2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
32 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
33 int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct btrfs_fs_info
*fs_info
,
36 struct extent_buffer
*dst
,
37 struct extent_buffer
*src
, int empty
);
38 static int balance_node_right(struct btrfs_trans_handle
*trans
,
39 struct btrfs_fs_info
*fs_info
,
40 struct extent_buffer
*dst_buf
,
41 struct extent_buffer
*src_buf
);
42 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
44 static int tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
45 struct extent_buffer
*eb
);
47 struct btrfs_path
*btrfs_alloc_path(void)
49 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
56 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
59 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
60 if (!p
->nodes
[i
] || !p
->locks
[i
])
62 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
63 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
64 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
65 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
66 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
71 * reset all the locked nodes in the patch to spinning locks.
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
78 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
79 struct extent_buffer
*held
, int held_rw
)
84 btrfs_set_lock_blocking_rw(held
, held_rw
);
85 if (held_rw
== BTRFS_WRITE_LOCK
)
86 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
87 else if (held_rw
== BTRFS_READ_LOCK
)
88 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
90 btrfs_set_path_blocking(p
);
92 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
93 if (p
->nodes
[i
] && p
->locks
[i
]) {
94 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
95 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
96 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
97 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
98 p
->locks
[i
] = BTRFS_READ_LOCK
;
103 btrfs_clear_lock_blocking_rw(held
, held_rw
);
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path
*p
)
111 btrfs_release_path(p
);
112 kmem_cache_free(btrfs_path_cachep
, p
);
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
119 * It is safe to call this on paths that no locks or extent buffers held.
121 noinline
void btrfs_release_path(struct btrfs_path
*p
)
125 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
130 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
133 free_extent_buffer(p
->nodes
[i
]);
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
148 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
150 struct extent_buffer
*eb
;
154 eb
= rcu_dereference(root
->node
);
157 * RCU really hurts here, we could free up the root node because
158 * it was COWed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
162 if (atomic_inc_not_zero(&eb
->refs
)) {
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
176 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
178 struct extent_buffer
*eb
;
181 eb
= btrfs_root_node(root
);
183 if (eb
== root
->node
)
185 btrfs_tree_unlock(eb
);
186 free_extent_buffer(eb
);
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
195 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
197 struct extent_buffer
*eb
;
200 eb
= btrfs_root_node(root
);
201 btrfs_tree_read_lock(eb
);
202 if (eb
== root
->node
)
204 btrfs_tree_read_unlock(eb
);
205 free_extent_buffer(eb
);
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
214 static void add_root_to_dirty_list(struct btrfs_root
*root
)
216 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
218 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
222 spin_lock(&fs_info
->trans_lock
);
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
224 /* Want the extent tree to be the last on the list */
225 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
226 list_move_tail(&root
->dirty_list
,
227 &fs_info
->dirty_cowonly_roots
);
229 list_move(&root
->dirty_list
,
230 &fs_info
->dirty_cowonly_roots
);
232 spin_unlock(&fs_info
->trans_lock
);
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
240 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
241 struct btrfs_root
*root
,
242 struct extent_buffer
*buf
,
243 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
245 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
246 struct extent_buffer
*cow
;
249 struct btrfs_disk_key disk_key
;
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
252 trans
->transid
!= fs_info
->running_transaction
->transid
);
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
254 trans
->transid
!= root
->last_trans
);
256 level
= btrfs_header_level(buf
);
258 btrfs_item_key(buf
, &disk_key
, 0);
260 btrfs_node_key(buf
, &disk_key
, 0);
262 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
263 &disk_key
, level
, buf
->start
, 0);
267 copy_extent_buffer_full(cow
, buf
);
268 btrfs_set_header_bytenr(cow
, cow
->start
);
269 btrfs_set_header_generation(cow
, trans
->transid
);
270 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
271 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
272 BTRFS_HEADER_FLAG_RELOC
);
273 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
274 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
276 btrfs_set_header_owner(cow
, new_root_objectid
);
278 write_extent_buffer_fsid(cow
, fs_info
->fsid
);
280 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
281 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
282 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
284 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
289 btrfs_mark_buffer_dirty(cow
);
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
301 MOD_LOG_ROOT_REPLACE
,
304 struct tree_mod_move
{
309 struct tree_mod_root
{
314 struct tree_mod_elem
{
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key
;
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move
;
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root
;
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
339 read_lock(&fs_info
->tree_mod_log_lock
);
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
344 read_unlock(&fs_info
->tree_mod_log_lock
);
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
349 write_lock(&fs_info
->tree_mod_log_lock
);
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
354 write_unlock(&fs_info
->tree_mod_log_lock
);
358 * Pull a new tree mod seq number for our operation.
360 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
362 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
373 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
374 struct seq_list
*elem
)
376 tree_mod_log_write_lock(fs_info
);
377 spin_lock(&fs_info
->tree_mod_seq_lock
);
379 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
380 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
382 spin_unlock(&fs_info
->tree_mod_seq_lock
);
383 tree_mod_log_write_unlock(fs_info
);
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
389 struct seq_list
*elem
)
391 struct rb_root
*tm_root
;
392 struct rb_node
*node
;
393 struct rb_node
*next
;
394 struct seq_list
*cur_elem
;
395 struct tree_mod_elem
*tm
;
396 u64 min_seq
= (u64
)-1;
397 u64 seq_putting
= elem
->seq
;
402 spin_lock(&fs_info
->tree_mod_seq_lock
);
403 list_del(&elem
->list
);
406 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
407 if (cur_elem
->seq
< min_seq
) {
408 if (seq_putting
> cur_elem
->seq
) {
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
413 spin_unlock(&fs_info
->tree_mod_seq_lock
);
416 min_seq
= cur_elem
->seq
;
419 spin_unlock(&fs_info
->tree_mod_seq_lock
);
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
425 tree_mod_log_write_lock(fs_info
);
426 tm_root
= &fs_info
->tree_mod_log
;
427 for (node
= rb_first(tm_root
); node
; node
= next
) {
428 next
= rb_next(node
);
429 tm
= rb_entry(node
, struct tree_mod_elem
, node
);
430 if (tm
->seq
> min_seq
)
432 rb_erase(node
, tm_root
);
435 tree_mod_log_write_unlock(fs_info
);
439 * key order of the log:
440 * node/leaf start address -> sequence
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
446 * Note: must be called with write lock (tree_mod_log_write_lock).
449 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
451 struct rb_root
*tm_root
;
452 struct rb_node
**new;
453 struct rb_node
*parent
= NULL
;
454 struct tree_mod_elem
*cur
;
456 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
458 tm_root
= &fs_info
->tree_mod_log
;
459 new = &tm_root
->rb_node
;
461 cur
= rb_entry(*new, struct tree_mod_elem
, node
);
463 if (cur
->logical
< tm
->logical
)
464 new = &((*new)->rb_left
);
465 else if (cur
->logical
> tm
->logical
)
466 new = &((*new)->rb_right
);
467 else if (cur
->seq
< tm
->seq
)
468 new = &((*new)->rb_left
);
469 else if (cur
->seq
> tm
->seq
)
470 new = &((*new)->rb_right
);
475 rb_link_node(&tm
->node
, parent
, new);
476 rb_insert_color(&tm
->node
, tm_root
);
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
486 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
487 struct extent_buffer
*eb
) {
489 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
491 if (eb
&& btrfs_header_level(eb
) == 0)
494 tree_mod_log_write_lock(fs_info
);
495 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
496 tree_mod_log_write_unlock(fs_info
);
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
505 struct extent_buffer
*eb
)
508 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
510 if (eb
&& btrfs_header_level(eb
) == 0)
516 static struct tree_mod_elem
*
517 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
518 enum mod_log_op op
, gfp_t flags
)
520 struct tree_mod_elem
*tm
;
522 tm
= kzalloc(sizeof(*tm
), flags
);
526 tm
->logical
= eb
->start
;
527 if (op
!= MOD_LOG_KEY_ADD
) {
528 btrfs_node_key(eb
, &tm
->key
, slot
);
529 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
533 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
534 RB_CLEAR_NODE(&tm
->node
);
540 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
541 struct extent_buffer
*eb
, int slot
,
542 enum mod_log_op op
, gfp_t flags
)
544 struct tree_mod_elem
*tm
;
547 if (!tree_mod_need_log(fs_info
, eb
))
550 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
554 if (tree_mod_dont_log(fs_info
, eb
)) {
559 ret
= __tree_mod_log_insert(fs_info
, tm
);
560 tree_mod_log_write_unlock(fs_info
);
568 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
569 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
572 struct tree_mod_elem
*tm
= NULL
;
573 struct tree_mod_elem
**tm_list
= NULL
;
578 if (!tree_mod_need_log(fs_info
, eb
))
581 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
585 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
591 tm
->logical
= eb
->start
;
593 tm
->move
.dst_slot
= dst_slot
;
594 tm
->move
.nr_items
= nr_items
;
595 tm
->op
= MOD_LOG_MOVE_KEYS
;
597 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
598 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, GFP_NOFS
);
606 if (tree_mod_dont_log(fs_info
, eb
))
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
615 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
616 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
621 ret
= __tree_mod_log_insert(fs_info
, tm
);
624 tree_mod_log_write_unlock(fs_info
);
629 for (i
= 0; i
< nr_items
; i
++) {
630 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
631 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
635 tree_mod_log_write_unlock(fs_info
);
643 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
644 struct tree_mod_elem
**tm_list
,
650 for (i
= nritems
- 1; i
>= 0; i
--) {
651 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
653 for (j
= nritems
- 1; j
> i
; j
--)
654 rb_erase(&tm_list
[j
]->node
,
655 &fs_info
->tree_mod_log
);
664 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
665 struct extent_buffer
*old_root
,
666 struct extent_buffer
*new_root
,
669 struct tree_mod_elem
*tm
= NULL
;
670 struct tree_mod_elem
**tm_list
= NULL
;
675 if (!tree_mod_need_log(fs_info
, NULL
))
678 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
679 nritems
= btrfs_header_nritems(old_root
);
680 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
686 for (i
= 0; i
< nritems
; i
++) {
687 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
696 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
702 tm
->logical
= new_root
->start
;
703 tm
->old_root
.logical
= old_root
->start
;
704 tm
->old_root
.level
= btrfs_header_level(old_root
);
705 tm
->generation
= btrfs_header_generation(old_root
);
706 tm
->op
= MOD_LOG_ROOT_REPLACE
;
708 if (tree_mod_dont_log(fs_info
, NULL
))
712 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
714 ret
= __tree_mod_log_insert(fs_info
, tm
);
716 tree_mod_log_write_unlock(fs_info
);
725 for (i
= 0; i
< nritems
; i
++)
734 static struct tree_mod_elem
*
735 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
738 struct rb_root
*tm_root
;
739 struct rb_node
*node
;
740 struct tree_mod_elem
*cur
= NULL
;
741 struct tree_mod_elem
*found
= NULL
;
743 tree_mod_log_read_lock(fs_info
);
744 tm_root
= &fs_info
->tree_mod_log
;
745 node
= tm_root
->rb_node
;
747 cur
= rb_entry(node
, struct tree_mod_elem
, node
);
748 if (cur
->logical
< start
) {
749 node
= node
->rb_left
;
750 } else if (cur
->logical
> start
) {
751 node
= node
->rb_right
;
752 } else if (cur
->seq
< min_seq
) {
753 node
= node
->rb_left
;
754 } else if (!smallest
) {
755 /* we want the node with the highest seq */
757 BUG_ON(found
->seq
> cur
->seq
);
759 node
= node
->rb_left
;
760 } else if (cur
->seq
> min_seq
) {
761 /* we want the node with the smallest seq */
763 BUG_ON(found
->seq
< cur
->seq
);
765 node
= node
->rb_right
;
771 tree_mod_log_read_unlock(fs_info
);
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
781 static struct tree_mod_elem
*
782 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
785 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
793 static struct tree_mod_elem
*
794 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
796 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
800 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
801 struct extent_buffer
*src
, unsigned long dst_offset
,
802 unsigned long src_offset
, int nr_items
)
805 struct tree_mod_elem
**tm_list
= NULL
;
806 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
810 if (!tree_mod_need_log(fs_info
, NULL
))
813 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
816 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
821 tm_list_add
= tm_list
;
822 tm_list_rem
= tm_list
+ nr_items
;
823 for (i
= 0; i
< nr_items
; i
++) {
824 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
825 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
826 if (!tm_list_rem
[i
]) {
831 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
832 MOD_LOG_KEY_ADD
, GFP_NOFS
);
833 if (!tm_list_add
[i
]) {
839 if (tree_mod_dont_log(fs_info
, NULL
))
843 for (i
= 0; i
< nr_items
; i
++) {
844 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
847 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
852 tree_mod_log_write_unlock(fs_info
);
858 for (i
= 0; i
< nr_items
* 2; i
++) {
859 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
860 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
864 tree_mod_log_write_unlock(fs_info
);
871 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
872 int dst_offset
, int src_offset
, int nr_items
)
875 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
881 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
882 struct extent_buffer
*eb
, int slot
, int atomic
)
886 ret
= tree_mod_log_insert_key(fs_info
, eb
, slot
,
888 atomic
? GFP_ATOMIC
: GFP_NOFS
);
893 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
895 struct tree_mod_elem
**tm_list
= NULL
;
900 if (btrfs_header_level(eb
) == 0)
903 if (!tree_mod_need_log(fs_info
, NULL
))
906 nritems
= btrfs_header_nritems(eb
);
907 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
911 for (i
= 0; i
< nritems
; i
++) {
912 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
920 if (tree_mod_dont_log(fs_info
, eb
))
923 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
924 tree_mod_log_write_unlock(fs_info
);
932 for (i
= 0; i
< nritems
; i
++)
940 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
941 struct extent_buffer
*new_root_node
,
945 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
946 new_root_node
, log_removal
);
951 * check if the tree block can be shared by multiple trees
953 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
954 struct extent_buffer
*buf
)
957 * Tree blocks not in reference counted trees and tree roots
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
962 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
963 buf
!= root
->node
&& buf
!= root
->commit_root
&&
964 (btrfs_header_generation(buf
) <=
965 btrfs_root_last_snapshot(&root
->root_item
) ||
966 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
969 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
970 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
976 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
977 struct btrfs_root
*root
,
978 struct extent_buffer
*buf
,
979 struct extent_buffer
*cow
,
982 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root
, buf
)) {
1007 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
1008 btrfs_header_level(buf
), 1,
1014 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1019 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1020 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1021 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1026 owner
= btrfs_header_owner(buf
);
1027 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
1028 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
1031 if ((owner
== root
->root_key
.objectid
||
1032 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
1033 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
1034 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
1038 if (root
->root_key
.objectid
==
1039 BTRFS_TREE_RELOC_OBJECTID
) {
1040 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
1043 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1047 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1050 if (root
->root_key
.objectid
==
1051 BTRFS_TREE_RELOC_OBJECTID
)
1052 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1054 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1058 if (new_flags
!= 0) {
1059 int level
= btrfs_header_level(buf
);
1061 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
,
1064 new_flags
, level
, 0);
1069 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
1070 if (root
->root_key
.objectid
==
1071 BTRFS_TREE_RELOC_OBJECTID
)
1072 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1074 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1077 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1081 clean_tree_block(fs_info
, buf
);
1088 * does the dirty work in cow of a single block. The parent block (if
1089 * supplied) is updated to point to the new cow copy. The new buffer is marked
1090 * dirty and returned locked. If you modify the block it needs to be marked
1093 * search_start -- an allocation hint for the new block
1095 * empty_size -- a hint that you plan on doing more cow. This is the size in
1096 * bytes the allocator should try to find free next to the block it returns.
1097 * This is just a hint and may be ignored by the allocator.
