2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
39 kmem_zone_t
*xfs_log_ticket_zone
;
41 /* Local miscellaneous function prototypes */
45 struct xlog_ticket
*ticket
,
46 struct xlog_in_core
**iclog
,
47 xfs_lsn_t
*commitlsnp
);
52 struct xfs_buftarg
*log_target
,
53 xfs_daddr_t blk_offset
,
62 struct xlog_in_core
*iclog
);
67 /* local state machine functions */
68 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
70 xlog_state_do_callback(
73 struct xlog_in_core
*iclog
);
75 xlog_state_get_iclog_space(
78 struct xlog_in_core
**iclog
,
79 struct xlog_ticket
*ticket
,
83 xlog_state_release_iclog(
85 struct xlog_in_core
*iclog
);
87 xlog_state_switch_iclogs(
89 struct xlog_in_core
*iclog
,
94 struct xlog_in_core
*iclog
);
101 xlog_regrant_reserve_log_space(
103 struct xlog_ticket
*ticket
);
105 xlog_ungrant_log_space(
107 struct xlog_ticket
*ticket
);
111 xlog_verify_dest_ptr(
115 xlog_verify_grant_tail(
120 struct xlog_in_core
*iclog
,
124 xlog_verify_tail_lsn(
126 struct xlog_in_core
*iclog
,
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
140 xlog_grant_sub_space(
145 int64_t head_val
= atomic64_read(head
);
151 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
155 space
+= log
->l_logsize
;
160 new = xlog_assign_grant_head_val(cycle
, space
);
161 head_val
= atomic64_cmpxchg(head
, old
, new);
162 } while (head_val
!= old
);
166 xlog_grant_add_space(
171 int64_t head_val
= atomic64_read(head
);
178 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
180 tmp
= log
->l_logsize
- space
;
189 new = xlog_assign_grant_head_val(cycle
, space
);
190 head_val
= atomic64_cmpxchg(head
, old
, new);
191 } while (head_val
!= old
);
195 xlog_grant_head_init(
196 struct xlog_grant_head
*head
)
198 xlog_assign_grant_head(&head
->grant
, 1, 0);
199 INIT_LIST_HEAD(&head
->waiters
);
200 spin_lock_init(&head
->lock
);
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head
*head
)
207 struct xlog_ticket
*tic
;
209 spin_lock(&head
->lock
);
210 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
211 wake_up_process(tic
->t_task
);
212 spin_unlock(&head
->lock
);
216 xlog_ticket_reservation(
218 struct xlog_grant_head
*head
,
219 struct xlog_ticket
*tic
)
221 if (head
== &log
->l_write_head
) {
222 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
223 return tic
->t_unit_res
;
225 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
226 return tic
->t_unit_res
* tic
->t_cnt
;
228 return tic
->t_unit_res
;
233 xlog_grant_head_wake(
235 struct xlog_grant_head
*head
,
238 struct xlog_ticket
*tic
;
241 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
242 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
243 if (*free_bytes
< need_bytes
)
246 *free_bytes
-= need_bytes
;
247 trace_xfs_log_grant_wake_up(log
, tic
);
248 wake_up_process(tic
->t_task
);
255 xlog_grant_head_wait(
257 struct xlog_grant_head
*head
,
258 struct xlog_ticket
*tic
,
259 int need_bytes
) __releases(&head
->lock
)
260 __acquires(&head
->lock
)
262 list_add_tail(&tic
->t_queue
, &head
->waiters
);
265 if (XLOG_FORCED_SHUTDOWN(log
))
267 xlog_grant_push_ail(log
, need_bytes
);
269 __set_current_state(TASK_UNINTERRUPTIBLE
);
270 spin_unlock(&head
->lock
);
272 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
274 trace_xfs_log_grant_sleep(log
, tic
);
276 trace_xfs_log_grant_wake(log
, tic
);
278 spin_lock(&head
->lock
);
279 if (XLOG_FORCED_SHUTDOWN(log
))
281 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
283 list_del_init(&tic
->t_queue
);
286 list_del_init(&tic
->t_queue
);
291 * Atomically get the log space required for a log ticket.
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
308 xlog_grant_head_check(
310 struct xlog_grant_head
*head
,
311 struct xlog_ticket
*tic
,
317 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
325 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
326 free_bytes
= xlog_space_left(log
, &head
->grant
);
327 if (!list_empty_careful(&head
->waiters
)) {
328 spin_lock(&head
->lock
);
329 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
330 free_bytes
< *need_bytes
) {
331 error
= xlog_grant_head_wait(log
, head
, tic
,
334 spin_unlock(&head
->lock
);
335 } else if (free_bytes
< *need_bytes
) {
336 spin_lock(&head
->lock
);
337 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
338 spin_unlock(&head
->lock
);
345 xlog_tic_reset_res(xlog_ticket_t
*tic
)
348 tic
->t_res_arr_sum
= 0;
349 tic
->t_res_num_ophdrs
= 0;
353 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
355 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
356 /* add to overflow and start again */
357 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
359 tic
->t_res_arr_sum
= 0;
362 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
363 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
364 tic
->t_res_arr_sum
+= len
;
369 * Replenish the byte reservation required by moving the grant write head.
373 struct xfs_mount
*mp
,
374 struct xlog_ticket
*tic
)
376 struct xlog
*log
= mp
->m_log
;
380 if (XLOG_FORCED_SHUTDOWN(log
))
383 XFS_STATS_INC(mp
, xs_try_logspace
);
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
393 xlog_grant_push_ail(log
, tic
->t_unit_res
);
395 tic
->t_curr_res
= tic
->t_unit_res
;
396 xlog_tic_reset_res(tic
);
401 trace_xfs_log_regrant(log
, tic
);
403 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
408 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
409 trace_xfs_log_regrant_exit(log
, tic
);
410 xlog_verify_grant_tail(log
);
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
420 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
425 * Reserve log space and return a ticket corresponding the reservation.
