1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * This file contains the functions to manage Queue Heads and Queue
40 * Transfer Descriptors for Host mode
42 #include <linux/gcd.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
49 #include <linux/slab.h>
50 #include <linux/usb.h>
52 #include <linux/usb/hcd.h>
53 #include <linux/usb/ch11.h>
58 /* Wait this long before releasing periodic reservation */
59 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
61 /* If we get a NAK, wait this long before retrying */
62 #define DWC2_RETRY_WAIT_DELAY (msecs_to_jiffies(1))
65 * dwc2_periodic_channel_available() - Checks that a channel is available for a
68 * @hsotg: The HCD state structure for the DWC OTG controller
70 * Return: 0 if successful, negative error code otherwise
72 static int dwc2_periodic_channel_available(struct dwc2_hsotg
*hsotg
)
75 * Currently assuming that there is a dedicated host channel for
76 * each periodic transaction plus at least one host channel for
77 * non-periodic transactions
82 num_channels
= hsotg
->params
.host_channels
;
83 if ((hsotg
->periodic_channels
+ hsotg
->non_periodic_channels
<
84 num_channels
) && (hsotg
->periodic_channels
< num_channels
- 1)) {
88 "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
89 __func__
, num_channels
,
90 hsotg
->periodic_channels
, hsotg
->non_periodic_channels
);
98 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
99 * for the specified QH in the periodic schedule
101 * @hsotg: The HCD state structure for the DWC OTG controller
102 * @qh: QH containing periodic bandwidth required
104 * Return: 0 if successful, negative error code otherwise
106 * For simplicity, this calculation assumes that all the transfers in the
107 * periodic schedule may occur in the same (micro)frame
109 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg
*hsotg
,
113 s16 max_claimed_usecs
;
117 if (qh
->dev_speed
== USB_SPEED_HIGH
|| qh
->do_split
) {
120 * Max periodic usecs is 80% x 125 usec = 100 usec
122 max_claimed_usecs
= 100 - qh
->host_us
;
126 * Max periodic usecs is 90% x 1000 usec = 900 usec
128 max_claimed_usecs
= 900 - qh
->host_us
;
131 if (hsotg
->periodic_usecs
> max_claimed_usecs
) {
133 "%s: already claimed usecs %d, required usecs %d\n",
134 __func__
, hsotg
->periodic_usecs
, qh
->host_us
);
142 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
144 * @map: The bitmap representing the schedule; will be updated
146 * @bits_per_period: The schedule represents several periods. This is how many
147 * bits are in each period. It's assumed that the beginning
148 * of the schedule will repeat after its end.
149 * @periods_in_map: The number of periods in the schedule.
150 * @num_bits: The number of bits we need per period we want to reserve
151 * in this function call.
152 * @interval: How often we need to be scheduled for the reservation this
153 * time. 1 means every period. 2 means every other period.
154 * ...you get the picture?
155 * @start: The bit number to start at. Normally 0. Must be within
156 * the interval or we return failure right away.
157 * @only_one_period: Normally we'll allow picking a start anywhere within the
158 * first interval, since we can still make all repetition
159 * requirements by doing that. However, if you pass true
160 * here then we'll return failure if we can't fit within
161 * the period that "start" is in.
163 * The idea here is that we want to schedule time for repeating events that all
164 * want the same resource. The resource is divided into fixed-sized periods
165 * and the events want to repeat every "interval" periods. The schedule
166 * granularity is one bit.
168 * To keep things "simple", we'll represent our schedule with a bitmap that
169 * contains a fixed number of periods. This gets rid of a lot of complexity
170 * but does mean that we need to handle things specially (and non-ideally) if
171 * the number of the periods in the schedule doesn't match well with the
172 * intervals that we're trying to schedule.
174 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
175 * - If interval is 1, we need to take up space in each of the 8
176 * periods we're scheduling. Easy.
177 * - If interval is 2, we need to take up space in half of the
178 * periods. Again, easy.
179 * - If interval is 3, we actually need to fall back to interval 1.
180 * Why? Because we might need time in any period. AKA for the
181 * first 8 periods, we'll be in slot 0, 3, 6. Then we'll be
182 * in slot 1, 4, 7. Then we'll be in 2, 5. Then we'll be back to
183 * 0, 3, and 6. Since we could be in any frame we need to reserve
184 * for all of them. Sucks, but that's what you gotta do. Note that
185 * if we were instead scheduling 8 * 3 = 24 we'd do much better, but
186 * then we need more memory and time to do scheduling.
187 * - If interval is 4, easy.
188 * - If interval is 5, we again need interval 1. The schedule will be
189 * 0, 5, 2, 7, 4, 1, 6, 3, 0
190 * - If interval is 6, we need interval 2. 0, 6, 4, 2.
191 * - If interval is 7, we need interval 1.
192 * - If interval is 8, we need interval 8.
194 * If you do the math, you'll see that we need to pretend that interval is
195 * equal to the greatest_common_divisor(interval, periods_in_map).
197 * Note that at the moment this function tends to front-pack the schedule.
198 * In some cases that's really non-ideal (it's hard to schedule things that
199 * need to repeat every period). In other cases it's perfect (you can easily
200 * schedule bigger, less often repeating things).
202 * Here's the algorithm in action (8 periods, 5 bits per period):
203 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
204 * |*****| ***|*****| ***|*****| ***|*****| ***| OK 3 bits, intv 3 at 2
205 * |*****|* ***|*****| ***|*****|* ***|*****| ***| OK 1 bits, intv 4 at 5
206 * |** |* |** | |** |* |** | | Remv 3 bits, intv 3 at 2
207 * |*** |* |*** | |*** |* |*** | | OK 1 bits, intv 6 at 2
208 * |**** |* * |**** | * |**** |* * |**** | * | OK 1 bits, intv 1 at 3
209 * |**** |**** |**** | *** |**** |**** |**** | *** | OK 2 bits, intv 2 at 6
210 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 1 at 4
211 * |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
212 * | ***|*****| ***| ****| ***|*****| ***| ****| Remv 2 bits, intv 2 at 0
213 * | ***| ****| ***| ****| ***| ****| ***| ****| Remv 1 bits, intv 4 at 5
214 * | **| ****| **| ****| **| ****| **| ****| Remv 1 bits, intv 6 at 2
215 * | *| ** *| *| ** *| *| ** *| *| ** *| Remv 1 bits, intv 1 at 3
216 * | *| *| *| *| *| *| *| *| Remv 2 bits, intv 2 at 6
217 * | | | | | | | | | Remv 1 bits, intv 1 at 4
218 * |** | |** | |** | |** | | OK 2 bits, intv 2 at 0
219 * |*** | |** | |*** | |** | | OK 1 bits, intv 4 at 2
220 * |*****| |** **| |*****| |** **| | OK 2 bits, intv 2 at 3
221 * |*****|* |** **| |*****|* |** **| | OK 1 bits, intv 4 at 5
222 * |*****|*** |** **| ** |*****|*** |** **| ** | OK 2 bits, intv 2 at 6
223 * |*****|*****|** **| ****|*****|*****|** **| ****| OK 2 bits, intv 2 at 8
224 * |*****|*****|*****| ****|*****|*****|*****| ****| OK 1 bits, intv 4 at 12
226 * This function is pretty generic and could be easily abstracted if anything
227 * needed similar scheduling.
229 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
230 * unschedule routine. The map bitmap will be updated on a non-error result.
232 static int pmap_schedule(unsigned long *map
, int bits_per_period
,
233 int periods_in_map
, int num_bits
,
234 int interval
, int start
, bool only_one_period
)
241 if (num_bits
> bits_per_period
)
244 /* Adjust interval as per description */
245 interval
= gcd(interval
, periods_in_map
);
247 interval_bits
= bits_per_period
* interval
;
248 to_reserve
= periods_in_map
/ interval
;
250 /* If start has gotten us past interval then we can't schedule */
251 if (start
>= interval_bits
)
255 /* Must fit within same period as start; end at begin of next */
256 first_end
= (start
/ bits_per_period
+ 1) * bits_per_period
;
258 /* Can fit anywhere in the first interval */
259 first_end
= interval_bits
;
262 * We'll try to pick the first repetition, then see if that time
263 * is free for each of the subsequent repetitions. If it's not
264 * we'll adjust the start time for the next search of the first
267 while (start
+ num_bits
<= first_end
) {
270 /* Need to stay within this period */
271 end
= (start
/ bits_per_period
+ 1) * bits_per_period
;
273 /* Look for num_bits us in this microframe starting at start */
274 start
= bitmap_find_next_zero_area(map
, end
, start
, num_bits
,
278 * We should get start >= end if we fail. We might be
279 * able to check the next microframe depending on the
280 * interval, so continue on (start already updated).