1099 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1100 struct btrfs_root
*root
,
1101 struct extent_buffer
*buf
,
1102 struct extent_buffer
*parent
, int parent_slot
,
1103 struct extent_buffer
**cow_ret
,
1104 u64 search_start
, u64 empty_size
)
1106 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1107 struct btrfs_disk_key disk_key
;
1108 struct extent_buffer
*cow
;
1111 int unlock_orig
= 0;
1112 u64 parent_start
= 0;
1114 if (*cow_ret
== buf
)
1117 btrfs_assert_tree_locked(buf
);
1119 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1120 trans
->transid
!= fs_info
->running_transaction
->transid
);
1121 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1122 trans
->transid
!= root
->last_trans
);
1124 level
= btrfs_header_level(buf
);
1127 btrfs_item_key(buf
, &disk_key
, 0);
1129 btrfs_node_key(buf
, &disk_key
, 0);
1131 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1132 parent_start
= parent
->start
;
1134 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1135 root
->root_key
.objectid
, &disk_key
, level
,
1136 search_start
, empty_size
);
1138 return PTR_ERR(cow
);
1140 /* cow is set to blocking by btrfs_init_new_buffer */
1142 copy_extent_buffer_full(cow
, buf
);
1143 btrfs_set_header_bytenr(cow
, cow
->start
);
1144 btrfs_set_header_generation(cow
, trans
->transid
);
1145 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1146 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1147 BTRFS_HEADER_FLAG_RELOC
);
1148 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1149 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1151 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1153 write_extent_buffer_fsid(cow
, fs_info
->fsid
);
1155 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1157 btrfs_abort_transaction(trans
, ret
);
1161 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1162 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1164 btrfs_abort_transaction(trans
, ret
);
1169 if (buf
== root
->node
) {
1170 WARN_ON(parent
&& parent
!= buf
);
1171 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1172 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1173 parent_start
= buf
->start
;
1175 extent_buffer_get(cow
);
1176 tree_mod_log_set_root_pointer(root
, cow
, 1);
1177 rcu_assign_pointer(root
->node
, cow
);
1179 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1181 free_extent_buffer(buf
);
1182 add_root_to_dirty_list(root
);
1184 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1185 tree_mod_log_insert_key(fs_info
, parent
, parent_slot
,
1186 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1187 btrfs_set_node_blockptr(parent
, parent_slot
,
1189 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1191 btrfs_mark_buffer_dirty(parent
);
1193 ret
= tree_mod_log_free_eb(fs_info
, buf
);
1195 btrfs_abort_transaction(trans
, ret
);
1199 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1203 btrfs_tree_unlock(buf
);
1204 free_extent_buffer_stale(buf
);
1205 btrfs_mark_buffer_dirty(cow
);
1211 * returns the logical address of the oldest predecessor of the given root.
1212 * entries older than time_seq are ignored.
1214 static struct tree_mod_elem
*
1215 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1216 struct extent_buffer
*eb_root
, u64 time_seq
)
1218 struct tree_mod_elem
*tm
;
1219 struct tree_mod_elem
*found
= NULL
;
1220 u64 root_logical
= eb_root
->start
;
1227 * the very last operation that's logged for a root is the
1228 * replacement operation (if it is replaced at all). this has
1229 * the logical address of the *new* root, making it the very
1230 * first operation that's logged for this root.
1233 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1238 * if there are no tree operation for the oldest root, we simply
1239 * return it. this should only happen if that (old) root is at
1246 * if there's an operation that's not a root replacement, we
1247 * found the oldest version of our root. normally, we'll find a
1248 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1250 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1254 root_logical
= tm
->old_root
.logical
;
1258 /* if there's no old root to return, return what we found instead */
1266 * tm is a pointer to the first operation to rewind within eb. then, all
1267 * previous operations will be rewound (until we reach something older than
1271 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1272 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1275 struct rb_node
*next
;
1276 struct tree_mod_elem
*tm
= first_tm
;
1277 unsigned long o_dst
;
1278 unsigned long o_src
;
1279 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1281 n
= btrfs_header_nritems(eb
);
1282 tree_mod_log_read_lock(fs_info
);
1283 while (tm
&& tm
->seq
>= time_seq
) {
1285 * all the operations are recorded with the operator used for
1286 * the modification. as we're going backwards, we do the
1287 * opposite of each operation here.
1290 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1291 BUG_ON(tm
->slot
< n
);
1293 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1294 case MOD_LOG_KEY_REMOVE
:
1295 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1296 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1297 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1301 case MOD_LOG_KEY_REPLACE
:
1302 BUG_ON(tm
->slot
>= n
);
1303 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1304 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1305 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1308 case MOD_LOG_KEY_ADD
:
1309 /* if a move operation is needed it's in the log */
1312 case MOD_LOG_MOVE_KEYS
:
1313 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1314 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1315 memmove_extent_buffer(eb
, o_dst
, o_src
,
1316 tm
->move
.nr_items
* p_size
);
1318 case MOD_LOG_ROOT_REPLACE
:
1320 * this operation is special. for roots, this must be
1321 * handled explicitly before rewinding.
1322 * for non-roots, this operation may exist if the node
1323 * was a root: root A -> child B; then A gets empty and
1324 * B is promoted to the new root. in the mod log, we'll
1325 * have a root-replace operation for B, a tree block
1326 * that is no root. we simply ignore that operation.
1330 next
= rb_next(&tm
->node
);
1333 tm
= rb_entry(next
, struct tree_mod_elem
, node
);
1334 if (tm
->logical
!= first_tm
->logical
)
1337 tree_mod_log_read_unlock(fs_info
);
1338 btrfs_set_header_nritems(eb
, n
);
1342 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1343 * is returned. If rewind operations happen, a fresh buffer is returned. The
1344 * returned buffer is always read-locked. If the returned buffer is not the
1345 * input buffer, the lock on the input buffer is released and the input buffer
1346 * is freed (its refcount is decremented).
1348 static struct extent_buffer
*
1349 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1350 struct extent_buffer
*eb
, u64 time_seq
)
1352 struct extent_buffer
*eb_rewin
;
1353 struct tree_mod_elem
*tm
;
1358 if (btrfs_header_level(eb
) == 0)
1361 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1365 btrfs_set_path_blocking(path
);
1366 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1368 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1369 BUG_ON(tm
->slot
!= 0);
1370 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1372 btrfs_tree_read_unlock_blocking(eb
);
1373 free_extent_buffer(eb
);
1376 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1377 btrfs_set_header_backref_rev(eb_rewin
,
1378 btrfs_header_backref_rev(eb
));
1379 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1380 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1382 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1384 btrfs_tree_read_unlock_blocking(eb
);
1385 free_extent_buffer(eb
);
1390 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1391 btrfs_tree_read_unlock_blocking(eb
);
1392 free_extent_buffer(eb
);
1394 extent_buffer_get(eb_rewin
);
1395 btrfs_tree_read_lock(eb_rewin
);
1396 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1397 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1398 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1404 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1405 * value. If there are no changes, the current root->root_node is returned. If
1406 * anything changed in between, there's a fresh buffer allocated on which the
1407 * rewind operations are done. In any case, the returned buffer is read locked.
1408 * Returns NULL on error (with no locks held).
1410 static inline struct extent_buffer
*
1411 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1413 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1414 struct tree_mod_elem
*tm
;
1415 struct extent_buffer
*eb
= NULL
;
1416 struct extent_buffer
*eb_root
;
1417 struct extent_buffer
*old
;
1418 struct tree_mod_root
*old_root
= NULL
;
1419 u64 old_generation
= 0;
1422 eb_root
= btrfs_read_lock_root_node(root
);
1423 tm
= __tree_mod_log_oldest_root(fs_info
, eb_root
, time_seq
);
1427 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1428 old_root
= &tm
->old_root
;
1429 old_generation
= tm
->generation
;
1430 logical
= old_root
->logical
;
1432 logical
= eb_root
->start
;
1435 tm
= tree_mod_log_search(fs_info
, logical
, time_seq
);
1436 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1437 btrfs_tree_read_unlock(eb_root
);
1438 free_extent_buffer(eb_root
);
1439 old
= read_tree_block(fs_info
, logical
, 0);
1440 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1442 free_extent_buffer(old
);
1444 "failed to read tree block %llu from get_old_root",
1447 eb
= btrfs_clone_extent_buffer(old
);
1448 free_extent_buffer(old
);
1450 } else if (old_root
) {
1451 btrfs_tree_read_unlock(eb_root
);
1452 free_extent_buffer(eb_root
);
1453 eb
= alloc_dummy_extent_buffer(fs_info
, logical
);
1455 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1456 eb
= btrfs_clone_extent_buffer(eb_root
);
1457 btrfs_tree_read_unlock_blocking(eb_root
);
1458 free_extent_buffer(eb_root
);
1463 extent_buffer_get(eb
);
1464 btrfs_tree_read_lock(eb
);
1466 btrfs_set_header_bytenr(eb
, eb
->start
);
1467 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1468 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1469 btrfs_set_header_level(eb
, old_root
->level
);
1470 btrfs_set_header_generation(eb
, old_generation
);
1473 __tree_mod_log_rewind(fs_info
, eb
, time_seq
, tm
);
1475 WARN_ON(btrfs_header_level(eb
) != 0);
1476 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1481 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1483 struct tree_mod_elem
*tm
;
1485 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1487 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1488 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1489 level
= tm
->old_root
.level
;
1491 level
= btrfs_header_level(eb_root
);
1493 free_extent_buffer(eb_root
);
1498 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1499 struct btrfs_root
*root
,
1500 struct extent_buffer
*buf
)
1502 if (btrfs_is_testing(root
->fs_info
))
1505 /* ensure we can see the force_cow */
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1514 * What is forced COW:
1515 * when we create snapshot during committing the transaction,
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1519 if (btrfs_header_generation(buf
) == trans
->transid
&&
1520 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1521 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1522 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1523 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1529 * cows a single block, see __btrfs_cow_block for the real work.
1530 * This version of it has extra checks so that a block isn't COWed more than
1531 * once per transaction, as long as it hasn't been written yet
1533 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1534 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1535 struct extent_buffer
*parent
, int parent_slot
,
1536 struct extent_buffer
**cow_ret
)
1538 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1542 if (trans
->transaction
!= fs_info
->running_transaction
)
1543 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1545 fs_info
->running_transaction
->transid
);
1547 if (trans
->transid
!= fs_info
->generation
)
1548 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1549 trans
->transid
, fs_info
->generation
);
1551 if (!should_cow_block(trans
, root
, buf
)) {
1552 trans
->dirty
= true;
1557 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1560 btrfs_set_lock_blocking(parent
);
1561 btrfs_set_lock_blocking(buf
);
1563 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1564 parent_slot
, cow_ret
, search_start
, 0);
1566 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1572 * helper function for defrag to decide if two blocks pointed to by a
1573 * node are actually close by
1575 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1577 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1579 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1585 * compare two keys in a memcmp fashion
1587 static int comp_keys(const struct btrfs_disk_key
*disk
,
1588 const struct btrfs_key
*k2
)
1590 struct btrfs_key k1
;
1592 btrfs_disk_key_to_cpu(&k1
, disk
);
1594 return btrfs_comp_cpu_keys(&k1
, k2
);
1598 * same as comp_keys only with two btrfs_key's
1600 int btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
1602 if (k1
->objectid
> k2
->objectid
)
1604 if (k1
->objectid
< k2
->objectid
)
1606 if (k1
->type
> k2
->type
)
1608 if (k1
->type
< k2
->type
)
1610 if (k1
->offset
> k2
->offset
)
1612 if (k1
->offset
< k2
->offset
)
1618 * this is used by the defrag code to go through all the
1619 * leaves pointed to by a node and reallocate them so that
1620 * disk order is close to key order
1622 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1623 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1624 int start_slot
, u64
*last_ret
,
1625 struct btrfs_key
*progress
)
1627 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1628 struct extent_buffer
*cur
;
1631 u64 search_start
= *last_ret
;
1641 int progress_passed
= 0;
1642 struct btrfs_disk_key disk_key
;
1644 parent_level
= btrfs_header_level(parent
);
1646 WARN_ON(trans
->transaction
!= fs_info
->running_transaction
);
1647 WARN_ON(trans
->transid
!= fs_info
->generation
);
1649 parent_nritems
= btrfs_header_nritems(parent
);
1650 blocksize
= fs_info
->nodesize
;
1651 end_slot
= parent_nritems
- 1;
1653 if (parent_nritems
<= 1)
1656 btrfs_set_lock_blocking(parent
);
1658 for (i
= start_slot
; i
<= end_slot
; i
++) {
1661 btrfs_node_key(parent
, &disk_key
, i
);
1662 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1665 progress_passed
= 1;
1666 blocknr
= btrfs_node_blockptr(parent
, i
);
1667 gen
= btrfs_node_ptr_generation(parent
, i
);
1668 if (last_block
== 0)
1669 last_block
= blocknr
;
1672 other
= btrfs_node_blockptr(parent
, i
- 1);
1673 close
= close_blocks(blocknr
, other
, blocksize
);
1675 if (!close
&& i
< end_slot
) {
1676 other
= btrfs_node_blockptr(parent
, i
+ 1);
1677 close
= close_blocks(blocknr
, other
, blocksize
);
1680 last_block
= blocknr
;
1684 cur
= find_extent_buffer(fs_info
, blocknr
);
1686 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1689 if (!cur
|| !uptodate
) {
1691 cur
= read_tree_block(fs_info
, blocknr
, gen
);
1693 return PTR_ERR(cur
);
1694 } else if (!extent_buffer_uptodate(cur
)) {
1695 free_extent_buffer(cur
);
1698 } else if (!uptodate
) {
1699 err
= btrfs_read_buffer(cur
, gen
);
1701 free_extent_buffer(cur
);
1706 if (search_start
== 0)
1707 search_start
= last_block
;
1709 btrfs_tree_lock(cur
);
1710 btrfs_set_lock_blocking(cur
);
1711 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1714 (end_slot
- i
) * blocksize
));
1716 btrfs_tree_unlock(cur
);
1717 free_extent_buffer(cur
);
1720 search_start
= cur
->start
;
1721 last_block
= cur
->start
;
1722 *last_ret
= search_start
;
1723 btrfs_tree_unlock(cur
);
1724 free_extent_buffer(cur
);
1730 * search for key in the extent_buffer. The items start at offset p,
1731 * and they are item_size apart. There are 'max' items in p.
1733 * the slot in the array is returned via slot, and it points to
1734 * the place where you would insert key if it is not found in
1737 * slot may point to max if the key is bigger than all of the keys
1739 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1740 unsigned long p
, int item_size
,
1741 const struct btrfs_key
*key
,
1748 struct btrfs_disk_key
*tmp
= NULL
;
1749 struct btrfs_disk_key unaligned
;
1750 unsigned long offset
;
1752 unsigned long map_start
= 0;
1753 unsigned long map_len
= 0;
1757 btrfs_err(eb
->fs_info
,
1758 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1759 __func__
, low
, high
, eb
->start
,
1760 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1764 while (low
< high
) {
1765 mid
= (low
+ high
) / 2;
1766 offset
= p
+ mid
* item_size
;
1768 if (!kaddr
|| offset
< map_start
||
1769 (offset
+ sizeof(struct btrfs_disk_key
)) >
1770 map_start
+ map_len
) {
1772 err
= map_private_extent_buffer(eb
, offset
,
1773 sizeof(struct btrfs_disk_key
),
1774 &kaddr
, &map_start
, &map_len
);
1777 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1779 } else if (err
== 1) {
1780 read_extent_buffer(eb
, &unaligned
,
1781 offset
, sizeof(unaligned
));
1788 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1791 ret
= comp_keys(tmp
, key
);
1807 * simple bin_search frontend that does the right thing for
1810 int btrfs_bin_search(struct extent_buffer
*eb
, const struct btrfs_key
*key
,
1811 int level
, int *slot
)
1814 return generic_bin_search(eb
,
1815 offsetof(struct btrfs_leaf
, items
),
1816 sizeof(struct btrfs_item
),
1817 key
, btrfs_header_nritems(eb
),
1820 return generic_bin_search(eb
,
1821 offsetof(struct btrfs_node
, ptrs
),
1822 sizeof(struct btrfs_key_ptr
),
1823 key
, btrfs_header_nritems(eb
),
1827 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1829 spin_lock(&root
->accounting_lock
);
1830 btrfs_set_root_used(&root
->root_item
,
1831 btrfs_root_used(&root
->root_item
) + size
);
1832 spin_unlock(&root
->accounting_lock
);
1835 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1837 spin_lock(&root
->accounting_lock
);
1838 btrfs_set_root_used(&root
->root_item
,
1839 btrfs_root_used(&root
->root_item
) - size
);
1840 spin_unlock(&root
->accounting_lock
);
1843 /* given a node and slot number, this reads the blocks it points to. The
1844 * extent buffer is returned with a reference taken (but unlocked).