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
434 struct xfs_mount
*mp
,
437 struct xlog_ticket
**ticp
,
441 struct xlog
*log
= mp
->m_log
;
442 struct xlog_ticket
*tic
;
446 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
448 if (XLOG_FORCED_SHUTDOWN(log
))
451 XFS_STATS_INC(mp
, xs_try_logspace
);
453 ASSERT(*ticp
== NULL
);
454 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
455 KM_SLEEP
| KM_MAYFAIL
);
461 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
464 trace_xfs_log_reserve(log
, tic
);
466 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
471 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
472 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
473 trace_xfs_log_reserve_exit(log
, tic
);
474 xlog_verify_grant_tail(log
);
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
484 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
512 struct xfs_mount
*mp
,
513 struct xlog_ticket
*ticket
,
514 struct xlog_in_core
**iclog
,
517 struct xlog
*log
= mp
->m_log
;
520 if (XLOG_FORCED_SHUTDOWN(log
) ||
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
525 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
526 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
527 lsn
= (xfs_lsn_t
) -1;
533 trace_xfs_log_done_nonperm(log
, ticket
);
536 * Release ticket if not permanent reservation or a specific
537 * request has been made to release a permanent reservation.
539 xlog_ungrant_log_space(log
, ticket
);
541 trace_xfs_log_done_perm(log
, ticket
);
543 xlog_regrant_reserve_log_space(log
, ticket
);
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
548 ticket
->t_flags
|= XLOG_TIC_INITED
;
551 xfs_log_ticket_put(ticket
);
556 * Attaches a new iclog I/O completion callback routine during
557 * transaction commit. If the log is in error state, a non-zero
558 * return code is handed back and the caller is responsible for
559 * executing the callback at an appropriate time.
563 struct xfs_mount
*mp
,
564 struct xlog_in_core
*iclog
,
565 xfs_log_callback_t
*cb
)
569 spin_lock(&iclog
->ic_callback_lock
);
570 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
572 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
573 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
575 *(iclog
->ic_callback_tail
) = cb
;
576 iclog
->ic_callback_tail
= &(cb
->cb_next
);
578 spin_unlock(&iclog
->ic_callback_lock
);
583 xfs_log_release_iclog(
584 struct xfs_mount
*mp
,
585 struct xlog_in_core
*iclog
)
587 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
588 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
596 * Mount a log filesystem
598 * mp - ubiquitous xfs mount point structure
599 * log_target - buftarg of on-disk log device
600 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
601 * num_bblocks - Number of BBSIZE blocks in on-disk log
603 * Return error or zero.
608 xfs_buftarg_t
*log_target
,
609 xfs_daddr_t blk_offset
,
612 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
616 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
617 xfs_notice(mp
, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp
->m_sb
));
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp
->m_sb
));
623 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
626 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
627 if (IS_ERR(mp
->m_log
)) {
628 error
= PTR_ERR(mp
->m_log
);
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
646 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
648 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
653 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
658 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
664 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
665 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
667 "log stripe unit %u bytes must be a multiple of block size",
668 mp
->m_sb
.sb_logsunit
);
674 * Log check errors are always fatal on v5; or whenever bad
675 * metadata leads to a crash.
678 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
682 xfs_crit(mp
, "Log size out of supported range.");
684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
688 * Initialize the AIL now we have a log.
690 error
= xfs_trans_ail_init(mp
);
692 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
695 mp
->m_log
->l_ailp
= mp
->m_ail
;
698 * skip log recovery on a norecovery mount. pretend it all
701 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
702 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
705 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
707 error
= xlog_recover(mp
->m_log
);
710 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
712 xfs_warn(mp
, "log mount/recovery failed: error %d",
714 xlog_recover_cancel(mp
->m_log
);
715 goto out_destroy_ail
;
719 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
722 goto out_destroy_ail
;
724 /* Normal transactions can now occur */
725 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
728 * Now the log has been fully initialised and we know were our
729 * space grant counters are, we can initialise the permanent ticket
730 * needed for delayed logging to work.
732 xlog_cil_init_post_recovery(mp
->m_log
);
737 xfs_trans_ail_destroy(mp
);
739 xlog_dealloc_log(mp
->m_log
);
745 * Finish the recovery of the file system. This is separate from the
746 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
750 * If we finish recovery successfully, start the background log work. If we are
751 * not doing recovery, then we have a RO filesystem and we don't need to start
755 xfs_log_mount_finish(
756 struct xfs_mount
*mp
)
759 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
760 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
762 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
763 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
765 } else if (readonly
) {
766 /* Allow unlinked processing to proceed */
767 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
771 * During the second phase of log recovery, we need iget and
772 * iput to behave like they do for an active filesystem.
773 * xfs_fs_drop_inode needs to be able to prevent the deletion
774 * of inodes before we're done replaying log items on those
775 * inodes. Turn it off immediately after recovery finishes
776 * so that we don't leak the quota inodes if subsequent mount
779 * We let all inodes involved in redo item processing end up on
780 * the LRU instead of being evicted immediately so that if we do
781 * something to an unlinked inode, the irele won't cause
782 * premature truncation and freeing of the inode, which results
783 * in log recovery failure. We have to evict the unreferenced
784 * lru inodes after clearing SB_ACTIVE because we don't
785 * otherwise clean up the lru if there's a subsequent failure in
786 * xfs_mountfs, which leads to us leaking the inodes if nothing
787 * else (e.g. quotacheck) references the inodes before the
788 * mount failure occurs.
790 mp
->m_super
->s_flags
|= SB_ACTIVE
;
791 error
= xlog_recover_finish(mp
->m_log
);
793 xfs_log_work_queue(mp
);
794 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
795 evict_inodes(mp
->m_super
);
798 * Drain the buffer LRU after log recovery. This is required for v4
799 * filesystems to avoid leaving around buffers with NULL verifier ops,
800 * but we do it unconditionally to make sure we're always in a clean
801 * cache state after mount.
803 * Don't push in the error case because the AIL may have pending intents
804 * that aren't removed until recovery is cancelled.
806 if (!error
&& recovered
) {
807 xfs_log_force(mp
, XFS_LOG_SYNC
);
808 xfs_ail_push_all_sync(mp
->m_ail
);
810 xfs_wait_buftarg(mp
->m_ddev_targp
);
813 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
819 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
823 xfs_log_mount_cancel(
824 struct xfs_mount
*mp
)
828 error
= xlog_recover_cancel(mp
->m_log
);
835 * Final log writes as part of unmount.
837 * Mark the filesystem clean as unmount happens. Note that during relocation
838 * this routine needs to be executed as part of source-bag while the
839 * deallocation must not be done until source-end.
843 * Unmount record used to have a string "Unmount filesystem--" in the
844 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845 * We just write the magic number now since that particular field isn't
846 * currently architecture converted and "Unmount" is a bit foo.
847 * As far as I know, there weren't any dependencies on the old behaviour.
