2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
57 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
58 struct ubifs_data_node
*dn
)
60 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
61 int err
, len
, out_len
;
65 data_key_init(c
, &key
, inode
->i_ino
, block
);
66 err
= ubifs_tnc_lookup(c
, &key
, dn
);
69 /* Not found, so it must be a hole */
70 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
74 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
75 ubifs_inode(inode
)->creat_sqnum
);
76 len
= le32_to_cpu(dn
->size
);
77 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
80 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
82 if (ubifs_crypt_is_encrypted(inode
)) {
83 err
= ubifs_decrypt(inode
, dn
, &dlen
, block
);
88 out_len
= UBIFS_BLOCK_SIZE
;
89 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
90 le16_to_cpu(dn
->compr_type
));
91 if (err
|| len
!= out_len
)
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
99 if (len
< UBIFS_BLOCK_SIZE
)
100 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
105 ubifs_err(c
, "bad data node (block %u, inode %lu)",
106 block
, inode
->i_ino
);
107 ubifs_dump_node(c
, dn
);
111 static int do_readpage(struct page
*page
)
115 unsigned int block
, beyond
;
116 struct ubifs_data_node
*dn
;
117 struct inode
*inode
= page
->mapping
->host
;
118 loff_t i_size
= i_size_read(inode
);
120 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
121 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
122 ubifs_assert(!PageChecked(page
));
123 ubifs_assert(!PagePrivate(page
));
127 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
128 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
129 if (block
>= beyond
) {
130 /* Reading beyond inode */
131 SetPageChecked(page
);
132 memset(addr
, 0, PAGE_SIZE
);
136 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
146 if (block
>= beyond
) {
147 /* Reading beyond inode */
149 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
151 ret
= read_block(inode
, addr
, block
, dn
);
156 } else if (block
+ 1 == beyond
) {
157 int dlen
= le32_to_cpu(dn
->size
);
158 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
160 if (ilen
&& ilen
< dlen
)
161 memset(addr
+ ilen
, 0, dlen
- ilen
);
164 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
167 addr
+= UBIFS_BLOCK_SIZE
;
170 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
171 if (err
== -ENOENT
) {
172 /* Not found, so it must be a hole */
173 SetPageChecked(page
);
177 ubifs_err(c
, "cannot read page %lu of inode %lu, error %d",
178 page
->index
, inode
->i_ino
, err
);
185 SetPageUptodate(page
);
186 ClearPageError(page
);
187 flush_dcache_page(page
);
193 ClearPageUptodate(page
);
195 flush_dcache_page(page
);
201 * release_new_page_budget - release budget of a new page.
202 * @c: UBIFS file-system description object
204 * This is a helper function which releases budget corresponding to the budget
205 * of one new page of data.
207 static void release_new_page_budget(struct ubifs_info
*c
)
209 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
211 ubifs_release_budget(c
, &req
);
215 * release_existing_page_budget - release budget of an existing page.
216 * @c: UBIFS file-system description object
218 * This is a helper function which releases budget corresponding to the budget
219 * of changing one one page of data which already exists on the flash media.
221 static void release_existing_page_budget(struct ubifs_info
*c
)
223 struct ubifs_budget_req req
= { .dd_growth
= c
->bi
.page_budget
};
225 ubifs_release_budget(c
, &req
);
228 static int write_begin_slow(struct address_space
*mapping
,
229 loff_t pos
, unsigned len
, struct page
**pagep
,
232 struct inode
*inode
= mapping
->host
;
233 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
234 pgoff_t index
= pos
>> PAGE_SHIFT
;
235 struct ubifs_budget_req req
= { .new_page
= 1 };
236 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
239 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
240 inode
->i_ino
, pos
, len
, inode
->i_size
);
243 * At the slow path we have to budget before locking the page, because
244 * budgeting may force write-back, which would wait on locked pages and
245 * deadlock if we had the page locked. At this point we do not know
246 * anything about the page, so assume that this is a new page which is
247 * written to a hole. This corresponds to largest budget. Later the
248 * budget will be amended if this is not true.
251 /* We are appending data, budget for inode change */
254 err
= ubifs_budget_space(c
, &req
);
258 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
259 if (unlikely(!page
)) {
260 ubifs_release_budget(c
, &req
);
264 if (!PageUptodate(page
)) {
265 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
)
266 SetPageChecked(page
);
268 err
= do_readpage(page
);
272 ubifs_release_budget(c
, &req
);
277 SetPageUptodate(page
);
278 ClearPageError(page
);
281 if (PagePrivate(page
))
283 * The page is dirty, which means it was budgeted twice:
284 * o first time the budget was allocated by the task which
285 * made the page dirty and set the PG_private flag;
286 * o and then we budgeted for it for the second time at the
287 * very beginning of this function.
