...\n",
10277 txb
->fragments
[j
]->data
+ hdr_len
,
10280 dev_kfree_skb_any(txb
->fragments
[i
]);
10281 txb
->fragments
[i
] = skb
;
10282 tfd
->u
.data
.chunk_ptr
[i
] =
10283 cpu_to_le32(pci_map_single
10284 (priv
->pci_dev
, skb
->data
,
10286 PCI_DMA_TODEVICE
));
10288 le32_add_cpu(&tfd
->u
.data
.num_chunks
, 1);
10293 q
->first_empty
= ipw_queue_inc_wrap(q
->first_empty
, q
->n_bd
);
10294 ipw_write32(priv
, q
->reg_w
, q
->first_empty
);
10296 if (ipw_tx_queue_space(q
) < q
->high_mark
)
10297 netif_stop_queue(priv
->net_dev
);
10299 return NETDEV_TX_OK
;
10302 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10303 libipw_txb_free(txb
);
10304 return NETDEV_TX_OK
;
10307 static int ipw_net_is_queue_full(struct net_device
*dev
, int pri
)
10309 struct ipw_priv
*priv
= libipw_priv(dev
);
10310 #ifdef CONFIG_IPW2200_QOS
10311 int tx_id
= ipw_get_tx_queue_number(priv
, pri
);
10312 struct clx2_tx_queue
*txq
= &priv
->txq
[tx_id
];
10314 struct clx2_tx_queue
*txq
= &priv
->txq
[0];
10315 #endif /* CONFIG_IPW2200_QOS */
10317 if (ipw_tx_queue_space(&txq
->q
) < txq
->q
.high_mark
)
10323 #ifdef CONFIG_IPW2200_PROMISCUOUS
10324 static void ipw_handle_promiscuous_tx(struct ipw_priv
*priv
,
10325 struct libipw_txb
*txb
)
10327 struct libipw_rx_stats dummystats
;
10328 struct ieee80211_hdr
*hdr
;
10330 u16 filter
= priv
->prom_priv
->filter
;
10333 if (filter
& IPW_PROM_NO_TX
)
10336 memset(&dummystats
, 0, sizeof(dummystats
));
10338 /* Filtering of fragment chains is done against the first fragment */
10339 hdr
= (void *)txb
->fragments
[0]->data
;
10340 if (libipw_is_management(le16_to_cpu(hdr
->frame_control
))) {
10341 if (filter
& IPW_PROM_NO_MGMT
)
10343 if (filter
& IPW_PROM_MGMT_HEADER_ONLY
)
10345 } else if (libipw_is_control(le16_to_cpu(hdr
->frame_control
))) {
10346 if (filter
& IPW_PROM_NO_CTL
)
10348 if (filter
& IPW_PROM_CTL_HEADER_ONLY
)
10350 } else if (libipw_is_data(le16_to_cpu(hdr
->frame_control
))) {
10351 if (filter
& IPW_PROM_NO_DATA
)
10353 if (filter
& IPW_PROM_DATA_HEADER_ONLY
)
10357 for(n
=0; n
<txb
->nr_frags
; ++n
) {
10358 struct sk_buff
*src
= txb
->fragments
[n
];
10359 struct sk_buff
*dst
;
10360 struct ieee80211_radiotap_header
*rt_hdr
;
10364 hdr
= (void *)src
->data
;
10365 len
= libipw_get_hdrlen(le16_to_cpu(hdr
->frame_control
));
10369 dst
= alloc_skb(len
+ sizeof(*rt_hdr
) + sizeof(u16
)*2, GFP_ATOMIC
);
10373 rt_hdr
= skb_put(dst
, sizeof(*rt_hdr
));
10375 rt_hdr
->it_version
= PKTHDR_RADIOTAP_VERSION
;
10376 rt_hdr
->it_pad
= 0;
10377 rt_hdr
->it_present
= 0; /* after all, it's just an idea */
10378 rt_hdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL
);
10380 *(__le16
*)skb_put(dst
, sizeof(u16
)) = cpu_to_le16(
10381 ieee80211chan2mhz(priv
->channel
));
10382 if (priv
->channel
> 14) /* 802.11a */
10383 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10384 cpu_to_le16(IEEE80211_CHAN_OFDM
|
10385 IEEE80211_CHAN_5GHZ
);
10386 else if (priv
->ieee
->mode
== IEEE_B
) /* 802.11b */
10387 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10388 cpu_to_le16(IEEE80211_CHAN_CCK
|
10389 IEEE80211_CHAN_2GHZ
);
10391 *(__le16
*)skb_put(dst
, sizeof(u16
)) =
10392 cpu_to_le16(IEEE80211_CHAN_OFDM
|
10393 IEEE80211_CHAN_2GHZ
);
10395 rt_hdr
->it_len
= cpu_to_le16(dst
->len
);
10397 skb_copy_from_linear_data(src
, skb_put(dst
, len
), len
);
10399 if (!libipw_rx(priv
->prom_priv
->ieee
, dst
, &dummystats
))
10400 dev_kfree_skb_any(dst
);
10405 static netdev_tx_t
ipw_net_hard_start_xmit(struct libipw_txb
*txb
,
10406 struct net_device
*dev
, int pri
)
10408 struct ipw_priv
*priv
= libipw_priv(dev
);
10409 unsigned long flags
;
10412 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb
->payload_size
);
10413 spin_lock_irqsave(&priv
->lock
, flags
);
10415 #ifdef CONFIG_IPW2200_PROMISCUOUS
10416 if (rtap_iface
&& netif_running(priv
->prom_net_dev
))
10417 ipw_handle_promiscuous_tx(priv
, txb
);
10420 ret
= ipw_tx_skb(priv
, txb
, pri
);
10421 if (ret
== NETDEV_TX_OK
)
10422 __ipw_led_activity_on(priv
);
10423 spin_unlock_irqrestore(&priv
->lock
, flags
);
10428 static void ipw_net_set_multicast_list(struct net_device
*dev
)
10433 static int ipw_net_set_mac_address(struct net_device
*dev
, void *p
)
10435 struct ipw_priv
*priv
= libipw_priv(dev
);
10436 struct sockaddr
*addr
= p
;
10438 if (!is_valid_ether_addr(addr
->sa_data
))
10439 return -EADDRNOTAVAIL
;
10440 mutex_lock(&priv
->mutex
);
10441 priv
->config
|= CFG_CUSTOM_MAC
;
10442 memcpy(priv
->mac_addr
, addr
->sa_data
, ETH_ALEN
);
10443 printk(KERN_INFO
"%s: Setting MAC to %pM\n",
10444 priv
->net_dev
->name
, priv
->mac_addr
);
10445 schedule_work(&priv
->adapter_restart
);
10446 mutex_unlock(&priv
->mutex
);
10450 static void ipw_ethtool_get_drvinfo(struct net_device
*dev
,
10451 struct ethtool_drvinfo
*info
)
10453 struct ipw_priv
*p
= libipw_priv(dev
);
10458 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
10459 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
10461 len
= sizeof(vers
);
10462 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_VERSION
, vers
, &len
);
10463 len
= sizeof(date
);
10464 ipw_get_ordinal(p
, IPW_ORD_STAT_FW_DATE
, date
, &len
);
10466 snprintf(info
->fw_version
, sizeof(info
->fw_version
), "%s (%s)",
10468 strlcpy(info
->bus_info
, pci_name(p
->pci_dev
),
10469 sizeof(info
->bus_info
));
10472 static u32
ipw_ethtool_get_link(struct net_device
*dev
)
10474 struct ipw_priv
*priv
= libipw_priv(dev
);
10475 return (priv
->status
& STATUS_ASSOCIATED
) != 0;
10478 static int ipw_ethtool_get_eeprom_len(struct net_device
*dev
)
10480 return IPW_EEPROM_IMAGE_SIZE
;
10483 static int ipw_ethtool_get_eeprom(struct net_device
*dev
,
10484 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10486 struct ipw_priv
*p
= libipw_priv(dev
);
10488 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10490 mutex_lock(&p
->mutex
);
10491 memcpy(bytes
, &p
->eeprom
[eeprom
->offset
], eeprom
->len
);
10492 mutex_unlock(&p
->mutex
);
10496 static int ipw_ethtool_set_eeprom(struct net_device
*dev
,
10497 struct ethtool_eeprom
*eeprom
, u8
* bytes
)
10499 struct ipw_priv
*p
= libipw_priv(dev
);
10502 if (eeprom
->offset
+ eeprom
->len
> IPW_EEPROM_IMAGE_SIZE
)
10504 mutex_lock(&p
->mutex
);
10505 memcpy(&p
->eeprom
[eeprom
->offset
], bytes
, eeprom
->len
);
10506 for (i
= 0; i
< IPW_EEPROM_IMAGE_SIZE
; i
++)
10507 ipw_write8(p
, i
+ IPW_EEPROM_DATA
, p
->eeprom
[i
]);
10508 mutex_unlock(&p
->mutex
);
10512 static const struct ethtool_ops ipw_ethtool_ops
= {
10513 .get_link
= ipw_ethtool_get_link
,
10514 .get_drvinfo
= ipw_ethtool_get_drvinfo
,
10515 .get_eeprom_len
= ipw_ethtool_get_eeprom_len
,
10516 .get_eeprom
= ipw_ethtool_get_eeprom
,
10517 .set_eeprom
