1 /* Maintain an RxRPC server socket to do AFS communications through
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
16 #include <net/af_rxrpc.h>
20 struct workqueue_struct
*afs_async_calls
;
22 static void afs_wake_up_call_waiter(struct sock
*, struct rxrpc_call
*, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call
*, struct afs_addr_cursor
*);
24 static void afs_wake_up_async_call(struct sock
*, struct rxrpc_call
*, unsigned long);
25 static void afs_process_async_call(struct work_struct
*);
26 static void afs_rx_new_call(struct sock
*, struct rxrpc_call
*, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call
*, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call
*);
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx
= {
33 .deliver
= afs_deliver_cm_op_id
,
37 * open an RxRPC socket and bind it to be a server for callback notifications
38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
40 int afs_open_socket(struct afs_net
*net
)
42 struct sockaddr_rxrpc srx
;
43 struct socket
*socket
;
48 ret
= sock_create_kern(&init_net
, AF_RXRPC
, SOCK_DGRAM
, PF_INET6
, &socket
);
52 socket
->sk
->sk_allocation
= GFP_NOFS
;
54 /* bind the callback manager's address to make this a server socket */
55 memset(&srx
, 0, sizeof(srx
));
56 srx
.srx_family
= AF_RXRPC
;
57 srx
.srx_service
= CM_SERVICE
;
58 srx
.transport_type
= SOCK_DGRAM
;
59 srx
.transport_len
= sizeof(srx
.transport
.sin6
);
60 srx
.transport
.sin6
.sin6_family
= AF_INET6
;
61 srx
.transport
.sin6
.sin6_port
= htons(AFS_CM_PORT
);
63 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
64 if (ret
== -EADDRINUSE
) {
65 srx
.transport
.sin6
.sin6_port
= 0;
66 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
71 rxrpc_kernel_new_call_notification(socket
, afs_rx_new_call
,
72 afs_rx_discard_new_call
);
74 ret
= kernel_listen(socket
, INT_MAX
);
79 afs_charge_preallocation(&net
->charge_preallocation_work
);
91 * close the RxRPC socket AFS was using
93 void afs_close_socket(struct afs_net
*net
)
97 kernel_listen(net
->socket
, 0);
98 flush_workqueue(afs_async_calls
);
100 if (net
->spare_incoming_call
) {
101 afs_put_call(net
->spare_incoming_call
);
102 net
->spare_incoming_call
= NULL
;
105 _debug("outstanding %u", atomic_read(&net
->nr_outstanding_calls
));
106 wait_on_atomic_t(&net
->nr_outstanding_calls
, atomic_t_wait
,
107 TASK_UNINTERRUPTIBLE
);
108 _debug("no outstanding calls");
110 kernel_sock_shutdown(net
->socket
, SHUT_RDWR
);
111 flush_workqueue(afs_async_calls
);
112 sock_release(net
->socket
);
121 static struct afs_call
*afs_alloc_call(struct afs_net
*net
,
122 const struct afs_call_type
*type
,
125 struct afs_call
*call
;
128 call
= kzalloc(sizeof(*call
), gfp
);
134 atomic_set(&call
->usage
, 1);
135 INIT_WORK(&call
->async_work
, afs_process_async_call
);
136 init_waitqueue_head(&call
->waitq
);
137 spin_lock_init(&call
->state_lock
);
139 o
= atomic_inc_return(&net
->nr_outstanding_calls
);
140 trace_afs_call(call
, afs_call_trace_alloc
, 1, o
,
141 __builtin_return_address(0));
146 * Dispose of a reference on a call.