289 * So what we have to do is to release the page budget we
292 release_new_page_budget(c
);
293 else if (!PageChecked(page
))
295 * We are changing a page which already exists on the media.
296 * This means that changing the page does not make the amount
297 * of indexing information larger, and this part of the budget
298 * which we have already acquired may be released.
300 ubifs_convert_page_budget(c
);
303 struct ubifs_inode
*ui
= ubifs_inode(inode
);
306 * 'ubifs_write_end()' is optimized from the fast-path part of
307 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
308 * if data is appended.
310 mutex_lock(&ui
->ui_mutex
);
313 * The inode is dirty already, so we may free the
314 * budget we allocated.
316 ubifs_release_dirty_inode_budget(c
, ui
);
324 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
325 * @c: UBIFS file-system description object
326 * @page: page to allocate budget for
327 * @ui: UBIFS inode object the page belongs to
328 * @appending: non-zero if the page is appended
330 * This is a helper function for 'ubifs_write_begin()' which allocates budget
331 * for the operation. The budget is allocated differently depending on whether
332 * this is appending, whether the page is dirty or not, and so on. This
333 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
334 * in case of success and %-ENOSPC in case of failure.
336 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
337 struct ubifs_inode
*ui
, int appending
)
339 struct ubifs_budget_req req
= { .fast
= 1 };
341 if (PagePrivate(page
)) {
344 * The page is dirty and we are not appending, which
345 * means no budget is needed at all.
349 mutex_lock(&ui
->ui_mutex
);
352 * The page is dirty and we are appending, so the inode
353 * has to be marked as dirty. However, it is already
354 * dirty, so we do not need any budget. We may return,
355 * but @ui->ui_mutex hast to be left locked because we
356 * should prevent write-back from flushing the inode
357 * and freeing the budget. The lock will be released in
358 * 'ubifs_write_end()'.
363 * The page is dirty, we are appending, the inode is clean, so
364 * we need to budget the inode change.
368 if (PageChecked(page
))
370 * The page corresponds to a hole and does not
371 * exist on the media. So changing it makes
372 * make the amount of indexing information
373 * larger, and we have to budget for a new
379 * Not a hole, the change will not add any new
380 * indexing information, budget for page
383 req
.dirtied_page
= 1;
386 mutex_lock(&ui
->ui_mutex
);
389 * The inode is clean but we will have to mark
390 * it as dirty because we are appending. This
397 return ubifs_budget_space(c
, &req
);
401 * This function is called when a page of data is going to be written. Since
402 * the page of data will not necessarily go to the flash straight away, UBIFS
403 * has to reserve space on the media for it, which is done by means of
406 * This is the hot-path of the file-system and we are trying to optimize it as
407 * much as possible. For this reasons it is split on 2 parts - slow and fast.
409 * There many budgeting cases:
410 * o a new page is appended - we have to budget for a new page and for
411 * changing the inode; however, if the inode is already dirty, there is
412 * no need to budget for it;
413 * o an existing clean page is changed - we have budget for it; if the page
414 * does not exist on the media (a hole), we have to budget for a new
415 * page; otherwise, we may budget for changing an existing page; the
416 * difference between these cases is that changing an existing page does
417 * not introduce anything new to the FS indexing information, so it does
418 * not grow, and smaller budget is acquired in this case;
419 * o an existing dirty page is changed - no need to budget at all, because
420 * the page budget has been acquired by earlier, when the page has been
423 * UBIFS budgeting sub-system may force write-back if it thinks there is no
424 * space to reserve. This imposes some locking restrictions and makes it
425 * impossible to take into account the above cases, and makes it impossible to
426 * optimize budgeting.
428 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
429 * there is a plenty of flash space and the budget will be acquired quickly,
430 * without forcing write-back. The slow path does not make this assumption.
432 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
433 loff_t pos
, unsigned len
, unsigned flags
,
434 struct page
**pagep
, void **fsdata
)
436 struct inode
*inode
= mapping
->host
;
437 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
438 struct ubifs_inode
*ui
= ubifs_inode(inode
);
439 pgoff_t index
= pos
>> PAGE_SHIFT
;
440 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
441 int skipped_read
= 0;
444 ubifs_assert(ubifs_inode(inode
)->ui_size
== inode
->i_size
);
445 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
447 if (unlikely(c
->ro_error
))
450 /* Try out the fast-path part first */
451 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
455 if (!PageUptodate(page
)) {
456 /* The page is not loaded from the flash */
457 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
) {
459 * We change whole page so no need to load it. But we
460 * do not know whether this page exists on the media or
461 * not, so we assume the latter because it requires
462 * larger budget. The assumption is that it is better
463 * to budget a bit more than to read the page from the
464 * media. Thus, we are setting the @PG_checked flag
467 SetPageChecked(page
);
470 err
= do_readpage(page
);
478 SetPageUptodate(page
);
479 ClearPageError(page
);
482 err
= allocate_budget(c
, page
, ui
, appending
);
484 ubifs_assert(err
== -ENOSPC
);
486 * If we skipped reading the page because we were going to
487 * write all of it, then it is not up to date.