= ipw_ethtool_set_eeprom
,
10520 static irqreturn_t
ipw_isr(int irq
, void *data
)
10522 struct ipw_priv
*priv
= data
;
10523 u32 inta
, inta_mask
;
10528 spin_lock(&priv
->irq_lock
);
10530 if (!(priv
->status
& STATUS_INT_ENABLED
)) {
10531 /* IRQ is disabled */
10535 inta
= ipw_read32(priv
, IPW_INTA_RW
);
10536 inta_mask
= ipw_read32(priv
, IPW_INTA_MASK_R
);
10538 if (inta
== 0xFFFFFFFF) {
10539 /* Hardware disappeared */
10540 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10544 if (!(inta
& (IPW_INTA_MASK_ALL
& inta_mask
))) {
10545 /* Shared interrupt */
10549 /* tell the device to stop sending interrupts */
10550 __ipw_disable_interrupts(priv
);
10552 /* ack current interrupts */
10553 inta
&= (IPW_INTA_MASK_ALL
& inta_mask
);
10554 ipw_write32(priv
, IPW_INTA_RW
, inta
);
10556 /* Cache INTA value for our tasklet */
10557 priv
->isr_inta
= inta
;
10559 tasklet_schedule(&priv
->irq_tasklet
);
10561 spin_unlock(&priv
->irq_lock
);
10563 return IRQ_HANDLED
;
10565 spin_unlock(&priv
->irq_lock
);
10569 static void ipw_rf_kill(void *adapter
)
10571 struct ipw_priv
*priv
= adapter
;
10572 unsigned long flags
;
10574 spin_lock_irqsave(&priv
->lock
, flags
);
10576 if (rf_kill_active(priv
)) {
10577 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10578 schedule_delayed_work(&priv
->rf_kill
, 2 * HZ
);
10582 /* RF Kill is now disabled, so bring the device back up */
10584 if (!(priv
->status
& STATUS_RF_KILL_MASK
)) {
10585 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10588 /* we can not do an adapter restart while inside an irq lock */
10589 schedule_work(&priv
->adapter_restart
);
10591 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10595 spin_unlock_irqrestore(&priv
->lock
, flags
);
10598 static void ipw_bg_rf_kill(struct work_struct
*work
)
10600 struct ipw_priv
*priv
=
10601 container_of(work
, struct ipw_priv
, rf_kill
.work
);
10602 mutex_lock(&priv
->mutex
);
10604 mutex_unlock(&priv
->mutex
);
10607 static void ipw_link_up(struct ipw_priv
*priv
)
10609 priv
->last_seq_num
= -1;
10610 priv
->last_frag_num
= -1;
10611 priv
->last_packet_time
= 0;
10613 netif_carrier_on(priv
->net_dev
);
10615 cancel_delayed_work(&priv
->request_scan
);
10616 cancel_delayed_work(&priv
->request_direct_scan
);
10617 cancel_delayed_work(&priv
->request_passive_scan
);
10618 cancel_delayed_work(&priv
->scan_event
);
10619 ipw_reset_stats(priv
);
10620 /* Ensure the rate is updated immediately */
10621 priv
->last_rate
= ipw_get_current_rate(priv
);
10622 ipw_gather_stats(priv
);
10623 ipw_led_link_up(priv
);
10624 notify_wx_assoc_event(priv
);
10626 if (priv
->config
& CFG_BACKGROUND_SCAN
)
10627 schedule_delayed_work(&priv
->request_scan
, HZ
);
10630 static void ipw_bg_link_up(struct work_struct
*work
)
10632 struct ipw_priv
*priv
=
10633 container_of(work
, struct ipw_priv
, link_up
);
10634 mutex_lock(&priv
->mutex
);
10636 mutex_unlock(&priv
->mutex
);
10639 static void ipw_link_down(struct ipw_priv
*priv
)
10641 ipw_led_link_down(priv
);
10642 netif_carrier_off(priv
->net_dev
);
10643 notify_wx_assoc_event(priv
);
10645 /* Cancel any queued work ... */
10646 cancel_delayed_work(&priv
->request_scan
);
10647 cancel_delayed_work(&priv
->request_direct_scan
);
10648 cancel_delayed_work(&priv
->request_passive_scan
);
10649 cancel_delayed_work(&priv
->adhoc_check
);
10650 cancel_delayed_work(&priv
->gather_stats
);
10652 ipw_reset_stats(priv
);
10654 if (!(priv
->status
& STATUS_EXIT_PENDING
)) {
10655 /* Queue up another scan... */
10656 schedule_delayed_work(&priv
->request_scan
, 0);
10658 cancel_delayed_work(&priv
->scan_event
);
10661 static void ipw_bg_link_down(struct work_struct
*work
)
10663 struct ipw_priv
*priv
=
10664 container_of(work
, struct ipw_priv
, link_down
);
10665 mutex_lock(&priv
->mutex
);
10666 ipw_link_down(priv
);
10667 mutex_unlock(&priv
->mutex
);
10670 static int ipw_setup_deferred_work(struct ipw_priv
*priv
)
10674 init_waitqueue_head(&priv
->wait_command_queue
);
10675 init_waitqueue_head(&priv
->wait_state
);
10677 INIT_DELAYED_WORK(&priv
->adhoc_check
, ipw_bg_adhoc_check
);
10678 INIT_WORK(&priv
->associate
, ipw_bg_associate
);
10679 INIT_WORK(&priv
->disassociate
, ipw_bg_disassociate
);
10680 INIT_WORK(&priv
->system_config
, ipw_system_config
);
10681 INIT_WORK(&priv
->rx_replenish
, ipw_bg_rx_queue_replenish
);
10682 INIT_WORK(&priv
->adapter_restart
, ipw_bg_adapter_restart
);
10683 INIT_DELAYED_WORK(&priv
->rf_kill
, ipw_bg_rf_kill
);
10684 INIT_WORK(&priv
->up
, ipw_bg_up
);
10685 INIT_WORK(&priv
->down
, ipw_bg_down
);
10686 INIT_DELAYED_WORK(&priv
->request_scan
, ipw_request_scan
);
10687 INIT_DELAYED_WORK(&priv
->request_direct_scan
, ipw_request_direct_scan
);
10688 INIT_DELAYED_WORK(&priv
->request_passive_scan
, ipw_request_passive_scan
);
10689 INIT_DELAYED_WORK(&priv
->scan_event
, ipw_scan_event
);
10690 INIT_DELAYED_WORK(&priv
->gather_stats
, ipw_bg_gather_stats
);
10691 INIT_WORK(&priv
->abort_scan
, ipw_bg_abort_scan
);
10692 INIT_WORK(&priv
->roam
, ipw_bg_roam
);
10693 INIT_DELAYED_WORK(&priv
->scan_check
, ipw_bg_scan_check
);
10694 INIT_WORK(&priv
->link_up
, ipw_bg_link_up
);
10695 INIT_WORK(&priv
->link_down
, ipw_bg_link_down
);
10696 INIT_DELAYED_WORK(&priv
->led_link_on
, ipw_bg_led_link_on
);
10697 INIT_DELAYED_WORK(&priv
->led_link_off
, ipw_bg_led_link_off
);
10698 INIT_DELAYED_WORK(&priv
->led_act_off
, ipw_bg_led_activity_off
);
10699 INIT_WORK(&priv
->merge_networks
, ipw_merge_adhoc_network
);
10701 #ifdef CONFIG_IPW2200_QOS
10702 INIT_WORK(&priv
->qos_activate
, ipw_bg_qos_activate
);
10703 #endif /* CONFIG_IPW2200_QOS */
10705 tasklet_init(&priv
->irq_tasklet
, (void (*)(unsigned long))
10706 ipw_irq_tasklet
, (unsigned long)priv
);
10711 static void shim__set_security(struct net_device
*dev
,
10712 struct libipw_security
*sec
)
10714 struct ipw_priv
*priv
= libipw_priv(dev
);
10716 for (i
= 0; i
< 4; i
++) {
10717 if (sec
->flags
& (1 << i
)) {
10718 priv
->ieee
->sec
.encode_alg
[i
] = sec
->encode_alg
[i
];
10719 priv
->ieee
->sec
.key_sizes
[i
] = sec
->key_sizes
[i
];
10720 if (sec
->key_sizes
[i
] == 0)
10721 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10723 memcpy(priv
->ieee
->sec
.keys
[i
], sec
->keys
[i
],
10724 sec
->key_sizes
[i
]);
10725 priv
->ieee
->sec
.flags
|= (1 << i
);
10727 priv
->status
|= STATUS_SECURITY_UPDATED
;
10728 } else if (sec
->level
!= SEC_LEVEL_1
)
10729 priv
->ieee
->sec
.flags
&= ~(1 << i
);
10732 if (sec
->flags
& SEC_ACTIVE_KEY
) {
10733 if (sec
->active_key
<= 3) {
10734 priv
->ieee
->sec
.active_key
= sec
->active_key
;
10735 priv
->ieee
->sec
.flags
|= SEC_ACTIVE_KEY
;
10737 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10738 priv
->status
