1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 #ifndef __DWC2_HCD_H__
38 #define __DWC2_HCD_H__
41 * This file contains the structures, constants, and interfaces for the
42 * Host Contoller Driver (HCD)
44 * The Host Controller Driver (HCD) is responsible for translating requests
45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
46 * It isolates the USBD from the specifics of the controller by providing an
53 * struct dwc2_host_chan - Software host channel descriptor
55 * @hc_num: Host channel number, used for register address lookup
56 * @dev_addr: Address of the device
57 * @ep_num: Endpoint of the device
58 * @ep_is_in: Endpoint direction
59 * @speed: Device speed. One of the following values:
63 * @ep_type: Endpoint type. One of the following values:
64 * - USB_ENDPOINT_XFER_CONTROL: 0
65 * - USB_ENDPOINT_XFER_ISOC: 1
66 * - USB_ENDPOINT_XFER_BULK: 2
67 * - USB_ENDPOINT_XFER_INTR: 3
68 * @max_packet: Max packet size in bytes
69 * @data_pid_start: PID for initial transaction.
73 * 3: MDATA (non-Control EP),
75 * @multi_count: Number of additional periodic transactions per
77 * @xfer_buf: Pointer to current transfer buffer position
78 * @xfer_dma: DMA address of xfer_buf
79 * @xfer_len: Total number of bytes to transfer
80 * @xfer_count: Number of bytes transferred so far
81 * @start_pkt_count: Packet count at start of transfer
82 * @xfer_started: True if the transfer has been started
83 * @ping: True if a PING request should be issued on this channel
84 * @error_state: True if the error count for this transaction is non-zero
85 * @halt_on_queue: True if this channel should be halted the next time a
86 * request is queued for the channel. This is necessary in
87 * slave mode if no request queue space is available when
88 * an attempt is made to halt the channel.
89 * @halt_pending: True if the host channel has been halted, but the core
90 * is not finished flushing queued requests
91 * @do_split: Enable split for the channel
92 * @complete_split: Enable complete split
93 * @hub_addr: Address of high speed hub for the split
94 * @hub_port: Port of the low/full speed device for the split
95 * @xact_pos: Split transaction position. One of the following values:
96 * - DWC2_HCSPLT_XACTPOS_MID
97 * - DWC2_HCSPLT_XACTPOS_BEGIN
98 * - DWC2_HCSPLT_XACTPOS_END
99 * - DWC2_HCSPLT_XACTPOS_ALL
100 * @requests: Number of requests issued for this channel since it was
101 * assigned to the current transfer (not counting PINGs)
102 * @schinfo: Scheduling micro-frame bitmap
103 * @ntd: Number of transfer descriptors for the transfer
104 * @halt_status: Reason for halting the host channel
105 * @hcint Contents of the HCINT register when the interrupt came
106 * @qh: QH for the transfer being processed by this channel
107 * @hc_list_entry: For linking to list of host channels
108 * @desc_list_addr: Current QH's descriptor list DMA address
109 * @desc_list_sz: Current QH's descriptor list size
110 * @split_order_list_entry: List entry for keeping track of the order of splits
112 * This structure represents the state of a single host channel when acting in
113 * host mode. It contains the data items needed to transfer packets to an
114 * endpoint via a host channel.