851 xfs_log_unmount_write(xfs_mount_t
*mp
)
853 struct xlog
*log
= mp
->m_log
;
854 xlog_in_core_t
*iclog
;
856 xlog_in_core_t
*first_iclog
;
858 xlog_ticket_t
*tic
= NULL
;
863 * Don't write out unmount record on norecovery mounts or ro devices.
864 * Or, if we are doing a forced umount (typically because of IO errors).
866 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
867 xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
868 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
872 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
873 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
876 first_iclog
= iclog
= log
->l_iclog
;
878 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
879 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
880 ASSERT(iclog
->ic_offset
== 0);
882 iclog
= iclog
->ic_next
;
883 } while (iclog
!= first_iclog
);
885 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
886 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
888 /* the data section must be 32 bit size aligned */
892 uint32_t pad2
; /* may as well make it 64 bits */
894 .magic
= XLOG_UNMOUNT_TYPE
,
896 struct xfs_log_iovec reg
= {
898 .i_len
= sizeof(magic
),
899 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
901 struct xfs_log_vec vec
= {
906 /* remove inited flag, and account for space used */
908 tic
->t_curr_res
-= sizeof(magic
);
909 error
= xlog_write(log
, &vec
, tic
, &lsn
,
910 NULL
, XLOG_UNMOUNT_TRANS
);
912 * At this point, we're umounting anyway,
913 * so there's no point in transitioning log state
914 * to IOERROR. Just continue...
919 xfs_alert(mp
, "%s: unmount record failed", __func__
);
922 spin_lock(&log
->l_icloglock
);
923 iclog
= log
->l_iclog
;
924 atomic_inc(&iclog
->ic_refcnt
);
925 xlog_state_want_sync(log
, iclog
);
926 spin_unlock(&log
->l_icloglock
);
927 error
= xlog_state_release_iclog(log
, iclog
);
929 spin_lock(&log
->l_icloglock
);
930 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
931 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
932 if (!XLOG_FORCED_SHUTDOWN(log
)) {
933 xlog_wait(&iclog
->ic_force_wait
,
936 spin_unlock(&log
->l_icloglock
);
939 spin_unlock(&log
->l_icloglock
);
942 trace_xfs_log_umount_write(log
, tic
);
943 xlog_ungrant_log_space(log
, tic
);
944 xfs_log_ticket_put(tic
);
948 * We're already in forced_shutdown mode, couldn't
949 * even attempt to write out the unmount transaction.
951 * Go through the motions of sync'ing and releasing
952 * the iclog, even though no I/O will actually happen,
953 * we need to wait for other log I/Os that may already
954 * be in progress. Do this as a separate section of
955 * code so we'll know if we ever get stuck here that
956 * we're in this odd situation of trying to unmount
957 * a file system that went into forced_shutdown as
958 * the result of an unmount..
960 spin_lock(&log
->l_icloglock
);
961 iclog
= log
->l_iclog
;
962 atomic_inc(&iclog
->ic_refcnt
);
964 xlog_state_want_sync(log
, iclog
);
965 spin_unlock(&log
->l_icloglock
);
966 error
= xlog_state_release_iclog(log
, iclog
);
968 spin_lock(&log
->l_icloglock
);
970 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
971 || iclog
->ic_state
== XLOG_STATE_DIRTY
972 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
974 xlog_wait(&iclog
->ic_force_wait
,
977 spin_unlock(&log
->l_icloglock
);
982 } /* xfs_log_unmount_write */
985 * Empty the log for unmount/freeze.
987 * To do this, we first need to shut down the background log work so it is not
988 * trying to cover the log as we clean up. We then need to unpin all objects in
989 * the log so we can then flush them out. Once they have completed their IO and
990 * run the callbacks removing themselves from the AIL, we can write the unmount
995 struct xfs_mount
*mp
)
997 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
998 xfs_log_force(mp
, XFS_LOG_SYNC
);
1001 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003 * xfs_buf_iowait() cannot be used because it was pushed with the
1004 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005 * the IO to complete.
1007 xfs_ail_push_all_sync(mp
->m_ail
);
1008 xfs_wait_buftarg(mp
->m_ddev_targp
);
1009 xfs_buf_lock(mp
->m_sb_bp
);
1010 xfs_buf_unlock(mp
->m_sb_bp
);
1012 xfs_log_unmount_write(mp
);
1016 * Shut down and release the AIL and Log.
1018 * During unmount, we need to ensure we flush all the dirty metadata objects
1019 * from the AIL so that the log is empty before we write the unmount record to
1020 * the log. Once this is done, we can tear down the AIL and the log.
1024 struct xfs_mount
*mp
)
1026 xfs_log_quiesce(mp
);
1028 xfs_trans_ail_destroy(mp
);
1030 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1032 xlog_dealloc_log(mp
->m_log
);
1037 struct xfs_mount
*mp
,
1038 struct xfs_log_item
*item
,
1040 const struct xfs_item_ops
*ops
)
1042 item
->li_mountp
= mp
;
1043 item
->li_ailp
= mp
->m_ail
;
1044 item
->li_type
= type
;
1048 INIT_LIST_HEAD(&item
->li_ail
);
1049 INIT_LIST_HEAD(&item
->li_cil
);
1050 INIT_LIST_HEAD(&item
->li_bio_list
);
1054 * Wake up processes waiting for log space after we have moved the log tail.
1058 struct xfs_mount
*mp
)
1060 struct xlog
*log
= mp
->m_log
;
1063 if (XLOG_FORCED_SHUTDOWN(log
))
1066 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1067 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1069 spin_lock(&log
->l_write_head
.lock
);
1070 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1071 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1072 spin_unlock(&log
->l_write_head
.lock
);
1075 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1076 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1078 spin_lock(&log
->l_reserve_head
.lock
);
1079 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1080 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1081 spin_unlock(&log
->l_reserve_head
.lock
);
1086 * Determine if we have a transaction that has gone to disk that needs to be
1087 * covered. To begin the transition to the idle state firstly the log needs to
1088 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1089 * we start attempting to cover the log.
1091 * Only if we are then in a state where covering is needed, the caller is
1092 * informed that dummy transactions are required to move the log into the idle
1095 * If there are any items in the AIl or CIL, then we do not want to attempt to
1096 * cover the log as we may be in a situation where there isn't log space
1097 * available to run a dummy transaction and this can lead to deadlocks when the
1098 * tail of the log is pinned by an item that is modified in the CIL. Hence
1099 * there's no point in running a dummy transaction at this point because we
1100 * can't start trying to idle the log until both the CIL and AIL are empty.