|= STATUS_SECURITY_UPDATED
;
10740 priv
->ieee
->sec
.flags
&= ~SEC_ACTIVE_KEY
;
10742 if ((sec
->flags
& SEC_AUTH_MODE
) &&
10743 (priv
->ieee
->sec
.auth_mode
!= sec
->auth_mode
)) {
10744 priv
->ieee
->sec
.auth_mode
= sec
->auth_mode
;
10745 priv
->ieee
->sec
.flags
|= SEC_AUTH_MODE
;
10746 if (sec
->auth_mode
== WLAN_AUTH_SHARED_KEY
)
10747 priv
->capability
|= CAP_SHARED_KEY
;
10749 priv
->capability
&= ~CAP_SHARED_KEY
;
10750 priv
->status
|= STATUS_SECURITY_UPDATED
;
10753 if (sec
->flags
& SEC_ENABLED
&& priv
->ieee
->sec
.enabled
!= sec
->enabled
) {
10754 priv
->ieee
->sec
.flags
|= SEC_ENABLED
;
10755 priv
->ieee
->sec
.enabled
= sec
->enabled
;
10756 priv
->status
|= STATUS_SECURITY_UPDATED
;
10758 priv
->capability
|= CAP_PRIVACY_ON
;
10760 priv
->capability
&= ~CAP_PRIVACY_ON
;
10763 if (sec
->flags
& SEC_ENCRYPT
)
10764 priv
->ieee
->sec
.encrypt
= sec
->encrypt
;
10766 if (sec
->flags
& SEC_LEVEL
&& priv
->ieee
->sec
.level
!= sec
->level
) {
10767 priv
->ieee
->sec
.level
= sec
->level
;
10768 priv
->ieee
->sec
.flags
|= SEC_LEVEL
;
10769 priv
->status
|= STATUS_SECURITY_UPDATED
;
10772 if (!priv
->ieee
->host_encrypt
&& (sec
->flags
& SEC_ENCRYPT
))
10773 ipw_set_hwcrypto_keys(priv
);
10775 /* To match current functionality of ipw2100 (which works well w/
10776 * various supplicants, we don't force a disassociate if the
10777 * privacy capability changes ... */
10779 if ((priv
->status
& (STATUS_ASSOCIATED
| STATUS_ASSOCIATING
)) &&
10780 (((priv
->assoc_request
.capability
&
10781 cpu_to_le16(WLAN_CAPABILITY_PRIVACY
)) && !sec
->enabled
) ||
10782 (!(priv
->assoc_request
.capability
&
10783 cpu_to_le16(WLAN_CAPABILITY_PRIVACY
)) && sec
->enabled
))) {
10784 IPW_DEBUG_ASSOC("Disassociating due to capability "
10786 ipw_disassociate(priv
);
10791 static int init_supported_rates(struct ipw_priv
*priv
,
10792 struct ipw_supported_rates
*rates
)
10794 /* TODO: Mask out rates based on priv->rates_mask */
10796 memset(rates
, 0, sizeof(*rates
));
10797 /* configure supported rates */
10798 switch (priv
->ieee
->freq_band
) {
10799 case LIBIPW_52GHZ_BAND
:
10800 rates
->ieee_mode
= IPW_A_MODE
;
10801 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10802 ipw_add_ofdm_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10803 LIBIPW_OFDM_DEFAULT_RATES_MASK
);
10806 default: /* Mixed or 2.4Ghz */
10807 rates
->ieee_mode
= IPW_G_MODE
;
10808 rates
->purpose
= IPW_RATE_CAPABILITIES
;
10809 ipw_add_cck_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10810 LIBIPW_CCK_DEFAULT_RATES_MASK
);
10811 if (priv
->ieee
->modulation
& LIBIPW_OFDM_MODULATION
) {
10812 ipw_add_ofdm_scan_rates(rates
, LIBIPW_CCK_MODULATION
,
10813 LIBIPW_OFDM_DEFAULT_RATES_MASK
);
10821 static int ipw_config(struct ipw_priv
*priv
)
10823 /* This is only called from ipw_up, which resets/reloads the firmware
10824 so, we don't need to first disable the card before we configure
10826 if (ipw_set_tx_power(priv
))
10829 /* initialize adapter address */
10830 if (ipw_send_adapter_address(priv
, priv
->net_dev
->dev_addr
))
10833 /* set basic system config settings */
10834 init_sys_config(&priv
->sys_config
);
10836 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10837 * Does not support BT priority yet (don't abort or defer our Tx) */
10839 unsigned char bt_caps
= priv
->eeprom
[EEPROM_SKU_CAPABILITY
];
10841 if (bt_caps
& EEPROM_SKU_CAP_BT_CHANNEL_SIG
)
10842 priv
->sys_config
.bt_coexistence
10843 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL
;
10844 if (bt_caps
& EEPROM_SKU_CAP_BT_OOB
)
10845 priv
->sys_config
.bt_coexistence
10846 |= CFG_BT_COEXISTENCE_OOB
;
10849 #ifdef CONFIG_IPW2200_PROMISCUOUS
10850 if (priv
->prom_net_dev
&& netif_running(priv
->prom_net_dev
)) {
10851 priv
->sys_config
.accept_all_data_frames
= 1;
10852 priv
->sys_config
.accept_non_directed_frames
= 1;
10853 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
10854 priv
->sys_config
.accept_all_mgmt_frames
= 1;
10858 if (priv
->ieee
->iw_mode
== IW_MODE_ADHOC
)
10859 priv
->sys_config
.answer_broadcast_ssid_probe
= 1;
10861 priv
->sys_config
.answer_broadcast_ssid_probe
= 0;
10863 if (ipw_send_system_config(priv
))
10866 init_supported_rates(priv
, &priv
->rates
);
10867 if (ipw_send_supported_rates(priv
, &priv
->rates
))
10870 /* Set request-to-send threshold */
10871 if (priv
->rts_threshold
) {
10872 if (ipw_send_rts_threshold(priv
, priv
->rts_threshold
))
10875 #ifdef CONFIG_IPW2200_QOS
10876 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10877 ipw_qos_activate(priv
, NULL
);
10878 #endif /* CONFIG_IPW2200_QOS */
10880 if (ipw_set_random_seed(priv
))
10883 /* final state transition to the RUN state */
10884 if (ipw_send_host_complete(priv
))
10887 priv
->status
|= STATUS_INIT
;
10889 ipw_led_init(priv
);
10890 ipw_led_radio_on(priv
);
10891 priv
->notif_missed_beacons
= 0;
10893 /* Set hardware WEP key if it is configured. */
10894 if ((priv
->capability
& CAP_PRIVACY_ON
) &&
10895 (priv
->ieee
->sec
.level
== SEC_LEVEL_1
) &&
10896 !(priv
->ieee
->host_encrypt
|| priv
->ieee
->host_decrypt
))
10897 ipw_set_hwcrypto_keys(priv
);
10908 * These tables have been tested in conjunction with the
10909 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10911 * Altering this values, using it on other hardware, or in geographies
10912 * not intended for resale of the above mentioned Intel adapters has
10915 * Remember to update the table in README.ipw2200 when changing this
10919 static const struct libipw_geo ipw_geos
[] = {
10923 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10924 {2427, 4}, {2432, 5}, {2437, 6},
10925 {2442, 7}, {2447, 8}, {2452, 9},
10926 {2457, 10}, {2462, 11}},
10929 { /* Custom US/Canada */
10932 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10933 {2427, 4}, {2432, 5}, {2437, 6},
10934 {2442, 7}, {2447, 8}, {2452, 9},
10935 {2457, 10}, {2462, 11}},
10941 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
10942 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
10943 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
10944 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
}},
10947 { /* Rest of World */
10950 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10951 {2427, 4}, {2432, 5}, {2437, 6},
10952 {2442, 7}, {2447, 8}, {2452, 9},
10953 {2457, 10}, {2462, 11}, {2467, 12},
10957 { /* Custom USA & Europe & High */
10960 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10961 {2427, 4}, {2432, 5}, {2437, 6},
10962 {2442, 7}, {2447, 8}, {2452, 9},
10963 {2457, 10}, {2462, 11}},
10969 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
10970 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
10971 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