116 struct dwc2_host_chan
{
124 unsigned max_packet
:11;
125 unsigned data_pid_start
:2;
126 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
127 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
128 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
129 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
130 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
132 unsigned multi_count
:2;
149 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
157 enum dwc2_halt_status halt_status
;
160 struct list_head hc_list_entry
;
161 dma_addr_t desc_list_addr
;
163 struct list_head split_order_list_entry
;
166 struct dwc2_hcd_pipe_info
{
174 struct dwc2_hcd_iso_packet_desc
{
183 struct dwc2_hcd_urb
{
185 struct dwc2_qtd
*qtd
;
189 dma_addr_t setup_dma
;
197 struct dwc2_hcd_pipe_info pipe_info
;
198 struct dwc2_hcd_iso_packet_desc iso_descs
[0];
201 /* Phases for control transfers */
202 enum dwc2_control_phase
{
208 /* Transaction types */
209 enum dwc2_transaction_type
{
210 DWC2_TRANSACTION_NONE
,
211 DWC2_TRANSACTION_PERIODIC
,
212 DWC2_TRANSACTION_NON_PERIODIC
,
213 DWC2_TRANSACTION_ALL
,
216 /* The number of elements per LS bitmap (per port on multi_tt) */
217 #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
221 * struct dwc2_tt - dwc2 data associated with a usb_tt
223 * @refcount: Number of Queue Heads (QHs) holding a reference.
224 * @usb_tt: Pointer back to the official usb_tt.
225 * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
226 * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
227 * elements (so sizeof(long) times that in bytes).
229 * This structure is stored in the hcpriv of the official usb_tt.
233 struct usb_tt
*usb_tt
;
234 unsigned long periodic_bitmaps
[];
238 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
240 * @start_schedule_usecs: The start time on the main bus schedule. Note that
241 * the main bus schedule is tightly packed and this
242 * time should be interpreted as tightly packed (so
243 * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
244 * instead of 125 us).
245 * @duration_us: How long this transfer goes.
248 struct dwc2_hs_transfer_time
{
249 u32 start_schedule_us
;
254 * struct dwc2_qh - Software queue head structure
256 * @hsotg: The HCD state structure for the DWC OTG controller
257 * @ep_type: Endpoint type. One of the following values:
258 * - USB_ENDPOINT_XFER_CONTROL
259 * - USB_ENDPOINT_XFER_BULK
260 * - USB_ENDPOINT_XFER_INT
261 * - USB_ENDPOINT_XFER_ISOC
262 * @ep_is_in: Endpoint direction
263 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
264 * @dev_speed: Device speed. One of the following values:
268 * @data_toggle: Determines the PID of the next data packet for
269 * non-controltransfers. Ignored for control transfers.
270 * One of the following values:
271 * - DWC2_HC_PID_DATA0
272 * - DWC2_HC_PID_DATA1
273 * @ping_state: Ping state
274 * @do_split: Full/low speed endpoint on high-speed hub requires split
275 * @td_first: Index of first activated isochronous transfer descriptor
276 * @td_last: Index of last activated isochronous transfer descriptor
277 * @host_us: Bandwidth in microseconds per transfer as seen by host
278 * @device_us: Bandwidth in microseconds per transfer as seen by device
279 * @host_interval: Interval between transfers as seen by the host. If
280 * the host is high speed and the device is low speed this
281 * will be 8 times device interval.
282 * @device_interval: Interval between transfers as seen by the device.
284 * @next_active_frame: (Micro)frame _before_ we next need to put something on
285 * the bus. We'll move the qh to active here. If the
286 * host is in high speed mode this will be a uframe. If
287 * the host is in low speed mode this will be a full frame.
288 * @start_active_frame: If we are partway through a split transfer, this will be
289 * what next_active_frame was when we started. Otherwise
290 * it should always be the same as next_active_frame.
291 * @num_hs_transfers: Number of transfers in hs_transfers.
292 * Normally this is 1 but can be more than one for splits.
293 * Always >= 1 unless the host is in low/full speed mode.
294 * @hs_transfers: Transfers that are scheduled as seen by the high speed
295 * bus. Not used if host is in low or full speed mode (but
296 * note that it IS USED if the device is low or full speed
297 * as long as the HOST is in high speed mode).
298 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
299 * schedule that's being used by this device. This
300 * will be on the periodic_bitmap in a
301 * "struct dwc2_tt". Not used if this device is high
302 * speed. Note that this is in "schedule slice" which
304 * @ls_duration_us: Duration on the low speed bus schedule.