1846 static noinline
struct extent_buffer
*
1847 read_node_slot(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*parent
,
1850 int level
= btrfs_header_level(parent
);
1851 struct extent_buffer
*eb
;
1853 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1854 return ERR_PTR(-ENOENT
);
1858 eb
= read_tree_block(fs_info
, btrfs_node_blockptr(parent
, slot
),
1859 btrfs_node_ptr_generation(parent
, slot
));
1860 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1861 free_extent_buffer(eb
);
1869 * node level balancing, used to make sure nodes are in proper order for
1870 * item deletion. We balance from the top down, so we have to make sure
1871 * that a deletion won't leave an node completely empty later on.
1873 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1874 struct btrfs_root
*root
,
1875 struct btrfs_path
*path
, int level
)
1877 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1878 struct extent_buffer
*right
= NULL
;
1879 struct extent_buffer
*mid
;
1880 struct extent_buffer
*left
= NULL
;
1881 struct extent_buffer
*parent
= NULL
;
1885 int orig_slot
= path
->slots
[level
];
1891 mid
= path
->nodes
[level
];
1893 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1894 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1895 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1897 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1899 if (level
< BTRFS_MAX_LEVEL
- 1) {
1900 parent
= path
->nodes
[level
+ 1];
1901 pslot
= path
->slots
[level
+ 1];
1905 * deal with the case where there is only one pointer in the root
1906 * by promoting the node below to a root
1909 struct extent_buffer
*child
;
1911 if (btrfs_header_nritems(mid
) != 1)
1914 /* promote the child to a root */
1915 child
= read_node_slot(fs_info
, mid
, 0);
1916 if (IS_ERR(child
)) {
1917 ret
= PTR_ERR(child
);
1918 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1922 btrfs_tree_lock(child
);
1923 btrfs_set_lock_blocking(child
);
1924 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1926 btrfs_tree_unlock(child
);
1927 free_extent_buffer(child
);
1931 tree_mod_log_set_root_pointer(root
, child
, 1);
1932 rcu_assign_pointer(root
->node
, child
);
1934 add_root_to_dirty_list(root
);
1935 btrfs_tree_unlock(child
);
1937 path
->locks
[level
] = 0;
1938 path
->nodes
[level
] = NULL
;
1939 clean_tree_block(fs_info
, mid
);
1940 btrfs_tree_unlock(mid
);
1941 /* once for the path */
1942 free_extent_buffer(mid
);
1944 root_sub_used(root
, mid
->len
);
1945 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1946 /* once for the root ptr */
1947 free_extent_buffer_stale(mid
);
1950 if (btrfs_header_nritems(mid
) >
1951 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1954 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
1959 btrfs_tree_lock(left
);
1960 btrfs_set_lock_blocking(left
);
1961 wret
= btrfs_cow_block(trans
, root
, left
,
1962 parent
, pslot
- 1, &left
);
1969 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
1974 btrfs_tree_lock(right
);
1975 btrfs_set_lock_blocking(right
);
1976 wret
= btrfs_cow_block(trans
, root
, right
,
1977 parent
, pslot
+ 1, &right
);
1984 /* first, try to make some room in the middle buffer */
1986 orig_slot
+= btrfs_header_nritems(left
);
1987 wret
= push_node_left(trans
, fs_info
, left
, mid
, 1);
1993 * then try to empty the right most buffer into the middle
1996 wret
= push_node_left(trans
, fs_info
, mid
, right
, 1);
1997 if (wret
< 0 && wret
!= -ENOSPC
)
1999 if (btrfs_header_nritems(right
) == 0) {
2000 clean_tree_block(fs_info
, right
);
2001 btrfs_tree_unlock(right
);
2002 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
2003 root_sub_used(root
, right
->len
);
2004 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
2005 free_extent_buffer_stale(right
);
2008 struct btrfs_disk_key right_key
;
2009 btrfs_node_key(right
, &right_key
, 0);
2010 tree_mod_log_set_node_key(fs_info
, parent
,
2012 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
2013 btrfs_mark_buffer_dirty(parent
);
2016 if (btrfs_header_nritems(mid
) == 1) {
2018 * we're not allowed to leave a node with one item in the
2019 * tree during a delete. A deletion from lower in the tree
2020 * could try to delete the only pointer in this node.
2021 * So, pull some keys from the left.
2022 * There has to be a left pointer at this point because
2023 * otherwise we would have pulled some pointers from the
2028 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
2031 wret
= balance_node_right(trans
, fs_info
, mid
, left
);
2037 wret
= push_node_left(trans
, fs_info
, left
, mid
, 1);
2043 if (btrfs_header_nritems(mid
) == 0) {
2044 clean_tree_block(fs_info
, mid
);
2045 btrfs_tree_unlock(mid
);
2046 del_ptr(root
, path
, level
+ 1, pslot
);
2047 root_sub_used(root
, mid
->len
);
2048 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2049 free_extent_buffer_stale(mid
);
2052 /* update the parent key to reflect our changes */
2053 struct btrfs_disk_key mid_key
;
2054 btrfs_node_key(mid
, &mid_key
, 0);
2055 tree_mod_log_set_node_key(fs_info
, parent
, pslot
, 0);
2056 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2057 btrfs_mark_buffer_dirty(parent
);
2060 /* update the path */
2062 if (btrfs_header_nritems(left
) > orig_slot
) {
2063 extent_buffer_get(left
);
2064 /* left was locked after cow */
2065 path
->nodes
[level
] = left
;
2066 path
->slots
[level
+ 1] -= 1;
2067 path
->slots
[level
] = orig_slot
;
2069 btrfs_tree_unlock(mid
);
2070 free_extent_buffer(mid
);
2073 orig_slot
-= btrfs_header_nritems(left
);
2074 path
->slots
[level
] = orig_slot
;
2077 /* double check we haven't messed things up */
2079 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2083 btrfs_tree_unlock(right
);
2084 free_extent_buffer(right
);
2087 if (path
->nodes
[level
] != left
)
2088 btrfs_tree_unlock(left
);
2089 free_extent_buffer(left
);
2094 /* Node balancing for insertion. Here we only split or push nodes around
2095 * when they are completely full. This is also done top down, so we
2096 * have to be pessimistic.
2098 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2099 struct btrfs_root
*root
,
2100 struct btrfs_path
*path
, int level
)
2102 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2103 struct extent_buffer
*right
= NULL
;
2104 struct extent_buffer
*mid
;
2105 struct extent_buffer
*left
= NULL
;
2106 struct extent_buffer
*parent
= NULL
;
2110 int orig_slot
= path
->slots
[level
];
2115 mid
= path
->nodes
[level
];
2116 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2118 if (level
< BTRFS_MAX_LEVEL
- 1) {
2119 parent
= path
->nodes
[level
+ 1];
2120 pslot
= path
->slots
[level
+ 1];
2126 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
2130 /* first, try to make some room in the middle buffer */
2134 btrfs_tree_lock(left
);
2135 btrfs_set_lock_blocking(left
);
2137 left_nr
= btrfs_header_nritems(left
);
2138 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2141 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2146 wret
= push_node_left(trans
, fs_info
,
2153 struct btrfs_disk_key disk_key
;
2154 orig_slot
+= left_nr
;
2155 btrfs_node_key(mid
, &disk_key
, 0);
2156 tree_mod_log_set_node_key(fs_info
, parent
, pslot
, 0);
2157 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2158 btrfs_mark_buffer_dirty(parent
);
2159 if (btrfs_header_nritems(left
) > orig_slot
) {
2160 path
->nodes
[level
] = left
;
2161 path
->slots
[level
+ 1] -= 1;
2162 path
->slots
[level
] = orig_slot
;
2163 btrfs_tree_unlock(mid
);
2164 free_extent_buffer(mid
);
2167 btrfs_header_nritems(left
);
2168 path
->slots
[level
] = orig_slot
;
2169 btrfs_tree_unlock(left
);
2170 free_extent_buffer(left
);
2174 btrfs_tree_unlock(left
);
2175 free_extent_buffer(left
);
2177 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
2182 * then try to empty the right most buffer into the middle
2187 btrfs_tree_lock(right
);
2188 btrfs_set_lock_blocking(right
);
2190 right_nr
= btrfs_header_nritems(right
);
2191 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2194 ret
= btrfs_cow_block(trans
, root
, right
,
2200 wret
= balance_node_right(trans
, fs_info
,
2207 struct btrfs_disk_key disk_key
;
2209 btrfs_node_key(right
, &disk_key
, 0);
2210 tree_mod_log_set_node_key(fs_info
, parent
,
2212 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2213 btrfs_mark_buffer_dirty(parent
);
2215 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2216 path
->nodes
[level
] = right
;
2217 path
->slots
[level
+ 1] += 1;
2218 path
->slots
[level
] = orig_slot
-
2219 btrfs_header_nritems(mid
);
2220 btrfs_tree_unlock(mid
);
2221 free_extent_buffer(mid
);
2223 btrfs_tree_unlock(right
);
2224 free_extent_buffer(right
);
2228 btrfs_tree_unlock(right
);
2229 free_extent_buffer(right
);
2235 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them.
2238 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
2239 struct btrfs_path
*path
,
2240 int level
, int slot
, u64 objectid
)
2242 struct extent_buffer
*node
;
2243 struct btrfs_disk_key disk_key
;
2248 struct extent_buffer
*eb
;
2256 if (!path
->nodes
[level
])
2259 node
= path
->nodes
[level
];
2261 search
= btrfs_node_blockptr(node
, slot
);
2262 blocksize
= fs_info
->nodesize
;
2263 eb
= find_extent_buffer(fs_info
, search
);
2265 free_extent_buffer(eb
);
2271 nritems
= btrfs_header_nritems(node
);
2275 if (path
->reada
== READA_BACK
) {
2279 } else if (path
->reada
== READA_FORWARD
) {
2284 if (path
->reada
== READA_BACK
&& objectid
) {
2285 btrfs_node_key(node
, &disk_key
, nr
);
2286 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2289 search
= btrfs_node_blockptr(node
, nr
);
2290 if ((search
<= target
&& target
- search
<= 65536) ||
2291 (search
> target
&& search
- target
<= 65536)) {
2292 readahead_tree_block(fs_info
, search
);
2296 if ((nread
> 65536 || nscan
> 32))
2301 static noinline
void reada_for_balance(struct btrfs_fs_info
*fs_info
,
2302 struct btrfs_path
*path
, int level
)
2306 struct extent_buffer
*parent
;
2307 struct extent_buffer
*eb
;
2312 parent
= path
->nodes
[level
+ 1];
2316 nritems
= btrfs_header_nritems(parent
);
2317 slot
= path
->slots
[level
+ 1];
2320 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2321 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2322 eb
= find_extent_buffer(fs_info
, block1
);
2324 * if we get -eagain from btrfs_buffer_uptodate, we
2325 * don't want to return eagain here. That will loop
2328 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2330 free_extent_buffer(eb
);
2332 if (slot
+ 1 < nritems
) {
2333 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2334 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2335 eb
= find_extent_buffer(fs_info
, block2
);
2336 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2338 free_extent_buffer(eb
);
2342 readahead_tree_block(fs_info
, block1
);
2344 readahead_tree_block(fs_info
, block2
);
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree. The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block. This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
2361 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2362 int lowest_unlock
, int min_write_lock_level
,
2363 int *write_lock_level
)
2366 int skip_level
= level
;
2368 struct extent_buffer
*t
;
2370 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2371 if (!path
->nodes
[i
])
2373 if (!path
->locks
[i
])
2375 if (!no_skips
&& path
->slots
[i
] == 0) {
2379 if (!no_skips
&& path
->keep_locks
) {
2382 nritems
= btrfs_header_nritems(t
);
2383 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2388 if (skip_level
< i
&& i
>= lowest_unlock
)
2392 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2393 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2395 if (write_lock_level
&&
2396 i
> min_write_lock_level
&&
2397 i
<= *write_lock_level
) {
2398 *write_lock_level
= i
- 1;
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node. This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2413 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2417 if (path
->keep_locks
)
2420 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2421 if (!path
->nodes
[i
])
2423 if (!path
->locks
[i
])
2425 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2431 * helper function for btrfs_search_slot. The goal is to find a block
2432 * in cache without setting the path to blocking. If we find the block
2433 * we return zero and the path is unchanged.
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada. -EAGAIN is returned and the search must be repeated.
2439 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
2440 struct extent_buffer
**eb_ret
, int level
, int slot
,
2441 const struct btrfs_key
*key
)
2443 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2446 struct extent_buffer
*b
= *eb_ret
;
2447 struct extent_buffer
*tmp
;
2450 blocknr
= btrfs_node_blockptr(b
, slot
);
2451 gen
= btrfs_node_ptr_generation(b
, slot
);
2453 tmp
= find_extent_buffer(fs_info
, blocknr
);
2455 /* first we do an atomic uptodate check */
2456 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2461 /* the pages were up to date, but we failed
2462 * the generation number check. Do a full
2463 * read for the generation number that is correct.
2464 * We must do this without dropping locks so
2465 * we can trust our generation number
2467 btrfs_set_path_blocking(p
);
2469 /* now we're allowed to do a blocking uptodate check */
2470 ret
= btrfs_read_buffer(tmp
, gen
);
2475 free_extent_buffer(tmp
);
2476 btrfs_release_path(p
);
2481 * reduce lock contention at high levels
2482 * of the btree by dropping locks before
2483 * we read. Don't release the lock on the current
2484 * level because we need to walk this node to figure
2485 * out which blocks to read.
2487 btrfs_unlock_up_safe(p
, level
+ 1);
2488 btrfs_set_path_blocking(p
);
2490 free_extent_buffer(tmp
);
2491 if (p
->reada
!= READA_NONE
)
2492 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
2494 btrfs_release_path(p
);
2497 tmp
= read_tree_block(fs_info
, blocknr
, 0);
2500 * If the read above didn't mark this buffer up to date,
2501 * it will never end up being up to date. Set ret to EIO now
2502 * and give up so that our caller doesn't loop forever
2505 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2507 free_extent_buffer(tmp
);
2515 * helper function for btrfs_search_slot. This does all of the checks
2516 * for node-level blocks and does any balancing required based on
2519 * If no extra work was required, zero is returned. If we had to
2520 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2524 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2525 struct btrfs_root
*root
, struct btrfs_path
*p
,
2526 struct extent_buffer
*b
, int level
, int ins_len
,
2527 int *write_lock_level
)
2529 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2532 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2533 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
2536 if (*write_lock_level
< level
+ 1) {
2537 *write_lock_level
= level
+ 1;
2538 btrfs_release_path(p
);
2542 btrfs_set_path_blocking(p
);
2543 reada_for_balance(fs_info
, p
, level
);
2544 sret
= split_node(trans
, root
, p
, level
);
2545 btrfs_clear_path_blocking(p
, NULL
, 0);
2552 b
= p
->nodes
[level
];
2553 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2554 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
2557 if (*write_lock_level
< level
+ 1) {
2558 *write_lock_level
= level
+ 1;
2559 btrfs_release_path(p
);
2563 btrfs_set_path_blocking(p
);
2564 reada_for_balance(fs_info
, p
, level
);
2565 sret
= balance_level(trans
, root
, p
, level
);
2566 btrfs_clear_path_blocking(p
, NULL
, 0);
2572 b
= p
->nodes
[level
];
2574 btrfs_release_path(p
);
2577 BUG_ON(btrfs_header_nritems(b
) == 1);
2587 static void key_search_validate(struct extent_buffer
*b
,
2588 const struct btrfs_key
*key
,
2591 #ifdef CONFIG_BTRFS_ASSERT
2592 struct btrfs_disk_key disk_key
;
2594 btrfs_cpu_key_to_disk(&disk_key
, key
);
2597 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2598 offsetof(struct btrfs_leaf
, items
[0].key
),
2601 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2602 offsetof(struct btrfs_node
, ptrs
[0].key
),
2607 static int key_search(struct extent_buffer
*b
, const struct btrfs_key
*key
,
2608 int level
, int *prev_cmp
, int *slot
)
2610 if (*prev_cmp
!= 0) {
2611 *prev_cmp
= btrfs_bin_search(b
, key
, level
, slot
);
2615 key_search_validate(b
, key
, level
);
2621 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2622 u64 iobjectid
, u64 ioff
, u8 key_type
,
2623 struct btrfs_key
*found_key
)
2626 struct btrfs_key key
;
2627 struct extent_buffer
*eb
;
2632 key
.type
= key_type
;
2633 key
.objectid
= iobjectid
;
2636 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2640 eb
= path
->nodes
[0];
2641 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2642 ret
= btrfs_next_leaf(fs_root
, path
);
2645 eb
= path
->nodes
[0];
2648 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2649 if (found_key
->type
!= key
.type
||
2650 found_key
->objectid
!= key
.objectid
)
2657 * btrfs_search_slot - look for a key in a tree and perform necessary
2658 * modifications to preserve tree invariants.