10972 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
10980 { /* Custom NA & Europe */
10983 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
10984 {2427, 4}, {2432, 5}, {2437, 6},
10985 {2442, 7}, {2447, 8}, {2452, 9},
10986 {2457, 10}, {2462, 11}},
10992 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
10993 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
10994 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
10995 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
10996 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
10997 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
10998 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
10999 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11000 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11003 { /* Custom Japan */
11006 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11007 {2427, 4}, {2432, 5}, {2437, 6},
11008 {2442, 7}, {2447, 8}, {2452, 9},
11009 {2457, 10}, {2462, 11}},
11011 .a
= {{5170, 34}, {5190, 38},
11012 {5210, 42}, {5230, 46}},
11018 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11019 {2427, 4}, {2432, 5}, {2437, 6},
11020 {2442, 7}, {2447, 8}, {2452, 9},
11021 {2457, 10}, {2462, 11}},
11027 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11028 {2427, 4}, {2432, 5}, {2437, 6},
11029 {2442, 7}, {2447, 8}, {2452, 9},
11030 {2457, 10}, {2462, 11}, {2467, 12},
11037 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11038 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11039 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11040 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11041 {5500, 100, LIBIPW_CH_PASSIVE_ONLY
},
11042 {5520, 104, LIBIPW_CH_PASSIVE_ONLY
},
11043 {5540, 108, LIBIPW_CH_PASSIVE_ONLY
},
11044 {5560, 112, LIBIPW_CH_PASSIVE_ONLY
},
11045 {5580, 116, LIBIPW_CH_PASSIVE_ONLY
},
11046 {5600, 120, LIBIPW_CH_PASSIVE_ONLY
},
11047 {5620, 124, LIBIPW_CH_PASSIVE_ONLY
},
11048 {5640, 128, LIBIPW_CH_PASSIVE_ONLY
},
11049 {5660, 132, LIBIPW_CH_PASSIVE_ONLY
},
11050 {5680, 136, LIBIPW_CH_PASSIVE_ONLY
},
11051 {5700, 140, LIBIPW_CH_PASSIVE_ONLY
}},
11054 { /* Custom Japan */
11057 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11058 {2427, 4}, {2432, 5}, {2437, 6},
11059 {2442, 7}, {2447, 8}, {2452, 9},
11060 {2457, 10}, {2462, 11}, {2467, 12},
11061 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY
}},
11063 .a
= {{5170, 34}, {5190, 38},
11064 {5210, 42}, {5230, 46}},
11067 { /* Rest of World */
11070 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11071 {2427, 4}, {2432, 5}, {2437, 6},
11072 {2442, 7}, {2447, 8}, {2452, 9},
11073 {2457, 10}, {2462, 11}, {2467, 12},
11074 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY
|
11075 LIBIPW_CH_PASSIVE_ONLY
}},
11081 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11082 {2427, 4}, {2432, 5}, {2437, 6},
11083 {2442, 7}, {2447, 8}, {2452, 9},
11084 {2457, 10}, {2462, 11},
11085 {2467, 12, LIBIPW_CH_PASSIVE_ONLY
},
11086 {2472, 13, LIBIPW_CH_PASSIVE_ONLY
}},
11088 .a
= {{5745, 149}, {5765, 153},
11089 {5785, 157}, {5805, 161}},
11092 { /* Custom Europe */
11095 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11096 {2427, 4}, {2432, 5}, {2437, 6},
11097 {2442, 7}, {2447, 8}, {2452, 9},
11098 {2457, 10}, {2462, 11},
11099 {2467, 12}, {2472, 13}},
11101 .a
= {{5180, 36}, {5200, 40},
11102 {5220, 44}, {5240, 48}},
11108 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11109 {2427, 4}, {2432, 5}, {2437, 6},
11110 {2442, 7}, {2447, 8}, {2452, 9},
11111 {2457, 10}, {2462, 11},
11112 {2467, 12, LIBIPW_CH_PASSIVE_ONLY
},
11113 {2472, 13, LIBIPW_CH_PASSIVE_ONLY
}},
11115 .a
= {{5180, 36, LIBIPW_CH_PASSIVE_ONLY
},
11116 {5200, 40, LIBIPW_CH_PASSIVE_ONLY
},
11117 {5220, 44, LIBIPW_CH_PASSIVE_ONLY
},
11118 {5240, 48, LIBIPW_CH_PASSIVE_ONLY
},
11119 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11120 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11121 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11122 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11123 {5500, 100, LIBIPW_CH_PASSIVE_ONLY
},
11124 {5520, 104, LIBIPW_CH_PASSIVE_ONLY
},
11125 {5540, 108, LIBIPW_CH_PASSIVE_ONLY
},
11126 {5560, 112, LIBIPW_CH_PASSIVE_ONLY
},
11127 {5580, 116, LIBIPW_CH_PASSIVE_ONLY
},
11128 {5600, 120, LIBIPW_CH_PASSIVE_ONLY
},
11129 {5620, 124, LIBIPW_CH_PASSIVE_ONLY
},
11130 {5640, 128, LIBIPW_CH_PASSIVE_ONLY
},
11131 {5660, 132, LIBIPW_CH_PASSIVE_ONLY
},
11132 {5680, 136, LIBIPW_CH_PASSIVE_ONLY
},
11133 {5700, 140, LIBIPW_CH_PASSIVE_ONLY
},
11134 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11135 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11136 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11137 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11138 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11144 .bg
= {{2412, 1}, {2417, 2}, {2422, 3},
11145 {2427, 4}, {2432, 5}, {2437, 6},
11146 {2442, 7}, {2447, 8}, {2452, 9},
11147 {2457, 10}, {2462, 11}},
11149 .a
= {{5180, 36, LIBIPW_CH_PASSIVE_ONLY
},
11150 {5200, 40, LIBIPW_CH_PASSIVE_ONLY
},
11151 {5220, 44, LIBIPW_CH_PASSIVE_ONLY
},
11152 {5240, 48, LIBIPW_CH_PASSIVE_ONLY
},
11153 {5260, 52, LIBIPW_CH_PASSIVE_ONLY
},
11154 {5280, 56, LIBIPW_CH_PASSIVE_ONLY
},
11155 {5300, 60, LIBIPW_CH_PASSIVE_ONLY
},
11156 {5320, 64, LIBIPW_CH_PASSIVE_ONLY
},
11157 {5745, 149, LIBIPW_CH_PASSIVE_ONLY
},
11158 {5765, 153, LIBIPW_CH_PASSIVE_ONLY
},
11159 {5785, 157, LIBIPW_CH_PASSIVE_ONLY
},
11160 {5805, 161, LIBIPW_CH_PASSIVE_ONLY
},
11161 {5825, 165, LIBIPW_CH_PASSIVE_ONLY
}},
11165 static void ipw_set_geo(struct ipw_priv
*priv
)
11169 for (j
= 0; j
< ARRAY_SIZE(ipw_geos
); j
++) {
11170 if (!memcmp(&priv
->eeprom
[EEPROM_COUNTRY_CODE
],
11171 ipw_geos
[j
].name
, 3))
11175 if (j
== ARRAY_SIZE(ipw_geos
)) {
11176 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11177 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 0],
11178 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 1],
11179 priv
->eeprom
[EEPROM_COUNTRY_CODE
+ 2]);
11183 libipw_set_geo(priv
->ieee
, &ipw_geos
[j
]);
11186 #define MAX_HW_RESTARTS 5
11187 static int ipw_up(struct ipw_priv
*priv
)
11191 /* Age scan list entries found before suspend */
11192 if (priv
->suspend_time
) {
11193 libipw_networks_age(priv
->ieee
, priv
->suspend_time
);
11194 priv
->suspend_time
= 0;
11197 if (priv
->status
& STATUS_EXIT_PENDING
)
11200 if (cmdlog
&& !priv
->cmdlog
) {
11201 priv
->cmdlog
= kcalloc(cmdlog
, sizeof(*priv
->cmdlog
),
11203 if (priv
->cmdlog
== NULL
) {
11204 IPW_ERROR("Error allocating %d command log entries.\n",
11208 priv
->cmdlog_len
= cmdlog
;
11212 for (i
= 0; i
< MAX_HW_RESTARTS
; i
++) {
11213 /* Load the microcode, firmware, and eeprom.