490 ClearPageChecked(page
);
491 ClearPageUptodate(page
);
494 * Budgeting failed which means it would have to force
495 * write-back but didn't, because we set the @fast flag in the
496 * request. Write-back cannot be done now, while we have the
497 * page locked, because it would deadlock. Unlock and free
498 * everything and fall-back to slow-path.
501 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
502 mutex_unlock(&ui
->ui_mutex
);
507 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
511 * Whee, we acquired budgeting quickly - without involving
512 * garbage-collection, committing or forcing write-back. We return
513 * with @ui->ui_mutex locked if we are appending pages, and unlocked
514 * otherwise. This is an optimization (slightly hacky though).
522 * cancel_budget - cancel budget.
523 * @c: UBIFS file-system description object
524 * @page: page to cancel budget for
525 * @ui: UBIFS inode object the page belongs to
526 * @appending: non-zero if the page is appended
528 * This is a helper function for a page write operation. It unlocks the
529 * @ui->ui_mutex in case of appending.
531 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
532 struct ubifs_inode
*ui
, int appending
)
536 ubifs_release_dirty_inode_budget(c
, ui
);
537 mutex_unlock(&ui
->ui_mutex
);
539 if (!PagePrivate(page
)) {
540 if (PageChecked(page
))
541 release_new_page_budget(c
);
543 release_existing_page_budget(c
);
547 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
548 loff_t pos
, unsigned len
, unsigned copied
,
549 struct page
*page
, void *fsdata
)
551 struct inode
*inode
= mapping
->host
;
552 struct ubifs_inode
*ui
= ubifs_inode(inode
);
553 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
554 loff_t end_pos
= pos
+ len
;
555 int appending
= !!(end_pos
> inode
->i_size
);
557 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
558 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
560 if (unlikely(copied
< len
&& len
== PAGE_SIZE
)) {
562 * VFS copied less data to the page that it intended and
563 * declared in its '->write_begin()' call via the @len
564 * argument. If the page was not up-to-date, and @len was
565 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
566 * not load it from the media (for optimization reasons). This
567 * means that part of the page contains garbage. So read the
570 dbg_gen("copied %d instead of %d, read page and repeat",
572 cancel_budget(c
, page
, ui
, appending
);
573 ClearPageChecked(page
);
576 * Return 0 to force VFS to repeat the whole operation, or the
577 * error code if 'do_readpage()' fails.
579 copied
= do_readpage(page
);
583 if (!PagePrivate(page
)) {
584 SetPagePrivate(page
);
585 atomic_long_inc(&c
->dirty_pg_cnt
);
586 __set_page_dirty_nobuffers(page
);
590 i_size_write(inode
, end_pos
);
591 ui
->ui_size
= end_pos
;
593 * Note, we do not set @I_DIRTY_PAGES (which means that the
594 * inode has dirty pages), this has been done in
595 * '__set_page_dirty_nobuffers()'.
597 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
598 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
599 mutex_unlock(&ui
->ui_mutex
);
609 * populate_page - copy data nodes into a page for bulk-read.
610 * @c: UBIFS file-system description object
612 * @bu: bulk-read information
613 * @n: next zbranch slot
615 * This function returns %0 on success and a negative error code on failure.
617 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
618 struct bu_info
*bu
, int *n
)
620 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
621 struct inode
*inode
= page
->mapping
->host
;
622 loff_t i_size
= i_size_read(inode
);
623 unsigned int page_block
;
627 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
628 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
630 addr
= zaddr
= kmap(page
);
632 end_index
= (i_size
- 1) >> PAGE_SHIFT
;
633 if (!i_size
|| page
->index
> end_index
) {
635 memset(addr
, 0, PAGE_SIZE
);
639 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
641 int err
, len
, out_len
, dlen
;
645 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
646 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
647 struct ubifs_data_node
*dn
;
649 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
651 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
652 ubifs_inode(inode
)->creat_sqnum
);
654 len
= le32_to_cpu(dn
->size
);
655 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
658 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
659 out_len
= UBIFS_BLOCK_SIZE
;
661 if (ubifs_crypt_is_encrypted(inode
)) {
662 err
= ubifs_decrypt(inode
, dn
, &dlen
, page_block
);
667 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
668 le16_to_cpu(dn
->compr_type
));
669 if (err
|| len
!= out_len
)
672 if (len
< UBIFS_BLOCK_SIZE
)
673 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
676 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
677 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
682 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
684 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
686 addr
+= UBIFS_BLOCK_SIZE
;
690 if (end_index
== page
->index
) {
691 int len
= i_size
& (PAGE_SIZE
- 1);
693 if (len
&& len
< read
)
694 memset(zaddr
+ len
, 0, read
- len
);
699 SetPageChecked(page
);
703 SetPageUptodate(page
);
704 ClearPageError(page
);
705 flush_dcache_page(page
);
711 ClearPageUptodate(page
);
713 flush_dcache_page(page
);
715 ubifs_err(c
, "bad data node (block %u, inode %lu)",
716 page_block
, inode
->i_ino
);
721 * ubifs_do_bulk_read - do bulk-read.