148 void afs_put_call(struct afs_call
*call
)
150 struct afs_net
*net
= call
->net
;
151 int n
= atomic_dec_return(&call
->usage
);
152 int o
= atomic_read(&net
->nr_outstanding_calls
);
154 trace_afs_call(call
, afs_call_trace_put
, n
+ 1, o
,
155 __builtin_return_address(0));
159 ASSERT(!work_pending(&call
->async_work
));
160 ASSERT(call
->type
->name
!= NULL
);
163 rxrpc_kernel_end_call(net
->socket
, call
->rxcall
);
166 if (call
->type
->destructor
)
167 call
->type
->destructor(call
);
169 afs_put_server(call
->net
, call
->cm_server
);
170 afs_put_cb_interest(call
->net
, call
->cbi
);
171 kfree(call
->request
);
174 o
= atomic_dec_return(&net
->nr_outstanding_calls
);
175 trace_afs_call(call
, afs_call_trace_free
, 0, o
,
176 __builtin_return_address(0));
178 wake_up_atomic_t(&net
->nr_outstanding_calls
);
183 * Queue the call for actual work. Returns 0 unconditionally for convenience.
185 int afs_queue_call_work(struct afs_call
*call
)
187 int u
= atomic_inc_return(&call
->usage
);
189 trace_afs_call(call
, afs_call_trace_work
, u
,
190 atomic_read(&call
->net
->nr_outstanding_calls
),
191 __builtin_return_address(0));
193 INIT_WORK(&call
->work
, call
->type
->work
);
195 if (!queue_work(afs_wq
, &call
->work
))
201 * allocate a call with flat request and reply buffers
203 struct afs_call
*afs_alloc_flat_call(struct afs_net
*net
,
204 const struct afs_call_type
*type
,
205 size_t request_size
, size_t reply_max
)
207 struct afs_call
*call
;
209 call
= afs_alloc_call(net
, type
, GFP_NOFS
);
214 call
->request_size
= request_size
;
215 call
->request
= kmalloc(request_size
, GFP_NOFS
);
221 call
->reply_max
= reply_max
;
222 call
->buffer
= kmalloc(reply_max
, GFP_NOFS
);
227 call
->operation_ID
= type
->op
;
228 init_waitqueue_head(&call
->waitq
);
238 * clean up a call with flat buffer
240 void afs_flat_call_destructor(struct afs_call
*call
)
244 kfree(call
->request
);
245 call
->request
= NULL
;
250 #define AFS_BVEC_MAX 8
253 * Load the given bvec with the next few pages.
255 static void afs_load_bvec(struct afs_call
*call
, struct msghdr
*msg
,
256 struct bio_vec
*bv
, pgoff_t first
, pgoff_t last
,
259 struct page
*pages
[AFS_BVEC_MAX
];
260 unsigned int nr
, n
, i
, to
, bytes
= 0;
262 nr
= min_t(pgoff_t
, last
- first
+ 1, AFS_BVEC_MAX
);
263 n
= find_get_pages_contig(call
->mapping
, first
, nr
, pages
);
264 ASSERTCMP(n
, ==, nr
);
266 msg
->msg_flags
|= MSG_MORE
;
267 for (i
= 0; i
< nr
; i
++) {
269 if (first
+ i
>= last
) {
271 msg
->msg_flags
&= ~MSG_MORE
;
273 bv
[i
].bv_page
= pages
[i
];
274 bv
[i
].bv_len
= to
- offset
;
275 bv
[i
].bv_offset
= offset
;
276 bytes
+= to
- offset
;
280 iov_iter_bvec(&msg
->msg_iter
, WRITE
| ITER_BVEC
, bv
, nr
, bytes
);
284 * Advance the AFS call state when the RxRPC call ends the transmit phase.