305 * @ntd: Actual number of transfer descriptors in a list
306 * @qtd_list: List of QTDs for this QH
307 * @channel: Host channel currently processing transfers for this QH
308 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
310 * @desc_list: List of transfer descriptors
311 * @desc_list_dma: Physical address of desc_list
312 * @desc_list_sz: Size of descriptors list
313 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
314 * descriptor and indicates original XferSize value for the
316 * @unreserve_timer: Timer for releasing periodic reservation.
317 * @wait_timer: Timer used to wait before re-queuing.
318 * @dwc2_tt: Pointer to our tt info (or NULL if no tt).
319 * @ttport: Port number within our tt.
320 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
321 * @unreserve_pending: True if we planned to unreserve but haven't yet.
322 * @schedule_low_speed: True if we have a low/full speed component (either the
323 * host is in low/full speed mode or do_split).
324 * @want_wait: We should wait before re-queuing; only matters for non-
325 * periodic transfers and is ignored for periodic ones.
326 * @wait_timer_cancel: Set to true to cancel the wait_timer.
328 * A Queue Head (QH) holds the static characteristics of an endpoint and
329 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
330 * be entered in either the non-periodic or periodic schedule.
333 struct dwc2_hsotg
*hsotg
;
347 u16 next_active_frame
;
348 u16 start_active_frame
;
349 s16 num_hs_transfers
;
350 struct dwc2_hs_transfer_time hs_transfers
[DWC2_HS_SCHEDULE_UFRAMES
];
351 u32 ls_start_schedule_slice
;
353 struct list_head qtd_list
;
354 struct dwc2_host_chan
*channel
;
355 struct list_head qh_list_entry
;
356 struct dwc2_dma_desc
*desc_list
;
357 dma_addr_t desc_list_dma
;
360 struct timer_list unreserve_timer
;
361 struct timer_list wait_timer
;
362 struct dwc2_tt
*dwc_tt
;
364 unsigned tt_buffer_dirty
:1;
365 unsigned unreserve_pending
:1;
366 unsigned schedule_low_speed
:1;
367 unsigned want_wait
:1;
368 unsigned wait_timer_cancel
:1;
372 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
374 * @control_phase: Current phase for control transfers (Setup, Data, or
376 * @in_process: Indicates if this QTD is currently processed by HW
377 * @data_toggle: Determines the PID of the next data packet for the
378 * data phase of control transfers. Ignored for other
379 * transfer types. One of the following values:
380 * - DWC2_HC_PID_DATA0
381 * - DWC2_HC_PID_DATA1
382 * @complete_split: Keeps track of the current split type for FS/LS
383 * endpoints on a HS Hub
384 * @isoc_split_pos: Position of the ISOC split in full/low speed
385 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
386 * transfer. A frame descriptor describes the buffer
387 * position and length of the data to be transferred in the
388 * next scheduled (micro)frame of an isochronous transfer.
389 * It also holds status for that transaction. The frame
391 * @isoc_split_offset: Position of the ISOC split in the buffer for the
393 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
394 * @error_count: Holds the number of bus errors that have occurred for
395 * a transaction within this transfer
396 * @n_desc: Number of DMA descriptors for this QTD
397 * @isoc_frame_index_last: Last activated frame (packet) index, used in
398 * descriptor DMA mode only
399 * @num_naks: Number of NAKs received on this QTD.
400 * @urb: URB for this transfer
401 * @qh: Queue head for this QTD
402 * @qtd_list_entry: For linking to the QH's list of QTDs
404 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
405 * interrupt, or isochronous transfer. A single QTD is created for each URB
406 * (of one of these types) submitted to the HCD. The transfer associated with
407 * a QTD may require one or multiple transactions.
409 * A QTD is linked to a Queue Head, which is entered in either the
410 * non-periodic or periodic schedule for execution. When a QTD is chosen for
411 * execution, some or all of its transactions may be executed. After
412 * execution, the state of the QTD is updated. The QTD may be retired if all
413 * its transactions are complete or if an error occurred. Otherwise, it
414 * remains in the schedule so more transactions can be executed later.