722 * @c: UBIFS file-system description object
723 * @bu: bulk-read information
724 * @page1: first page to read
726 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
728 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
731 pgoff_t offset
= page1
->index
, end_index
;
732 struct address_space
*mapping
= page1
->mapping
;
733 struct inode
*inode
= mapping
->host
;
734 struct ubifs_inode
*ui
= ubifs_inode(inode
);
735 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
736 int allocate
= bu
->buf
? 0 : 1;
738 gfp_t ra_gfp_mask
= readahead_gfp_mask(mapping
) & ~__GFP_FS
;
740 err
= ubifs_tnc_get_bu_keys(c
, bu
);
745 /* Turn off bulk-read at the end of the file */
746 ui
->read_in_a_row
= 1;
750 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
753 * This happens when there are multiple blocks per page and the
754 * blocks for the first page we are looking for, are not
755 * together. If all the pages were like this, bulk-read would
756 * reduce performance, so we turn it off for a while.
764 * Allocate bulk-read buffer depending on how many data
765 * nodes we are going to read.
767 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
768 bu
->zbranch
[bu
->cnt
- 1].len
-
770 ubifs_assert(bu
->buf_len
> 0);
771 ubifs_assert(bu
->buf_len
<= c
->leb_size
);
772 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
777 err
= ubifs_tnc_bulk_read(c
, bu
);
782 err
= populate_page(c
, page1
, bu
, &n
);
789 isize
= i_size_read(inode
);
792 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
794 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
795 pgoff_t page_offset
= offset
+ page_idx
;
798 if (page_offset
> end_index
)
800 page
= find_or_create_page(mapping
, page_offset
, ra_gfp_mask
);
803 if (!PageUptodate(page
))
804 err
= populate_page(c
, page
, bu
, &n
);
811 ui
->last_page_read
= offset
+ page_idx
- 1;
819 ubifs_warn(c
, "ignoring error %d and skipping bulk-read", err
);
823 ui
->read_in_a_row
= ui
->bulk_read
= 0;
828 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
829 * @page: page from which to start bulk-read.
831 * Some flash media are capable of reading sequentially at faster rates. UBIFS
832 * bulk-read facility is designed to take advantage of that, by reading in one
833 * go consecutive data nodes that are also located consecutively in the same
834 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
836 static int ubifs_bulk_read(struct page
*page
)
838 struct inode
*inode
= page
->mapping
->host
;
839 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
840 struct ubifs_inode
*ui
= ubifs_inode(inode
);
841 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
843 int err
= 0, allocated
= 0;
845 ui
->last_page_read
= index
;
850 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
851 * so don't bother if we cannot lock the mutex.
853 if (!mutex_trylock(&ui
->ui_mutex
))
856 if (index
!= last_page_read
+ 1) {
857 /* Turn off bulk-read if we stop reading sequentially */
858 ui
->read_in_a_row
= 1;
864 if (!ui
->bulk_read
) {
865 ui
->read_in_a_row
+= 1;
866 if (ui
->read_in_a_row
< 3)
868 /* Three reads in a row, so switch on bulk-read */
873 * If possible, try to use pre-allocated bulk-read information, which
874 * is protected by @c->bu_mutex.
876 if (mutex_trylock(&c
->bu_mutex
))
879 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
887 bu
->buf_len
= c
->max_bu_buf_len
;
888 data_key_init(c
, &bu
->key
, inode
->i_ino
,
889 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
890 err
= ubifs_do_bulk_read(c
, bu
, page
);
893 mutex_unlock(&c
->bu_mutex
);
898 mutex_unlock(&ui
->ui_mutex
);
902 static int ubifs_readpage(struct file
*file
, struct page
*page
)
904 if (ubifs_bulk_read(page
))
911 static int do_writepage(struct page
*page
, int len
)
913 int err
= 0, i
, blen
;
917 struct inode
*inode
= page
->mapping
->host
;
918 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
921 struct ubifs_inode
*ui
= ubifs_inode(inode
);
922 spin_lock(&ui
->ui_lock
);
923 ubifs_assert(page
->index
<= ui
->synced_i_size
>> PAGE_SHIFT
);
924 spin_unlock(&ui
->ui_lock
);
927 /* Update radix tree tags */
928 set_page_writeback(page
);
931 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
934 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
935 data_key_init(c
, &key
, inode
->i_ino
, block
);
936 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
939 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
947 ubifs_err(c
, "cannot write page %lu of inode %lu, error %d",
948 page
->index
, inode
->i_ino
, err
);
949 ubifs_ro_mode(c
, err
);
952 ubifs_assert(PagePrivate(page
));
953 if (PageChecked(page
))
954 release_new_page_budget(c
);
956 release_existing_page_budget(c
);
958 atomic_long_dec(&c
->dirty_pg_cnt
);
959 ClearPagePrivate(page
);
960 ClearPageChecked(page
);
964 end_page_writeback(page
);
969 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
970 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
971 * situation when a we have an inode with size 0, then a megabyte of data is
972 * appended to the inode, then write-back starts and flushes some amount of the
973 * dirty pages, the journal becomes full, commit happens and finishes, and then
974 * an unclean reboot happens. When the file system is mounted next time, the
975 * inode size would still be 0, but there would be many pages which are beyond
976 * the inode size, they would be indexed and consume flash space. Because the
977 * journal has been committed, the replay would not be able to detect this
978 * situation and correct the inode size. This means UBIFS would have to scan
979 * whole index and correct all inode sizes, which is long an unacceptable.