286 static void afs_notify_end_request_tx(struct sock
*sock
,
287 struct rxrpc_call
*rxcall
,
288 unsigned long call_user_ID
)
290 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
292 afs_set_call_state(call
, AFS_CALL_CL_REQUESTING
, AFS_CALL_CL_AWAIT_REPLY
);
296 * attach the data from a bunch of pages on an inode to a call
298 static int afs_send_pages(struct afs_call
*call
, struct msghdr
*msg
)
300 struct bio_vec bv
[AFS_BVEC_MAX
];
301 unsigned int bytes
, nr
, loop
, offset
;
302 pgoff_t first
= call
->first
, last
= call
->last
;
305 offset
= call
->first_offset
;
306 call
->first_offset
= 0;
309 afs_load_bvec(call
, msg
, bv
, first
, last
, offset
);
310 trace_afs_send_pages(call
, msg
, first
, last
, offset
);
313 bytes
= msg
->msg_iter
.count
;
314 nr
= msg
->msg_iter
.nr_segs
;
316 ret
= rxrpc_kernel_send_data(call
->net
->socket
, call
->rxcall
, msg
,
317 bytes
, afs_notify_end_request_tx
);
318 for (loop
= 0; loop
< nr
; loop
++)
319 put_page(bv
[loop
].bv_page
);
324 } while (first
<= last
);
326 trace_afs_sent_pages(call
, call
->first
, last
, first
, ret
);
333 long afs_make_call(struct afs_addr_cursor
*ac
, struct afs_call
*call
,
334 gfp_t gfp
, bool async
)
336 struct sockaddr_rxrpc
*srx
= ac
->addr
;
337 struct rxrpc_call
*rxcall
;
344 _enter(",{%pISp},", &srx
->transport
);
346 ASSERT(call
->type
!= NULL
);
347 ASSERT(call
->type
->name
!= NULL
);
349 _debug("____MAKE %p{%s,%x} [%d]____",
350 call
, call
->type
->name
, key_serial(call
->key
),
351 atomic_read(&call
->net
->nr_outstanding_calls
));
355 /* Work out the length we're going to transmit. This is awkward for
356 * calls such as FS.StoreData where there's an extra injection of data
357 * after the initial fixed part.
359 tx_total_len
= call
->request_size
;
360 if (call
->send_pages
) {
361 if (call
->last
== call
->first
) {
362 tx_total_len
+= call
->last_to
- call
->first_offset
;
364 /* It looks mathematically like you should be able to
365 * combine the following lines with the ones above, but
366 * unsigned arithmetic is fun when it wraps...
368 tx_total_len
+= PAGE_SIZE
- call
->first_offset
;
369 tx_total_len
+= call
->last_to
;
370 tx_total_len
+= (call
->last
- call
->first
- 1) * PAGE_SIZE
;
375 rxcall
= rxrpc_kernel_begin_call(call
->net
->socket
, srx
, call
->key
,
379 afs_wake_up_async_call
:
380 afs_wake_up_call_waiter
),
382 if (IS_ERR(rxcall
)) {
383 ret
= PTR_ERR(rxcall
);
384 goto error_kill_call
;
387 call
->rxcall
= rxcall
;
389 /* send the request */
390 iov
[0].iov_base
= call
->request
;
391 iov
[0].iov_len
= call
->request_size
;
395 iov_iter_kvec(&msg
.msg_iter
, WRITE
| ITER_KVEC
, iov
, 1,
397 msg
.msg_control
= NULL
;
398 msg
.msg_controllen
= 0;
399 msg
.msg_flags
= MSG_WAITALL
| (call
->send_pages
? MSG_MORE
: 0);
401 ret
= rxrpc_kernel_send_data(call
->net
->socket
, rxcall
,
402 &msg
, call
->request_size
,
403 afs_notify_end_request_tx
);
407 if (call
->send_pages
) {
408 ret
= afs_send_pages(call
, &msg
);
413 /* at this point, an async call may no longer exist as it may have
414 * already completed */
418 return afs_wait_for_call_to_complete(call
, ac
);
421 call
->state
= AFS_CALL_COMPLETE
;
422 if (ret
!= -ECONNABORTED
) {
423 rxrpc_kernel_abort_call(call
->net
->socket
, rxcall
,
424 RX_USER_ABORT
, ret
, "KSD");
427 rxrpc_kernel_recv_data(call
->net
->socket
, rxcall
, NULL
,
428 0, &offset
, false, &call
->abort_code
,
430 ac
->abort_code
= call
->abort_code
;
431 ac
->responded
= true;
434 trace_afs_call_done(call
);
438 _leave(" = %d", ret
);
443 * deliver messages to a call
445 static void afs_deliver_to_call(struct afs_call
*call
)
447 enum afs_call_state state
;
448 u32 abort_code
, remote_abort
= 0;
451 _enter("%s", call
->type
->name
);
453 while (state
= READ_ONCE(call
->state
),
454 state
== AFS_CALL_CL_AWAIT_REPLY
||
455 state