11214 * Also start the clocks. */
11215 rc
= ipw_load(priv
);
11217 IPW_ERROR("Unable to load firmware: %d\n", rc
);
11221 ipw_init_ordinals(priv
);
11222 if (!(priv
->config
& CFG_CUSTOM_MAC
))
11223 eeprom_parse_mac(priv
, priv
->mac_addr
);
11224 memcpy(priv
->net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
11228 if (priv
->status
& STATUS_RF_KILL_SW
) {
11229 IPW_WARNING("Radio disabled by module parameter.\n");
11231 } else if (rf_kill_active(priv
)) {
11232 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11233 "Kill switch must be turned off for "
11234 "wireless networking to work.\n");
11235 schedule_delayed_work(&priv
->rf_kill
, 2 * HZ
);
11239 rc
= ipw_config(priv
);
11241 IPW_DEBUG_INFO("Configured device on count %i\n", i
);
11243 /* If configure to try and auto-associate, kick
11245 schedule_delayed_work(&priv
->request_scan
, 0);
11250 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc
);
11251 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11252 i
, MAX_HW_RESTARTS
);
11254 /* We had an error bringing up the hardware, so take it
11255 * all the way back down so we can try again */
11259 /* tried to restart and config the device for as long as our
11260 * patience could withstand */
11261 IPW_ERROR("Unable to initialize device after %d attempts.\n", i
);
11266 static void ipw_bg_up(struct work_struct
*work
)
11268 struct ipw_priv
*priv
=
11269 container_of(work
, struct ipw_priv
, up
);
11270 mutex_lock(&priv
->mutex
);
11272 mutex_unlock(&priv
->mutex
);
11275 static void ipw_deinit(struct ipw_priv
*priv
)
11279 if (priv
->status
& STATUS_SCANNING
) {
11280 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11281 ipw_abort_scan(priv
);
11284 if (priv
->status
& STATUS_ASSOCIATED
) {
11285 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11286 ipw_disassociate(priv
);
11289 ipw_led_shutdown(priv
);
11291 /* Wait up to 1s for status to change to not scanning and not
11292 * associated (disassociation can take a while for a ful 802.11
11294 for (i
= 1000; i
&& (priv
->status
&
11295 (STATUS_DISASSOCIATING
|
11296 STATUS_ASSOCIATED
| STATUS_SCANNING
)); i
--)
11299 if (priv
->status
& (STATUS_DISASSOCIATING
|
11300 STATUS_ASSOCIATED
| STATUS_SCANNING
))
11301 IPW_DEBUG_INFO("Still associated or scanning...\n");
11303 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i
);
11305 /* Attempt to disable the card */
11306 ipw_send_card_disable(priv
, 0);
11308 priv
->status
&= ~STATUS_INIT
;
11311 static void ipw_down(struct ipw_priv
*priv
)
11313 int exit_pending
= priv
->status
& STATUS_EXIT_PENDING
;
11315 priv
->status
|= STATUS_EXIT_PENDING
;
11317 if (ipw_is_init(priv
))
11320 /* Wipe out the EXIT_PENDING status bit if we are not actually
11321 * exiting the module */
11323 priv
->status
&= ~STATUS_EXIT_PENDING
;
11325 /* tell the device to stop sending interrupts */
11326 ipw_disable_interrupts(priv
);
11328 /* Clear all bits but the RF Kill */
11329 priv
->status
&= STATUS_RF_KILL_MASK
| STATUS_EXIT_PENDING
;
11330 netif_carrier_off(priv
->net_dev
);
11332 ipw_stop_nic(priv
);
11334 ipw_led_radio_off(priv
);
11337 static void ipw_bg_down(struct work_struct
*work
)
11339 struct ipw_priv
*priv
=
11340 container_of(work
, struct ipw_priv
, down
);
11341 mutex_lock(&priv
->mutex
);
11343 mutex_unlock(&priv
->mutex
);
11346 static int ipw_wdev_init(struct net_device
*dev
)
11349 struct ipw_priv
*priv
= libipw_priv(dev
);
11350 const struct libipw_geo
*geo
= libipw_get_geo(priv
->ieee
);
11351 struct wireless_dev
*wdev
= &priv
->ieee
->wdev
;
11353 memcpy(wdev
->wiphy
->perm_addr
, priv
->mac_addr
, ETH_ALEN
);
11355 /* fill-out priv->ieee->bg_band */
11356 if (geo
->bg_channels
) {
11357 struct ieee80211_supported_band
*bg_band
= &priv
->ieee
->bg_band
;
11359 bg_band
->band
= NL80211_BAND_2GHZ
;
11360 bg_band
->n_channels
= geo
->bg_channels
;
11361 bg_band
->channels
= kcalloc(geo
->bg_channels
,
11362 sizeof(struct ieee80211_channel
),
11364 if (!bg_band
->channels
) {
11368 /* translate geo->bg to bg_band.channels */
11369 for (i
= 0; i
< geo
->bg_channels
; i
++) {
11370 bg_band
->channels
[i
].band
= NL80211_BAND_2GHZ
;
11371 bg_band
->channels
[i
].center_freq
= geo
->bg
[i
].freq
;
11372 bg_band
->channels
[i
].hw_value
= geo
->bg
[i
].channel
;
11373 bg_band
->channels
[i
].max_power
= geo
->bg
[i
].max_power
;
11374 if (geo
->bg
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
)
11375 bg_band
->channels
[i
].flags
|=
11376 IEEE80211_CHAN_NO_IR
;
11377 if (geo
->bg
[i
].flags
& LIBIPW_CH_NO_IBSS
)
11378 bg_band
->channels
[i
].flags
|=
11379 IEEE80211_CHAN_NO_IR
;
11380 if (geo
->bg
[i
].flags
& LIBIPW_CH_RADAR_DETECT
)
11381 bg_band
->channels
[i
].flags
|=
11382 IEEE80211_CHAN_RADAR
;
11383 /* No equivalent for LIBIPW_CH_80211H_RULES,
11384 LIBIPW_CH_UNIFORM_SPREADING, or
11385 LIBIPW_CH_B_ONLY... */
11387 /* point at bitrate info */
11388 bg_band
->bitrates
= ipw2200_bg_rates
;
11389 bg_band
->n_bitrates
= ipw2200_num_bg_rates
;
11391 wdev
->wiphy
->bands
[NL80211_BAND_2GHZ
] = bg_band
;
11394 /* fill-out priv->ieee->a_band */
11395 if (geo
->a_channels
) {
11396 struct ieee80211_supported_band
*a_band
= &priv
->ieee
->a_band
;
11398 a_band
->band
= NL80211_BAND_5GHZ
;
11399 a_band
->n_channels
= geo
->a_channels
;
11400 a_band
->channels
= kcalloc(geo
->a_channels
,
11401 sizeof(struct ieee80211_channel
),
11403 if (!a_band
->channels
) {
11407 /* translate geo->a to a_band.channels */
11408 for (i
= 0; i
< geo
->a_channels
; i
++) {
11409 a_band
->channels
[i
].band
= NL80211_BAND_5GHZ
;
11410 a_band
->channels
[i
].center_freq
= geo
->a
[i
].freq
;
11411 a_band
->channels
[i
].hw_value
= geo
->a
[i
].channel
;
11412 a_band
->channels
[i
].max_power
= geo
->a
[i
].max_power
;
11413 if (geo
->a
[i
].flags
& LIBIPW_CH_PASSIVE_ONLY
)
11414 a_band
->channels
[i
].flags
|=
11415 IEEE80211_CHAN_NO_IR
;
11416 if (geo
->a
[i
].flags
& LIBIPW_CH_NO_IBSS
)
11417 a_band
->channels
[i
].flags
|=
11418 IEEE80211_CHAN_NO_IR
;
11419 if (geo
->a
[i
].flags
& LIBIPW_CH_RADAR_DETECT
)
11420 a_band