981 * To prevent situations like this, UBIFS writes pages back only if they are
982 * within the last synchronized inode size, i.e. the size which has been
983 * written to the flash media last time. Otherwise, UBIFS forces inode
984 * write-back, thus making sure the on-flash inode contains current inode size,
985 * and then keeps writing pages back.
987 * Some locking issues explanation. 'ubifs_writepage()' first is called with
988 * the page locked, and it locks @ui_mutex. However, write-back does take inode
989 * @i_mutex, which means other VFS operations may be run on this inode at the
990 * same time. And the problematic one is truncation to smaller size, from where
991 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
992 * then drops the truncated pages. And while dropping the pages, it takes the
993 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
994 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
995 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
997 * XXX(truncate): with the new truncate sequence this is not true anymore,
998 * and the calls to truncate_setsize can be move around freely. They should
999 * be moved to the very end of the truncate sequence.
1001 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1002 * inode size. How do we do this if @inode->i_size may became smaller while we
1003 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1004 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1005 * internally and updates it under @ui_mutex.
1007 * Q: why we do not worry that if we race with truncation, we may end up with a
1008 * situation when the inode is truncated while we are in the middle of
1009 * 'do_writepage()', so we do write beyond inode size?
1010 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1011 * on the page lock and it would not write the truncated inode node to the
1012 * journal before we have finished.
1014 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1016 struct inode
*inode
= page
->mapping
->host
;
1017 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1018 loff_t i_size
= i_size_read(inode
), synced_i_size
;
1019 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
1020 int err
, len
= i_size
& (PAGE_SIZE
- 1);
1023 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1024 inode
->i_ino
, page
->index
, page
->flags
);
1025 ubifs_assert(PagePrivate(page
));
1027 /* Is the page fully outside @i_size? (truncate in progress) */
1028 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1033 spin_lock(&ui
->ui_lock
);
1034 synced_i_size
= ui
->synced_i_size
;
1035 spin_unlock(&ui
->ui_lock
);
1037 /* Is the page fully inside @i_size? */
1038 if (page
->index
< end_index
) {
1039 if (page
->index
>= synced_i_size
>> PAGE_SHIFT
) {
1040 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1044 * The inode has been written, but the write-buffer has
1045 * not been synchronized, so in case of an unclean
1046 * reboot we may end up with some pages beyond inode
1047 * size, but they would be in the journal (because
1048 * commit flushes write buffers) and recovery would deal
1052 return do_writepage(page
, PAGE_SIZE
);
1056 * The page straddles @i_size. It must be zeroed out on each and every
1057 * writepage invocation because it may be mmapped. "A file is mapped
1058 * in multiples of the page size. For a file that is not a multiple of
1059 * the page size, the remaining memory is zeroed when mapped, and
1060 * writes to that region are not written out to the file."
1062 kaddr
= kmap_atomic(page
);
1063 memset(kaddr
+ len
, 0, PAGE_SIZE
- len
);
1064 flush_dcache_page(page
);
1065 kunmap_atomic(kaddr
);
1067 if (i_size
> synced_i_size
) {
1068 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1073 return do_writepage(page
, len
);
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1085 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1087 if (attr
->ia_valid
& ATTR_UID
)
1088 inode
->i_uid
= attr
->ia_uid
;
1089 if (attr
->ia_valid
& ATTR_GID
)
1090 inode
->i_gid
= attr
->ia_gid
;
1091 if (attr
->ia_valid
& ATTR_ATIME
)
1092 inode
->i_atime
= timespec_trunc(attr
->ia_atime
,
1093 inode
->i_sb
->s_time_gran
);
1094 if (attr
->ia_valid
& ATTR_MTIME
)
1095 inode
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
1096 inode
->i_sb
->s_time_gran
);
1097 if (attr
->ia_valid
& ATTR_CTIME
)
1098 inode
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
1099 inode
->i_sb
->s_time_gran
);
1100 if (attr
->ia_valid
& ATTR_MODE
) {
1101 umode_t mode
= attr
->ia_mode
;
1103 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1105 inode
->i_mode
= mode
;
1110 * do_truncation - truncate an inode.