417 enum dwc2_control_phase control_phase
;
422 u16 isoc_frame_index
;
423 u16 isoc_split_offset
;
426 u32 ssplit_out_xfer_count
;
429 u16 isoc_frame_index_last
;
431 struct dwc2_hcd_urb
*urb
;
433 struct list_head qtd_list_entry
;
437 struct hc_xfer_info
{
438 struct dwc2_hsotg
*hsotg
;
439 struct dwc2_host_chan
*chan
;
443 u32
dwc2_calc_frame_interval(struct dwc2_hsotg
*hsotg
);
445 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
446 static inline struct usb_hcd
*dwc2_hsotg_to_hcd(struct dwc2_hsotg
*hsotg
)
448 return (struct usb_hcd
*)hsotg
->priv
;
452 * Inline used to disable one channel interrupt. Channel interrupts are
453 * disabled when the channel is halted or released by the interrupt handler.
454 * There is no need to handle further interrupts of that type until the
455 * channel is re-assigned. In fact, subsequent handling may cause crashes
456 * because the channel structures are cleaned up when the channel is released.
458 static inline void disable_hc_int(struct dwc2_hsotg
*hsotg
, int chnum
, u32 intr
)
460 u32 mask
= dwc2_readl(hsotg
->regs
+ HCINTMSK(chnum
));
463 dwc2_writel(mask
, hsotg
->regs
+ HCINTMSK(chnum
));
466 void dwc2_hc_cleanup(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
);
467 void dwc2_hc_halt(struct dwc2_hsotg
*hsotg
, struct dwc2_host_chan
*chan
,
468 enum dwc2_halt_status halt_status
);
469 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg
*hsotg
,
470 struct dwc2_host_chan
*chan
);
473 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
474 * are read as 1, they won't clear when written back.
476 static inline u32
dwc2_read_hprt0(struct dwc2_hsotg
*hsotg
)
478 u32 hprt0
= dwc2_readl(hsotg
->regs
+ HPRT0
);
480 hprt0
&= ~(HPRT0_ENA
| HPRT0_CONNDET
| HPRT0_ENACHG
| HPRT0_OVRCURRCHG
);
484 static inline u8
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info
*pipe
)
489 static inline u8
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info
*pipe
)
491 return pipe
->pipe_type
;
494 static inline u16
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info
*pipe
)
499 static inline u8
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info
*pipe
)
501 return pipe
->dev_addr
;
504 static inline u8
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info
*pipe
)
506 return pipe
->pipe_type
== USB_ENDPOINT_XFER_ISOC
;
509 static inline u8
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info
*pipe
)
511 return pipe
->pipe_type
== USB_ENDPOINT_XFER_INT
;
514 static inline u8
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info
*pipe
)
516 return pipe
->pipe_type
== USB_ENDPOINT_XFER_BULK
;
519 static inline u8
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info
*pipe
)
521 return pipe
->pipe_type
== USB_ENDPOINT_XFER_CONTROL
;
524 static inline u8
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info
*pipe
)
526 return pipe
->pipe_dir
== USB_DIR_IN
;
529 static inline u8
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info
*pipe
)
531 return !dwc2_hcd_is_pipe_in(pipe
);
534 int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
);
535 void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
);
537 /* Transaction Execution Functions */
538 enum dwc2_transaction_type
dwc2_hcd_select_transactions(
539 struct dwc2_hsotg
*hsotg
);
540 void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
541 enum dwc2_transaction_type tr_type
);
543 /* Schedule Queue Functions */
544 /* Implemented in hcd_queue.c */
545 struct dwc2_qh
*dwc2_hcd_qh_create(struct dwc2_hsotg
*hsotg
,
546 struct dwc2_hcd_urb
*urb
,
548 void dwc2_hcd_qh_free(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
549 int dwc2_hcd_qh_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
550 void dwc2_hcd_qh_unlink(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
551 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
554 void dwc2_hcd_qtd_init(struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
);
555 int dwc2_hcd_qtd_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
558 /* Unlinks and frees a QTD */