2660 * @trans: Handle of transaction, used when modifying the tree
2661 * @p: Holds all btree nodes along the search path
2662 * @root: The root node of the tree
2663 * @key: The key we are looking for
2664 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2665 * deletions it's -1. 0 for plain searches
2666 * @cow: boolean should CoW operations be performed. Must always be 1
2667 * when modifying the tree.
2669 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2670 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2672 * If @key is found, 0 is returned and you can find the item in the leaf level
2673 * of the path (level 0)
2675 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2676 * points to the slot where it should be inserted
2678 * If an error is encountered while searching the tree a negative error number
2681 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2682 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2683 int ins_len
, int cow
)
2685 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2686 struct extent_buffer
*b
;
2691 int lowest_unlock
= 1;
2693 /* everything at write_lock_level or lower must be write locked */
2694 int write_lock_level
= 0;
2695 u8 lowest_level
= 0;
2696 int min_write_lock_level
;
2699 lowest_level
= p
->lowest_level
;
2700 WARN_ON(lowest_level
&& ins_len
> 0);
2701 WARN_ON(p
->nodes
[0] != NULL
);
2702 BUG_ON(!cow
&& ins_len
);
2707 /* when we are removing items, we might have to go up to level
2708 * two as we update tree pointers Make sure we keep write
2709 * for those levels as well
2711 write_lock_level
= 2;
2712 } else if (ins_len
> 0) {
2714 * for inserting items, make sure we have a write lock on
2715 * level 1 so we can update keys
2717 write_lock_level
= 1;
2721 write_lock_level
= -1;
2723 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2724 write_lock_level
= BTRFS_MAX_LEVEL
;
2726 min_write_lock_level
= write_lock_level
;
2731 * we try very hard to do read locks on the root
2733 root_lock
= BTRFS_READ_LOCK
;
2735 if (p
->search_commit_root
) {
2737 * the commit roots are read only
2738 * so we always do read locks
2740 if (p
->need_commit_sem
)
2741 down_read(&fs_info
->commit_root_sem
);
2742 b
= root
->commit_root
;
2743 extent_buffer_get(b
);
2744 level
= btrfs_header_level(b
);
2745 if (p
->need_commit_sem
)
2746 up_read(&fs_info
->commit_root_sem
);
2747 if (!p
->skip_locking
)
2748 btrfs_tree_read_lock(b
);
2750 if (p
->skip_locking
) {
2751 b
= btrfs_root_node(root
);
2752 level
= btrfs_header_level(b
);
2754 /* we don't know the level of the root node
2755 * until we actually have it read locked
2757 b
= btrfs_read_lock_root_node(root
);
2758 level
= btrfs_header_level(b
);
2759 if (level
<= write_lock_level
) {
2760 /* whoops, must trade for write lock */
2761 btrfs_tree_read_unlock(b
);
2762 free_extent_buffer(b
);
2763 b
= btrfs_lock_root_node(root
);
2764 root_lock
= BTRFS_WRITE_LOCK
;
2766 /* the level might have changed, check again */
2767 level
= btrfs_header_level(b
);
2771 p
->nodes
[level
] = b
;
2772 if (!p
->skip_locking
)
2773 p
->locks
[level
] = root_lock
;
2776 level
= btrfs_header_level(b
);
2779 * setup the path here so we can release it under lock
2780 * contention with the cow code
2783 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2786 * if we don't really need to cow this block
2787 * then we don't want to set the path blocking,
2788 * so we test it here
2790 if (!should_cow_block(trans
, root
, b
)) {
2791 trans
->dirty
= true;
2796 * must have write locks on this node and the
2799 if (level
> write_lock_level
||
2800 (level
+ 1 > write_lock_level
&&
2801 level
+ 1 < BTRFS_MAX_LEVEL
&&
2802 p
->nodes
[level
+ 1])) {
2803 write_lock_level
= level
+ 1;
2804 btrfs_release_path(p
);
2808 btrfs_set_path_blocking(p
);
2810 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2813 err
= btrfs_cow_block(trans
, root
, b
,
2814 p
->nodes
[level
+ 1],
2815 p
->slots
[level
+ 1], &b
);
2822 p
->nodes
[level
] = b
;
2823 btrfs_clear_path_blocking(p
, NULL
, 0);
2826 * we have a lock on b and as long as we aren't changing
2827 * the tree, there is no way to for the items in b to change.
2828 * It is safe to drop the lock on our parent before we
2829 * go through the expensive btree search on b.
2831 * If we're inserting or deleting (ins_len != 0), then we might
2832 * be changing slot zero, which may require changing the parent.
2833 * So, we can't drop the lock until after we know which slot
2834 * we're operating on.
2836 if (!ins_len
&& !p
->keep_locks
) {
2839 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2840 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2845 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2851 if (ret
&& slot
> 0) {
2855 p
->slots
[level
] = slot
;
2856 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2857 ins_len
, &write_lock_level
);
2864 b
= p
->nodes
[level
];
2865 slot
= p
->slots
[level
];
2868 * slot 0 is special, if we change the key
2869 * we have to update the parent pointer
2870 * which means we must have a write lock
2873 if (slot
== 0 && ins_len
&&
2874 write_lock_level
< level
+ 1) {
2875 write_lock_level
= level
+ 1;
2876 btrfs_release_path(p
);
2880 unlock_up(p
, level
, lowest_unlock
,
2881 min_write_lock_level
, &write_lock_level
);
2883 if (level
== lowest_level
) {
2889 err
= read_block_for_search(root
, p
, &b
, level
,
2898 if (!p
->skip_locking
) {
2899 level
= btrfs_header_level(b
);
2900 if (level
<= write_lock_level
) {
2901 err
= btrfs_try_tree_write_lock(b
);
2903 btrfs_set_path_blocking(p
);
2905 btrfs_clear_path_blocking(p
, b
,
2908 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2910 err
= btrfs_tree_read_lock_atomic(b
);
2912 btrfs_set_path_blocking(p
);
2913 btrfs_tree_read_lock(b
);
2914 btrfs_clear_path_blocking(p
, b
,
2917 p
->locks
[level
] = BTRFS_READ_LOCK
;
2919 p
->nodes
[level
] = b
;
2922 p
->slots
[level
] = slot
;
2924 btrfs_leaf_free_space(fs_info
, b
) < ins_len
) {
2925 if (write_lock_level
< 1) {
2926 write_lock_level
= 1;
2927 btrfs_release_path(p
);
2931 btrfs_set_path_blocking(p
);
2932 err
= split_leaf(trans
, root
, key
,
2933 p
, ins_len
, ret
== 0);
2934 btrfs_clear_path_blocking(p
, NULL
, 0);
2942 if (!p
->search_for_split
)
2943 unlock_up(p
, level
, lowest_unlock
,
2944 min_write_lock_level
, &write_lock_level
);
2951 * we don't really know what they plan on doing with the path
2952 * from here on, so for now just mark it as blocking
2954 if (!p
->leave_spinning
)
2955 btrfs_set_path_blocking(p
);
2956 if (ret
< 0 && !p
->skip_release_on_error
)
2957 btrfs_release_path(p
);
2962 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2963 * current state of the tree together with the operations recorded in the tree
2964 * modification log to search for the key in a previous version of this tree, as
2965 * denoted by the time_seq parameter.
2967 * Naturally, there is no support for insert, delete or cow operations.
2969 * The resulting path and return value will be set up as if we called
2970 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2972 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2973 struct btrfs_path
*p
, u64 time_seq
)
2975 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2976 struct extent_buffer
*b
;
2981 int lowest_unlock
= 1;
2982 u8 lowest_level
= 0;
2985 lowest_level
= p
->lowest_level
;
2986 WARN_ON(p
->nodes
[0] != NULL
);
2988 if (p
->search_commit_root
) {
2990 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2994 b
= get_old_root(root
, time_seq
);
2995 level
= btrfs_header_level(b
);
2996 p
->locks
[level
] = BTRFS_READ_LOCK
;
2999 level
= btrfs_header_level(b
);
3000 p
->nodes
[level
] = b
;
3001 btrfs_clear_path_blocking(p
, NULL
, 0);
3004 * we have a lock on b and as long as we aren't changing
3005 * the tree, there is no way to for the items in b to change.
3006 * It is safe to drop the lock on our parent before we
3007 * go through the expensive btree search on b.
3009 btrfs_unlock_up_safe(p
, level
+ 1);
3012 * Since we can unwind ebs we want to do a real search every
3016 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
3020 if (ret
&& slot
> 0) {
3024 p
->slots
[level
] = slot
;
3025 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3027 if (level
== lowest_level
) {
3033 err
= read_block_for_search(root
, p
, &b
, level
,
3042 level
= btrfs_header_level(b
);
3043 err
= btrfs_tree_read_lock_atomic(b
);
3045 btrfs_set_path_blocking(p
);
3046 btrfs_tree_read_lock(b
);
3047 btrfs_clear_path_blocking(p
, b
,
3050 b
= tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
3055 p
->locks
[level
] = BTRFS_READ_LOCK
;
3056 p
->nodes
[level
] = b
;
3058 p
->slots
[level
] = slot
;
3059 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3065 if (!p
->leave_spinning
)
3066 btrfs_set_path_blocking(p
);
3068 btrfs_release_path(p
);
3074 * helper to use instead of search slot if no exact match is needed but
3075 * instead the next or previous item should be returned.
3076 * When find_higher is true, the next higher item is returned, the next lower
3078 * When return_any and find_higher are both true, and no higher item is found,
3079 * return the next lower instead.
3080 * When return_any is true and find_higher is false, and no lower item is found,
3081 * return the next higher instead.
3082 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3085 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3086 const struct btrfs_key
*key
,
3087 struct btrfs_path
*p
, int find_higher
,
3091 struct extent_buffer
*leaf
;
3094 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3098 * a return value of 1 means the path is at the position where the
3099 * item should be inserted. Normally this is the next bigger item,
3100 * but in case the previous item is the last in a leaf, path points
3101 * to the first free slot in the previous leaf, i.e. at an invalid
3107 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3108 ret
= btrfs_next_leaf(root
, p
);
3114 * no higher item found, return the next
3119 btrfs_release_path(p
);
3123 if (p
->slots
[0] == 0) {
3124 ret
= btrfs_prev_leaf(root
, p
);
3129 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3136 * no lower item found, return the next
3141 btrfs_release_path(p
);
3151 * adjust the pointers going up the tree, starting at level
3152 * making sure the right key of each node is points to 'key'.
3153 * This is used after shifting pointers to the left, so it stops
3154 * fixing up pointers when a given leaf/node is not in slot 0 of the
3158 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3159 struct btrfs_path
*path
,
3160 struct btrfs_disk_key
*key
, int level
)
3163 struct extent_buffer
*t
;
3165 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3166 int tslot
= path
->slots
[i
];
3167 if (!path
->nodes
[i
])
3170 tree_mod_log_set_node_key(fs_info
, t
, tslot
, 1);
3171 btrfs_set_node_key(t
, key
, tslot
);
3172 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3181 * This function isn't completely safe. It's the caller's responsibility
3182 * that the new key won't break the order
3184 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3185 struct btrfs_path
*path
,
3186 const struct btrfs_key
*new_key
)
3188 struct btrfs_disk_key disk_key
;
3189 struct extent_buffer
*eb
;
3192 eb
= path
->nodes
[0];
3193 slot
= path
->slots
[0];
3195 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3196 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3198 if (slot
< btrfs_header_nritems(eb
) - 1) {
3199 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3200 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3203 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3204 btrfs_set_item_key(eb
, &disk_key
, slot
);
3205 btrfs_mark_buffer_dirty(eb
);
3207 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3211 * try to push data from one node into the next node left in the
3214 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3215 * error, and > 0 if there was no room in the left hand block.
3217 static int push_node_left(struct btrfs_trans_handle
*trans
,
3218 struct btrfs_fs_info
*fs_info
,
3219 struct extent_buffer
*dst
,
3220 struct extent_buffer
*src
, int empty
)
3227 src_nritems
= btrfs_header_nritems(src
);
3228 dst_nritems
= btrfs_header_nritems(dst
);
3229 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3230 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3231 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3233 if (!empty
&& src_nritems
<= 8)
3236 if (push_items
<= 0)
3240 push_items
= min(src_nritems
, push_items
);
3241 if (push_items
< src_nritems
) {
3242 /* leave at least 8 pointers in the node if
3243 * we aren't going to empty it
3245 if (src_nritems
- push_items
< 8) {
3246 if (push_items
<= 8)
3252 push_items
= min(src_nritems
- 8, push_items
);
3254 ret
= tree_mod_log_eb_copy(fs_info
, dst
, src
, dst_nritems
, 0,
3257 btrfs_abort_transaction(trans
, ret
);
3260 copy_extent_buffer(dst
, src
,
3261 btrfs_node_key_ptr_offset(dst_nritems
),
3262 btrfs_node_key_ptr_offset(0),
3263 push_items
* sizeof(struct btrfs_key_ptr
));
3265 if (push_items
< src_nritems
) {
3267 * don't call tree_mod_log_eb_move here, key removal was already
3268 * fully logged by tree_mod_log_eb_copy above.
3270 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3271 btrfs_node_key_ptr_offset(push_items
),
3272 (src_nritems
- push_items
) *
3273 sizeof(struct btrfs_key_ptr
));
3275 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3276 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3277 btrfs_mark_buffer_dirty(src
);
3278 btrfs_mark_buffer_dirty(dst
);
3284 * try to push data from one node into the next node right in the
3287 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3288 * error, and > 0 if there was no room in the right hand block.
3290 * this will only push up to 1/2 the contents of the left node over
3292 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3293 struct btrfs_fs_info
*fs_info
,
3294 struct extent_buffer
*dst
,
3295 struct extent_buffer
*src
)
3303 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3304 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3306 src_nritems
= btrfs_header_nritems(src
);
3307 dst_nritems
= btrfs_header_nritems(dst
);
3308 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3309 if (push_items
<= 0)
3312 if (src_nritems
< 4)
3315 max_push
= src_nritems
/ 2 + 1;
3316 /* don't try to empty the node */
3317 if (max_push
>= src_nritems
)
3320 if (max_push
< push_items
)
3321 push_items
= max_push
;
3323 tree_mod_log_eb_move(fs_info
, dst
, push_items
, 0, dst_nritems
);
3324 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3325 btrfs_node_key_ptr_offset(0),
3327 sizeof(struct btrfs_key_ptr
));
3329 ret
= tree_mod_log_eb_copy(fs_info
, dst
, src
, 0,
3330 src_nritems
- push_items
, push_items
);
3332 btrfs_abort_transaction(trans
, ret
);
3335 copy_extent_buffer(dst
, src
,
3336 btrfs_node_key_ptr_offset(0),
3337 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3338 push_items
* sizeof(struct btrfs_key_ptr
));
3340 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3341 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3343 btrfs_mark_buffer_dirty(src
);
3344 btrfs_mark_buffer_dirty(dst
);
3350 * helper function to insert a new root level in the tree.