1103 xfs_log_need_covered(xfs_mount_t
*mp
)
1105 struct xlog
*log
= mp
->m_log
;
1108 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1111 if (!xlog_cil_empty(log
))
1114 spin_lock(&log
->l_icloglock
);
1115 switch (log
->l_covered_state
) {
1116 case XLOG_STATE_COVER_DONE
:
1117 case XLOG_STATE_COVER_DONE2
:
1118 case XLOG_STATE_COVER_IDLE
:
1120 case XLOG_STATE_COVER_NEED
:
1121 case XLOG_STATE_COVER_NEED2
:
1122 if (xfs_ail_min_lsn(log
->l_ailp
))
1124 if (!xlog_iclogs_empty(log
))
1128 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1129 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1131 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1137 spin_unlock(&log
->l_icloglock
);
1142 * We may be holding the log iclog lock upon entering this routine.
1145 xlog_assign_tail_lsn_locked(
1146 struct xfs_mount
*mp
)
1148 struct xlog
*log
= mp
->m_log
;
1149 struct xfs_log_item
*lip
;
1152 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1155 * To make sure we always have a valid LSN for the log tail we keep
1156 * track of the last LSN which was committed in log->l_last_sync_lsn,
1157 * and use that when the AIL was empty.
1159 lip
= xfs_ail_min(mp
->m_ail
);
1161 tail_lsn
= lip
->li_lsn
;
1163 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1164 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1165 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1170 xlog_assign_tail_lsn(
1171 struct xfs_mount
*mp
)
1175 spin_lock(&mp
->m_ail
->xa_lock
);
1176 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1177 spin_unlock(&mp
->m_ail
->xa_lock
);
1183 * Return the space in the log between the tail and the head. The head
1184 * is passed in the cycle/bytes formal parms. In the special case where
1185 * the reserve head has wrapped passed the tail, this calculation is no
1186 * longer valid. In this case, just return 0 which means there is no space
1187 * in the log. This works for all places where this function is called
1188 * with the reserve head. Of course, if the write head were to ever
1189 * wrap the tail, we should blow up. Rather than catch this case here,
1190 * we depend on other ASSERTions in other parts of the code. XXXmiken
1192 * This code also handles the case where the reservation head is behind
1193 * the tail. The details of this case are described below, but the end
1194 * result is that we return the size of the log as the amount of space left.
1207 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1208 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1209 tail_bytes
= BBTOB(tail_bytes
);
1210 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1211 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1212 else if (tail_cycle
+ 1 < head_cycle
)
1214 else if (tail_cycle
< head_cycle
) {
1215 ASSERT(tail_cycle
== (head_cycle
- 1));
1216 free_bytes
= tail_bytes
- head_bytes
;
1219 * The reservation head is behind the tail.
1220 * In this case we just want to return the size of the
1221 * log as the amount of space left.
1223 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1224 xfs_alert(log
->l_mp
,
1225 " tail_cycle = %d, tail_bytes = %d",
1226 tail_cycle
, tail_bytes
);
1227 xfs_alert(log
->l_mp
,
1228 " GH cycle = %d, GH bytes = %d",
1229 head_cycle
, head_bytes
);
1231 free_bytes
= log
->l_logsize
;
1238 * Log function which is called when an io completes.
1240 * The log manager needs its own routine, in order to control what
1241 * happens with the buffer after the write completes.
1244 xlog_iodone(xfs_buf_t
*bp
)
1246 struct xlog_in_core
*iclog
= bp
->b_log_item
;
1247 struct xlog
*l
= iclog
->ic_log
;
1251 * Race to shutdown the filesystem if we see an error or the iclog is in
1252 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1253 * CRC errors into log recovery.
1255 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
) ||
1256 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1257 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1258 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1260 xfs_buf_ioerror_alert(bp
, __func__
);
1262 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1264 * This flag will be propagated to the trans-committed
1265 * callback routines to let them know that the log-commit
1268 aborted
= XFS_LI_ABORTED
;
1269 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1270 aborted
= XFS_LI_ABORTED
;
1273 /* log I/O is always issued ASYNC */
1274 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1275 xlog_state_done_syncing(iclog
, aborted
);
1278 * drop the buffer lock now that we are done. Nothing references
1279 * the buffer after this, so an unmount waiting on this lock can now
1280 * tear it down safely. As such, it is unsafe to reference the buffer
1281 * (bp) after the unlock as we could race with it being freed.
1287 * Return size of each in-core log record buffer.
1289 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1291 * If the filesystem blocksize is too large, we may need to choose a
1292 * larger size since the directory code currently logs entire blocks.
1296 xlog_get_iclog_buffer_size(
1297 struct xfs_mount
*mp
,
1303 if (mp
->m_logbufs
<= 0)
1304 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1306 log
->l_iclog_bufs
= mp
->m_logbufs
;
1309 * Buffer size passed in from mount system call.
1311 if (mp
->m_logbsize
> 0) {
1312 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1313 log
->l_iclog_size_log
= 0;
1315 log
->l_iclog_size_log
++;
1319 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1320 /* # headers = size / 32k
1321 * one header holds cycles from 32k of data
1324 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1325 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1327 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1328 log
->l_iclog_heads
= xhdrs
;
1330 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1331 log
->l_iclog_hsize
= BBSIZE
;
1332 log
->l_iclog_heads
= 1;
1337 /* All machines use 32kB buffers by default. */
1338 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1339 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1341 /* the default log size is 16k or 32k which is one header sector */
1342 log
->l_iclog_hsize
= BBSIZE
;
1343 log
->l_iclog_heads
= 1;
1346 /* are we being asked to make the sizes selected above visible? */
1347 if (mp
->m_logbufs
== 0)
1348 mp
->m_logbufs
= log
->l_iclog_bufs
;
1349 if (mp
->m_logbsize
== 0)
1350 mp
->m_logbsize
= log
->l_iclog_size
;
1351 } /* xlog_get_iclog_buffer_size */
1356 struct xfs_mount
*mp
)
1358 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1359 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1363 * Every sync period we need to unpin all items in the AIL and push them to
1364 * disk. If there is nothing dirty, then we might need to cover the log to
1365 * indicate that the filesystem is idle.
1369 struct work_struct
*work
)
1371 struct xlog
*log
= container_of(to_delayed_work(work
),
1372 struct xlog
, l_work
);
1373 struct xfs_mount
*mp
= log
->l_mp
;
1375 /* dgc: errors ignored - not fatal and nowhere to report them */
1376 if (xfs_log_need_covered(mp
)) {
1378 * Dump a transaction into the log that contains no real change.