== AFS_CALL_SV_AWAIT_OP_ID
||
456 state
== AFS_CALL_SV_AWAIT_REQUEST
||
457 state
== AFS_CALL_SV_AWAIT_ACK
459 if (state
== AFS_CALL_SV_AWAIT_ACK
) {
461 ret
= rxrpc_kernel_recv_data(call
->net
->socket
,
463 NULL
, 0, &offset
, false,
466 trace_afs_recv_data(call
, 0, offset
, false, ret
);
468 if (ret
== -EINPROGRESS
|| ret
== -EAGAIN
)
470 if (ret
< 0 || ret
== 1) {
478 ret
= call
->type
->deliver(call
);
479 state
= READ_ONCE(call
->state
);
482 if (state
== AFS_CALL_CL_PROC_REPLY
)
484 ASSERTCMP(state
, >, AFS_CALL_CL_PROC_REPLY
);
491 ASSERTCMP(state
, ==, AFS_CALL_COMPLETE
);
494 abort_code
= RX_CALL_DEAD
;
495 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
496 abort_code
, ret
, "KNC");
499 abort_code
= RXGEN_OPCODE
;
500 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
501 abort_code
, ret
, "KIV");
507 abort_code
= RXGEN_CC_UNMARSHAL
;
508 if (state
!= AFS_CALL_CL_AWAIT_REPLY
)
509 abort_code
= RXGEN_SS_UNMARSHAL
;
510 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
511 abort_code
, -EBADMSG
, "KUM");
517 if (state
== AFS_CALL_COMPLETE
&& call
->incoming
)
526 afs_set_call_complete(call
, ret
, remote_abort
);
527 state
= AFS_CALL_COMPLETE
;
532 * wait synchronously for a call to complete
534 static long afs_wait_for_call_to_complete(struct afs_call
*call
,
535 struct afs_addr_cursor
*ac
)
537 signed long rtt2
, timeout
;
542 DECLARE_WAITQUEUE(myself
, current
);
546 rtt
= rxrpc_kernel_get_rtt(call
->net
->socket
, call
->rxcall
);
547 rtt2
= nsecs_to_jiffies64(rtt
) * 2;
552 last_life
= rxrpc_kernel_check_life(call
->net
->socket
, call
->rxcall
);
554 add_wait_queue(&call
->waitq
, &myself
);
556 set_current_state(TASK_UNINTERRUPTIBLE
);
558 /* deliver any messages that are in the queue */
559 if (!afs_check_call_state(call
, AFS_CALL_COMPLETE
) &&
560 call
->need_attention
) {
561 call
->need_attention
= false;
562 __set_current_state(TASK_RUNNING
);
563 afs_deliver_to_call(call
);
567 if (afs_check_call_state(call
, AFS_CALL_COMPLETE
))
570 life
= rxrpc_kernel_check_life(call
->net
->socket
, call
->rxcall
);
572 life
== last_life
&& signal_pending(current
))
575 if (life
!= last_life
) {
580 timeout
= schedule_timeout(timeout
);
583 remove_wait_queue(&call
->waitq
, &myself
);
584 __set_current_state(TASK_RUNNING
);
586 /* Kill off the call if it's still live. */
587 if (!afs_check_call_state(call
, AFS_CALL_COMPLETE
)) {
588 _debug("call interrupted");
589 if (rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
590 RX_USER_ABORT
, -EINTR
, "KWI"))
591 afs_set_call_complete(call
, -EINTR
, 0);
594 spin_lock_bh(&call
->state_lock
);
595 ac
->abort_code
= call
->abort_code
;
596 ac
->error
= call
->error
;
597 spin_unlock_bh(&call
->state_lock
);
602 if (call
->ret_reply0
) {
603 ret
= (long)call
->reply
[0];
604 call
->reply
[0] = NULL
;
608 ac
->responded
= true;
612 _debug("call complete");
614 _leave(" = %p", (void *)ret
);
619 * wake up a waiting call
621 static void afs_wake_up_call_waiter(struct sock
*sk
, struct rxrpc_call
*rxcall
,
622 unsigned long call_user_ID
)
624 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
626 call
->need_attention
= true;
627 wake_up(&call
->waitq
);
631 * wake up an asynchronous call
633 static void afs_wake_up_async_call(struct sock
*sk
, struct rxrpc_call
*rxcall
,
634 unsigned long call_user_ID
)
636 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
639 trace_afs_notify_call(rxcall
, call
);
640 call
->need_attention
= true;
642 u
= __atomic_add_unless(&call
->usage
, 1, 0);
644 trace_afs_call(call
, afs_call_trace_wake
, u
,
645 atomic_read(&call
->net
->nr_outstanding_calls
),
646 __builtin_return_address(0));
648 if (!queue_work(afs_async_calls
, &call
->async_work
))
654 * Delete an asynchronous call. The work item carries a ref to the call struct
655 * that we need to release.