3351 * A new node is allocated, and a single item is inserted to
3352 * point to the existing root
3354 * returns zero on success or < 0 on failure.
3356 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3357 struct btrfs_root
*root
,
3358 struct btrfs_path
*path
, int level
)
3360 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3362 struct extent_buffer
*lower
;
3363 struct extent_buffer
*c
;
3364 struct extent_buffer
*old
;
3365 struct btrfs_disk_key lower_key
;
3367 BUG_ON(path
->nodes
[level
]);
3368 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3370 lower
= path
->nodes
[level
-1];
3372 btrfs_item_key(lower
, &lower_key
, 0);
3374 btrfs_node_key(lower
, &lower_key
, 0);
3376 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3377 &lower_key
, level
, root
->node
->start
, 0);
3381 root_add_used(root
, fs_info
->nodesize
);
3383 memzero_extent_buffer(c
, 0, sizeof(struct btrfs_header
));
3384 btrfs_set_header_nritems(c
, 1);
3385 btrfs_set_header_level(c
, level
);
3386 btrfs_set_header_bytenr(c
, c
->start
);
3387 btrfs_set_header_generation(c
, trans
->transid
);
3388 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3389 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3391 write_extent_buffer_fsid(c
, fs_info
->fsid
);
3392 write_extent_buffer_chunk_tree_uuid(c
, fs_info
->chunk_tree_uuid
);
3394 btrfs_set_node_key(c
, &lower_key
, 0);
3395 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3396 lower_gen
= btrfs_header_generation(lower
);
3397 WARN_ON(lower_gen
!= trans
->transid
);
3399 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3401 btrfs_mark_buffer_dirty(c
);
3404 tree_mod_log_set_root_pointer(root
, c
, 0);
3405 rcu_assign_pointer(root
->node
, c
);
3407 /* the super has an extra ref to root->node */
3408 free_extent_buffer(old
);
3410 add_root_to_dirty_list(root
);
3411 extent_buffer_get(c
);
3412 path
->nodes
[level
] = c
;
3413 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3414 path
->slots
[level
] = 0;
3419 * worker function to insert a single pointer in a node.
3420 * the node should have enough room for the pointer already
3422 * slot and level indicate where you want the key to go, and
3423 * blocknr is the block the key points to.
3425 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3426 struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
3427 struct btrfs_disk_key
*key
, u64 bytenr
,
3428 int slot
, int level
)
3430 struct extent_buffer
*lower
;
3434 BUG_ON(!path
->nodes
[level
]);
3435 btrfs_assert_tree_locked(path
->nodes
[level
]);
3436 lower
= path
->nodes
[level
];
3437 nritems
= btrfs_header_nritems(lower
);
3438 BUG_ON(slot
> nritems
);
3439 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
3440 if (slot
!= nritems
) {
3442 tree_mod_log_eb_move(fs_info
, lower
, slot
+ 1,
3443 slot
, nritems
- slot
);
3444 memmove_extent_buffer(lower
,
3445 btrfs_node_key_ptr_offset(slot
+ 1),
3446 btrfs_node_key_ptr_offset(slot
),
3447 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3450 ret
= tree_mod_log_insert_key(fs_info
, lower
, slot
,
3451 MOD_LOG_KEY_ADD
, GFP_NOFS
);
3454 btrfs_set_node_key(lower
, key
, slot
);
3455 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3456 WARN_ON(trans
->transid
== 0);
3457 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3458 btrfs_set_header_nritems(lower
, nritems
+ 1);
3459 btrfs_mark_buffer_dirty(lower
);
3463 * split the node at the specified level in path in two.
3464 * The path is corrected to point to the appropriate node after the split
3466 * Before splitting this tries to make some room in the node by pushing
3467 * left and right, if either one works, it returns right away.
3469 * returns 0 on success and < 0 on failure
3471 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3472 struct btrfs_root
*root
,
3473 struct btrfs_path
*path
, int level
)
3475 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3476 struct extent_buffer
*c
;
3477 struct extent_buffer
*split
;
3478 struct btrfs_disk_key disk_key
;
3483 c
= path
->nodes
[level
];
3484 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3485 if (c
== root
->node
) {
3487 * trying to split the root, lets make a new one
3489 * tree mod log: We don't log_removal old root in
3490 * insert_new_root, because that root buffer will be kept as a
3491 * normal node. We are going to log removal of half of the
3492 * elements below with tree_mod_log_eb_copy. We're holding a
3493 * tree lock on the buffer, which is why we cannot race with
3494 * other tree_mod_log users.
3496 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3500 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3501 c
= path
->nodes
[level
];
3502 if (!ret
&& btrfs_header_nritems(c
) <
3503 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3509 c_nritems
= btrfs_header_nritems(c
);
3510 mid
= (c_nritems
+ 1) / 2;
3511 btrfs_node_key(c
, &disk_key
, mid
);
3513 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3514 &disk_key
, level
, c
->start
, 0);
3516 return PTR_ERR(split
);
3518 root_add_used(root
, fs_info
->nodesize
);
3520 memzero_extent_buffer(split
, 0, sizeof(struct btrfs_header
));
3521 btrfs_set_header_level(split
, btrfs_header_level(c
));
3522 btrfs_set_header_bytenr(split
, split
->start
);
3523 btrfs_set_header_generation(split
, trans
->transid
);
3524 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3525 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3526 write_extent_buffer_fsid(split
, fs_info
->fsid
);
3527 write_extent_buffer_chunk_tree_uuid(split
, fs_info
->chunk_tree_uuid
);
3529 ret
= tree_mod_log_eb_copy(fs_info
, split
, c
, 0, mid
, c_nritems
- mid
);
3531 btrfs_abort_transaction(trans
, ret
);
3534 copy_extent_buffer(split
, c
,
3535 btrfs_node_key_ptr_offset(0),
3536 btrfs_node_key_ptr_offset(mid
),
3537 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3538 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3539 btrfs_set_header_nritems(c
, mid
);
3542 btrfs_mark_buffer_dirty(c
);
3543 btrfs_mark_buffer_dirty(split
);
3545 insert_ptr(trans
, fs_info
, path
, &disk_key
, split
->start
,
3546 path
->slots
[level
+ 1] + 1, level
+ 1);
3548 if (path
->slots
[level
] >= mid
) {
3549 path
->slots
[level
] -= mid
;
3550 btrfs_tree_unlock(c
);
3551 free_extent_buffer(c
);
3552 path
->nodes
[level
] = split
;
3553 path
->slots
[level
+ 1] += 1;
3555 btrfs_tree_unlock(split
);
3556 free_extent_buffer(split
);
3562 * how many bytes are required to store the items in a leaf. start
3563 * and nr indicate which items in the leaf to check. This totals up the
3564 * space used both by the item structs and the item data
3566 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3568 struct btrfs_item
*start_item
;
3569 struct btrfs_item
*end_item
;
3570 struct btrfs_map_token token
;
3572 int nritems
= btrfs_header_nritems(l
);
3573 int end
= min(nritems
, start
+ nr
) - 1;
3577 btrfs_init_map_token(&token
);
3578 start_item
= btrfs_item_nr(start
);
3579 end_item
= btrfs_item_nr(end
);
3580 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3581 btrfs_token_item_size(l
, start_item
, &token
);
3582 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3583 data_len
+= sizeof(struct btrfs_item
) * nr
;
3584 WARN_ON(data_len
< 0);
3589 * The space between the end of the leaf items and
3590 * the start of the leaf data. IOW, how much room
3591 * the leaf has left for both items and data
3593 noinline
int btrfs_leaf_free_space(struct btrfs_fs_info
*fs_info
,
3594 struct extent_buffer
*leaf
)
3596 int nritems
= btrfs_header_nritems(leaf
);
3599 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3602 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3604 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3605 leaf_space_used(leaf
, 0, nritems
), nritems
);
3611 * min slot controls the lowest index we're willing to push to the
3612 * right. We'll push up to and including min_slot, but no lower
3614 static noinline
int __push_leaf_right(struct btrfs_fs_info
*fs_info
,
3615 struct btrfs_path
*path
,
3616 int data_size
, int empty
,
3617 struct extent_buffer
*right
,
3618 int free_space
, u32 left_nritems
,
3621 struct extent_buffer
*left
= path
->nodes
[0];
3622 struct extent_buffer
*upper
= path
->nodes
[1];
3623 struct btrfs_map_token token
;
3624 struct btrfs_disk_key disk_key
;
3629 struct btrfs_item
*item
;
3635 btrfs_init_map_token(&token
);
3640 nr
= max_t(u32
, 1, min_slot
);
3642 if (path
->slots
[0] >= left_nritems
)
3643 push_space
+= data_size
;
3645 slot
= path
->slots
[1];
3646 i
= left_nritems
- 1;
3648 item
= btrfs_item_nr(i
);
3650 if (!empty
&& push_items
> 0) {
3651 if (path
->slots
[0] > i
)
3653 if (path
->slots
[0] == i
) {
3654 int space
= btrfs_leaf_free_space(fs_info
, left
);
3655 if (space
+ push_space
* 2 > free_space
)
3660 if (path
->slots
[0] == i
)
3661 push_space
+= data_size
;
3663 this_item_size
= btrfs_item_size(left
, item
);
3664 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3668 push_space
+= this_item_size
+ sizeof(*item
);
3674 if (push_items
== 0)
3677 WARN_ON(!empty
&& push_items
== left_nritems
);
3679 /* push left to right */
3680 right_nritems
= btrfs_header_nritems(right
);
3682 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3683 push_space
-= leaf_data_end(fs_info
, left
);
3685 /* make room in the right data area */
3686 data_end
= leaf_data_end(fs_info
, right
);
3687 memmove_extent_buffer(right
,
3688 BTRFS_LEAF_DATA_OFFSET
+ data_end
- push_space
,
3689 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
3690 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3692 /* copy from the left data area */
3693 copy_extent_buffer(right
, left
, BTRFS_LEAF_DATA_OFFSET
+
3694 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3695 BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(fs_info
, left
),
3698 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3699 btrfs_item_nr_offset(0),
3700 right_nritems
* sizeof(struct btrfs_item
));
3702 /* copy the items from left to right */
3703 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3704 btrfs_item_nr_offset(left_nritems
- push_items
),
3705 push_items
* sizeof(struct btrfs_item
));
3707 /* update the item pointers */
3708 right_nritems
+= push_items
;
3709 btrfs_set_header_nritems(right
, right_nritems
);
3710 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3711 for (i
= 0; i
< right_nritems
; i
++) {
3712 item
= btrfs_item_nr(i
);
3713 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3714 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3717 left_nritems
-= push_items
;
3718 btrfs_set_header_nritems(left
, left_nritems
);
3721 btrfs_mark_buffer_dirty(left
);
3723 clean_tree_block(fs_info
, left
);
3725 btrfs_mark_buffer_dirty(right
);
3727 btrfs_item_key(right
, &disk_key
, 0);
3728 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3729 btrfs_mark_buffer_dirty(upper
);
3731 /* then fixup the leaf pointer in the path */
3732 if (path
->slots
[0] >= left_nritems
) {
3733 path
->slots
[0] -= left_nritems
;
3734 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3735 clean_tree_block(fs_info
, path
->nodes
[0]);
3736 btrfs_tree_unlock(path
->nodes
[0]);
3737 free_extent_buffer(path
->nodes
[0]);
3738 path
->nodes
[0] = right
;
3739 path
->slots
[1] += 1;
3741 btrfs_tree_unlock(right
);
3742 free_extent_buffer(right
);
3747 btrfs_tree_unlock(right
);
3748 free_extent_buffer(right
);
3753 * push some data in the path leaf to the right, trying to free up at
3754 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3756 * returns 1 if the push failed because the other node didn't have enough
3757 * room, 0 if everything worked out and < 0 if there were major errors.
3759 * this will push starting from min_slot to the end of the leaf. It won't
3760 * push any slot lower than min_slot
3762 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3763 *root
, struct btrfs_path
*path
,
3764 int min_data_size
, int data_size
,
3765 int empty
, u32 min_slot
)
3767 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3768 struct extent_buffer
*left
= path
->nodes
[0];
3769 struct extent_buffer
*right
;
3770 struct extent_buffer
*upper
;
3776 if (!path
->nodes
[1])
3779 slot
= path
->slots
[1];
3780 upper
= path
->nodes
[1];
3781 if (slot
>= btrfs_header_nritems(upper
) - 1)
3784 btrfs_assert_tree_locked(path
->nodes
[1]);
3786 right
= read_node_slot(fs_info
, upper
, slot
+ 1);
3788 * slot + 1 is not valid or we fail to read the right node,
3789 * no big deal, just return.
3794 btrfs_tree_lock(right
);
3795 btrfs_set_lock_blocking(right
);
3797 free_space
= btrfs_leaf_free_space(fs_info
, right
);
3798 if (free_space
< data_size
)
3801 /* cow and double check */
3802 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3807 free_space
= btrfs_leaf_free_space(fs_info
, right
);
3808 if (free_space
< data_size
)
3811 left_nritems
= btrfs_header_nritems(left
);
3812 if (left_nritems
== 0)
3815 if (path
->slots
[0] == left_nritems
&& !empty
) {
3816 /* Key greater than all keys in the leaf, right neighbor has
3817 * enough room for it and we're not emptying our leaf to delete
3818 * it, therefore use right neighbor to insert the new item and
3819 * no need to touch/dirty our left leaft. */
3820 btrfs_tree_unlock(left
);
3821 free_extent_buffer(left
);
3822 path
->nodes
[0] = right
;
3828 return __push_leaf_right(fs_info
, path
, min_data_size
, empty
,
3829 right
, free_space
, left_nritems
, min_slot
);
3831 btrfs_tree_unlock(right
);
3832 free_extent_buffer(right
);
3837 * push some data in the path leaf to the left, trying to free up at
3838 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3840 * max_slot can put a limit on how far into the leaf we'll push items. The
3841 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3844 static noinline
int __push_leaf_left(struct btrfs_fs_info
*fs_info
,
3845 struct btrfs_path
*path
, int data_size
,
3846 int empty
, struct extent_buffer
*left
,
3847 int free_space
, u32 right_nritems
,
3850 struct btrfs_disk_key disk_key
;
3851 struct extent_buffer
*right
= path
->nodes
[0];
3855 struct btrfs_item
*item
;
3856 u32 old_left_nritems
;
3860 u32 old_left_item_size
;
3861 struct btrfs_map_token token
;
3863 btrfs_init_map_token(&token
);
3866 nr
= min(right_nritems
, max_slot
);
3868 nr
= min(right_nritems
- 1, max_slot
);
3870 for (i
= 0; i
< nr
; i
++) {
3871 item
= btrfs_item_nr(i
);
3873 if (!empty
&& push_items
> 0) {
3874 if (path
->slots
[0] < i
)
3876 if (path
->slots
[0] == i
) {
3877 int space
= btrfs_leaf_free_space(fs_info
, right
);
3878 if (space
+ push_space
* 2 > free_space
)
3883 if (path
->slots
[0] == i
)
3884 push_space
+= data_size
;
3886 this_item_size
= btrfs_item_size(right
, item
);
3887 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3891 push_space
+= this_item_size
+ sizeof(*item
);
3894 if (push_items
== 0) {
3898 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3900 /* push data from right to left */
3901 copy_extent_buffer(left
, right
,
3902 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3903 btrfs_item_nr_offset(0),
3904 push_items
* sizeof(struct btrfs_item
));
3906 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3907 btrfs_item_offset_nr(right
, push_items
- 1);
3909 copy_extent_buffer(left
, right
, BTRFS_LEAF_DATA_OFFSET
+
3910 leaf_data_end(fs_info
, left
) - push_space
,
3911 BTRFS_LEAF_DATA_OFFSET
+
3912 btrfs_item_offset_nr(right
, push_items
- 1),
3914 old_left_nritems
= btrfs_header_nritems(left
);
3915 BUG_ON(old_left_nritems
<= 0);
3917 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3918 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3921 item
= btrfs_item_nr(i
);
3923 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3924 btrfs_set_token_item_offset(left
, item
,
3925 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
),
3928 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3930 /* fixup right node */
3931 if (push_items
> right_nritems
)
3932 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3935 if (push_items
< right_nritems
) {
3936 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3937 leaf_data_end(fs_info
, right
);
3938 memmove_extent_buffer(right
, BTRFS_LEAF_DATA_OFFSET
+
3939 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3940 BTRFS_LEAF_DATA_OFFSET
+
3941 leaf_data_end(fs_info
, right
), push_space
);
3943 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3944 btrfs_item_nr_offset(push_items
),
3945 (btrfs_header_nritems(right
) - push_items
) *
3946 sizeof(struct btrfs_item
));
3948 right_nritems
-= push_items
;
3949 btrfs_set_header_nritems(right
, right_nritems
);
3950 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3951 for (i
= 0; i
< right_nritems
; i
++) {
3952 item
= btrfs_item_nr(i
);
3954 push_space
= push_space
- btrfs_token_item_size(right
,
3956 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3959 btrfs_mark_buffer_dirty(left
);
3961 btrfs_mark_buffer_dirty(right
);
3963 clean_tree_block(fs_info
, right
);
3965 btrfs_item_key(right
, &disk_key
, 0);
3966 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3968 /* then fixup the leaf pointer in the path */
3969 if (path
->slots
[0] < push_items
) {
3970 path
->slots
[0] += old_left_nritems
;
3971 btrfs_tree_unlock(path
->nodes
[0]);
3972 free_extent_buffer(path
->nodes
[0]);
3973 path
->nodes
[0] = left
;
3974 path
->slots
[1] -= 1;
3976 btrfs_tree_unlock(left
);
3977 free_extent_buffer(left
);
3978 path
->slots
[0] -= push_items
;
3980 BUG_ON(path
->slots
[0] < 0);
3983 btrfs_tree_unlock(left
);
3984 free_extent_buffer(left
);
3989 * push some data in the path leaf to the left, trying to free up at
3990 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3992 * max_slot can put a limit on how far into the leaf we'll push items. The
3993 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3996 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3997 *root
, struct btrfs_path
*path
, int min_data_size
,
3998 int data_size
, int empty
, u32 max_slot
)
4000 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4001 struct extent_buffer
*right
= path
->nodes
[0];
4002 struct extent_buffer
*left
;
4008 slot
= path
->slots
[1];
4011 if (!path
->nodes
[1])
4014 right_nritems
= btrfs_header_nritems(right
);
4015 if (right_nritems
== 0)
4018 btrfs_assert_tree_locked(path
->nodes
[1]);
4020 left
= read_node_slot(fs_info
, path
->nodes
[1], slot
- 1);
4022 * slot - 1 is not valid or we fail to read the left node,
4023 * no big deal, just return.