287 /* At this point we have a valid point for first one */
288 for (i
= 1; i
< to_reserve
; i
++) {
289 int ith_start
= start
+ interval_bits
* i
;
290 int ith_end
= end
+ interval_bits
* i
;
293 /* Use this as a dumb "check if bits are 0" */
294 ret
= bitmap_find_next_zero_area(
295 map
, ith_start
+ num_bits
, ith_start
, num_bits
,
298 /* We got the right place, continue checking */
299 if (ret
== ith_start
)
302 /* Move start up for next time and exit for loop */
303 ith_start
= bitmap_find_next_zero_area(
304 map
, ith_end
, ith_start
, num_bits
, 0);
305 if (ith_start
>= ith_end
)
306 /* Need a while new period next time */
309 start
= ith_start
- interval_bits
* i
;
313 /* If didn't exit the for loop with a break, we have success */
318 if (start
+ num_bits
> first_end
)
321 for (i
= 0; i
< to_reserve
; i
++) {
322 int ith_start
= start
+ interval_bits
* i
;
324 bitmap_set(map
, ith_start
, num_bits
);
331 * pmap_unschedule() - Undo work done by pmap_schedule()
333 * @map: See pmap_schedule().
334 * @bits_per_period: See pmap_schedule().
335 * @periods_in_map: See pmap_schedule().
336 * @num_bits: The number of bits that was passed to schedule.
337 * @interval: The interval that was passed to schedule.
338 * @start: The return value from pmap_schedule().
340 static void pmap_unschedule(unsigned long *map
, int bits_per_period
,
341 int periods_in_map
, int num_bits
,
342 int interval
, int start
)
348 /* Adjust interval as per description in pmap_schedule() */
349 interval
= gcd(interval
, periods_in_map
);
351 interval_bits
= bits_per_period
* interval
;
352 to_release
= periods_in_map
/ interval
;
354 for (i
= 0; i
< to_release
; i
++) {
355 int ith_start
= start
+ interval_bits
* i
;
357 bitmap_clear(map
, ith_start
, num_bits
);
362 * dwc2_get_ls_map() - Get the map used for the given qh
364 * @hsotg: The HCD state structure for the DWC OTG controller.
365 * @qh: QH for the periodic transfer.
367 * We'll always get the periodic map out of our TT. Note that even if we're
368 * running the host straight in low speed / full speed mode it appears as if
369 * a TT is allocated for us, so we'll use it. If that ever changes we can
370 * add logic here to get a map out of "hsotg" if !qh->do_split.
372 * Returns: the map or NULL if a map couldn't be found.
374 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg
*hsotg
,
379 /* Don't expect to be missing a TT and be doing low speed scheduling */
380 if (WARN_ON(!qh
->dwc_tt
))
383 /* Get the map and adjust if this is a multi_tt hub */
384 map
= qh
->dwc_tt
->periodic_bitmaps
;
385 if (qh
->dwc_tt
->usb_tt
->multi
)
386 map
+= DWC2_ELEMENTS_PER_LS_BITMAP
* qh
->ttport
;
391 #ifdef DWC2_PRINT_SCHEDULE
393 * cat_printf() - A printf() + strcat() helper
395 * This is useful for concatenating a bunch of strings where each string is
396 * constructed using printf.
398 * @buf: The destination buffer; will be updated to point after the printed
400 * @size: The number of bytes in the buffer (includes space for '\0').
401 * @fmt: The format for printf.
402 * @...: The args for printf.
404 static __printf(3, 4)
405 void cat_printf(char **buf
, size_t *size
, const char *fmt
, ...)
414 i
= vsnprintf(*buf
, *size
, fmt
, args
);
418 (*buf
)[*size
- 1] = '\0';
428 * pmap_print() - Print the given periodic map
430 * Will attempt to print out the periodic schedule.
432 * @map: See pmap_schedule().
433 * @bits_per_period: See pmap_schedule().
434 * @periods_in_map: See pmap_schedule().
435 * @period_name: The name of 1 period, like "uFrame"
436 * @units: The name of the units, like "us".
437 * @print_fn: The function to call for printing.
438 * @print_data: Opaque data to pass to the print function.
440 static void pmap_print(unsigned long *map
, int bits_per_period
,
441 int periods_in_map
, const char *period_name
,
443 void (*print_fn
)(const char *str
, void *data
),
448 for (period
= 0; period
< periods_in_map
; period
++) {
451 size_t buf_size
= sizeof(tmp
);
452 int period_start
= period
* bits_per_period
;
453 int period_end
= period_start
+ bits_per_period
;
456 bool printed
= false;
459 for (i
= period_start
; i
< period_end
+ 1; i
++) {
460 /* Handle case when ith bit is set */
461 if (i
< period_end
&&
462 bitmap_find_next_zero_area(map
, i
+ 1,
465 start
= i
- period_start
;
470 /* ith bit isn't set; don't care if count == 0 */
475 cat_printf(&buf
, &buf_size
, "%s %d: ",
476 period_name
, period
);
478 cat_printf(&buf
, &buf_size
, ", ");
481 cat_printf(&buf
, &buf_size
, "%d %s -%3d %s", start
,
482 units
, start
+ count
- 1, units
);
487 print_fn(tmp
, print_data
);
491 struct dwc2_qh_print_data
{
492 struct dwc2_hsotg
*hsotg
;
497 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
499 * @str: The string to print
500 * @data: A pointer to a struct dwc2_qh_print_data
502 static void dwc2_qh_print(const char *str
, void *data
)
504 struct dwc2_qh_print_data
*print_data
= data
;
506 dwc2_sch_dbg(print_data
->hsotg
, "QH=%p ...%s\n", print_data
->qh
, str
);
510 * dwc2_qh_schedule_print() - Print the periodic schedule
512 * @hsotg: The HCD state structure for the DWC OTG controller.
515 static void dwc2_qh_schedule_print(struct dwc2_hsotg
*hsotg
,
518 struct dwc2_qh_print_data print_data
= { hsotg
, qh
};
522 * The printing functions are quite slow and inefficient.
523 * If we don't have tracing turned on, don't run unless the special
524 * define is turned on.
527 if (qh
->schedule_low_speed
) {
528 unsigned long *map
= dwc2_get_ls_map(hsotg
, qh
);
530 dwc2_sch_dbg(hsotg
, "QH=%p LS/FS trans: %d=>%d us @ %d us",
532 DWC2_ROUND_US_TO_SLICE(qh
->device_us
),
533 DWC2_US_PER_SLICE
* qh
->ls_start_schedule_slice
);
537 "QH=%p Whole low/full speed map %p now:\n",
539 pmap_print(map
, DWC2_LS_PERIODIC_SLICES_PER_FRAME
,
540 DWC2_LS_SCHEDULE_FRAMES
, "Frame ", "slices",
541 dwc2_qh_print
, &print_data
);
545 for (i
= 0; i
< qh
->num_hs_transfers
; i
++) {
546 struct dwc2_hs_transfer_time
*trans_time
= qh
->hs_transfers
+ i
;
547 int uframe
= trans_time
->start_schedule_us
/
548 DWC2_HS_PERIODIC_US_PER_UFRAME
;
549 int rel_us
= trans_time
->start_schedule_us
%
550 DWC2_HS_PERIODIC_US_PER_UFRAME
;
553 "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
554 qh
, i
, trans_time
->duration_us
, uframe
, rel_us
);
556 if (qh
->num_hs_transfers
) {
557 dwc2_sch_dbg(hsotg
, "QH=%p Whole high speed map now:\n", qh
);
558 pmap_print(hsotg
->hs_periodic_bitmap
,
559 DWC2_HS_PERIODIC_US_PER_UFRAME
,
560 DWC2_HS_SCHEDULE_UFRAMES
, "uFrame", "us",
561 dwc2_qh_print
, &print_data
);
565 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg
*hsotg
,
566 struct dwc2_qh
*qh
) {};
570 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
572 * @hsotg: The HCD state structure for the DWC OTG controller.