559 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg
*hsotg
,
560 struct dwc2_qtd
*qtd
,
563 list_del(&qtd
->qtd_list_entry
);
568 /* Descriptor DMA support functions */
569 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg
*hsotg
,
571 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg
*hsotg
,
572 struct dwc2_host_chan
*chan
, int chnum
,
573 enum dwc2_halt_status halt_status
);
575 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
577 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
579 /* Check if QH is non-periodic */
580 #define dwc2_qh_is_non_per(_qh_ptr_) \
581 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
582 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
584 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
585 static inline bool dbg_hc(struct dwc2_host_chan
*hc
) { return true; }
586 static inline bool dbg_qh(struct dwc2_qh
*qh
) { return true; }
587 static inline bool dbg_urb(struct urb
*urb
) { return true; }
588 static inline bool dbg_perio(void) { return true; }
589 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
590 static inline bool dbg_hc(struct dwc2_host_chan
*hc
)
592 return hc
->ep_type
== USB_ENDPOINT_XFER_BULK
||
593 hc
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
596 static inline bool dbg_qh(struct dwc2_qh
*qh
)
598 return qh
->ep_type
== USB_ENDPOINT_XFER_BULK
||
599 qh
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
602 static inline bool dbg_urb(struct urb
*urb
)
604 return usb_pipetype(urb
->pipe
) == PIPE_BULK
||
605 usb_pipetype(urb
->pipe
) == PIPE_CONTROL
;
608 static inline bool dbg_perio(void) { return false; }
611 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
612 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
614 /* Packet size for any kind of endpoint descriptor */
615 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
618 * Returns true if frame1 index is greater than frame2 index. The comparison
619 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
620 * frame number when the max index frame number is reached.
622 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1
, u16 fr_idx2
)
624 u16 diff
= fr_idx1
- fr_idx2
;
625 u16 sign
= diff
& (FRLISTEN_64_SIZE
>> 1);
627 return diff
&& !sign
;
631 * Returns true if frame1 is less than or equal to frame2. The comparison is
632 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
633 * frame number when the max frame number is reached.
635 static inline int dwc2_frame_num_le(u16 frame1
, u16 frame2
)
637 return ((frame2
- frame1
) & HFNUM_MAX_FRNUM
) <= (HFNUM_MAX_FRNUM
>> 1);
641 * Returns true if frame1 is greater than frame2. The comparison is done
642 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
643 * number when the max frame number is reached.
645 static inline int dwc2_frame_num_gt(u16 frame1
, u16 frame2
)
647 return (frame1
!= frame2
) &&
648 ((frame1
- frame2
) & HFNUM_MAX_FRNUM
) < (HFNUM_MAX_FRNUM
>> 1);
652 * Increments frame by the amount specified by inc. The addition is done
653 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
655 static inline u16
dwc2_frame_num_inc(u16 frame
, u16 inc
)
657 return (frame
+ inc
) & HFNUM_MAX_FRNUM
;
660 static inline u16
dwc2_frame_num_dec(u16 frame
, u16 dec
)
662 return (frame
+ HFNUM_MAX_FRNUM
+ 1 - dec
) & HFNUM_MAX_FRNUM
;
665 static inline u16
dwc2_full_frame_num(u16 frame
)
667 return (frame
& HFNUM_MAX_FRNUM
) >> 3;
670 static inline u16
dwc2_micro_frame_num(u16 frame
)
676 * Returns the Core Interrupt Status register contents, ANDed with the Core
677 * Interrupt Mask register contents
679 static inline u32
dwc2_read_core_intr(struct dwc2_hsotg
*hsotg
)
681 return dwc2_readl(hsotg
->regs
+ GINTSTS
) &
682 dwc2_readl(hsotg
->regs
+ GINTMSK
);
685 static inline u32
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb
*dwc2_urb
)
687 return dwc2_urb
->status
;
690 static inline u32
dwc2_hcd_urb_get_actual_length(
691 struct dwc2_hcd_urb
*dwc2_urb
)
693 return dwc2_urb
->actual_length
;
696 static inline u32