4028 btrfs_tree_lock(left
);
4029 btrfs_set_lock_blocking(left
);
4031 free_space
= btrfs_leaf_free_space(fs_info
, left
);
4032 if (free_space
< data_size
) {
4037 /* cow and double check */
4038 ret
= btrfs_cow_block(trans
, root
, left
,
4039 path
->nodes
[1], slot
- 1, &left
);
4041 /* we hit -ENOSPC, but it isn't fatal here */
4047 free_space
= btrfs_leaf_free_space(fs_info
, left
);
4048 if (free_space
< data_size
) {
4053 return __push_leaf_left(fs_info
, path
, min_data_size
,
4054 empty
, left
, free_space
, right_nritems
,
4057 btrfs_tree_unlock(left
);
4058 free_extent_buffer(left
);
4063 * split the path's leaf in two, making sure there is at least data_size
4064 * available for the resulting leaf level of the path.
4066 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4067 struct btrfs_fs_info
*fs_info
,
4068 struct btrfs_path
*path
,
4069 struct extent_buffer
*l
,
4070 struct extent_buffer
*right
,
4071 int slot
, int mid
, int nritems
)
4076 struct btrfs_disk_key disk_key
;
4077 struct btrfs_map_token token
;
4079 btrfs_init_map_token(&token
);
4081 nritems
= nritems
- mid
;
4082 btrfs_set_header_nritems(right
, nritems
);
4083 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(fs_info
, l
);
4085 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4086 btrfs_item_nr_offset(mid
),
4087 nritems
* sizeof(struct btrfs_item
));
4089 copy_extent_buffer(right
, l
,
4090 BTRFS_LEAF_DATA_OFFSET
+ BTRFS_LEAF_DATA_SIZE(fs_info
) -
4091 data_copy_size
, BTRFS_LEAF_DATA_OFFSET
+
4092 leaf_data_end(fs_info
, l
), data_copy_size
);
4094 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_end_nr(l
, mid
);
4096 for (i
= 0; i
< nritems
; i
++) {
4097 struct btrfs_item
*item
= btrfs_item_nr(i
);
4100 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4101 btrfs_set_token_item_offset(right
, item
,
4102 ioff
+ rt_data_off
, &token
);
4105 btrfs_set_header_nritems(l
, mid
);
4106 btrfs_item_key(right
, &disk_key
, 0);
4107 insert_ptr(trans
, fs_info
, path
, &disk_key
, right
->start
,
4108 path
->slots
[1] + 1, 1);
4110 btrfs_mark_buffer_dirty(right
);
4111 btrfs_mark_buffer_dirty(l
);
4112 BUG_ON(path
->slots
[0] != slot
);
4115 btrfs_tree_unlock(path
->nodes
[0]);
4116 free_extent_buffer(path
->nodes
[0]);
4117 path
->nodes
[0] = right
;
4118 path
->slots
[0] -= mid
;
4119 path
->slots
[1] += 1;
4121 btrfs_tree_unlock(right
);
4122 free_extent_buffer(right
);
4125 BUG_ON(path
->slots
[0] < 0);
4129 * double splits happen when we need to insert a big item in the middle
4130 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4131 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4134 * We avoid this by trying to push the items on either side of our target
4135 * into the adjacent leaves. If all goes well we can avoid the double split
4138 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4139 struct btrfs_root
*root
,
4140 struct btrfs_path
*path
,
4143 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4148 int space_needed
= data_size
;
4150 slot
= path
->slots
[0];
4151 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4152 space_needed
-= btrfs_leaf_free_space(fs_info
, path
->nodes
[0]);
4155 * try to push all the items after our slot into the
4158 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4165 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4167 * our goal is to get our slot at the start or end of a leaf. If
4168 * we've done so we're done
4170 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4173 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= data_size
)
4176 /* try to push all the items before our slot into the next leaf */
4177 slot
= path
->slots
[0];
4178 space_needed
= data_size
;
4180 space_needed
-= btrfs_leaf_free_space(fs_info
, path
->nodes
[0]);
4181 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4194 * split the path's leaf in two, making sure there is at least data_size
4195 * available for the resulting leaf level of the path.
4197 * returns 0 if all went well and < 0 on failure.
4199 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4200 struct btrfs_root
*root
,
4201 const struct btrfs_key
*ins_key
,
4202 struct btrfs_path
*path
, int data_size
,
4205 struct btrfs_disk_key disk_key
;
4206 struct extent_buffer
*l
;
4210 struct extent_buffer
*right
;
4211 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4215 int num_doubles
= 0;
4216 int tried_avoid_double
= 0;
4219 slot
= path
->slots
[0];
4220 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4221 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
4224 /* first try to make some room by pushing left and right */
4225 if (data_size
&& path
->nodes
[1]) {
4226 int space_needed
= data_size
;
4228 if (slot
< btrfs_header_nritems(l
))
4229 space_needed
-= btrfs_leaf_free_space(fs_info
, l
);
4231 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4232 space_needed
, 0, 0);
4236 space_needed
= data_size
;
4238 space_needed
-= btrfs_leaf_free_space(fs_info
,
4240 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4241 space_needed
, 0, (u32
)-1);
4247 /* did the pushes work? */
4248 if (btrfs_leaf_free_space(fs_info
, l
) >= data_size
)
4252 if (!path
->nodes
[1]) {
4253 ret
= insert_new_root(trans
, root
, path
, 1);
4260 slot
= path
->slots
[0];
4261 nritems
= btrfs_header_nritems(l
);
4262 mid
= (nritems
+ 1) / 2;
4266 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4267 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4268 if (slot
>= nritems
) {
4272 if (mid
!= nritems
&&
4273 leaf_space_used(l
, mid
, nritems
- mid
) +
4274 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4275 if (data_size
&& !tried_avoid_double
)
4276 goto push_for_double
;
4282 if (leaf_space_used(l
, 0, mid
) + data_size
>
4283 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4284 if (!extend
&& data_size
&& slot
== 0) {
4286 } else if ((extend
|| !data_size
) && slot
== 0) {
4290 if (mid
!= nritems
&&
4291 leaf_space_used(l
, mid
, nritems
- mid
) +
4292 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4293 if (data_size
&& !tried_avoid_double
)
4294 goto push_for_double
;
4302 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4304 btrfs_item_key(l
, &disk_key
, mid
);
4306 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4307 &disk_key
, 0, l
->start
, 0);
4309 return PTR_ERR(right
);
4311 root_add_used(root
, fs_info
->nodesize
);
4313 memzero_extent_buffer(right
, 0, sizeof(struct btrfs_header
));
4314 btrfs_set_header_bytenr(right
, right
->start
);
4315 btrfs_set_header_generation(right
, trans
->transid
);
4316 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4317 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4318 btrfs_set_header_level(right
, 0);
4319 write_extent_buffer_fsid(right
, fs_info
->fsid
);
4320 write_extent_buffer_chunk_tree_uuid(right
, fs_info
->chunk_tree_uuid
);
4324 btrfs_set_header_nritems(right
, 0);
4325 insert_ptr(trans
, fs_info
, path
, &disk_key
,
4326 right
->start
, path
->slots
[1] + 1, 1);
4327 btrfs_tree_unlock(path
->nodes
[0]);
4328 free_extent_buffer(path
->nodes
[0]);
4329 path
->nodes
[0] = right
;
4331 path
->slots
[1] += 1;
4333 btrfs_set_header_nritems(right
, 0);
4334 insert_ptr(trans
, fs_info
, path
, &disk_key
,
4335 right
->start
, path
->slots
[1], 1);
4336 btrfs_tree_unlock(path
->nodes
[0]);
4337 free_extent_buffer(path
->nodes
[0]);
4338 path
->nodes
[0] = right
;
4340 if (path
->slots
[1] == 0)
4341 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4344 * We create a new leaf 'right' for the required ins_len and
4345 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4346 * the content of ins_len to 'right'.
4351 copy_for_split(trans
, fs_info
, path
, l
, right
, slot
, mid
, nritems
);
4354 BUG_ON(num_doubles
!= 0);
4362 push_for_double_split(trans
, root
, path
, data_size
);
4363 tried_avoid_double
= 1;
4364 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= data_size
)
4369 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4370 struct btrfs_root
*root
,
4371 struct btrfs_path
*path
, int ins_len
)
4373 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4374 struct btrfs_key key
;
4375 struct extent_buffer
*leaf
;
4376 struct btrfs_file_extent_item
*fi
;
4381 leaf
= path
->nodes
[0];
4382 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4384 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4385 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4387 if (btrfs_leaf_free_space(fs_info
, leaf
) >= ins_len
)
4390 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4391 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4392 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4393 struct btrfs_file_extent_item
);
4394 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4396 btrfs_release_path(path
);
4398 path
->keep_locks
= 1;
4399 path
->search_for_split
= 1;
4400 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4401 path
->search_for_split
= 0;
4408 leaf
= path
->nodes
[0];
4409 /* if our item isn't there, return now */
4410 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4413 /* the leaf has changed, it now has room. return now */
4414 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= ins_len
)
4417 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4418 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4419 struct btrfs_file_extent_item
);
4420 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4424 btrfs_set_path_blocking(path
);
4425 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4429 path
->keep_locks
= 0;
4430 btrfs_unlock_up_safe(path
, 1);
4433 path
->keep_locks
= 0;
4437 static noinline
int split_item(struct btrfs_fs_info
*fs_info
,
4438 struct btrfs_path
*path
,
4439 const struct btrfs_key
*new_key
,
4440 unsigned long split_offset
)
4442 struct extent_buffer
*leaf
;
4443 struct btrfs_item
*item
;
4444 struct btrfs_item
*new_item
;
4450 struct btrfs_disk_key disk_key
;
4452 leaf
= path
->nodes
[0];
4453 BUG_ON(btrfs_leaf_free_space(fs_info
, leaf
) < sizeof(struct btrfs_item
));
4455 btrfs_set_path_blocking(path
);
4457 item
= btrfs_item_nr(path
->slots
[0]);
4458 orig_offset
= btrfs_item_offset(leaf
, item
);
4459 item_size
= btrfs_item_size(leaf
, item
);
4461 buf
= kmalloc(item_size
, GFP_NOFS
);
4465 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4466 path
->slots
[0]), item_size
);
4468 slot
= path
->slots
[0] + 1;
4469 nritems
= btrfs_header_nritems(leaf
);
4470 if (slot
!= nritems
) {
4471 /* shift the items */
4472 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4473 btrfs_item_nr_offset(slot
),
4474 (nritems
- slot
) * sizeof(struct btrfs_item
));
4477 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4478 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4480 new_item
= btrfs_item_nr(slot
);
4482 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4483 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4485 btrfs_set_item_offset(leaf
, item
,
4486 orig_offset
+ item_size
- split_offset
);
4487 btrfs_set_item_size(leaf
, item
, split_offset
);
4489 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4491 /* write the data for the start of the original item */
4492 write_extent_buffer(leaf
, buf
,
4493 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4496 /* write the data for the new item */
4497 write_extent_buffer(leaf
, buf
+ split_offset
,
4498 btrfs_item_ptr_offset(leaf
, slot
),
4499 item_size
- split_offset
);
4500 btrfs_mark_buffer_dirty(leaf
);
4502 BUG_ON(btrfs_leaf_free_space(fs_info
, leaf
) < 0);
4508 * This function splits a single item into two items,
4509 * giving 'new_key' to the new item and splitting the
4510 * old one at split_offset (from the start of the item).
4512 * The path may be released by this operation. After
4513 * the split, the path is pointing to the old item. The
4514 * new item is going to be in the same node as the old one.
4516 * Note, the item being split must be smaller enough to live alone on
4517 * a tree block with room for one extra struct btrfs_item
4519 * This allows us to split the item in place, keeping a lock on the
4520 * leaf the entire time.
4522 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4523 struct btrfs_root
*root
,
4524 struct btrfs_path
*path
,
4525 const struct btrfs_key
*new_key
,
4526 unsigned long split_offset
)
4529 ret
= setup_leaf_for_split(trans
, root
, path
,
4530 sizeof(struct btrfs_item
));
4534 ret
= split_item(root
->fs_info
, path
, new_key
, split_offset
);
4539 * This function duplicate a item, giving 'new_key' to the new item.
4540 * It guarantees both items live in the same tree leaf and the new item
4541 * is contiguous with the original item.
4543 * This allows us to split file extent in place, keeping a lock on the
4544 * leaf the entire time.