1111 * @c: UBIFS file-system description object
1112 * @inode: inode to truncate
1113 * @attr: inode attribute changes description
1115 * This function implements VFS '->setattr()' call when the inode is truncated
1116 * to a smaller size. Returns zero in case of success and a negative error code
1117 * in case of failure.
1119 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1120 const struct iattr
*attr
)
1123 struct ubifs_budget_req req
;
1124 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1125 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1126 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1128 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1129 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1132 * If this is truncation to a smaller size, and we do not truncate on a
1133 * block boundary, budget for changing one data block, because the last
1134 * block will be re-written.
1136 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1137 req
.dirtied_page
= 1;
1139 req
.dirtied_ino
= 1;
1140 /* A funny way to budget for truncation node */
1141 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1142 err
= ubifs_budget_space(c
, &req
);
1145 * Treat truncations to zero as deletion and always allow them,
1146 * just like we do for '->unlink()'.
1148 if (new_size
|| err
!= -ENOSPC
)
1153 truncate_setsize(inode
, new_size
);
1156 pgoff_t index
= new_size
>> PAGE_SHIFT
;
1159 page
= find_lock_page(inode
->i_mapping
, index
);
1161 if (PageDirty(page
)) {
1163 * 'ubifs_jnl_truncate()' will try to truncate
1164 * the last data node, but it contains
1165 * out-of-date data because the page is dirty.
1166 * Write the page now, so that
1167 * 'ubifs_jnl_truncate()' will see an already
1168 * truncated (and up to date) data node.
1170 ubifs_assert(PagePrivate(page
));
1172 clear_page_dirty_for_io(page
);
1173 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1176 err
= do_writepage(page
, offset
);
1181 * We could now tell 'ubifs_jnl_truncate()' not
1182 * to read the last block.
1186 * We could 'kmap()' the page and pass the data
1187 * to 'ubifs_jnl_truncate()' to save it from
1188 * having to read it.
1196 mutex_lock(&ui
->ui_mutex
);
1197 ui
->ui_size
= inode
->i_size
;
1198 /* Truncation changes inode [mc]time */
1199 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1200 /* Other attributes may be changed at the same time as well */
1201 do_attr_changes(inode
, attr
);
1202 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1203 mutex_unlock(&ui
->ui_mutex
);
1207 ubifs_release_budget(c
, &req
);
1209 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
1216 * do_setattr - change inode attributes.
1217 * @c: UBIFS file-system description object
1218 * @inode: inode to change attributes for
1219 * @attr: inode attribute changes description
1221 * This function implements VFS '->setattr()' call for all cases except
1222 * truncations to smaller size. Returns zero in case of success and a negative
1223 * error code in case of failure.
1225 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1226 const struct iattr
*attr
)
1229 loff_t new_size
= attr
->ia_size
;
1230 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1231 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1232 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1234 err
= ubifs_budget_space(c
, &req
);
1238 if (attr
->ia_valid
& ATTR_SIZE
) {
1239 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1240 truncate_setsize(inode
, new_size
);
1243 mutex_lock(&ui
->ui_mutex
);
1244 if (attr
->ia_valid
& ATTR_SIZE
) {
1245 /* Truncation changes inode [mc]time */
1246 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1247 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1248 ui
->ui_size
= inode
->i_size
;
1251 do_attr_changes(inode
, attr
);
1253 release
= ui
->dirty
;
1254 if (attr
->ia_valid
& ATTR_SIZE
)
1256 * Inode length changed, so we have to make sure
1257 * @I_DIRTY_DATASYNC is set.