573 * @qh: QH for the periodic transfer.
574 * @search_slice: We'll start trying to schedule at the passed slice.
575 * Remember that slices are the units of the low speed
576 * schedule (think 25us or so).
578 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
580 * Normally we schedule low speed devices on the map associated with the TT.
582 * Returns: 0 for success or an error code.
584 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
587 int slices
= DIV_ROUND_UP(qh
->device_us
, DWC2_US_PER_SLICE
);
588 unsigned long *map
= dwc2_get_ls_map(hsotg
, qh
);
595 * Schedule on the proper low speed map with our low speed scheduling
596 * parameters. Note that we use the "device_interval" here since
597 * we want the low speed interval and the only way we'd be in this
598 * function is if the device is low speed.
600 * If we happen to be doing low speed and high speed scheduling for the
601 * same transaction (AKA we have a split) we always do low speed first.
602 * That means we can always pass "false" for only_one_period (that
603 * parameters is only useful when we're trying to get one schedule to
604 * match what we already planned in the other schedule).
606 slice
= pmap_schedule(map
, DWC2_LS_PERIODIC_SLICES_PER_FRAME
,
607 DWC2_LS_SCHEDULE_FRAMES
, slices
,
608 qh
->device_interval
, search_slice
, false);
613 qh
->ls_start_schedule_slice
= slice
;
618 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
620 * @hsotg: The HCD state structure for the DWC OTG controller.
621 * @qh: QH for the periodic transfer.
623 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg
*hsotg
,
626 int slices
= DIV_ROUND_UP(qh
->device_us
, DWC2_US_PER_SLICE
);
627 unsigned long *map
= dwc2_get_ls_map(hsotg
, qh
);
629 /* Schedule should have failed, so no worries about no error code */
633 pmap_unschedule(map
, DWC2_LS_PERIODIC_SLICES_PER_FRAME
,
634 DWC2_LS_SCHEDULE_FRAMES
, slices
, qh
->device_interval
,
635 qh
->ls_start_schedule_slice
);
639 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
641 * This will schedule something on the main dwc2 schedule.
643 * We'll start looking in qh->hs_transfers[index].start_schedule_us. We'll
644 * update this with the result upon success. We also use the duration from
645 * the same structure.
647 * @hsotg: The HCD state structure for the DWC OTG controller.
648 * @qh: QH for the periodic transfer.
649 * @only_one_period: If true we will limit ourselves to just looking at
650 * one period (aka one 100us chunk). This is used if we have
651 * already scheduled something on the low speed schedule and
652 * need to find something that matches on the high speed one.
653 * @index: The index into qh->hs_transfers that we're working with.
655 * Returns: 0 for success or an error code. Upon success the
656 * dwc2_hs_transfer_time specified by "index" will be updated.
658 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
659 bool only_one_period
, int index
)
661 struct dwc2_hs_transfer_time
*trans_time
= qh
->hs_transfers
+ index
;
664 us
= pmap_schedule(hsotg
->hs_periodic_bitmap
,
665 DWC2_HS_PERIODIC_US_PER_UFRAME
,
666 DWC2_HS_SCHEDULE_UFRAMES
, trans_time
->duration_us
,
667 qh
->host_interval
, trans_time
->start_schedule_us
,
673 trans_time
->start_schedule_us
= us
;
678 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
680 * @hsotg: The HCD state structure for the DWC OTG controller.
681 * @qh: QH for the periodic transfer.
683 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg
*hsotg
,
684 struct dwc2_qh
*qh
, int index
)
686 struct dwc2_hs_transfer_time
*trans_time
= qh
->hs_transfers
+ index
;
688 pmap_unschedule(hsotg
->hs_periodic_bitmap
,
689 DWC2_HS_PERIODIC_US_PER_UFRAME
,
690 DWC2_HS_SCHEDULE_UFRAMES
, trans_time
->duration_us
,
691 qh
->host_interval
, trans_time
->start_schedule_us
);
695 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
697 * This is the most complicated thing in USB. We have to find matching time
698 * in both the global high speed schedule for the port and the low speed
699 * schedule for the TT associated with the given device.
701 * Being here means that the host must be running in high speed mode and the
702 * device is in low or full speed mode (and behind a hub).
704 * @hsotg: The HCD state structure for the DWC OTG controller.
705 * @qh: QH for the periodic transfer.
707 static int dwc2_uframe_schedule_split(struct dwc2_hsotg
*hsotg
,
710 int bytecount
= dwc2_hb_mult(qh
->maxp
) * dwc2_max_packet(qh
->maxp
);
713 int host_interval_in_sched
;
716 * The interval (how often to repeat) in the actual host schedule.
717 * See pmap_schedule() for gcd() explanation.
719 host_interval_in_sched
= gcd(qh
->host_interval
,
720 DWC2_HS_SCHEDULE_UFRAMES
);
723 * We always try to find space in the low speed schedule first, then
724 * try to find high speed time that matches. If we don't, we'll bump
725 * up the place we start searching in the low speed schedule and try
726 * again. To start we'll look right at the beginning of the low speed
729 * Note that this will tend to front-load the high speed schedule.
730 * We may eventually want to try to avoid this by either considering
731 * both schedules together or doing some sort of round robin.
735 while (ls_search_slice
< DWC2_LS_SCHEDULE_SLICES
) {
743 int first_data_bytes
;
744 int other_data_bytes
;
747 if (qh
->schedule_low_speed
) {
748 err
= dwc2_ls_pmap_schedule(hsotg
, qh
, ls_search_slice
);
751 * If we got an error here there's no other magic we
752 * can do, so bail. All the looping above is only
753 * helpful to redo things if we got a low speed slot
754 * and then couldn't find a matching high speed slot.
759 /* Must be missing the tt structure? Why? */
764 * This will give us a number 0 - 7 if
765 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
767 start_s_uframe
= qh
->ls_start_schedule_slice
/
768 DWC2_SLICES_PER_UFRAME
;
770 /* Get a number that's always 0 - 7 */
771 rel_uframe
= (start_s_uframe
% 8);
774 * If we were going to start in uframe 7 then we would need to
775 * issue a start split in uframe 6, which spec says is not OK.
776 * Move on to the next full frame (assuming there is one).
778 * See 11.18.4 Host Split Transaction Scheduling Requirements
781 if (rel_uframe
== 7) {
782 if (qh
->schedule_low_speed
)
783 dwc2_ls_pmap_unschedule(hsotg
, qh
);
785 (qh
->ls_start_schedule_slice
/
786 DWC2_LS_PERIODIC_SLICES_PER_FRAME
+ 1) *
787 DWC2_LS_PERIODIC_SLICES_PER_FRAME
;
793 * - start split (frame -1)
794 * - complete split w/ data (frame +1)
795 * - complete split w/ data (frame +2)
797 * - complete split w/ data (frame +num_data_packets)
798 * - complete split w/ data (frame +num_data_packets+1)
799 * - complete split w/ data (frame +num_data_packets+2, max 8)
800 * ...though if frame was "0" then max is 7...
802 * For ISOC out we might need to do:
803 * - start split w/ data (frame -1)
804 * - start split w/ data (frame +0)
806 * - start split w/ data (frame +num_data_packets-2)
808 * For INTERRUPT in we might need to do:
809 * - start split (frame -1)
810 * - complete split w/ data (frame +1)
811 * - complete split w/ data (frame +2)
812 * - complete split w/ data (frame +3, max 8)
814 * For INTERRUPT out we might need to do:
815 * - start split w/ data (frame -1)
816 * - complete split (frame +1)
817 * - complete split (frame +2)
818 * - complete split (frame +3, max 8)
822 ssplit_s_uframe
= (start_s_uframe
+
823 host_interval_in_sched
- 1) %
824 host_interval_in_sched
;
825 if (qh
->ep_type
== USB_ENDPOINT_XFER_ISOC
&& !qh
->ep_is_in
)
826 second_s_uframe
= start_s_uframe
;
828 second_s_uframe
= start_s_uframe
+ 1;
830 /* First data transfer might not be all 188 bytes. */
831 first_data_bytes
= 188 -
832 DIV_ROUND_UP(188 * (qh
->ls_start_schedule_slice
%
833 DWC2_SLICES_PER_UFRAME
),
834 DWC2_SLICES_PER_UFRAME
);
835 if (first_data_bytes
> bytecount
)
836 first_data_bytes
= bytecount
;
837 other_data_bytes
= bytecount
- first_data_bytes
;
840 * For now, skip OUT xfers where first xfer is partial
842 * Main dwc2 code assumes:
843 * - INT transfers never get split in two.