4546 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4547 struct btrfs_root
*root
,
4548 struct btrfs_path
*path
,
4549 const struct btrfs_key
*new_key
)
4551 struct extent_buffer
*leaf
;
4555 leaf
= path
->nodes
[0];
4556 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4557 ret
= setup_leaf_for_split(trans
, root
, path
,
4558 item_size
+ sizeof(struct btrfs_item
));
4563 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4564 item_size
, item_size
+
4565 sizeof(struct btrfs_item
), 1);
4566 leaf
= path
->nodes
[0];
4567 memcpy_extent_buffer(leaf
,
4568 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4569 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4575 * make the item pointed to by the path smaller. new_size indicates
4576 * how small to make it, and from_end tells us if we just chop bytes
4577 * off the end of the item or if we shift the item to chop bytes off
4580 void btrfs_truncate_item(struct btrfs_fs_info
*fs_info
,
4581 struct btrfs_path
*path
, u32 new_size
, int from_end
)
4584 struct extent_buffer
*leaf
;
4585 struct btrfs_item
*item
;
4587 unsigned int data_end
;
4588 unsigned int old_data_start
;
4589 unsigned int old_size
;
4590 unsigned int size_diff
;
4592 struct btrfs_map_token token
;
4594 btrfs_init_map_token(&token
);
4596 leaf
= path
->nodes
[0];
4597 slot
= path
->slots
[0];
4599 old_size
= btrfs_item_size_nr(leaf
, slot
);
4600 if (old_size
== new_size
)
4603 nritems
= btrfs_header_nritems(leaf
);
4604 data_end
= leaf_data_end(fs_info
, leaf
);
4606 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4608 size_diff
= old_size
- new_size
;
4611 BUG_ON(slot
>= nritems
);
4614 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4616 /* first correct the data pointers */
4617 for (i
= slot
; i
< nritems
; i
++) {
4619 item
= btrfs_item_nr(i
);
4621 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4622 btrfs_set_token_item_offset(leaf
, item
,
4623 ioff
+ size_diff
, &token
);
4626 /* shift the data */
4628 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4629 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4630 data_end
, old_data_start
+ new_size
- data_end
);
4632 struct btrfs_disk_key disk_key
;
4635 btrfs_item_key(leaf
, &disk_key
, slot
);
4637 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4639 struct btrfs_file_extent_item
*fi
;
4641 fi
= btrfs_item_ptr(leaf
, slot
,
4642 struct btrfs_file_extent_item
);
4643 fi
= (struct btrfs_file_extent_item
*)(
4644 (unsigned long)fi
- size_diff
);
4646 if (btrfs_file_extent_type(leaf
, fi
) ==
4647 BTRFS_FILE_EXTENT_INLINE
) {
4648 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4649 memmove_extent_buffer(leaf
, ptr
,
4651 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4655 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4656 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4657 data_end
, old_data_start
- data_end
);
4659 offset
= btrfs_disk_key_offset(&disk_key
);
4660 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4661 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4663 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4666 item
= btrfs_item_nr(slot
);
4667 btrfs_set_item_size(leaf
, item
, new_size
);
4668 btrfs_mark_buffer_dirty(leaf
);
4670 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4671 btrfs_print_leaf(leaf
);
4677 * make the item pointed to by the path bigger, data_size is the added size.
4679 void btrfs_extend_item(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
4683 struct extent_buffer
*leaf
;
4684 struct btrfs_item
*item
;
4686 unsigned int data_end
;
4687 unsigned int old_data
;
4688 unsigned int old_size
;
4690 struct btrfs_map_token token
;
4692 btrfs_init_map_token(&token
);
4694 leaf
= path
->nodes
[0];
4696 nritems
= btrfs_header_nritems(leaf
);
4697 data_end
= leaf_data_end(fs_info
, leaf
);
4699 if (btrfs_leaf_free_space(fs_info
, leaf
) < data_size
) {
4700 btrfs_print_leaf(leaf
);
4703 slot
= path
->slots
[0];
4704 old_data
= btrfs_item_end_nr(leaf
, slot
);
4707 if (slot
>= nritems
) {
4708 btrfs_print_leaf(leaf
);
4709 btrfs_crit(fs_info
, "slot %d too large, nritems %d",
4715 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4717 /* first correct the data pointers */
4718 for (i
= slot
; i
< nritems
; i
++) {
4720 item
= btrfs_item_nr(i
);
4722 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4723 btrfs_set_token_item_offset(leaf
, item
,
4724 ioff
- data_size
, &token
);
4727 /* shift the data */
4728 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4729 data_end
- data_size
, BTRFS_LEAF_DATA_OFFSET
+
4730 data_end
, old_data
- data_end
);
4732 data_end
= old_data
;
4733 old_size
= btrfs_item_size_nr(leaf
, slot
);
4734 item
= btrfs_item_nr(slot
);
4735 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4736 btrfs_mark_buffer_dirty(leaf
);
4738 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4739 btrfs_print_leaf(leaf
);
4745 * this is a helper for btrfs_insert_empty_items, the main goal here is
4746 * to save stack depth by doing the bulk of the work in a function
4747 * that doesn't call btrfs_search_slot
4749 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4750 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4751 u32 total_data
, u32 total_size
, int nr
)
4753 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4754 struct btrfs_item
*item
;
4757 unsigned int data_end
;
4758 struct btrfs_disk_key disk_key
;
4759 struct extent_buffer
*leaf
;
4761 struct btrfs_map_token token
;
4763 if (path
->slots
[0] == 0) {
4764 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4765 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4767 btrfs_unlock_up_safe(path
, 1);
4769 btrfs_init_map_token(&token
);
4771 leaf
= path
->nodes
[0];
4772 slot
= path
->slots
[0];
4774 nritems
= btrfs_header_nritems(leaf
);
4775 data_end
= leaf_data_end(fs_info
, leaf
);
4777 if (btrfs_leaf_free_space(fs_info
, leaf
) < total_size
) {
4778 btrfs_print_leaf(leaf
);
4779 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4780 total_size
, btrfs_leaf_free_space(fs_info
, leaf
));
4784 if (slot
!= nritems
) {
4785 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4787 if (old_data
< data_end
) {
4788 btrfs_print_leaf(leaf
);
4789 btrfs_crit(fs_info
, "slot %d old_data %d data_end %d",
4790 slot
, old_data
, data_end
);
4794 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4796 /* first correct the data pointers */
4797 for (i
= slot
; i
< nritems
; i
++) {
4800 item
= btrfs_item_nr(i
);
4801 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4802 btrfs_set_token_item_offset(leaf
, item
,
4803 ioff
- total_data
, &token
);
4805 /* shift the items */
4806 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4807 btrfs_item_nr_offset(slot
),
4808 (nritems
- slot
) * sizeof(struct btrfs_item
));
4810 /* shift the data */
4811 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4812 data_end
- total_data
, BTRFS_LEAF_DATA_OFFSET
+
4813 data_end
, old_data
- data_end
);
4814 data_end
= old_data
;
4817 /* setup the item for the new data */
4818 for (i
= 0; i
< nr
; i
++) {
4819 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4820 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4821 item
= btrfs_item_nr(slot
+ i
);
4822 btrfs_set_token_item_offset(leaf
, item
,
4823 data_end
- data_size
[i
], &token
);
4824 data_end
-= data_size
[i
];
4825 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4828 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4829 btrfs_mark_buffer_dirty(leaf
);
4831 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4832 btrfs_print_leaf(leaf
);
4838 * Given a key and some data, insert items into the tree.
4839 * This does all the path init required, making room in the tree if needed.
4841 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4842 struct btrfs_root
*root
,
4843 struct btrfs_path
*path
,
4844 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4853 for (i
= 0; i
< nr
; i
++)
4854 total_data
+= data_size
[i
];
4856 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4857 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4863 slot
= path
->slots
[0];
4866 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4867 total_data
, total_size
, nr
);
4872 * Given a key and some data, insert an item into the tree.
4873 * This does all the path init required, making room in the tree if needed.
4875 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4876 const struct btrfs_key
*cpu_key
, void *data
,
4880 struct btrfs_path
*path
;
4881 struct extent_buffer
*leaf
;
4884 path
= btrfs_alloc_path();
4887 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4889 leaf
= path
->nodes
[0];
4890 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4891 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4892 btrfs_mark_buffer_dirty(leaf
);
4894 btrfs_free_path(path
);
4899 * delete the pointer from a given node.
4901 * the tree should have been previously balanced so the deletion does not
4904 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4905 int level
, int slot
)
4907 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4908 struct extent_buffer
*parent
= path
->nodes
[level
];
4912 nritems
= btrfs_header_nritems(parent
);
4913 if (slot
!= nritems
- 1) {
4915 tree_mod_log_eb_move(fs_info
, parent
, slot
,
4916 slot
+ 1, nritems
- slot
- 1);
4917 memmove_extent_buffer(parent
,
4918 btrfs_node_key_ptr_offset(slot
),
4919 btrfs_node_key_ptr_offset(slot
+ 1),
4920 sizeof(struct btrfs_key_ptr
) *
4921 (nritems
- slot
- 1));
4923 ret
= tree_mod_log_insert_key(fs_info
, parent
, slot
,
4924 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
4929 btrfs_set_header_nritems(parent
, nritems
);
4930 if (nritems
== 0 && parent
== root
->node
) {
4931 BUG_ON(btrfs_header_level(root
->node
) != 1);
4932 /* just turn the root into a leaf and break */
4933 btrfs_set_header_level(root
->node
, 0);
4934 } else if (slot
== 0) {
4935 struct btrfs_disk_key disk_key
;
4937 btrfs_node_key(parent
, &disk_key
, 0);
4938 fixup_low_keys(fs_info
, path
, &disk_key
, level
+ 1);
4940 btrfs_mark_buffer_dirty(parent
);
4944 * a helper function to delete the leaf pointed to by path->slots[1] and
4947 * This deletes the pointer in path->nodes[1] and frees the leaf
4948 * block extent. zero is returned if it all worked out, < 0 otherwise.
4950 * The path must have already been setup for deleting the leaf, including
4951 * all the proper balancing. path->nodes[1] must be locked.
4953 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4954 struct btrfs_root
*root
,
4955 struct btrfs_path
*path
,
4956 struct extent_buffer
*leaf
)
4958 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4959 del_ptr(root
, path
, 1, path
->slots
[1]);
4962 * btrfs_free_extent is expensive, we want to make sure we
4963 * aren't holding any locks when we call it
4965 btrfs_unlock_up_safe(path
, 0);
4967 root_sub_used(root
, leaf
->len
);
4969 extent_buffer_get(leaf
);
4970 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4971 free_extent_buffer_stale(leaf
);
4974 * delete the item at the leaf level in path. If that empties
4975 * the leaf, remove it from the tree
4977 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4978 struct btrfs_path
*path
, int slot
, int nr
)
4980 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4981 struct extent_buffer
*leaf
;
4982 struct btrfs_item
*item
;
4989 struct btrfs_map_token token
;
4991 btrfs_init_map_token(&token
);
4993 leaf
= path
->nodes
[0];
4994 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4996 for (i
= 0; i
< nr
; i
++)
4997 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4999 nritems
= btrfs_header_nritems(leaf
);
5001 if (slot
+ nr
!= nritems
) {
5002 int data_end
= leaf_data_end(fs_info
, leaf
);
5004 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
5006 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
5007 last_off
- data_end
);
5009 for (i
= slot
+ nr
; i
< nritems
; i
++) {
5012 item
= btrfs_item_nr(i
);
5013 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
5014 btrfs_set_token_item_offset(leaf
, item
,
5015 ioff
+ dsize
, &token
);
5018 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
5019 btrfs_item_nr_offset(slot
+ nr
),
5020 sizeof(struct btrfs_item
) *
5021 (nritems
- slot
- nr
));
5023 btrfs_set_header_nritems(leaf
, nritems
- nr
);
5026 /* delete the leaf if we've emptied it */
5028 if (leaf
== root
->node
) {
5029 btrfs_set_header_level(leaf
, 0);
5031 btrfs_set_path_blocking(path
);
5032 clean_tree_block(fs_info
, leaf
);
5033 btrfs_del_leaf(trans
, root
, path
, leaf
);
5036 int used
= leaf_space_used(leaf
, 0, nritems
);
5038 struct btrfs_disk_key disk_key
;
5040 btrfs_item_key(leaf
, &disk_key
, 0);
5041 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
5044 /* delete the leaf if it is mostly empty */
5045 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
5046 /* push_leaf_left fixes the path.
5047 * make sure the path still points to our leaf
5048 * for possible call to del_ptr below
5050 slot
= path
->slots
[1];
5051 extent_buffer_get(leaf
);
5053 btrfs_set_path_blocking(path
);
5054 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5056 if (wret
< 0 && wret
!= -ENOSPC
)
5059 if (path
->nodes
[0] == leaf
&&
5060 btrfs_header_nritems(leaf
)) {
5061 wret
= push_leaf_right(trans
, root
, path
, 1,
5063 if (wret
< 0 && wret
!= -ENOSPC
)
5067 if (btrfs_header_nritems(leaf
) == 0) {
5068 path
->slots
[1] = slot
;
5069 btrfs_del_leaf(trans
, root
, path
, leaf
);
5070 free_extent_buffer(leaf
);
5073 /* if we're still in the path, make sure
5074 * we're dirty. Otherwise, one of the
5075 * push_leaf functions must have already
5076 * dirtied this buffer
5078 if (path
->nodes
[0] == leaf
)
5079 btrfs_mark_buffer_dirty(leaf
);
5080 free_extent_buffer(leaf
);
5083 btrfs_mark_buffer_dirty(leaf
);
5090 * search the tree again to find a leaf with lesser keys
5091 * returns 0 if it found something or 1 if there are no lesser leaves.
5092 * returns < 0 on io errors.
5094 * This may release the path, and so you may lose any locks held at the
5097 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5099 struct btrfs_key key
;
5100 struct btrfs_disk_key found_key
;
5103 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5105 if (key
.offset
> 0) {
5107 } else if (key
.type
> 0) {
5109 key
.offset
= (u64
)-1;
5110 } else if (key
.objectid
> 0) {
5113 key
.offset
= (u64
)-1;
5118 btrfs_release_path(path
);
5119 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5122 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5123 ret
= comp_keys(&found_key
, &key
);
5125 * We might have had an item with the previous key in the tree right
5126 * before we released our path. And after we released our path, that
5127 * item might have been pushed to the first slot (0) of the leaf we
5128 * were holding due to a tree balance. Alternatively, an item with the
5129 * previous key can exist as the only element of a leaf (big fat item).
5130 * Therefore account for these 2 cases, so that our callers (like
5131 * btrfs_previous_item) don't miss an existing item with a key matching
5132 * the previous key we computed above.
5140 * A helper function to walk down the tree starting at min_key, and looking
5141 * for nodes or leaves that are have a minimum transaction id.
5142 * This is used by the btree defrag code, and tree logging
5144 * This does not cow, but it does stuff the starting key it finds back
5145 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5146 * key and get a writable path.
5148 * This does lock as it descends, and path->keep_locks should be set
5149 * to 1 by the caller.
5151 * This honors path->lowest_level to prevent descent past a given level
5154 * min_trans indicates the oldest transaction that you are interested
5155 * in walking through. Any nodes or leaves older than min_trans are
5156 * skipped over (without reading them).
5158 * returns zero if something useful was found, < 0 on error and 1 if there
5159 * was nothing in the tree that matched the search criteria.
5161 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5162 struct btrfs_path
*path
,
5165 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5166 struct extent_buffer
*cur
;
5167 struct btrfs_key found_key
;
5173 int keep_locks
= path
->keep_locks
;
5175 path
->keep_locks
= 1;
5177 cur
= btrfs_read_lock_root_node(root
);
5178 level
= btrfs_header_level(cur
);
5179 WARN_ON(path
->nodes
[level
]);
5180 path
->nodes
[level
] = cur
;
5181 path
->locks
[level
] = BTRFS_READ_LOCK
;
5183 if (btrfs_header_generation(cur
) < min_trans
) {
5188 nritems
= btrfs_header_nritems(cur
);
5189 level
= btrfs_header_level(cur
);
5190 sret
= btrfs_bin_search(cur
, min_key
, level
, &slot
);
5192 /* at the lowest level, we're done, setup the path and exit */
5193 if (level
== path
->lowest_level
) {
5194 if (slot
>= nritems
)
5197 path
->slots
[level
] = slot
;
5198 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5201 if (sret
&& slot
> 0)
5204 * check this node pointer against the min_trans parameters.
5205 * If it is too old, old, skip to the next one.