->channels
[i
].flags
|=
11421 IEEE80211_CHAN_RADAR
;
11422 /* No equivalent for LIBIPW_CH_80211H_RULES,
11423 LIBIPW_CH_UNIFORM_SPREADING, or
11424 LIBIPW_CH_B_ONLY... */
11426 /* point at bitrate info */
11427 a_band
->bitrates
= ipw2200_a_rates
;
11428 a_band
->n_bitrates
= ipw2200_num_a_rates
;
11430 wdev
->wiphy
->bands
[NL80211_BAND_5GHZ
] = a_band
;
11433 wdev
->wiphy
->cipher_suites
= ipw_cipher_suites
;
11434 wdev
->wiphy
->n_cipher_suites
= ARRAY_SIZE(ipw_cipher_suites
);
11436 set_wiphy_dev(wdev
->wiphy
, &priv
->pci_dev
->dev
);
11438 /* With that information in place, we can now register the wiphy... */
11439 if (wiphy_register(wdev
->wiphy
))
11445 /* PCI driver stuff */
11446 static const struct pci_device_id card_ids
[] = {
11447 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11448 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11449 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11450 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11451 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11457 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11458 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11459 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11460 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11461 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11462 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11463 {PCI_VENDOR_ID_INTEL
, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11464 {PCI_VDEVICE(INTEL
, 0x104f), 0},
11465 {PCI_VDEVICE(INTEL
, 0x4220), 0}, /* BG */
11466 {PCI_VDEVICE(INTEL
, 0x4221), 0}, /* BG */
11467 {PCI_VDEVICE(INTEL
, 0x4223), 0}, /* ABG */
11468 {PCI_VDEVICE(INTEL
, 0x4224), 0}, /* ABG */
11470 /* required last entry */
11474 MODULE_DEVICE_TABLE(pci
, card_ids
);
11476 static struct attribute
*ipw_sysfs_entries
[] = {
11477 &dev_attr_rf_kill
.attr
,
11478 &dev_attr_direct_dword
.attr
,
11479 &dev_attr_indirect_byte
.attr
,
11480 &dev_attr_indirect_dword
.attr
,
11481 &dev_attr_mem_gpio_reg
.attr
,
11482 &dev_attr_command_event_reg
.attr
,
11483 &dev_attr_nic_type
.attr
,
11484 &dev_attr_status
.attr
,
11485 &dev_attr_cfg
.attr
,
11486 &dev_attr_error
.attr
,
11487 &dev_attr_event_log
.attr
,
11488 &dev_attr_cmd_log
.attr
,
11489 &dev_attr_eeprom_delay
.attr
,
11490 &dev_attr_ucode_version
.attr
,
11491 &dev_attr_rtc
.attr
,
11492 &dev_attr_scan_age
.attr
,
11493 &dev_attr_led
.attr
,
11494 &dev_attr_speed_scan
.attr
,
11495 &dev_attr_net_stats
.attr
,
11496 &dev_attr_channels
.attr
,
11497 #ifdef CONFIG_IPW2200_PROMISCUOUS
11498 &dev_attr_rtap_iface
.attr
,
11499 &dev_attr_rtap_filter
.attr
,
11504 static const struct attribute_group ipw_attribute_group
= {
11505 .name
= NULL
, /* put in device directory */
11506 .attrs
= ipw_sysfs_entries
,
11509 #ifdef CONFIG_IPW2200_PROMISCUOUS
11510 static int ipw_prom_open(struct net_device
*dev
)
11512 struct ipw_prom_priv
*prom_priv
= libipw_priv(dev
);
11513 struct ipw_priv
*priv
= prom_priv
->priv
;
11515 IPW_DEBUG_INFO("prom dev->open\n");
11516 netif_carrier_off(dev
);
11518 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
11519 priv
->sys_config
.accept_all_data_frames
= 1;
11520 priv
->sys_config
.accept_non_directed_frames
= 1;
11521 priv
->sys_config
.accept_all_mgmt_bcpr
= 1;
11522 priv
->sys_config
.accept_all_mgmt_frames
= 1;
11524 ipw_send_system_config(priv
);
11530 static int ipw_prom_stop(struct net_device
*dev
)
11532 struct ipw_prom_priv
*prom_priv
= libipw_priv(dev
);
11533 struct ipw_priv
*priv
= prom_priv
->priv
;
11535 IPW_DEBUG_INFO("prom dev->stop\n");
11537 if (priv
->ieee
->iw_mode
!= IW_MODE_MONITOR
) {
11538 priv
->sys_config
.accept_all_data_frames
= 0;
11539 priv
->sys_config
.accept_non_directed_frames
= 0;
11540 priv
->sys_config
.accept_all_mgmt_bcpr
= 0;
11541 priv
->sys_config
.accept_all_mgmt_frames
= 0;
11543 ipw_send_system_config(priv
);
11549 static netdev_tx_t
ipw_prom_hard_start_xmit(struct sk_buff
*skb
,
11550 struct net_device
*dev
)
11552 IPW_DEBUG_INFO("prom dev->xmit\n");
11553 dev_kfree_skb(skb
);
11554 return NETDEV_TX_OK
;
11557 static const struct net_device_ops ipw_prom_netdev_ops
= {
11558 .ndo_open
= ipw_prom_open
,
11559 .ndo_stop
= ipw_prom_stop
,
11560 .ndo_start_xmit
= ipw_prom_hard_start_xmit
,
11561 .ndo_set_mac_address
= eth_mac_addr
,
11562 .ndo_validate_addr
= eth_validate_addr
,
11565 static int ipw_prom_alloc(struct ipw_priv
*priv
)
11569 if (priv
->prom_net_dev
)
11572 priv
->prom_net_dev
= alloc_libipw(sizeof(struct ipw_prom_priv
), 1);
11573 if (priv
->prom_net_dev
== NULL
)
11576 priv
->prom_priv
= libipw_priv(priv
->prom_net_dev
);
11577 priv
->prom_priv
->ieee
= netdev_priv(priv
->prom_net_dev
);
11578 priv
->prom_priv
->priv
= priv
;
11580 strcpy(priv
->prom_net_dev
->name
, "rtap%d");
11581 memcpy(priv
->prom_net_dev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
11583 priv
->prom_net_dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
11584 priv
->prom_net_dev
->netdev_ops
= &ipw_prom_netdev_ops
;
11586 priv
->prom_net_dev
->min_mtu
= 68;
11587 priv
->prom_net_dev
->max_mtu
= LIBIPW_DATA_LEN
;
11589 priv
->prom_priv
->ieee
->iw_mode
= IW_MODE_MONITOR
;
11590 SET_NETDEV_DEV(priv
->prom_net_dev
, &priv
->pci_dev
->dev
);
11592 rc
= register_netdev(priv
->prom_net_dev
);
11594 free_libipw(priv
->prom_net_dev
, 1);
11595 priv
->prom_net_dev
= NULL
;
11602 static void ipw_prom_free(struct ipw_priv
*priv
)
11604 if (!priv
->prom_net_dev
)
11607 unregister_netdev(priv
->prom_net_dev
);
11608 free_libipw(priv
->prom_net_dev
, 1);
11610 priv
->prom_net_dev
= NULL
;
11615 static const struct net_device_ops ipw_netdev_ops
= {
11616 .ndo_open
= ipw_net_open
,
11617 .ndo_stop
= ipw_net_stop
,
11618 .ndo_set_rx_mode
= ipw_net_set_multicast_list
,
11619 .ndo_set_mac_address
= ipw_net_set_mac_address
,
11620 .ndo_start_xmit
= libipw_xmit
,
11621 .ndo_validate_addr
= eth_validate_addr
,
11624 static int ipw_pci_probe(struct pci_dev
*pdev
,
11625 const struct pci_device_id
*ent
)
11628 struct net_device
*net_dev
;
11629 void __iomem