657 static void afs_delete_async_call(struct work_struct
*work
)
659 struct afs_call
*call
= container_of(work
, struct afs_call
, async_work
);
669 * Perform I/O processing on an asynchronous call. The work item carries a ref
670 * to the call struct that we either need to release or to pass on.
672 static void afs_process_async_call(struct work_struct
*work
)
674 struct afs_call
*call
= container_of(work
, struct afs_call
, async_work
);
678 if (call
->state
< AFS_CALL_COMPLETE
&& call
->need_attention
) {
679 call
->need_attention
= false;
680 afs_deliver_to_call(call
);
683 if (call
->state
== AFS_CALL_COMPLETE
) {
684 call
->reply
[0] = NULL
;
686 /* We have two refs to release - one from the alloc and one
687 * queued with the work item - and we can't just deallocate the
688 * call because the work item may be queued again.
690 call
->async_work
.func
= afs_delete_async_call
;
691 if (!queue_work(afs_async_calls
, &call
->async_work
))
699 static void afs_rx_attach(struct rxrpc_call
*rxcall
, unsigned long user_call_ID
)
701 struct afs_call
*call
= (struct afs_call
*)user_call_ID
;
703 call
->rxcall
= rxcall
;
707 * Charge the incoming call preallocation.
709 void afs_charge_preallocation(struct work_struct
*work
)
711 struct afs_net
*net
=
712 container_of(work
, struct afs_net
, charge_preallocation_work
);
713 struct afs_call
*call
= net
->spare_incoming_call
;
717 call
= afs_alloc_call(net
, &afs_RXCMxxxx
, GFP_KERNEL
);
722 call
->state
= AFS_CALL_SV_AWAIT_OP_ID
;
723 init_waitqueue_head(&call
->waitq
);
726 if (rxrpc_kernel_charge_accept(net
->socket
,
727 afs_wake_up_async_call
,
734 net
->spare_incoming_call
= call
;
738 * Discard a preallocated call when a socket is shut down.
740 static void afs_rx_discard_new_call(struct rxrpc_call
*rxcall
,
741 unsigned long user_call_ID
)
743 struct afs_call
*call
= (struct afs_call
*)user_call_ID
;
750 * Notification of an incoming call.
752 static void afs_rx_new_call(struct sock
*sk
, struct rxrpc_call
*rxcall
,
753 unsigned long user_call_ID
)
755 struct afs_net
*net
= afs_sock2net(sk
);
757 queue_work(afs_wq
, &net
->charge_preallocation_work
);
761 * Grab the operation ID from an incoming cache manager call. The socket
762 * buffer is discarded on error or if we don't yet have sufficient data.