5207 while (slot
< nritems
) {
5210 gen
= btrfs_node_ptr_generation(cur
, slot
);
5211 if (gen
< min_trans
) {
5219 * we didn't find a candidate key in this node, walk forward
5220 * and find another one
5222 if (slot
>= nritems
) {
5223 path
->slots
[level
] = slot
;
5224 btrfs_set_path_blocking(path
);
5225 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5228 btrfs_release_path(path
);
5234 /* save our key for returning back */
5235 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5236 path
->slots
[level
] = slot
;
5237 if (level
== path
->lowest_level
) {
5241 btrfs_set_path_blocking(path
);
5242 cur
= read_node_slot(fs_info
, cur
, slot
);
5248 btrfs_tree_read_lock(cur
);
5250 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5251 path
->nodes
[level
- 1] = cur
;
5252 unlock_up(path
, level
, 1, 0, NULL
);
5253 btrfs_clear_path_blocking(path
, NULL
, 0);
5256 path
->keep_locks
= keep_locks
;
5258 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5259 btrfs_set_path_blocking(path
);
5260 memcpy(min_key
, &found_key
, sizeof(found_key
));
5265 static int tree_move_down(struct btrfs_fs_info
*fs_info
,
5266 struct btrfs_path
*path
,
5269 struct extent_buffer
*eb
;
5271 BUG_ON(*level
== 0);
5272 eb
= read_node_slot(fs_info
, path
->nodes
[*level
], path
->slots
[*level
]);
5276 path
->nodes
[*level
- 1] = eb
;
5277 path
->slots
[*level
- 1] = 0;
5282 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
5283 int *level
, int root_level
)
5287 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5289 path
->slots
[*level
]++;
5291 while (path
->slots
[*level
] >= nritems
) {
5292 if (*level
== root_level
)
5296 path
->slots
[*level
] = 0;
5297 free_extent_buffer(path
->nodes
[*level
]);
5298 path
->nodes
[*level
] = NULL
;
5300 path
->slots
[*level
]++;
5302 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5309 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5312 static int tree_advance(struct btrfs_fs_info
*fs_info
,
5313 struct btrfs_path
*path
,
5314 int *level
, int root_level
,
5316 struct btrfs_key
*key
)
5320 if (*level
== 0 || !allow_down
) {
5321 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
5323 ret
= tree_move_down(fs_info
, path
, level
);
5327 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5328 path
->slots
[*level
]);
5330 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5331 path
->slots
[*level
]);
5336 static int tree_compare_item(struct btrfs_path
*left_path
,
5337 struct btrfs_path
*right_path
,
5342 unsigned long off1
, off2
;
5344 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5345 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5349 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5350 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5351 right_path
->slots
[0]);
5353 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5355 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5362 #define ADVANCE_ONLY_NEXT -1
5365 * This function compares two trees and calls the provided callback for
5366 * every changed/new/deleted item it finds.
5367 * If shared tree blocks are encountered, whole subtrees are skipped, making
5368 * the compare pretty fast on snapshotted subvolumes.
5370 * This currently works on commit roots only. As commit roots are read only,
5371 * we don't do any locking. The commit roots are protected with transactions.
5372 * Transactions are ended and rejoined when a commit is tried in between.
5374 * This function checks for modifications done to the trees while comparing.
5375 * If it detects a change, it aborts immediately.
5377 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5378 struct btrfs_root
*right_root
,
5379 btrfs_changed_cb_t changed_cb
, void *ctx
)
5381 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
5384 struct btrfs_path
*left_path
= NULL
;
5385 struct btrfs_path
*right_path
= NULL
;
5386 struct btrfs_key left_key
;
5387 struct btrfs_key right_key
;
5388 char *tmp_buf
= NULL
;
5389 int left_root_level
;
5390 int right_root_level
;
5393 int left_end_reached
;
5394 int right_end_reached
;
5402 left_path
= btrfs_alloc_path();
5407 right_path
= btrfs_alloc_path();
5413 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
5419 left_path
->search_commit_root
= 1;
5420 left_path
->skip_locking
= 1;
5421 right_path
->search_commit_root
= 1;
5422 right_path
->skip_locking
= 1;
5425 * Strategy: Go to the first items of both trees. Then do
5427 * If both trees are at level 0
5428 * Compare keys of current items
5429 * If left < right treat left item as new, advance left tree
5431 * If left > right treat right item as deleted, advance right tree
5433 * If left == right do deep compare of items, treat as changed if
5434 * needed, advance both trees and repeat
5435 * If both trees are at the same level but not at level 0
5436 * Compare keys of current nodes/leafs
5437 * If left < right advance left tree and repeat
5438 * If left > right advance right tree and repeat
5439 * If left == right compare blockptrs of the next nodes/leafs
5440 * If they match advance both trees but stay at the same level
5442 * If they don't match advance both trees while allowing to go
5444 * If tree levels are different
5445 * Advance the tree that needs it and repeat
5447 * Advancing a tree means:
5448 * If we are at level 0, try to go to the next slot. If that's not
5449 * possible, go one level up and repeat. Stop when we found a level
5450 * where we could go to the next slot. We may at this point be on a
5453 * If we are not at level 0 and not on shared tree blocks, go one
5456 * If we are not at level 0 and on shared tree blocks, go one slot to
5457 * the right if possible or go up and right.
5460 down_read(&fs_info
->commit_root_sem
);
5461 left_level
= btrfs_header_level(left_root
->commit_root
);
5462 left_root_level
= left_level
;
5463 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5464 extent_buffer_get(left_path
->nodes
[left_level
]);
5466 right_level
= btrfs_header_level(right_root
->commit_root
);
5467 right_root_level
= right_level
;
5468 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5469 extent_buffer_get(right_path
->nodes
[right_level
]);
5470 up_read(&fs_info
->commit_root_sem
);
5472 if (left_level
== 0)
5473 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5474 &left_key
, left_path
->slots
[left_level
]);
5476 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5477 &left_key
, left_path
->slots
[left_level
]);
5478 if (right_level
== 0)
5479 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5480 &right_key
, right_path
->slots
[right_level
]);
5482 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5483 &right_key
, right_path
->slots
[right_level
]);
5485 left_end_reached
= right_end_reached
= 0;
5486 advance_left
= advance_right
= 0;
5489 if (advance_left
&& !left_end_reached
) {
5490 ret
= tree_advance(fs_info
, left_path
, &left_level
,
5492 advance_left
!= ADVANCE_ONLY_NEXT
,
5495 left_end_reached
= ADVANCE
;
5500 if (advance_right
&& !right_end_reached
) {
5501 ret
= tree_advance(fs_info
, right_path
, &right_level
,
5503 advance_right
!= ADVANCE_ONLY_NEXT
,
5506 right_end_reached
= ADVANCE
;
5512 if (left_end_reached
&& right_end_reached
) {
5515 } else if (left_end_reached
) {
5516 if (right_level
== 0) {
5517 ret
= changed_cb(left_path
, right_path
,
5519 BTRFS_COMPARE_TREE_DELETED
,
5524 advance_right
= ADVANCE
;
5526 } else if (right_end_reached
) {
5527 if (left_level
== 0) {
5528 ret
= changed_cb(left_path
, right_path
,
5530 BTRFS_COMPARE_TREE_NEW
,
5535 advance_left
= ADVANCE
;
5539 if (left_level
== 0 && right_level
== 0) {
5540 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5542 ret
= changed_cb(left_path
, right_path
,
5544 BTRFS_COMPARE_TREE_NEW
,
5548 advance_left
= ADVANCE
;
5549 } else if (cmp
> 0) {
5550 ret
= changed_cb(left_path
, right_path
,
5552 BTRFS_COMPARE_TREE_DELETED
,
5556 advance_right
= ADVANCE
;
5558 enum btrfs_compare_tree_result result
;
5560 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5561 ret
= tree_compare_item(left_path
, right_path
,
5564 result
= BTRFS_COMPARE_TREE_CHANGED
;
5566 result
= BTRFS_COMPARE_TREE_SAME
;
5567 ret
= changed_cb(left_path
, right_path
,
5568 &left_key
, result
, ctx
);
5571 advance_left
= ADVANCE
;
5572 advance_right
= ADVANCE
;
5574 } else if (left_level
== right_level
) {
5575 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5577 advance_left
= ADVANCE
;
5578 } else if (cmp
> 0) {
5579 advance_right
= ADVANCE
;
5581 left_blockptr
= btrfs_node_blockptr(
5582 left_path
->nodes
[left_level
],
5583 left_path
->slots
[left_level
]);
5584 right_blockptr
= btrfs_node_blockptr(
5585 right_path
->nodes
[right_level
],
5586 right_path
->slots
[right_level
]);
5587 left_gen
= btrfs_node_ptr_generation(
5588 left_path
->nodes
[left_level
],
5589 left_path
->slots
[left_level
]);
5590 right_gen
= btrfs_node_ptr_generation(
5591 right_path
->nodes
[right_level
],
5592 right_path
->slots
[right_level
]);
5593 if (left_blockptr
== right_blockptr
&&
5594 left_gen
== right_gen
) {
5596 * As we're on a shared block, don't
5597 * allow to go deeper.
5599 advance_left
= ADVANCE_ONLY_NEXT
;
5600 advance_right
= ADVANCE_ONLY_NEXT
;
5602 advance_left
= ADVANCE
;
5603 advance_right
= ADVANCE
;
5606 } else if (left_level
< right_level
) {
5607 advance_right
= ADVANCE
;
5609 advance_left
= ADVANCE
;
5614 btrfs_free_path(left_path
);
5615 btrfs_free_path(right_path
);
5621 * this is similar to btrfs_next_leaf, but does not try to preserve
5622 * and fixup the path. It looks for and returns the next key in the
5623 * tree based on the current path and the min_trans parameters.
5625 * 0 is returned if another key is found, < 0 if there are any errors
5626 * and 1 is returned if there are no higher keys in the tree
5628 * path->keep_locks should be set to 1 on the search made before
5629 * calling this function.
5631 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5632 struct btrfs_key
*key
, int level
, u64 min_trans
)
5635 struct extent_buffer
*c
;
5637 WARN_ON(!path
->keep_locks
);
5638 while (level
< BTRFS_MAX_LEVEL
) {
5639 if (!path
->nodes
[level
])
5642 slot
= path
->slots
[level
] + 1;
5643 c
= path
->nodes
[level
];
5645 if (slot
>= btrfs_header_nritems(c
)) {
5648 struct btrfs_key cur_key
;
5649 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5650 !path
->nodes
[level
+ 1])
5653 if (path
->locks
[level
+ 1]) {
5658 slot
= btrfs_header_nritems(c
) - 1;
5660 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5662 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5664 orig_lowest
= path
->lowest_level
;
5665 btrfs_release_path(path
);
5666 path
->lowest_level
= level
;
5667 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5669 path
->lowest_level
= orig_lowest
;
5673 c
= path
->nodes
[level
];
5674 slot
= path
->slots
[level
];
5681 btrfs_item_key_to_cpu(c
, key
, slot
);
5683 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5685 if (gen
< min_trans
) {
5689 btrfs_node_key_to_cpu(c
, key
, slot
);
5697 * search the tree again to find a leaf with greater keys
5698 * returns 0 if it found something or 1 if there are no greater leaves.
5699 * returns < 0 on io errors.
5701 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5703 return btrfs_next_old_leaf(root
, path
, 0);
5706 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5711 struct extent_buffer
*c
;
5712 struct extent_buffer
*next
;
5713 struct btrfs_key key
;
5716 int old_spinning
= path
->leave_spinning
;
5717 int next_rw_lock
= 0;
5719 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5723 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5728 btrfs_release_path(path
);
5730 path
->keep_locks
= 1;
5731 path
->leave_spinning
= 1;
5734 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5736 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5737 path
->keep_locks
= 0;
5742 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5744 * by releasing the path above we dropped all our locks. A balance
5745 * could have added more items next to the key that used to be
5746 * at the very end of the block. So, check again here and
5747 * advance the path if there are now more items available.
5749 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5756 * So the above check misses one case:
5757 * - after releasing the path above, someone has removed the item that
5758 * used to be at the very end of the block, and balance between leafs
5759 * gets another one with bigger key.offset to replace it.
5761 * This one should be returned as well, or we can get leaf corruption
5762 * later(esp. in __btrfs_drop_extents()).
5764 * And a bit more explanation about this check,
5765 * with ret > 0, the key isn't found, the path points to the slot
5766 * where it should be inserted, so the path->slots[0] item must be the
5769 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5774 while (level
< BTRFS_MAX_LEVEL
) {
5775 if (!path
->nodes
[level
]) {
5780 slot
= path
->slots
[level
] + 1;
5781 c
= path
->nodes
[level
];
5782 if (slot
>= btrfs_header_nritems(c
)) {
5784 if (level
== BTRFS_MAX_LEVEL
) {
5792 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5793 free_extent_buffer(next
);
5797 next_rw_lock
= path
->locks
[level
];
5798 ret
= read_block_for_search(root
, path
, &next
, level
,
5804 btrfs_release_path(path
);
5808 if (!path
->skip_locking
) {
5809 ret
= btrfs_try_tree_read_lock(next
);
5810 if (!ret
&& time_seq
) {
5812 * If we don't get the lock, we may be racing
5813 * with push_leaf_left, holding that lock while
5814 * itself waiting for the leaf we've currently
5815 * locked. To solve this situation, we give up
5816 * on our lock and cycle.
5818 free_extent_buffer(next
);
5819 btrfs_release_path(path
);
5824 btrfs_set_path_blocking(path
);
5825 btrfs_tree_read_lock(next
);
5826 btrfs_clear_path_blocking(path
, next
,
5829 next_rw_lock
= BTRFS_READ_LOCK
;
5833 path
->slots
[level
] = slot
;
5836 c
= path
->nodes
[level
];
5837 if (path
->locks
[level
])
5838 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5840 free_extent_buffer(c
);
5841 path
->nodes
[level
] = next
;
5842 path
->slots
[level
] = 0;
5843 if (!path
->skip_locking
)
5844 path
->locks
[level
] = next_rw_lock
;
5848 ret
= read_block_for_search(root
, path
, &next
, level
,
5854 btrfs_release_path(path
);
5858 if (!path
->skip_locking
) {
5859 ret
= btrfs_try_tree_read_lock(next
);
5861 btrfs_set_path_blocking(path
);
5862 btrfs_tree_read_lock(next
);
5863 btrfs_clear_path_blocking(path
, next
,
5866 next_rw_lock
= BTRFS_READ_LOCK
;
5871 unlock_up(path
, 0, 1, 0, NULL
);
5872 path
->leave_spinning
= old_spinning
;
5874 btrfs_set_path_blocking(path
);
5880 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5881 * searching until it gets past min_objectid or finds an item of 'type'
5883 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5885 int btrfs_previous_item(struct btrfs_root
*root
,
5886 struct btrfs_path
*path
, u64 min_objectid
,
5889 struct btrfs_key found_key
;
5890 struct extent_buffer
*leaf
;
5895 if (path
->slots
[0] == 0) {
5896 btrfs_set_path_blocking(path
);
5897 ret
= btrfs_prev_leaf(root
, path
);
5903 leaf
= path
->nodes
[0];
5904 nritems
= btrfs_header_nritems(leaf
);
5907 if (path
->slots
[0] == nritems
)
5910 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5911 if (found_key
.objectid
< min_objectid
)
5913 if (found_key
.type
== type
)
5915 if (found_key
.objectid
== min_objectid
&&
5916 found_key
.type
< type
)
5923 * search in extent tree to find a previous Metadata/Data extent item with
5926 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5928 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5929 struct btrfs_path
*path
, u64 min_objectid
)
5931 struct btrfs_key found_key
;
5932 struct extent_buffer
*leaf
;
5937 if (path
->slots
[0] == 0) {
5938 btrfs_set_path_blocking(path
);
5939 ret
= btrfs_prev_leaf(root
, path
);
5945 leaf
= path
->nodes
[0];
5946 nritems
= btrfs_header_nritems(leaf
);
5949 if (path
->slots
[0] == nritems
)
5952 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5953 if (found_key
.objectid
< min_objectid
)
5955 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5956 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5958 if (found_key
.objectid
== min_objectid
&&
5959 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)