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb
*dwc2_urb
)
698 return dwc2_urb
->error_count
;
701 static inline void dwc2_hcd_urb_set_iso_desc_params(
702 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
, u32 offset
,
705 dwc2_urb
->iso_descs
[desc_num
].offset
= offset
;
706 dwc2_urb
->iso_descs
[desc_num
].length
= length
;
709 static inline u32
dwc2_hcd_urb_get_iso_desc_status(
710 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
712 return dwc2_urb
->iso_descs
[desc_num
].status
;
715 static inline u32
dwc2_hcd_urb_get_iso_desc_actual_length(
716 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
718 return dwc2_urb
->iso_descs
[desc_num
].actual_length
;
721 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg
*hsotg
,
722 struct usb_host_endpoint
*ep
)
724 struct dwc2_qh
*qh
= ep
->hcpriv
;
726 if (qh
&& !list_empty(&qh
->qh_list_entry
))
732 static inline u16
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg
*hsotg
,
733 struct usb_host_endpoint
*ep
)
735 struct dwc2_qh
*qh
= ep
->hcpriv
;
745 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg
*hsotg
,
746 struct dwc2_host_chan
*chan
, int chnum
,
747 struct dwc2_qtd
*qtd
);
752 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
754 * @hsotg: The DWC2 HCD
756 * Returns IRQ_HANDLED if interrupt is handled
757 * Return IRQ_NONE if interrupt is not handled
759 irqreturn_t
dwc2_handle_hcd_intr(struct dwc2_hsotg
*hsotg
);
762 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
764 * @hsotg: The DWC2 HCD
766 void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
);
769 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
772 * @hsotg: The DWC2 HCD
774 int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
);
777 * dwc2_hcd_dump_state() - Dumps hsotg state
779 * @hsotg: The DWC2 HCD
781 * NOTE: This function will be removed once the peripheral controller code
782 * is integrated and the driver is stable
784 void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
);
787 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
789 * @hsotg: The DWC2 HCD
791 * This can be used to determine average interrupt latency. Frame remaining is
792 * also shown for start transfer and two additional sample points.
794 * NOTE: This function will be removed once the peripheral controller code
795 * is integrated and the driver is stable
797 void dwc2_hcd_dump_frrem(struct dwc2_hsotg
*hsotg
);
802 #define URB_GIVEBACK_ASAP 0x1
803 #define URB_SEND_ZERO_PACKET 0x2
805 /* Host driver callbacks */
806 struct dwc2_tt
*dwc2_host_get_tt_info(struct dwc2_hsotg
*hsotg
,
807 void *context
, gfp_t mem_flags
,
810 void dwc2_host_put_tt_info(struct dwc2_hsotg
*hsotg
,
811 struct dwc2_tt
*dwc_tt
);
812 int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
);
813 void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
818 * Macro to sample the remaining PHY clocks left in the current frame. This
819 * may be used during debugging to determine the average time it takes to
820 * execute sections of code. There are two possible sample points, "a" and
821 * "b", so the _letter_ argument must be one of these values.
823 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
824 * example, "cat /sys/devices/lm0/hcd_frrem".
826 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
828 struct hfnum_data _hfnum_; \
829 struct dwc2_qtd *_qtd_; \
831 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
833 if (usb_pipeint(_qtd_->urb->pipe) && \
834 (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
835 _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
836 switch (_hfnum_.b.frnum & 0x7) { \
838 (_hcd_)->hfnum_7_samples_##_letter_++; \
839 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
843 (_hcd_)->hfnum_0_samples_##_letter_++; \
844 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
848 (_hcd_)->hfnum_other_samples_##_letter_++; \
849 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
856 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
859 #endif /* __DWC2_HCD_H__ */