844 * - ISOC transfers can always transfer 188 bytes the first
847 * Until that code is fixed, try again if the first transfer
848 * couldn't transfer everything.
850 * This code can be removed if/when the rest of dwc2 handles
851 * the above cases. Until it's fixed we just won't be able
852 * to schedule quite as tightly.
855 (first_data_bytes
!= min_t(int, 188, bytecount
))) {
857 "QH=%p avoiding broken 1st xfer (%d, %d)\n",
858 qh
, first_data_bytes
, bytecount
);
859 if (qh
->schedule_low_speed
)
860 dwc2_ls_pmap_unschedule(hsotg
, qh
);
861 ls_search_slice
= (start_s_uframe
+ 1) *
862 DWC2_SLICES_PER_UFRAME
;
866 /* Start by assuming transfers for the bytes */
867 qh
->num_hs_transfers
= 1 + DIV_ROUND_UP(other_data_bytes
, 188);
870 * Everything except ISOC OUT has extra transfers. Rules are
871 * complicated. See 11.18.4 Host Split Transaction Scheduling
872 * Requirements bullet 3.
874 if (qh
->ep_type
== USB_ENDPOINT_XFER_INT
) {
876 qh
->num_hs_transfers
+= 2;
878 qh
->num_hs_transfers
+= 3;
882 * First is start split, middle/end is data.
883 * Allocate full data bytes for all data.
886 middle_count
= bytecount
;
887 end_count
= bytecount
;
890 * First is data, middle/end is complete.
891 * First transfer and second can have data.
892 * Rest should just have complete split.
894 first_count
= first_data_bytes
;
895 middle_count
= max_t(int, 4, other_data_bytes
);
902 /* Account for the start split */
903 qh
->num_hs_transfers
++;
905 /* Calculate "L" value from spec */
906 last
= rel_uframe
+ qh
->num_hs_transfers
+ 1;
908 /* Start with basic case */
910 qh
->num_hs_transfers
+= 2;
912 qh
->num_hs_transfers
+= 1;
914 /* Adjust downwards */
915 if (last
>= 6 && rel_uframe
== 0)
916 qh
->num_hs_transfers
--;
918 /* 1st = start; rest can contain data */
920 middle_count
= min_t(int, 188, bytecount
);
921 end_count
= middle_count
;
923 /* All contain data, last might be smaller */
924 first_count
= first_data_bytes
;
925 middle_count
= min_t(int, 188,
927 end_count
= other_data_bytes
% 188;
931 /* Assign durations per uFrame */
932 qh
->hs_transfers
[0].duration_us
= HS_USECS_ISO(first_count
);
933 for (i
= 1; i
< qh
->num_hs_transfers
- 1; i
++)
934 qh
->hs_transfers
[i
].duration_us
=
935 HS_USECS_ISO(middle_count
);
936 if (qh
->num_hs_transfers
> 1)
937 qh
->hs_transfers
[qh
->num_hs_transfers
- 1].duration_us
=
938 HS_USECS_ISO(end_count
);
941 * Assign start us. The call below to dwc2_hs_pmap_schedule()
942 * will start with these numbers but may adjust within the same
945 qh
->hs_transfers
[0].start_schedule_us
=
946 ssplit_s_uframe
* DWC2_HS_PERIODIC_US_PER_UFRAME
;
947 for (i
= 1; i
< qh
->num_hs_transfers
; i
++)
948 qh
->hs_transfers
[i
].start_schedule_us
=
949 ((second_s_uframe
+ i
- 1) %
950 DWC2_HS_SCHEDULE_UFRAMES
) *
951 DWC2_HS_PERIODIC_US_PER_UFRAME
;
953 /* Try to schedule with filled in hs_transfers above */
954 for (i
= 0; i
< qh
->num_hs_transfers
; i
++) {
955 err
= dwc2_hs_pmap_schedule(hsotg
, qh
, true, i
);
960 /* If we scheduled all w/out breaking out then we're all good */
961 if (i
== qh
->num_hs_transfers
)
965 dwc2_hs_pmap_unschedule(hsotg
, qh
, i
);
967 if (qh
->schedule_low_speed
)
968 dwc2_ls_pmap_unschedule(hsotg
, qh
);
970 /* Try again starting in the next microframe */
971 ls_search_slice
= (start_s_uframe
+ 1) * DWC2_SLICES_PER_UFRAME
;
974 if (ls_search_slice
>= DWC2_LS_SCHEDULE_SLICES
)
981 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
983 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
986 * @hsotg: The HCD state structure for the DWC OTG controller.
987 * @qh: QH for the periodic transfer.
989 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
991 /* In non-split host and device time are the same */
992 WARN_ON(qh
->host_us
!= qh
->device_us
);
993 WARN_ON(qh
->host_interval
!= qh
->device_interval
);
994 WARN_ON(qh
->num_hs_transfers
!= 1);
996 /* We'll have one transfer; init start to 0 before calling scheduler */
997 qh
->hs_transfers
[0].start_schedule_us
= 0;
998 qh
->hs_transfers
[0].duration_us
= qh
->host_us
;
1000 return dwc2_hs_pmap_schedule(hsotg
, qh
, false, 0);
1004 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1006 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1009 * @hsotg: The HCD state structure for the DWC OTG controller.
1010 * @qh: QH for the periodic transfer.
1012 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1014 /* In non-split host and device time are the same */
1015 WARN_ON(qh
->host_us
!= qh
->device_us
);
1016 WARN_ON(qh
->host_interval
!= qh
->device_interval
);
1017 WARN_ON(!qh
->schedule_low_speed
);
1019 /* Run on the main low speed schedule (no split = no hub = no TT) */
1020 return dwc2_ls_pmap_schedule(hsotg
, qh
, 0);
1024 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1026 * Calls one of the 3 sub-function depending on what type of transfer this QH
1027 * is for. Also adds some printing.
1029 * @hsotg: The HCD state structure for the DWC OTG controller.
1030 * @qh: QH for the periodic transfer.
1032 static int dwc2_uframe_schedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1036 if (qh
->dev_speed
== USB_SPEED_HIGH
)
1037 ret
= dwc2_uframe_schedule_hs(hsotg
, qh
);
1038 else if (!qh
->do_split
)
1039 ret
= dwc2_uframe_schedule_ls(hsotg
, qh
);
1041 ret
= dwc2_uframe_schedule_split(hsotg
, qh
);
1044 dwc2_sch_dbg(hsotg
, "QH=%p Failed to schedule %d\n", qh
, ret
);
1046 dwc2_qh_schedule_print(hsotg
, qh
);
1052 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1054 * @hsotg: The HCD state structure for the DWC OTG controller.
1055 * @qh: QH for the periodic transfer.
1057 static void dwc2_uframe_unschedule(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1061 for (i
= 0; i
< qh
->num_hs_transfers
; i
++)
1062 dwc2_hs_pmap_unschedule(hsotg
, qh
, i
);
1064 if (qh
->schedule_low_speed
)
1065 dwc2_ls_pmap_unschedule(hsotg
, qh
);
1067 dwc2_sch_dbg(hsotg
, "QH=%p Unscheduled\n", qh
);
1071 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1073 * Takes a qh that has already been scheduled (which means we know we have the
1074 * bandwdith reserved for us) and set the next_active_frame and the
1075 * start_active_frame.
1077 * This is expected to be called on qh's that weren't previously actively
1078 * running. It just picks the next frame that we can fit into without any
1079 * thought about the past.
1081 * @hsotg: The HCD state structure for the DWC OTG controller
1082 * @qh: QH for a periodic endpoint
1085 static void dwc2_pick_first_frame(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1089 u16 next_active_frame
;
1094 * Use the real frame number rather than the cached value as of the
1095 * last SOF to give us a little extra slop.