*base
;
11631 struct ipw_priv
*priv
;
11634 net_dev
= alloc_libipw(sizeof(struct ipw_priv
), 0);
11635 if (net_dev
== NULL
) {
11640 priv
= libipw_priv(net_dev
);
11641 priv
->ieee
= netdev_priv(net_dev
);
11643 priv
->net_dev
= net_dev
;
11644 priv
->pci_dev
= pdev
;
11645 ipw_debug_level
= debug
;
11646 spin_lock_init(&priv
->irq_lock
);
11647 spin_lock_init(&priv
->lock
);
11648 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++)
11649 INIT_LIST_HEAD(&priv
->ibss_mac_hash
[i
]);
11651 mutex_init(&priv
->mutex
);
11652 if (pci_enable_device(pdev
)) {
11654 goto out_free_libipw
;
11657 pci_set_master(pdev
);
11659 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
11661 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
11663 printk(KERN_WARNING DRV_NAME
": No suitable DMA available.\n");
11664 goto out_pci_disable_device
;
11667 pci_set_drvdata(pdev
, priv
);
11669 err
= pci_request_regions(pdev
, DRV_NAME
);
11671 goto out_pci_disable_device
;
11673 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11674 * PCI Tx retries from interfering with C3 CPU state */
11675 pci_read_config_dword(pdev
, 0x40, &val
);
11676 if ((val
& 0x0000ff00) != 0)
11677 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11679 length
= pci_resource_len(pdev
, 0);
11680 priv
->hw_len
= length
;
11682 base
= pci_ioremap_bar(pdev
, 0);
11685 goto out_pci_release_regions
;
11688 priv
->hw_base
= base
;
11689 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length
);
11690 IPW_DEBUG_INFO("pci_resource_base = %p\n", base
);
11692 err
= ipw_setup_deferred_work(priv
);
11694 IPW_ERROR("Unable to setup deferred work\n");
11698 ipw_sw_reset(priv
, 1);
11700 err
= request_irq(pdev
->irq
, ipw_isr
, IRQF_SHARED
, DRV_NAME
, priv
);
11702 IPW_ERROR("Error allocating IRQ %d\n", pdev
->irq
);
11706 SET_NETDEV_DEV(net_dev
, &pdev
->dev
);
11708 mutex_lock(&priv
->mutex
);
11710 priv
->ieee
->hard_start_xmit
= ipw_net_hard_start_xmit
;
11711 priv
->ieee
->set_security
= shim__set_security
;
11712 priv
->ieee
->is_queue_full
= ipw_net_is_queue_full
;
11714 #ifdef CONFIG_IPW2200_QOS
11715 priv
->ieee
->is_qos_active
= ipw_is_qos_active
;
11716 priv
->ieee
->handle_probe_response
= ipw_handle_beacon
;
11717 priv
->ieee
->handle_beacon
= ipw_handle_probe_response
;
11718 priv
->ieee
->handle_assoc_response
= ipw_handle_assoc_response
;
11719 #endif /* CONFIG_IPW2200_QOS */
11721 priv
->ieee
->perfect_rssi
= -20;
11722 priv
->ieee
->worst_rssi
= -85;
11724 net_dev
->netdev_ops
= &ipw_netdev_ops
;
11725 priv
->wireless_data
.spy_data
= &priv
->ieee
->spy_data
;
11726 net_dev
->wireless_data
= &priv
->wireless_data
;
11727 net_dev
->wireless_handlers
= &ipw_wx_handler_def
;
11728 net_dev
->ethtool_ops
= &ipw_ethtool_ops
;
11730 net_dev
->min_mtu
= 68;
11731 net_dev
->max_mtu
= LIBIPW_DATA_LEN
;
11733 err
= sysfs_create_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11735 IPW_ERROR("failed to create sysfs device attributes\n");
11736 mutex_unlock(&priv
->mutex
);
11737 goto out_release_irq
;
11740 if (ipw_up(priv
)) {
11741 mutex_unlock(&priv
->mutex
);
11743 goto out_remove_sysfs
;
11746 mutex_unlock(&priv
->mutex
);
11748 err
= ipw_wdev_init(net_dev
);
11750 IPW_ERROR("failed to register wireless device\n");
11751 goto out_remove_sysfs
;
11754 err
= register_netdev(net_dev
);
11756 IPW_ERROR("failed to register network device\n");
11757 goto out_unregister_wiphy
;
11760 #ifdef CONFIG_IPW2200_PROMISCUOUS
11762 err
= ipw_prom_alloc(priv
);
11764 IPW_ERROR("Failed to register promiscuous network "
11765 "device (error %d).\n", err
);
11766 unregister_netdev(priv
->net_dev
);
11767 goto out_unregister_wiphy
;
11772 printk(KERN_INFO DRV_NAME
": Detected geography %s (%d 802.11bg "
11773 "channels, %d 802.11a channels)\n",
11774 priv
->ieee
->geo
.name
, priv
->ieee
->geo
.bg_channels
,
11775 priv
->ieee
->geo
.a_channels
);
11779 out_unregister_wiphy
:
11780 wiphy_unregister(priv
->ieee
->wdev
.wiphy
);
11781 kfree(priv
->ieee
->a_band
.channels
);
11782 kfree(priv
->ieee
->bg_band
.channels
);
11784 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11786 free_irq(pdev
->irq
, priv
);
11788 iounmap(priv
->hw_base
);
11789 out_pci_release_regions
:
11790 pci_release_regions(pdev
);
11791 out_pci_disable_device
:
11792 pci_disable_device(pdev
);
11794 free_libipw(priv
->net_dev
, 0);
11799 static void ipw_pci_remove(struct pci_dev
*pdev
)
11801 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11802 struct list_head
*p
, *q
;
11808 mutex_lock(&priv
->mutex
);
11810 priv
->status
|= STATUS_EXIT_PENDING
;
11812 sysfs_remove_group(&pdev
->dev
.kobj
, &ipw_attribute_group
);
11814 mutex_unlock(&priv
->mutex
);
11816 unregister_netdev(priv
->net_dev
);
11819 ipw_rx_queue_free(priv
, priv
->rxq
);
11822 ipw_tx_queue_free(priv
);
11824 if (priv
->cmdlog
) {
11825 kfree(priv
->cmdlog
);
11826 priv
->cmdlog
= NULL
;
11829 /* make sure all works are inactive */
11830 cancel_delayed_work_sync(&priv
->adhoc_check
);
11831 cancel_work_sync(&priv
->associate
);
11832 cancel_work_sync(&priv
->disassociate
);
11833 cancel_work_sync(&priv
->system_config
);
11834 cancel_work_sync(&priv
->rx_replenish
);
11835 cancel_work_sync(&priv
->adapter_restart
);
11836 cancel_delayed_work_sync(&priv
->rf_kill
);
11837 cancel_work_sync(&priv
->up
);
11838 cancel_work_sync(&priv
->down
);
11839 cancel_delayed_work_sync(&priv
->request_scan
);
11840 cancel_delayed_work_sync(&priv
->request_direct_scan
);
11841 cancel_delayed_work_sync(&priv
->request_passive_scan
);
11842 cancel_delayed_work_sync(&priv
->scan_event
);
11843 cancel_delayed_work_sync(&priv
->gather_stats
);
11844 cancel_work_sync(&priv
->abort_scan
);
11845 cancel_work_sync(&priv
->roam
);
11846 cancel_delayed_work_sync(&priv
->scan_check
);
11847 cancel_work_sync(&priv
->link_up
);
11848 cancel_work_sync(&priv
->link_down
);
11849 cancel_delayed_work_sync(&priv
->led_link_on
);
11850 cancel_delayed_work_sync(&priv
->led_link_off
);
11851 cancel_delayed_work_sync(&priv
->led_act_off
);
11852 cancel_work_sync(&priv
->merge_networks