1379 * This is needed to stamp the current tail LSN into the log
1380 * during the covering operation.
1382 * We cannot use an inode here for this - that will push dirty
1383 * state back up into the VFS and then periodic inode flushing
1384 * will prevent log covering from making progress. Hence we
1385 * synchronously log the superblock instead to ensure the
1386 * superblock is immediately unpinned and can be written back.
1388 xfs_sync_sb(mp
, true);
1390 xfs_log_force(mp
, 0);
1392 /* start pushing all the metadata that is currently dirty */
1393 xfs_ail_push_all(mp
->m_ail
);
1395 /* queue us up again */
1396 xfs_log_work_queue(mp
);
1400 * This routine initializes some of the log structure for a given mount point.
1401 * Its primary purpose is to fill in enough, so recovery can occur. However,
1402 * some other stuff may be filled in too.
1404 STATIC
struct xlog
*
1406 struct xfs_mount
*mp
,
1407 struct xfs_buftarg
*log_target
,
1408 xfs_daddr_t blk_offset
,
1412 xlog_rec_header_t
*head
;
1413 xlog_in_core_t
**iclogp
;
1414 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1417 int error
= -ENOMEM
;
1420 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1422 xfs_warn(mp
, "Log allocation failed: No memory!");
1427 log
->l_targ
= log_target
;
1428 log
->l_logsize
= BBTOB(num_bblks
);
1429 log
->l_logBBstart
= blk_offset
;
1430 log
->l_logBBsize
= num_bblks
;
1431 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1432 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1433 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1435 log
->l_prev_block
= -1;
1436 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1437 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1438 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1439 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1441 xlog_grant_head_init(&log
->l_reserve_head
);
1442 xlog_grant_head_init(&log
->l_write_head
);
1444 error
= -EFSCORRUPTED
;
1445 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1446 log2_size
= mp
->m_sb
.sb_logsectlog
;
1447 if (log2_size
< BBSHIFT
) {
1448 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1449 log2_size
, BBSHIFT
);
1453 log2_size
-= BBSHIFT
;
1454 if (log2_size
> mp
->m_sectbb_log
) {
1455 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1456 log2_size
, mp
->m_sectbb_log
);
1460 /* for larger sector sizes, must have v2 or external log */
1461 if (log2_size
&& log
->l_logBBstart
> 0 &&
1462 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1464 "log sector size (0x%x) invalid for configuration.",
1469 log
->l_sectBBsize
= 1 << log2_size
;
1471 xlog_get_iclog_buffer_size(mp
, log
);
1474 * Use a NULL block for the extra log buffer used during splits so that
1475 * it will trigger errors if we ever try to do IO on it without first
1476 * having set it up properly.
1479 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1480 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1485 * The iclogbuf buffer locks are held over IO but we are not going to do
1486 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1487 * when appropriately.
1489 ASSERT(xfs_buf_islocked(bp
));
1492 /* use high priority wq for log I/O completion */
1493 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1494 bp
->b_iodone
= xlog_iodone
;
1497 spin_lock_init(&log
->l_icloglock
);
1498 init_waitqueue_head(&log
->l_flush_wait
);
1500 iclogp
= &log
->l_iclog
;
1502 * The amount of memory to allocate for the iclog structure is
1503 * rather funky due to the way the structure is defined. It is
1504 * done this way so that we can use different sizes for machines
1505 * with different amounts of memory. See the definition of
1506 * xlog_in_core_t in xfs_log_priv.h for details.
1508 ASSERT(log
->l_iclog_size
>= 4096);
1509 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1510 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1512 goto out_free_iclog
;
1515 iclog
->ic_prev
= prev_iclog
;
1518 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1519 BTOBB(log
->l_iclog_size
),
1522 goto out_free_iclog
;
1524 ASSERT(xfs_buf_islocked(bp
));
1527 /* use high priority wq for log I/O completion */
1528 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1529 bp
->b_iodone
= xlog_iodone
;
1531 iclog
->ic_data
= bp
->b_addr
;
1533 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1535 head
= &iclog
->ic_header
;
1536 memset(head
, 0, sizeof(xlog_rec_header_t
));
1537 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1538 head
->h_version
= cpu_to_be32(
1539 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1540 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1542 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1543 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1545 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1546 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1547 iclog
->ic_log
= log
;
1548 atomic_set(&iclog
->ic_refcnt
, 0);
1549 spin_lock_init(&iclog
->ic_callback_lock
);
1550 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1551 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1553 init_waitqueue_head(&iclog
->ic_force_wait
);
1554 init_waitqueue_head(&iclog
->ic_write_wait
);
1556 iclogp
= &iclog
->ic_next
;
1558 *iclogp
= log
->l_iclog
; /* complete ring */
1559 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1561 error
= xlog_cil_init(log
);
1563 goto out_free_iclog
;
1567 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1568 prev_iclog
= iclog
->ic_next
;
1570 xfs_buf_free(iclog
->ic_bp
);
1573 spinlock_destroy(&log
->l_icloglock
);
1574 xfs_buf_free(log
->l_xbuf
);
1578 return ERR_PTR(error
);
1579 } /* xlog_alloc_log */
1583 * Write out the commit record of a transaction associated with the given
1584 * ticket. Return the lsn of the commit record.
1589 struct xlog_ticket
*ticket
,
1590 struct xlog_in_core
**iclog
,
1591 xfs_lsn_t
*commitlsnp
)
1593 struct xfs_mount
*mp
= log
->l_mp
;
1595 struct xfs_log_iovec reg
= {
1598 .i_type
= XLOG_REG_TYPE_COMMIT
,
1600 struct xfs_log_vec vec
= {
1605 ASSERT_ALWAYS(iclog
);
1606 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1609 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1614 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1615 * log space. This code pushes on the lsn which would supposedly free up
1616 * the 25% which we want to leave free. We may need to adopt a policy which
1617 * pushes on an lsn which is further along in the log once we reach the high
1618 * water mark. In this manner, we would be creating a low water mark.
1621 xlog_grant_push_ail(
1625 xfs_lsn_t threshold_lsn
= 0;
1626 xfs_lsn_t last_sync_lsn
;
1629 int threshold_block
;
1630 int threshold_cycle
;
1633 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1635 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1636 free_blocks
= BTOBBT(free_bytes
);
1639 * Set the threshold for the minimum number of free blocks in the
1640 * log to the maximum of what the caller needs, one quarter of the
1641 * log, and 256 blocks.