1259 __mark_inode_dirty(inode
, I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
1261 mark_inode_dirty_sync(inode
);
1262 mutex_unlock(&ui
->ui_mutex
);
1265 ubifs_release_budget(c
, &req
);
1267 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1271 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1274 struct inode
*inode
= d_inode(dentry
);
1275 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1277 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1278 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1279 err
= setattr_prepare(dentry
, attr
);
1283 err
= dbg_check_synced_i_size(c
, inode
);
1287 err
= fscrypt_prepare_setattr(dentry
, attr
);
1291 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1292 /* Truncation to a smaller size */
1293 err
= do_truncation(c
, inode
, attr
);
1295 err
= do_setattr(c
, inode
, attr
);
1300 static void ubifs_invalidatepage(struct page
*page
, unsigned int offset
,
1301 unsigned int length
)
1303 struct inode
*inode
= page
->mapping
->host
;
1304 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1306 ubifs_assert(PagePrivate(page
));
1307 if (offset
|| length
< PAGE_SIZE
)
1308 /* Partial page remains dirty */
1311 if (PageChecked(page
))
1312 release_new_page_budget(c
);
1314 release_existing_page_budget(c
);
1316 atomic_long_dec(&c
->dirty_pg_cnt
);
1317 ClearPagePrivate(page
);
1318 ClearPageChecked(page
);
1321 int ubifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1323 struct inode
*inode
= file
->f_mapping
->host
;
1324 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1327 dbg_gen("syncing inode %lu", inode
->i_ino
);
1331 * For some really strange reasons VFS does not filter out
1332 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1336 err
= file_write_and_wait_range(file
, start
, end
);
1341 /* Synchronize the inode unless this is a 'datasync()' call. */
1342 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1343 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1349 * Nodes related to this inode may still sit in a write-buffer. Flush
1352 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1354 inode_unlock(inode
);
1359 * mctime_update_needed - check if mtime or ctime update is needed.
1360 * @inode: the inode to do the check for
1361 * @now: current time
1363 * This helper function checks if the inode mtime/ctime should be updated or
1364 * not. If current values of the time-stamps are within the UBIFS inode time
1365 * granularity, they are not updated. This is an optimization.
1367 static inline int mctime_update_needed(const struct inode
*inode
,
1368 const struct timespec
*now
)
1370 if (!timespec_equal(&inode
->i_mtime
, now
) ||
1371 !timespec_equal(&inode
->i_ctime
, now
))
1376 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1378 * ubifs_update_time - update time of inode.
1379 * @inode: inode to update
1381 * This function updates time of the inode.
1383 int ubifs_update_time(struct inode
*inode
, struct timespec
*time
,
1386 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1387 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1388 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1389 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1390 int iflags
= I_DIRTY_TIME
;
1393 err
= ubifs_budget_space(c
, &req
);
1397 mutex_lock(&ui
->ui_mutex
);
1398 if (flags
& S_ATIME
)
1399 inode
->i_atime
= *time
;
1400 if (flags
& S_CTIME
)
1401 inode
->i_ctime
= *time
;
1402 if (flags
& S_MTIME
)
1403 inode
->i_mtime
= *time
;
1405 if (!(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1406 iflags
|= I_DIRTY_SYNC
;
1408 release
= ui
->dirty
;
1409 __mark_inode_dirty(inode
, iflags
);
1410 mutex_unlock(&ui
->ui_mutex
);
1412 ubifs_release_budget(c
, &req
);
1418 * update_mctime - update mtime and ctime of an inode.
1419 * @inode: inode to update
1421 * This function updates mtime and ctime of the inode if it is not equivalent to
1422 * current time. Returns zero in case of success and a negative error code in
1425 static int update_mctime(struct inode
*inode
)
1427 struct timespec now
= current_time(inode
);
1428 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1429 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1431 if (mctime_update_needed(inode
, &now
)) {
1433 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1434 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1436 err
= ubifs_budget_space(c
, &req
);
1440 mutex_lock(&ui
->ui_mutex
);
1441 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1442 release
= ui
->dirty
;
1443 mark_inode_dirty_sync(inode
);
1444 mutex_unlock(&ui
->ui_mutex
);
1446 ubifs_release_budget(c
, &req
);
1452 static ssize_t
ubifs_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1454 int err
= update_mctime(file_inode(iocb
->ki_filp
));
1458 return generic_file_write_iter(iocb
, from
);
1461 static int ubifs_set_page_dirty(struct page
*page
)
1465 ret
= __set_page_dirty_nobuffers(page
);
1467 * An attempt to dirty a page without budgeting for it - should not
1470 ubifs_assert(ret
== 0);
1474 #ifdef CONFIG_MIGRATION
1475 static int ubifs_migrate_page(struct address_space
*mapping
,
1476 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
1480 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
1481 if (rc
!= MIGRATEPAGE_SUCCESS
)
1484 if (PagePrivate(page
)) {
1485 ClearPagePrivate(page
);
1486 SetPagePrivate(newpage
);
1489 if (mode
!= MIGRATE_SYNC_NO_COPY
)
1490 migrate_page_copy(newpage
, page
);
1492 migrate_page_states(newpage
, page
);
1493 return MIGRATEPAGE_SUCCESS
;
1497 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1500 * An attempt to release a dirty page without budgeting for it - should
1503 if (PageWriteback(page
))
1505 ubifs_assert(PagePrivate(page
));
1507 ClearPagePrivate(page
);
1508 ClearPageChecked(page
);
1513 * mmap()d file has taken write protection fault and is being made writable.
1514 * UBIFS must ensure page is budgeted for.