1097 frame_number
= dwc2_hcd_get_frame_number(hsotg
);
1100 * We wouldn't want to start any earlier than the next frame just in
1101 * case the frame number ticks as we're doing this calculation.
1103 * NOTE: if we could quantify how long till we actually get scheduled
1104 * we might be able to avoid the "+ 1" by looking at the upper part of
1105 * HFNUM (the FRREM field). For now we'll just use the + 1 though.
1107 earliest_frame
= dwc2_frame_num_inc(frame_number
, 1);
1108 next_active_frame
= earliest_frame
;
1110 /* Get the "no microframe schduler" out of the way... */
1111 if (!hsotg
->params
.uframe_sched
) {
1113 /* Splits are active at microframe 0 minus 1 */
1114 next_active_frame
|= 0x7;
1118 if (qh
->dev_speed
== USB_SPEED_HIGH
|| qh
->do_split
) {
1120 * We're either at high speed or we're doing a split (which
1121 * means we're talking high speed to a hub). In any case
1122 * the first frame should be based on when the first scheduled
1125 WARN_ON(qh
->num_hs_transfers
< 1);
1127 relative_frame
= qh
->hs_transfers
[0].start_schedule_us
/
1128 DWC2_HS_PERIODIC_US_PER_UFRAME
;
1130 /* Adjust interval as per high speed schedule */
1131 interval
= gcd(qh
->host_interval
, DWC2_HS_SCHEDULE_UFRAMES
);
1135 * Low or full speed directly on dwc2. Just about the same
1136 * as high speed but on a different schedule and with slightly
1137 * different adjustments. Note that this works because when
1138 * the host and device are both low speed then frames in the
1139 * controller tick at low speed.
1141 relative_frame
= qh
->ls_start_schedule_slice
/
1142 DWC2_LS_PERIODIC_SLICES_PER_FRAME
;
1143 interval
= gcd(qh
->host_interval
, DWC2_LS_SCHEDULE_FRAMES
);
1146 /* Scheduler messed up if frame is past interval */
1147 WARN_ON(relative_frame
>= interval
);
1150 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1151 * done the gcd(), so it's safe to move to the beginning of the current
1152 * interval like this.
1154 * After this we might be before earliest_frame, but don't worry,
1157 next_active_frame
= (next_active_frame
/ interval
) * interval
;
1160 * Actually choose to start at the frame number we've been
1163 next_active_frame
= dwc2_frame_num_inc(next_active_frame
,
1167 * We actually need 1 frame before since the next_active_frame is
1168 * the frame number we'll be put on the ready list and we won't be on
1169 * the bus until 1 frame later.
1171 next_active_frame
= dwc2_frame_num_dec(next_active_frame
, 1);
1174 * By now we might actually be before the earliest_frame. Let's move
1175 * up intervals until we're not.
1177 while (dwc2_frame_num_gt(earliest_frame
, next_active_frame
))
1178 next_active_frame
= dwc2_frame_num_inc(next_active_frame
,
1182 qh
->next_active_frame
= next_active_frame
;
1183 qh
->start_active_frame
= next_active_frame
;
1185 dwc2_sch_vdbg(hsotg
, "QH=%p First fn=%04x nxt=%04x\n",
1186 qh
, frame_number
, qh
->next_active_frame
);
1190 * dwc2_do_reserve() - Make a periodic reservation
1192 * Try to allocate space in the periodic schedule. Depending on parameters
1193 * this might use the microframe scheduler or the dumb scheduler.
1195 * @hsotg: The HCD state structure for the DWC OTG controller
1196 * @qh: QH for the periodic transfer.
1198 * Returns: 0 upon success; error upon failure.
1200 static int dwc2_do_reserve(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1204 if (hsotg
->params
.uframe_sched
) {
1205 status
= dwc2_uframe_schedule(hsotg
, qh
);
1207 status
= dwc2_periodic_channel_available(hsotg
);
1209 dev_info(hsotg
->dev
,
1210 "%s: No host channel available for periodic transfer\n",
1215 status
= dwc2_check_periodic_bandwidth(hsotg
, qh
);
1220 "%s: Insufficient periodic bandwidth for periodic transfer\n",
1225 if (!hsotg
->params
.uframe_sched
)
1226 /* Reserve periodic channel */
1227 hsotg
->periodic_channels
++;
1229 /* Update claimed usecs per (micro)frame */
1230 hsotg
->periodic_usecs
+= qh
->host_us
;
1232 dwc2_pick_first_frame(hsotg
, qh
);
1238 * dwc2_do_unreserve() - Actually release the periodic reservation
1240 * This function actually releases the periodic bandwidth that was reserved
1243 * @hsotg: The HCD state structure for the DWC OTG controller
1244 * @qh: QH for the periodic transfer.
1246 static void dwc2_do_unreserve(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1248 assert_spin_locked(&hsotg
->lock
);
1250 WARN_ON(!qh
->unreserve_pending
);
1252 /* No more unreserve pending--we're doing it */
1253 qh
->unreserve_pending
= false;
1255 if (WARN_ON(!list_empty(&qh
->qh_list_entry
)))
1256 list_del_init(&qh
->qh_list_entry
);
1258 /* Update claimed usecs per (micro)frame */
1259 hsotg
->periodic_usecs
-= qh
->host_us
;
1261 if (hsotg
->params
.uframe_sched
) {
1262 dwc2_uframe_unschedule(hsotg
, qh
);
1264 /* Release periodic channel reservation */
1265 hsotg
->periodic_channels
--;
1270 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1272 * According to the kernel doc for usb_submit_urb() (specifically the part about
1273 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1274 * long as a device driver keeps submitting. Since we're using HCD_BH to give
1275 * back the URB we need to give the driver a little bit of time before we
1276 * release the reservation. This worker is called after the appropriate
1279 * @work: Pointer to a qh unreserve_work.
1281 static void dwc2_unreserve_timer_fn(struct timer_list
*t
)
1283 struct dwc2_qh
*qh
= from_timer(qh
, t
, unreserve_timer
);
1284 struct dwc2_hsotg
*hsotg
= qh
->hsotg
;
1285 unsigned long flags
;
1288 * Wait for the lock, or for us to be scheduled again. We
1289 * could be scheduled again if:
1290 * - We started executing but didn't get the lock yet.
1291 * - A new reservation came in, but cancel didn't take effect
1292 * because we already started executing.
1293 * - The timer has been kicked again.
1294 * In that case cancel and wait for the next call.
1296 while (!spin_trylock_irqsave(&hsotg
->lock
, flags
)) {
1297 if (timer_pending(&qh
->unreserve_timer
))
1302 * Might be no more unreserve pending if:
1303 * - We started executing but didn't get the lock yet.
1304 * - A new reservation came in, but cancel didn't take effect
1305 * because we already started executing.
1307 * We can't put this in the loop above because unreserve_pending needs
1308 * to be accessed under lock, so we can only check it once we got the
1311 if (qh
->unreserve_pending
)
1312 dwc2_do_unreserve(hsotg
, qh
);
1314 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1318 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1319 * host channel is large enough to handle the maximum data transfer in a single
1320 * (micro)frame for a periodic transfer
1322 * @hsotg: The HCD state structure for the DWC OTG controller
1323 * @qh: QH for a periodic endpoint
1325 * Return: 0 if successful, negative error code otherwise
1327 static int dwc2_check_max_xfer_size(struct dwc2_hsotg
*hsotg
,
1331 u32 max_channel_xfer_size
;
1334 max_xfer_size
= dwc2_max_packet(qh
->maxp
) * dwc2_hb_mult(qh
->maxp
);
1335 max_channel_xfer_size
= hsotg
->params
.max_transfer_size
;
1337 if (max_xfer_size
> max_channel_xfer_size
) {
1339 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1340 __func__
, max_xfer_size
, max_channel_xfer_size
);
1348 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1349 * the periodic schedule
1351 * @hsotg: The HCD state structure for the DWC OTG controller
1352 * @qh: QH for the periodic transfer. The QH should already contain the
1353 * scheduling information.