1643 free_threshold
= BTOBB(need_bytes
);
1644 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1645 free_threshold
= MAX(free_threshold
, 256);
1646 if (free_blocks
>= free_threshold
)
1649 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1651 threshold_block
+= free_threshold
;
1652 if (threshold_block
>= log
->l_logBBsize
) {
1653 threshold_block
-= log
->l_logBBsize
;
1654 threshold_cycle
+= 1;
1656 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1659 * Don't pass in an lsn greater than the lsn of the last
1660 * log record known to be on disk. Use a snapshot of the last sync lsn
1661 * so that it doesn't change between the compare and the set.
1663 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1664 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1665 threshold_lsn
= last_sync_lsn
;
1668 * Get the transaction layer to kick the dirty buffers out to
1669 * disk asynchronously. No point in trying to do this if
1670 * the filesystem is shutting down.
1672 if (!XLOG_FORCED_SHUTDOWN(log
))
1673 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1677 * Stamp cycle number in every block
1682 struct xlog_in_core
*iclog
,
1686 int size
= iclog
->ic_offset
+ roundoff
;
1690 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1692 dp
= iclog
->ic_datap
;
1693 for (i
= 0; i
< BTOBB(size
); i
++) {
1694 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1696 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1697 *(__be32
*)dp
= cycle_lsn
;
1701 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1702 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1704 for ( ; i
< BTOBB(size
); i
++) {
1705 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1706 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1707 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1708 *(__be32
*)dp
= cycle_lsn
;
1712 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1713 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1718 * Calculate the checksum for a log buffer.
1720 * This is a little more complicated than it should be because the various
1721 * headers and the actual data are non-contiguous.
1726 struct xlog_rec_header
*rhead
,
1732 /* first generate the crc for the record header ... */
1733 crc
= xfs_start_cksum_update((char *)rhead
,
1734 sizeof(struct xlog_rec_header
),
1735 offsetof(struct xlog_rec_header
, h_crc
));
1737 /* ... then for additional cycle data for v2 logs ... */
1738 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1739 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1743 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1744 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1747 for (i
= 1; i
< xheads
; i
++) {
1748 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1749 sizeof(struct xlog_rec_ext_header
));
1753 /* ... and finally for the payload */
1754 crc
= crc32c(crc
, dp
, size
);
1756 return xfs_end_cksum(crc
);
1760 * The bdstrat callback function for log bufs. This gives us a central
1761 * place to trap bufs in case we get hit by a log I/O error and need to
1762 * shutdown. Actually, in practice, even when we didn't get a log error,
1763 * we transition the iclogs to IOERROR state *after* flushing all existing
1764 * iclogs to disk. This is because we don't want anymore new transactions to be
1765 * started or completed afterwards.
1767 * We lock the iclogbufs here so that we can serialise against IO completion
1768 * during unmount. We might be processing a shutdown triggered during unmount,
1769 * and that can occur asynchronously to the unmount thread, and hence we need to
1770 * ensure that completes before tearing down the iclogbufs. Hence we need to
1771 * hold the buffer lock across the log IO to acheive that.
1777 struct xlog_in_core
*iclog
= bp
->b_log_item
;
1780 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1781 xfs_buf_ioerror(bp
, -EIO
);
1785 * It would seem logical to return EIO here, but we rely on
1786 * the log state machine to propagate I/O errors instead of
1787 * doing it here. Similarly, IO completion will unlock the
1788 * buffer, so we don't do it here.
1798 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1799 * fashion. Previously, we should have moved the current iclog
1800 * ptr in the log to point to the next available iclog. This allows further
1801 * write to continue while this code syncs out an iclog ready to go.
1802 * Before an in-core log can be written out, the data section must be scanned
1803 * to save away the 1st word of each BBSIZE block into the header. We replace
1804 * it with the current cycle count. Each BBSIZE block is tagged with the
1805 * cycle count because there in an implicit assumption that drives will
1806 * guarantee that entire 512 byte blocks get written at once. In other words,
1807 * we can't have part of a 512 byte block written and part not written. By
1808 * tagging each block, we will know which blocks are valid when recovering
1809 * after an unclean shutdown.
1811 * This routine is single threaded on the iclog. No other thread can be in
1812 * this routine with the same iclog. Changing contents of iclog can there-
1813 * fore be done without grabbing the state machine lock. Updating the global
1814 * log will require grabbing the lock though.
1816 * The entire log manager uses a logical block numbering scheme. Only
1817 * log_sync (and then only bwrite()) know about the fact that the log may
1818 * not start with block zero on a given device. The log block start offset
1819 * is added immediately before calling bwrite().
1825 struct xlog_in_core
*iclog
)
1829 uint count
; /* byte count of bwrite */
1830 uint count_init
; /* initial count before roundup */
1831 int roundoff
; /* roundoff to BB or stripe */
1832 int split
= 0; /* split write into two regions */
1834 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1837 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1838 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1840 /* Add for LR header */
1841 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1843 /* Round out the log write size */
1844 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1845 /* we have a v2 stripe unit to use */
1846 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1848 count
= BBTOB(BTOBB(count_init
));
1850 roundoff
= count
- count_init
;
1851 ASSERT(roundoff
>= 0);
1852 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1853 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1855 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1856 roundoff
< BBTOB(1)));
1858 /* move grant heads by roundoff in sync */
1859 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1860 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1862 /* put cycle number in every block */
1863 xlog_pack_data(log
, iclog
, roundoff
);
1865 /* real byte length */
1866 size
= iclog
->ic_offset
;
1869 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1872 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1874 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1876 /* Do we need to split this write into 2 parts? */
1877 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1880 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1881 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1882 iclog
->ic_bwritecnt
= 2;
1885 * Bump the cycle numbers at the start of each block in the
1886 * part of the iclog that ends up in the buffer that gets
1887 * written to the start of the log.
1889 * Watch out for the header magic number case, though.
1891 dptr
= (char *)&iclog
->ic_header
+ count
;
1892 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1893 uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1894 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1896 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1901 iclog
->ic_bwritecnt
= 1;
1904 /* calculcate the checksum */
1905 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1906 iclog
->ic_datap
, size
);
1908 * Intentionally corrupt the log record CRC based on the error injection
1909 * frequency, if defined. This facilitates testing log recovery in the
1910 * event of torn writes. Hence, set the IOABORT state to abort the log
1911 * write on I/O completion and shutdown the fs. The subsequent mount
1912 * detects the bad CRC and attempts to recover.