1516 static int ubifs_vm_page_mkwrite(struct vm_fault
*vmf
)
1518 struct page
*page
= vmf
->page
;
1519 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1520 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1521 struct timespec now
= current_time(inode
);
1522 struct ubifs_budget_req req
= { .new_page
= 1 };
1523 int err
, update_time
;
1525 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1526 i_size_read(inode
));
1527 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
1529 if (unlikely(c
->ro_error
))
1530 return VM_FAULT_SIGBUS
; /* -EROFS */
1533 * We have not locked @page so far so we may budget for changing the
1534 * page. Note, we cannot do this after we locked the page, because
1535 * budgeting may cause write-back which would cause deadlock.
1537 * At the moment we do not know whether the page is dirty or not, so we
1538 * assume that it is not and budget for a new page. We could look at
1539 * the @PG_private flag and figure this out, but we may race with write
1540 * back and the page state may change by the time we lock it, so this
1541 * would need additional care. We do not bother with this at the
1542 * moment, although it might be good idea to do. Instead, we allocate
1543 * budget for a new page and amend it later on if the page was in fact
1546 * The budgeting-related logic of this function is similar to what we
1547 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1548 * for more comments.
1550 update_time
= mctime_update_needed(inode
, &now
);
1553 * We have to change inode time stamp which requires extra
1556 req
.dirtied_ino
= 1;
1558 err
= ubifs_budget_space(c
, &req
);
1559 if (unlikely(err
)) {
1561 ubifs_warn(c
, "out of space for mmapped file (inode number %lu)",
1563 return VM_FAULT_SIGBUS
;
1567 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1568 page_offset(page
) > i_size_read(inode
))) {
1569 /* Page got truncated out from underneath us */
1574 if (PagePrivate(page
))
1575 release_new_page_budget(c
);
1577 if (!PageChecked(page
))
1578 ubifs_convert_page_budget(c
);
1579 SetPagePrivate(page
);
1580 atomic_long_inc(&c
->dirty_pg_cnt
);
1581 __set_page_dirty_nobuffers(page
);
1586 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1588 mutex_lock(&ui
->ui_mutex
);
1589 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1590 release
= ui
->dirty
;
1591 mark_inode_dirty_sync(inode
);
1592 mutex_unlock(&ui
->ui_mutex
);
1594 ubifs_release_dirty_inode_budget(c
, ui
);
1597 wait_for_stable_page(page
);
1598 return VM_FAULT_LOCKED
;
1602 ubifs_release_budget(c
, &req
);
1604 err
= VM_FAULT_SIGBUS
;
1608 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1609 .fault
= filemap_fault
,
1610 .map_pages
= filemap_map_pages
,
1611 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1614 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1618 err
= generic_file_mmap(file
, vma
);
1621 vma
->vm_ops
= &ubifs_file_vm_ops
;
1622 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1623 file_accessed(file
);
1628 static const char *ubifs_get_link(struct dentry
*dentry
,
1629 struct inode
*inode
,
1630 struct delayed_call
*done
)
1632 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1634 if (!IS_ENCRYPTED(inode
))
1638 return ERR_PTR(-ECHILD
);
1640 return fscrypt_get_symlink(inode
, ui
->data
, ui
->data_len
, done
);
1643 const struct address_space_operations ubifs_file_address_operations
= {
1644 .readpage
= ubifs_readpage
,
1645 .writepage
= ubifs_writepage
,
1646 .write_begin
= ubifs_write_begin
,
1647 .write_end
= ubifs_write_end
,
1648 .invalidatepage
= ubifs_invalidatepage
,
1649 .set_page_dirty
= ubifs_set_page_dirty
,
1650 #ifdef CONFIG_MIGRATION
1651 .migratepage
= ubifs_migrate_page
,
1653 .releasepage
= ubifs_releasepage
,
1656 const struct inode_operations ubifs_file_inode_operations
= {
1657 .setattr
= ubifs_setattr
,
1658 .getattr
= ubifs_getattr
,
1659 .listxattr
= ubifs_listxattr
,
1660 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1661 .update_time
= ubifs_update_time
,
1665 const struct inode_operations ubifs_symlink_inode_operations
= {
1666 .get_link
= ubifs_get_link
,
1667 .setattr
= ubifs_setattr
,
1668 .getattr
= ubifs_getattr
,
1669 .listxattr
= ubifs_listxattr
,
1670 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1671 .update_time
= ubifs_update_time
,
1675 const struct file_operations ubifs_file_operations
= {
1676 .llseek
= generic_file_llseek
,
1677 .read_iter
= generic_file_read_iter
,
1678 .write_iter
= ubifs_write_iter
,
1679 .mmap
= ubifs_file_mmap
,
1680 .fsync
= ubifs_fsync
,
1681 .unlocked_ioctl
= ubifs_ioctl
,
1682 .splice_read
= generic_file_splice_read
,
1683 .splice_write
= iter_file_splice_write
,
1684 .open
= fscrypt_file_open
,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl
= ubifs_compat_ioctl
,