1355 * Return: 0 if successful, negative error code otherwise
1357 static int dwc2_schedule_periodic(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1361 status
= dwc2_check_max_xfer_size(hsotg
, qh
);
1364 "%s: Channel max transfer size too small for periodic transfer\n",
1369 /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1370 if (del_timer(&qh
->unreserve_timer
))
1371 WARN_ON(!qh
->unreserve_pending
);
1374 * Only need to reserve if there's not an unreserve pending, since if an
1375 * unreserve is pending then by definition our old reservation is still
1376 * valid. Unreserve might still be pending even if we didn't cancel if
1377 * dwc2_unreserve_timer_fn() already started. Code in the timer handles
1380 if (!qh
->unreserve_pending
) {
1381 status
= dwc2_do_reserve(hsotg
, qh
);
1386 * It might have been a while, so make sure that frame_number
1387 * is still good. Note: we could also try to use the similar
1388 * dwc2_next_periodic_start() but that schedules much more
1389 * tightly and we might need to hurry and queue things up.
1391 if (dwc2_frame_num_le(qh
->next_active_frame
,
1392 hsotg
->frame_number
))
1393 dwc2_pick_first_frame(hsotg
, qh
);
1396 qh
->unreserve_pending
= 0;
1398 if (hsotg
->params
.dma_desc_enable
)
1399 /* Don't rely on SOF and start in ready schedule */
1400 list_add_tail(&qh
->qh_list_entry
, &hsotg
->periodic_sched_ready
);
1402 /* Always start in inactive schedule */
1403 list_add_tail(&qh
->qh_list_entry
,
1404 &hsotg
->periodic_sched_inactive
);
1410 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1411 * from the periodic schedule
1413 * @hsotg: The HCD state structure for the DWC OTG controller
1414 * @qh: QH for the periodic transfer
1416 static void dwc2_deschedule_periodic(struct dwc2_hsotg
*hsotg
,
1421 assert_spin_locked(&hsotg
->lock
);
1424 * Schedule the unreserve to happen in a little bit. Cases here:
1425 * - Unreserve worker might be sitting there waiting to grab the lock.
1426 * In this case it will notice it's been schedule again and will
1428 * - Unreserve worker might not be scheduled.
1430 * We should never already be scheduled since dwc2_schedule_periodic()
1431 * should have canceled the scheduled unreserve timer (hence the
1432 * warning on did_modify).
1434 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1435 * passed (otherwise if the jiffy counter might tick right after we
1436 * read it and we'll get no delay).
1438 did_modify
= mod_timer(&qh
->unreserve_timer
,
1439 jiffies
+ DWC2_UNRESERVE_DELAY
+ 1);
1440 WARN_ON(did_modify
);
1441 qh
->unreserve_pending
= 1;
1443 list_del_init(&qh
->qh_list_entry
);
1447 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1449 * As per the spec, a NAK indicates that "a function is temporarily unable to
1450 * transmit or receive data, but will eventually be able to do so without need
1451 * of host intervention".
1453 * That means that when we encounter a NAK we're supposed to retry.
1455 * ...but if we retry right away (from the interrupt handler that saw the NAK)
1456 * then we can end up with an interrupt storm (if the other side keeps NAKing
1457 * us) because on slow enough CPUs it could take us longer to get out of the
1458 * interrupt routine than it takes for the device to send another NAK. That
1459 * leads to a constant stream of NAK interrupts and the CPU locks.
1461 * ...so instead of retrying right away in the case of a NAK we'll set a timer
1462 * to retry some time later. This function handles that timer and moves the
1463 * qh back to the "inactive" list, then queues transactions.
1465 * @t: Pointer to wait_timer in a qh.
1467 static void dwc2_wait_timer_fn(struct timer_list
*t
)
1469 struct dwc2_qh
*qh
= from_timer(qh
, t
, wait_timer
);
1470 struct dwc2_hsotg
*hsotg
= qh
->hsotg
;
1471 unsigned long flags
;
1473 spin_lock_irqsave(&hsotg
->lock
, flags
);
1476 * We'll set wait_timer_cancel to true if we want to cancel this
1477 * operation in dwc2_hcd_qh_unlink().
1479 if (!qh
->wait_timer_cancel
) {
1480 enum dwc2_transaction_type tr_type
;
1482 qh
->want_wait
= false;
1484 list_move(&qh
->qh_list_entry
,
1485 &hsotg
->non_periodic_sched_inactive
);
1487 tr_type
= dwc2_hcd_select_transactions(hsotg
);
1488 if (tr_type
!= DWC2_TRANSACTION_NONE
)
1489 dwc2_hcd_queue_transactions(hsotg
, tr_type
);
1492 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1496 * dwc2_qh_init() - Initializes a QH structure
1498 * @hsotg: The HCD state structure for the DWC OTG controller
1499 * @qh: The QH to init
1500 * @urb: Holds the information about the device/endpoint needed to initialize
1502 * @mem_flags: Flags for allocating memory.
1504 static void dwc2_qh_init(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
1505 struct dwc2_hcd_urb
*urb
, gfp_t mem_flags
)
1507 int dev_speed
= dwc2_host_get_speed(hsotg
, urb
->priv
);
1508 u8 ep_type
= dwc2_hcd_get_pipe_type(&urb
->pipe_info
);
1509 bool ep_is_in
= !!dwc2_hcd_is_pipe_in(&urb
->pipe_info
);
1510 bool ep_is_isoc
= (ep_type
== USB_ENDPOINT_XFER_ISOC
);
1511 bool ep_is_int
= (ep_type
== USB_ENDPOINT_XFER_INT
);
1512 u32 hprt
= dwc2_readl(hsotg
->regs
+ HPRT0
);
1513 u32 prtspd
= (hprt
& HPRT0_SPD_MASK
) >> HPRT0_SPD_SHIFT
;
1514 bool do_split
= (prtspd
== HPRT0_SPD_HIGH_SPEED
&&
1515 dev_speed
!= USB_SPEED_HIGH
);
1516 int maxp
= dwc2_hcd_get_mps(&urb
->pipe_info
);
1517 int bytecount
= dwc2_hb_mult(maxp
) * dwc2_max_packet(maxp
);
1522 timer_setup(&qh
->unreserve_timer
, dwc2_unreserve_timer_fn
, 0);
1523 timer_setup(&qh
->wait_timer
, dwc2_wait_timer_fn
, 0);
1524 qh
->ep_type
= ep_type
;
1525 qh
->ep_is_in
= ep_is_in
;
1527 qh
->data_toggle
= DWC2_HC_PID_DATA0
;
1529 INIT_LIST_HEAD(&qh
->qtd_list
);
1530 INIT_LIST_HEAD(&qh
->qh_list_entry
);
1532 qh
->do_split
= do_split
;
1533 qh
->dev_speed
= dev_speed
;
1535 if (ep_is_int
|| ep_is_isoc
) {
1536 /* Compute scheduling parameters once and save them */
1537 int host_speed
= do_split
? USB_SPEED_HIGH
: dev_speed
;
1538 struct dwc2_tt
*dwc_tt
= dwc2_host_get_tt_info(hsotg
, urb
->priv
,
1543 qh
->dwc_tt
= dwc_tt
;
1545 qh
->host_us
= NS_TO_US(usb_calc_bus_time(host_speed
, ep_is_in
,
1546 ep_is_isoc
, bytecount
));
1547 device_ns
= usb_calc_bus_time(dev_speed
, ep_is_in
,
1548 ep_is_isoc
, bytecount
);
1550 if (do_split
&& dwc_tt
)
1551 device_ns
+= dwc_tt
->usb_tt
->think_time
;
1552 qh
->device_us
= NS_TO_US(device_ns
);
1554 qh
->device_interval
= urb
->interval
;
1555 qh
->host_interval
= urb
->interval
* (do_split
? 8 : 1);
1558 * Schedule low speed if we're running the host in low or
1559 * full speed OR if we've got a "TT" to deal with to access this
1562 qh
->schedule_low_speed
= prtspd
!= HPRT0_SPD_HIGH_SPEED
||
1566 /* We won't know num transfers until we schedule */
1567 qh
->num_hs_transfers
= -1;
1568 } else if (dev_speed
== USB_SPEED_HIGH
) {
1569 qh
->num_hs_transfers
= 1;
1571 qh
->num_hs_transfers
= 0;
1574 /* We'll schedule later when we have something to do */
1577 switch (dev_speed