1914 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1915 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1916 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1918 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1919 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1922 bp
->b_io_length
= BTOBB(count
);
1923 bp
->b_log_item
= iclog
;
1924 bp
->b_flags
&= ~XBF_FLUSH
;
1925 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1928 * Flush the data device before flushing the log to make sure all meta
1929 * data written back from the AIL actually made it to disk before
1930 * stamping the new log tail LSN into the log buffer. For an external
1931 * log we need to issue the flush explicitly, and unfortunately
1932 * synchronously here; for an internal log we can simply use the block
1933 * layer state machine for preflushes.
1935 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1936 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1938 bp
->b_flags
|= XBF_FLUSH
;
1940 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1941 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1943 xlog_verify_iclog(log
, iclog
, count
, true);
1945 /* account for log which doesn't start at block #0 */
1946 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1949 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1952 error
= xlog_bdstrat(bp
);
1954 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1958 bp
= iclog
->ic_log
->l_xbuf
;
1959 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1960 xfs_buf_associate_memory(bp
,
1961 (char *)&iclog
->ic_header
+ count
, split
);
1962 bp
->b_log_item
= iclog
;
1963 bp
->b_flags
&= ~XBF_FLUSH
;
1964 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1966 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1967 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1969 /* account for internal log which doesn't start at block #0 */
1970 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1971 error
= xlog_bdstrat(bp
);
1973 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1981 * Deallocate a log structure
1987 xlog_in_core_t
*iclog
, *next_iclog
;
1990 xlog_cil_destroy(log
);
1993 * Cycle all the iclogbuf locks to make sure all log IO completion
1994 * is done before we tear down these buffers.
1996 iclog
= log
->l_iclog
;
1997 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1998 xfs_buf_lock(iclog
->ic_bp
);
1999 xfs_buf_unlock(iclog
->ic_bp
);
2000 iclog
= iclog
->ic_next
;
2004 * Always need to ensure that the extra buffer does not point to memory
2005 * owned by another log buffer before we free it. Also, cycle the lock
2006 * first to ensure we've completed IO on it.
2008 xfs_buf_lock(log
->l_xbuf
);
2009 xfs_buf_unlock(log
->l_xbuf
);
2010 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
2011 xfs_buf_free(log
->l_xbuf
);
2013 iclog
= log
->l_iclog
;
2014 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2015 xfs_buf_free(iclog
->ic_bp
);
2016 next_iclog
= iclog
->ic_next
;
2020 spinlock_destroy(&log
->l_icloglock
);
2022 log
->l_mp
->m_log
= NULL
;
2024 } /* xlog_dealloc_log */
2027 * Update counters atomically now that memcpy is done.
2031 xlog_state_finish_copy(
2033 struct xlog_in_core
*iclog
,
2037 spin_lock(&log
->l_icloglock
);
2039 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2040 iclog
->ic_offset
+= copy_bytes
;
2042 spin_unlock(&log
->l_icloglock
);
2043 } /* xlog_state_finish_copy */
2049 * print out info relating to regions written which consume
2054 struct xfs_mount
*mp
,
2055 struct xlog_ticket
*ticket
)
2058 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2060 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2061 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2062 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2063 REG_TYPE_STR(BFORMAT
, "bformat"),
2064 REG_TYPE_STR(BCHUNK
, "bchunk"),
2065 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2066 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2067 REG_TYPE_STR(IFORMAT
, "iformat"),
2068 REG_TYPE_STR(ICORE
, "icore"),
2069 REG_TYPE_STR(IEXT
, "iext"),
2070 REG_TYPE_STR(IBROOT
, "ibroot"),
2071 REG_TYPE_STR(ILOCAL
, "ilocal"),
2072 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2073 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2074 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2075 REG_TYPE_STR(QFORMAT
, "qformat"),
2076 REG_TYPE_STR(DQUOT
, "dquot"),
2077 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2078 REG_TYPE_STR(LRHEADER
, "LR header"),
2079 REG_TYPE_STR(UNMOUNT
, "unmount"),
2080 REG_TYPE_STR(COMMIT
, "commit"),
2081 REG_TYPE_STR(TRANSHDR
, "trans header"),
2082 REG_TYPE_STR(ICREATE
, "inode create")
2086 xfs_warn(mp
, "ticket reservation summary:");
2087 xfs_warn(mp
, " unit res = %d bytes",
2088 ticket
->t_unit_res
);
2089 xfs_warn(mp
, " current res = %d bytes",
2090 ticket
->t_curr_res
);
2091 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2092 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2093 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2094 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2095 xfs_warn(mp
, " ophdr + reg = %u bytes",
2096 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2097 xfs_warn(mp
, " num regions = %u",
2100 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2101 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2102 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2103 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2104 "bad-rtype" : res_type_str
[r_type
]),
2105 ticket
->t_res_arr
[i
].r_len
);
2110 * Print a summary of the transaction.
2114 struct xfs_trans
*tp
)
2116 struct xfs_mount
*mp
= tp
->t_mountp
;
2117 struct xfs_log_item_desc
*lidp
;
2119 /* dump core transaction and ticket info */
2120 xfs_warn(mp
, "transaction summary:");
2121 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
2122 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
2123 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2125 xlog_print_tic_res(mp
, tp
->t_ticket
);
2127 /* dump each log item */
2128 list_for_each_entry(lidp
, &tp
->t_items
, lid_trans
) {
2129 struct xfs_log_item
*lip
= lidp
->lid_item
;
2130 struct xfs_log_vec
*lv
= lip
->li_lv
;
2131 struct xfs_log_iovec
*vec
;
2134 xfs_warn(mp
, "log item: ");
2135 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2136 xfs_warn(mp
, " flags = 0x%x", lip
->li_flags
);
2139 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2140 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2141 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2142 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2144 /* dump each iovec for the log item */
2145 vec
= lv
->lv_iovecp
;
2146 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2147 int dumplen
= min(vec
->i_len
, 32);
2149 xfs_warn(mp
, " iovec[%d]", i
);
2150 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2151 xfs_warn(mp
, " len = %d", vec
->i_len
);
2152 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2153 xfs_hex_dump(vec
->i_addr
, dumplen
);
2161 * Calculate the potential space needed by the log vector. Each region gets
2162 * its own xlog_op_header_t and may need to be double word aligned.