764 static int afs_deliver_cm_op_id(struct afs_call
*call
)
768 _enter("{%zu}", call
->offset
);
770 ASSERTCMP(call
->offset
, <, 4);
772 /* the operation ID forms the first four bytes of the request data */
773 ret
= afs_extract_data(call
, &call
->tmp
, 4, true);
777 call
->operation_ID
= ntohl(call
->tmp
);
778 afs_set_call_state(call
, AFS_CALL_SV_AWAIT_OP_ID
, AFS_CALL_SV_AWAIT_REQUEST
);
781 /* ask the cache manager to route the call (it'll change the call type
783 if (!afs_cm_incoming_call(call
))
786 trace_afs_cb_call(call
);
788 /* pass responsibility for the remainer of this message off to the
789 * cache manager op */
790 return call
->type
->deliver(call
);
794 * Advance the AFS call state when an RxRPC service call ends the transmit
797 static void afs_notify_end_reply_tx(struct sock
*sock
,
798 struct rxrpc_call
*rxcall
,
799 unsigned long call_user_ID
)
801 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
803 afs_set_call_state(call
, AFS_CALL_SV_REPLYING
, AFS_CALL_SV_AWAIT_ACK
);
807 * send an empty reply
809 void afs_send_empty_reply(struct afs_call
*call
)
811 struct afs_net
*net
= call
->net
;
816 rxrpc_kernel_set_tx_length(net
->socket
, call
->rxcall
, 0);
820 iov_iter_kvec(&msg
.msg_iter
, WRITE
| ITER_KVEC
, NULL
, 0, 0);
821 msg
.msg_control
= NULL
;
822 msg
.msg_controllen
= 0;
825 switch (rxrpc_kernel_send_data(net
->socket
, call
->rxcall
, &msg
, 0,
826 afs_notify_end_reply_tx
)) {
828 _leave(" [replied]");
833 rxrpc_kernel_abort_call(net
->socket
, call
->rxcall
,
834 RX_USER_ABORT
, -ENOMEM
, "KOO");
842 * send a simple reply
844 void afs_send_simple_reply(struct afs_call
*call
, const void *buf
, size_t len
)
846 struct afs_net
*net
= call
->net
;
853 rxrpc_kernel_set_tx_length(net
->socket
, call
->rxcall
, len
);
855 iov
[0].iov_base
= (void *) buf
;
856 iov
[0].iov_len
= len
;
859 iov_iter_kvec(&msg
.msg_iter
, WRITE
| ITER_KVEC
, iov
, 1, len
);
860 msg
.msg_control
= NULL
;
861 msg
.msg_controllen
= 0;
864 n
= rxrpc_kernel_send_data(net
->socket
, call
->rxcall
, &msg
, len
,
865 afs_notify_end_reply_tx
);
868 _leave(" [replied]");
874 rxrpc_kernel_abort_call(net
->socket
, call
->rxcall
,
875 RX_USER_ABORT
, -ENOMEM
, "KOO");
881 * Extract a piece of data from the received data socket buffers.
883 int afs_extract_data(struct afs_call
*call
, void *buf
, size_t count
,
886 struct afs_net
*net
= call
->net
;
887 enum afs_call_state state
;
888 u32 remote_abort
= 0;
891 _enter("{%s,%zu},,%zu,%d",
892 call
->type
->name
, call
->offset
, count
, want_more
);
894 ASSERTCMP(call
->offset
, <=, count
);
896 ret
= rxrpc_kernel_recv_data(net
->socket
, call
->rxcall
,
897 buf
, count
, &call
->offset
,
898 want_more
, &remote_abort
,
900 trace_afs_recv_data(call
, count
, call
->offset
, want_more
, ret
);
901 if (ret
== 0 || ret
== -EAGAIN
)
904 state
= READ_ONCE(call
->state
);
907 case AFS_CALL_CL_AWAIT_REPLY
:
908 afs_set_call_state(call
, state
, AFS_CALL_CL_PROC_REPLY
);
910 case AFS_CALL_SV_AWAIT_REQUEST
:
911 afs_set_call_state(call
, state
, AFS_CALL_SV_REPLYING
);
913 case AFS_CALL_COMPLETE
:
914 kdebug("prem complete %d", call
->error
);
922 afs_set_call_complete(call
, ret
, remote_abort
);