) {
1581 case USB_SPEED_FULL
:
1584 case USB_SPEED_HIGH
:
1592 switch (qh
->ep_type
) {
1593 case USB_ENDPOINT_XFER_ISOC
:
1594 type
= "isochronous";
1596 case USB_ENDPOINT_XFER_INT
:
1599 case USB_ENDPOINT_XFER_CONTROL
:
1602 case USB_ENDPOINT_XFER_BULK
:
1610 dwc2_sch_dbg(hsotg
, "QH=%p Init %s, %s speed, %d bytes:\n", qh
, type
,
1612 dwc2_sch_dbg(hsotg
, "QH=%p ...addr=%d, ep=%d, %s\n", qh
,
1613 dwc2_hcd_get_dev_addr(&urb
->pipe_info
),
1614 dwc2_hcd_get_ep_num(&urb
->pipe_info
),
1615 ep_is_in
? "IN" : "OUT");
1616 if (ep_is_int
|| ep_is_isoc
) {
1618 "QH=%p ...duration: host=%d us, device=%d us\n",
1619 qh
, qh
->host_us
, qh
->device_us
);
1620 dwc2_sch_dbg(hsotg
, "QH=%p ...interval: host=%d, device=%d\n",
1621 qh
, qh
->host_interval
, qh
->device_interval
);
1622 if (qh
->schedule_low_speed
)
1623 dwc2_sch_dbg(hsotg
, "QH=%p ...low speed schedule=%p\n",
1624 qh
, dwc2_get_ls_map(hsotg
, qh
));
1629 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1631 * @hsotg: The HCD state structure for the DWC OTG controller
1632 * @urb: Holds the information about the device/endpoint needed
1633 * to initialize the QH
1634 * @atomic_alloc: Flag to do atomic allocation if needed
1636 * Return: Pointer to the newly allocated QH, or NULL on error
1638 struct dwc2_qh
*dwc2_hcd_qh_create(struct dwc2_hsotg
*hsotg
,
1639 struct dwc2_hcd_urb
*urb
,
1647 /* Allocate memory */
1648 qh
= kzalloc(sizeof(*qh
), mem_flags
);
1652 dwc2_qh_init(hsotg
, qh
, urb
, mem_flags
);
1654 if (hsotg
->params
.dma_desc_enable
&&
1655 dwc2_hcd_qh_init_ddma(hsotg
, qh
, mem_flags
) < 0) {
1656 dwc2_hcd_qh_free(hsotg
, qh
);
1664 * dwc2_hcd_qh_free() - Frees the QH
1666 * @hsotg: HCD instance
1667 * @qh: The QH to free
1669 * QH should already be removed from the list. QTD list should already be empty
1670 * if called from URB Dequeue.
1672 * Must NOT be called with interrupt disabled or spinlock held
1674 void dwc2_hcd_qh_free(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1676 /* Make sure any unreserve work is finished. */
1677 if (del_timer_sync(&qh
->unreserve_timer
)) {
1678 unsigned long flags
;
1680 spin_lock_irqsave(&hsotg
->lock
, flags
);
1681 dwc2_do_unreserve(hsotg
, qh
);
1682 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
1686 * We don't have the lock so we can safely wait until the wait timer
1687 * finishes. Of course, at this point in time we'd better have set
1688 * wait_timer_active to false so if this timer was still pending it
1689 * won't do anything anyway, but we want it to finish before we free
1692 del_timer_sync(&qh
->wait_timer
);
1694 dwc2_host_put_tt_info(hsotg
, qh
->dwc_tt
);
1697 dwc2_hcd_qh_free_ddma(hsotg
, qh
);
1702 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1703 * schedule if it is not already in the schedule. If the QH is already in
1704 * the schedule, no action is taken.
1706 * @hsotg: The HCD state structure for the DWC OTG controller
1707 * @qh: The QH to add
1709 * Return: 0 if successful, negative error code otherwise
1711 int dwc2_hcd_qh_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1717 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1719 if (!list_empty(&qh
->qh_list_entry
))
1720 /* QH already in a schedule */
1723 /* Add the new QH to the appropriate schedule */
1724 if (dwc2_qh_is_non_per(qh
)) {
1725 /* Schedule right away */
1726 qh
->start_active_frame
= hsotg
->frame_number
;
1727 qh
->next_active_frame
= qh
->start_active_frame
;
1729 if (qh
->want_wait
) {
1730 list_add_tail(&qh
->qh_list_entry
,
1731 &hsotg
->non_periodic_sched_waiting
);
1732 qh
->wait_timer_cancel
= false;
1733 mod_timer(&qh
->wait_timer
,
1734 jiffies
+ DWC2_RETRY_WAIT_DELAY
+ 1);
1736 list_add_tail(&qh
->qh_list_entry
,
1737 &hsotg
->non_periodic_sched_inactive
);
1742 status
= dwc2_schedule_periodic(hsotg
, qh
);
1745 if (!hsotg
->periodic_qh_count
) {
1746 intr_mask
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
1747 intr_mask
|= GINTSTS_SOF
;
1748 dwc2_writel(intr_mask
, hsotg
->regs
+ GINTMSK
);
1750 hsotg
->periodic_qh_count
++;
1756 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1757 * schedule. Memory is not freed.
1759 * @hsotg: The HCD state structure
1760 * @qh: QH to remove from schedule
1762 void dwc2_hcd_qh_unlink(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
)
1766 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1768 /* If the wait_timer is pending, this will stop it from acting */
1769 qh
->wait_timer_cancel
= true;
1771 if (list_empty(&qh
->qh_list_entry
))
1772 /* QH is not in a schedule */
1775 if (dwc2_qh_is_non_per(qh
)) {
1776 if (hsotg
->non_periodic_qh_ptr
== &qh
->qh_list_entry
)
1777 hsotg
->non_periodic_qh_ptr
=
1778 hsotg
->non_periodic_qh_ptr
->next
;
1779 list_del_init(&qh
->qh_list_entry
);
1783 dwc2_deschedule_periodic(hsotg
, qh
);
1784 hsotg
->periodic_qh_count
--;
1785 if (!hsotg
->periodic_qh_count
&&
1786 !hsotg
->params
.dma_desc_enable
) {
1787 intr_mask
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
1788 intr_mask
&= ~GINTSTS_SOF
;
1789 dwc2_writel(intr_mask
, hsotg
->regs
+ GINTMSK
);
1794 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1796 * This is called for setting next_active_frame for periodic splits for all but
1797 * the first packet of the split. Confusing? I thought so...
1799 * Periodic splits are single low/full speed transfers that we end up splitting
1800 * up into several high speed transfers. They always fit into one full (1 ms)
1801 * frame but might be split over several microframes (125 us each). We to put
1802 * each of the parts on a very specific high speed frame.
1804 * This function figures out where the next active uFrame needs to be.
1806 * @hsotg: The HCD state structure
1807 * @qh: QH for the periodic transfer.
1808 * @frame_number: The current frame number.
1810 * Return: number missed by (or 0 if we didn't miss).
1812 static int dwc2_next_for_periodic_split(struct dwc2_hsotg
*hsotg
,
1813 struct dwc2_qh
*qh
, u16 frame_number
)
1815 u16 old_frame
= qh
->next_active_frame
;
1816 u16 prev_frame_number
= dwc2_frame_num_dec(frame_number
, 1);
1821 * See dwc2_uframe_schedule_split() for split scheduling.
1823 * Basically: increment 1 normally, but 2 right after the start split
1824 * (except for ISOC out).
1826 if (old_frame
== qh
->start_active_frame
&&
1827 !(qh
->ep_type
== USB_ENDPOINT_XFER_ISOC
&& !qh
->ep_is_in
))
1832 qh
->next_active_frame
= dwc2_frame_num_inc(old_frame
, incr
);
1835 * Note that it's OK for frame_number to be 1 frame past
1836 * next_active_frame. Remember that next_active_frame is supposed to
1837 * be 1 frame _before_ when we want to be scheduled. If we're 1 frame
1838 * past it just means schedule ASAP.
1840 * It's _not_ OK, however, if we're more than one frame past.
1842 if (dwc2_frame_num_gt(prev_frame_number
, qh
->next_active_frame
)) {
1844 * OOPS, we missed. That's actually pretty bad since
1845 * the hub will be unhappy; try ASAP I guess.