);
11854 /* Free MAC hash list for ADHOC */
11855 for (i
= 0; i
< IPW_IBSS_MAC_HASH_SIZE
; i
++) {
11856 list_for_each_safe(p
, q
, &priv
->ibss_mac_hash
[i
]) {
11858 kfree(list_entry(p
, struct ipw_ibss_seq
, list
));
11862 kfree(priv
->error
);
11863 priv
->error
= NULL
;
11865 #ifdef CONFIG_IPW2200_PROMISCUOUS
11866 ipw_prom_free(priv
);
11869 free_irq(pdev
->irq
, priv
);
11870 iounmap(priv
->hw_base
);
11871 pci_release_regions(pdev
);
11872 pci_disable_device(pdev
);
11873 /* wiphy_unregister needs to be here, before free_libipw */
11874 wiphy_unregister(priv
->ieee
->wdev
.wiphy
);
11875 kfree(priv
->ieee
->a_band
.channels
);
11876 kfree(priv
->ieee
->bg_band
.channels
);
11877 free_libipw(priv
->net_dev
, 0);
11882 static int ipw_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
11884 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11885 struct net_device
*dev
= priv
->net_dev
;
11887 printk(KERN_INFO
"%s: Going into suspend...\n", dev
->name
);
11889 /* Take down the device; powers it off, etc. */
11892 /* Remove the PRESENT state of the device */
11893 netif_device_detach(dev
);
11895 pci_save_state(pdev
);
11896 pci_disable_device(pdev
);
11897 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
11899 priv
->suspend_at
= get_seconds();
11904 static int ipw_pci_resume(struct pci_dev
*pdev
)
11906 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11907 struct net_device
*dev
= priv
->net_dev
;
11911 printk(KERN_INFO
"%s: Coming out of suspend...\n", dev
->name
);
11913 pci_set_power_state(pdev
, PCI_D0
);
11914 err
= pci_enable_device(pdev
);
11916 printk(KERN_ERR
"%s: pci_enable_device failed on resume\n",
11920 pci_restore_state(pdev
);
11923 * Suspend/Resume resets the PCI configuration space, so we have to
11924 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11925 * from interfering with C3 CPU state. pci_restore_state won't help
11926 * here since it only restores the first 64 bytes pci config header.
11928 pci_read_config_dword(pdev
, 0x40, &val
);
11929 if ((val
& 0x0000ff00) != 0)
11930 pci_write_config_dword(pdev
, 0x40, val
& 0xffff00ff);
11932 /* Set the device back into the PRESENT state; this will also wake
11933 * the queue of needed */
11934 netif_device_attach(dev
);
11936 priv
->suspend_time
= get_seconds() - priv
->suspend_at
;
11938 /* Bring the device back up */
11939 schedule_work(&priv
->up
);
11945 static void ipw_pci_shutdown(struct pci_dev
*pdev
)
11947 struct ipw_priv
*priv
= pci_get_drvdata(pdev
);
11949 /* Take down the device; powers it off, etc. */
11952 pci_disable_device(pdev
);
11955 /* driver initialization stuff */
11956 static struct pci_driver ipw_driver
= {
11958 .id_table
= card_ids
,
11959 .probe
= ipw_pci_probe
,
11960 .remove
= ipw_pci_remove
,
11962 .suspend
= ipw_pci_suspend
,
11963 .resume
= ipw_pci_resume
,
11965 .shutdown
= ipw_pci_shutdown
,
11968 static int __init
ipw_init(void)
11972 printk(KERN_INFO DRV_NAME
": " DRV_DESCRIPTION
", " DRV_VERSION
"\n");
11973 printk(KERN_INFO DRV_NAME
": " DRV_COPYRIGHT
"\n");
11975 ret
= pci_register_driver(&ipw_driver
);
11977 IPW_ERROR("Unable to initialize PCI module\n");
11981 ret
= driver_create_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
11983 IPW_ERROR("Unable to create driver sysfs file\n");
11984 pci_unregister_driver(&ipw_driver
);
11991 static void __exit
ipw_exit(void)
11993 driver_remove_file(&ipw_driver
.driver
, &driver_attr_debug_level
);
11994 pci_unregister_driver(&ipw_driver
);
11997 module_param(disable
, int, 0444);
11998 MODULE_PARM_DESC(disable
, "manually disable the radio (default 0 [radio on])");
12000 module_param(associate
, int, 0444);
12001 MODULE_PARM_DESC(associate
, "auto associate when scanning (default off)");
12003 module_param(auto_create
, int, 0444);
12004 MODULE_PARM_DESC(auto_create
, "auto create adhoc network (default on)");
12006 module_param_named(led
, led_support
, int, 0444);
12007 MODULE_PARM_DESC(led
, "enable led control on some systems (default 1 on)");
12009 module_param(debug
, int, 0444);
12010 MODULE_PARM_DESC(debug
, "debug output mask");
12012 module_param_named(channel
, default_channel
, int, 0444);
12013 MODULE_PARM_DESC(channel
, "channel to limit associate to (default 0 [ANY])");
12015 #ifdef CONFIG_IPW2200_PROMISCUOUS
12016 module_param(rtap_iface
, int, 0444);
12017 MODULE_PARM_DESC(rtap_iface
, "create the rtap interface (1 - create, default 0)");
12020 #ifdef CONFIG_IPW2200_QOS
12021 module_param(qos_enable
, int, 0444);
12022 MODULE_PARM_DESC(qos_enable
, "enable all QoS functionalitis");
12024 module_param(qos_burst_enable
, int, 0444);
12025 MODULE_PARM_DESC(qos_burst_enable
, "enable QoS burst mode");
12027 module_param(qos_no_ack_mask
, int, 0444);
12028 MODULE_PARM_DESC(qos_no_ack_mask
, "mask Tx_Queue to no ack");
12030 module_param(burst_duration_CCK
, int, 0444);
12031 MODULE_PARM_DESC(burst_duration_CCK
, "set CCK burst value");
12033 module_param(burst_duration_OFDM
, int, 0444);
12034 MODULE_PARM_DESC(burst_duration_OFDM
, "set OFDM burst value");
12035 #endif /* CONFIG_IPW2200_QOS */
12037 #ifdef CONFIG_IPW2200_MONITOR
12038 module_param_named(mode
, network_mode
, int, 0444);
12039 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS,2=Monitor)");
12041 module_param_named(mode
, network_mode
, int, 0444);
12042 MODULE_PARM_DESC(mode
, "network mode (0=BSS,1=IBSS)");
12045 module_param(bt_coexist
, int, 0444);
12046 MODULE_PARM_DESC(bt_coexist
, "enable bluetooth coexistence (default off)");
12048 module_param(hwcrypto
, int, 0444);
12049 MODULE_PARM_DESC(hwcrypto
, "enable hardware crypto (default off)");
12051 module_param(cmdlog
, int, 0444);
12052 MODULE_PARM_DESC(cmdlog
,
12053 "allocate a ring buffer for logging firmware commands");
12055 module_param(roaming
, int, 0444);
12056 MODULE_PARM_DESC(roaming
, "enable roaming support (default on)");
12058 module_param(antenna
, int, 0444);
12059 MODULE_PARM_DESC(antenna
, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12061 module_exit(ipw_exit
);
12062 module_init(ipw_init
);