1847 missed
= dwc2_frame_num_dec(prev_frame_number
,
1848 qh
->next_active_frame
);
1849 qh
->next_active_frame
= frame_number
;
1856 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1858 * This is called for setting next_active_frame for a periodic transfer for
1859 * all cases other than midway through a periodic split. This will also update
1860 * start_active_frame.
1862 * Since we _always_ keep start_active_frame as the start of the previous
1863 * transfer this is normally pretty easy: we just add our interval to
1864 * start_active_frame and we've got our answer.
1866 * The tricks come into play if we miss. In that case we'll look for the next
1867 * slot we can fit into.
1869 * @hsotg: The HCD state structure
1870 * @qh: QH for the periodic transfer.
1871 * @frame_number: The current frame number.
1873 * Return: number missed by (or 0 if we didn't miss).
1875 static int dwc2_next_periodic_start(struct dwc2_hsotg
*hsotg
,
1876 struct dwc2_qh
*qh
, u16 frame_number
)
1879 u16 interval
= qh
->host_interval
;
1880 u16 prev_frame_number
= dwc2_frame_num_dec(frame_number
, 1);
1882 qh
->start_active_frame
= dwc2_frame_num_inc(qh
->start_active_frame
,
1886 * The dwc2_frame_num_gt() function used below won't work terribly well
1887 * with if we just incremented by a really large intervals since the
1888 * frame counter only goes to 0x3fff. It's terribly unlikely that we
1889 * will have missed in this case anyway. Just go to exit. If we want
1890 * to try to do better we'll need to keep track of a bigger counter
1891 * somewhere in the driver and handle overflows.
1893 if (interval
>= 0x1000)
1897 * Test for misses, which is when it's too late to schedule.
1899 * A few things to note:
1900 * - We compare against prev_frame_number since start_active_frame
1901 * and next_active_frame are always 1 frame before we want things
1902 * to be active and we assume we can still get scheduled in the
1903 * current frame number.
1904 * - It's possible for start_active_frame (now incremented) to be
1905 * next_active_frame if we got an EO MISS (even_odd miss) which
1906 * basically means that we detected there wasn't enough time for
1907 * the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1908 * at the last second. We want to make sure we don't schedule
1909 * another transfer for the same frame. My test webcam doesn't seem
1910 * terribly upset by missing a transfer but really doesn't like when
1911 * we do two transfers in the same frame.
1912 * - Some misses are expected. Specifically, in order to work
1913 * perfectly dwc2 really needs quite spectacular interrupt latency
1914 * requirements. It needs to be able to handle its interrupts
1915 * completely within 125 us of them being asserted. That not only
1916 * means that the dwc2 interrupt handler needs to be fast but it
1917 * means that nothing else in the system has to block dwc2 for a long
1918 * time. We can help with the dwc2 parts of this, but it's hard to
1919 * guarantee that a system will have interrupt latency < 125 us, so
1920 * we have to be robust to some misses.
1922 if (qh
->start_active_frame
== qh
->next_active_frame
||
1923 dwc2_frame_num_gt(prev_frame_number
, qh
->start_active_frame
)) {
1924 u16 ideal_start
= qh
->start_active_frame
;
1928 * Adjust interval as per gcd with map size.
1929 * See pmap_schedule() for more details here.
1931 if (qh
->do_split
|| qh
->dev_speed
== USB_SPEED_HIGH
)
1932 periods_in_map
= DWC2_HS_SCHEDULE_UFRAMES
;
1934 periods_in_map
= DWC2_LS_SCHEDULE_FRAMES
;
1935 interval
= gcd(interval
, periods_in_map
);
1938 qh
->start_active_frame
= dwc2_frame_num_inc(
1939 qh
->start_active_frame
, interval
);
1940 } while (dwc2_frame_num_gt(prev_frame_number
,
1941 qh
->start_active_frame
));
1943 missed
= dwc2_frame_num_dec(qh
->start_active_frame
,
1948 qh
->next_active_frame
= qh
->start_active_frame
;
1954 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1955 * non-periodic schedule. The QH is added to the inactive non-periodic
1956 * schedule if any QTDs are still attached to the QH.
1958 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1959 * there are any QTDs still attached to the QH, the QH is added to either the
1960 * periodic inactive schedule or the periodic ready schedule and its next
1961 * scheduled frame is calculated. The QH is placed in the ready schedule if
1962 * the scheduled frame has been reached already. Otherwise it's placed in the
1963 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1964 * completely removed from the periodic schedule.
1966 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
1967 int sched_next_periodic_split
)
1969 u16 old_frame
= qh
->next_active_frame
;
1974 dev_vdbg(hsotg
->dev
, "%s()\n", __func__
);
1976 if (dwc2_qh_is_non_per(qh
)) {
1977 dwc2_hcd_qh_unlink(hsotg
, qh
);
1978 if (!list_empty(&qh
->qtd_list
))
1979 /* Add back to inactive/waiting non-periodic schedule */
1980 dwc2_hcd_qh_add(hsotg
, qh
);
1985 * Use the real frame number rather than the cached value as of the
1986 * last SOF just to get us a little closer to reality. Note that
1987 * means we don't actually know if we've already handled the SOF
1988 * interrupt for this frame.
1990 frame_number
= dwc2_hcd_get_frame_number(hsotg
);
1992 if (sched_next_periodic_split
)
1993 missed
= dwc2_next_for_periodic_split(hsotg
, qh
, frame_number
);
1995 missed
= dwc2_next_periodic_start(hsotg
, qh
, frame_number
);
1997 dwc2_sch_vdbg(hsotg
,
1998 "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1999 qh
, sched_next_periodic_split
, frame_number
, old_frame
,
2000 qh
->next_active_frame
,
2001 dwc2_frame_num_dec(qh
->next_active_frame
, old_frame
),
2002 missed
, missed
? "MISS" : "");
2004 if (list_empty(&qh
->qtd_list
)) {
2005 dwc2_hcd_qh_unlink(hsotg
, qh
);
2010 * Remove from periodic_sched_queued and move to
2013 * Note: we purposely use the frame_number from the "hsotg" structure
2014 * since we know SOF interrupt will handle future frames.
2016 if (dwc2_frame_num_le(qh
->next_active_frame
, hsotg
->frame_number
))
2017 list_move_tail(&qh
->qh_list_entry
,
2018 &hsotg
->periodic_sched_ready
);
2020 list_move_tail(&qh
->qh_list_entry
,
2021 &hsotg
->periodic_sched_inactive
);
2025 * dwc2_hcd_qtd_init() - Initializes a QTD structure
2027 * @qtd: The QTD to initialize
2028 * @urb: The associated URB
2030 void dwc2_hcd_qtd_init(struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
)
2033 if (dwc2_hcd_get_pipe_type(&urb
->pipe_info
) ==
2034 USB_ENDPOINT_XFER_CONTROL
) {
2036 * The only time the QTD data toggle is used is on the data
2037 * phase of control transfers. This phase always starts with
2040 qtd
->data_toggle
= DWC2_HC_PID_DATA1
;
2041 qtd
->control_phase
= DWC2_CONTROL_SETUP
;
2045 qtd
->complete_split
= 0;
2046 qtd
->isoc_split_pos
= DWC2_HCSPLT_XACTPOS_ALL
;
2047 qtd
->isoc_split_offset
= 0;
2048 qtd
->in_process
= 0;
2050 /* Store the qtd ptr in the urb to reference the QTD */
2055 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2056 * Caller must hold driver lock.
2058 * @hsotg: The DWC HCD structure
2059 * @qtd: The QTD to add
2060 * @qh: Queue head to add qtd to
2062 * Return: 0 if successful, negative error code otherwise
2064 * If the QH to which the QTD is added is not currently scheduled, it is placed
2065 * into the proper schedule based on its EP type.
2067 int dwc2_hcd_qtd_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
2072 if (unlikely(!qh
)) {
2073 dev_err(hsotg
->dev
, "%s: Invalid QH\n", __func__
);
2078 retval
= dwc2_hcd_qh_add(hsotg
, qh
);
2083 list_add_tail(&qtd
->qtd_list_entry
, &qh
->qtd_list
);