2165 xlog_write_calc_vec_length(
2166 struct xlog_ticket
*ticket
,
2167 struct xfs_log_vec
*log_vector
)
2169 struct xfs_log_vec
*lv
;
2174 /* acct for start rec of xact */
2175 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2178 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2179 /* we don't write ordered log vectors */
2180 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2183 headers
+= lv
->lv_niovecs
;
2185 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2186 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2189 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2193 ticket
->t_res_num_ophdrs
+= headers
;
2194 len
+= headers
* sizeof(struct xlog_op_header
);
2200 * If first write for transaction, insert start record We can't be trying to
2201 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2204 xlog_write_start_rec(
2205 struct xlog_op_header
*ophdr
,
2206 struct xlog_ticket
*ticket
)
2208 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2211 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2212 ophdr
->oh_clientid
= ticket
->t_clientid
;
2214 ophdr
->oh_flags
= XLOG_START_TRANS
;
2217 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2219 return sizeof(struct xlog_op_header
);
2222 static xlog_op_header_t
*
2223 xlog_write_setup_ophdr(
2225 struct xlog_op_header
*ophdr
,
2226 struct xlog_ticket
*ticket
,
2229 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2230 ophdr
->oh_clientid
= ticket
->t_clientid
;
2233 /* are we copying a commit or unmount record? */
2234 ophdr
->oh_flags
= flags
;
2237 * We've seen logs corrupted with bad transaction client ids. This
2238 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2239 * and shut down the filesystem.
2241 switch (ophdr
->oh_clientid
) {
2242 case XFS_TRANSACTION
:
2248 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT
,
2249 ophdr
->oh_clientid
, ticket
);
2257 * Set up the parameters of the region copy into the log. This has
2258 * to handle region write split across multiple log buffers - this
2259 * state is kept external to this function so that this code can
2260 * be written in an obvious, self documenting manner.
2263 xlog_write_setup_copy(
2264 struct xlog_ticket
*ticket
,
2265 struct xlog_op_header
*ophdr
,
2266 int space_available
,
2270 int *last_was_partial_copy
,
2271 int *bytes_consumed
)
2275 still_to_copy
= space_required
- *bytes_consumed
;
2276 *copy_off
= *bytes_consumed
;
2278 if (still_to_copy
<= space_available
) {
2279 /* write of region completes here */
2280 *copy_len
= still_to_copy
;
2281 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2282 if (*last_was_partial_copy
)
2283 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2284 *last_was_partial_copy
= 0;
2285 *bytes_consumed
= 0;
2289 /* partial write of region, needs extra log op header reservation */
2290 *copy_len
= space_available
;
2291 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2292 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2293 if (*last_was_partial_copy
)
2294 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2295 *bytes_consumed
+= *copy_len
;
2296 (*last_was_partial_copy
)++;
2298 /* account for new log op header */
2299 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2300 ticket
->t_res_num_ophdrs
++;
2302 return sizeof(struct xlog_op_header
);
2306 xlog_write_copy_finish(
2308 struct xlog_in_core
*iclog
,
2313 int *partial_copy_len
,
2315 struct xlog_in_core
**commit_iclog
)
2317 if (*partial_copy
) {
2319 * This iclog has already been marked WANT_SYNC by
2320 * xlog_state_get_iclog_space.
2322 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2325 return xlog_state_release_iclog(log
, iclog
);
2329 *partial_copy_len
= 0;
2331 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2332 /* no more space in this iclog - push it. */
2333 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2337 spin_lock(&log
->l_icloglock
);
2338 xlog_state_want_sync(log
, iclog
);
2339 spin_unlock(&log
->l_icloglock
);
2342 return xlog_state_release_iclog(log
, iclog
);
2343 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2344 *commit_iclog
= iclog
;
2351 * Write some region out to in-core log
2353 * This will be called when writing externally provided regions or when
2354 * writing out a commit record for a given transaction.
2356 * General algorithm:
2357 * 1. Find total length of this write. This may include adding to the
2358 * lengths passed in.
2359 * 2. Check whether we violate the tickets reservation.
2360 * 3. While writing to this iclog
2361 * A. Reserve as much space in this iclog as can get
2362 * B. If this is first write, save away start lsn
2363 * C. While writing this region:
2364 * 1. If first write of transaction, write start record
2365 * 2. Write log operation header (header per region)
2366 * 3. Find out if we can fit entire region into this iclog
2367 * 4. Potentially, verify destination memcpy ptr
2368 * 5. Memcpy (partial) region
2369 * 6. If partial copy, release iclog; otherwise, continue
2370 * copying more regions into current iclog
2371 * 4. Mark want sync bit (in simulation mode)
2372 * 5. Release iclog for potential flush to on-disk log.
2375 * 1. Panic if reservation is overrun. This should never happen since
2376 * reservation amounts are generated internal to the filesystem.
2378 * 1. Tickets are single threaded data structures.
2379 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2380 * syncing routine. When a single log_write region needs to span
2381 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2382 * on all log operation writes which don't contain the end of the
2383 * region. The XLOG_END_TRANS bit is used for the in-core log
2384 * operation which contains the end of the continued log_write region.
2385 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2386 * we don't really know exactly how much space will be used. As a result,
2387 * we don't update ic_offset until the end when we know exactly how many
2388 * bytes have been written out.
2393 struct xfs_log_vec
*log_vector
,
2394 struct xlog_ticket
*ticket
,
2395 xfs_lsn_t
*start_lsn
,
2396 struct xlog_in_core
**commit_iclog
,
2399 struct xlog_in_core
*iclog
= NULL
;
2400 struct xfs_log_iovec
*vecp
;
2401 struct xfs_log_vec
*lv
;
2404 int partial_copy
= 0;
2405 int partial_copy_len
= 0;
2413 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2416 * Region headers and bytes are already accounted for.
2417 * We only need to take into account start records and
2418 * split regions in this function.
2420 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2421 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2424 * Commit record headers need to be accounted for. These
2425 * come in as separate writes so are easy to detect.
2427 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2428 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2430 if (ticket
->t_curr_res
< 0) {
2431 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2432 "ctx ticket reservation ran out. Need to up reservation");
2433 xlog_print_tic_res(log
->l_mp
, ticket
);
2434 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2439 vecp
= lv
->lv_iovecp
;
2440 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2444 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2445 &contwr
, &log_offset
);
2449 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2450 ptr
= iclog
->ic_datap
+ log_offset
;
2452 /* start_lsn is the first lsn written to. That's all we need. */
2454 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2457 * This loop writes out as many regions as can fit in the amount
2458 * of space which was allocated by xlog_state_get_iclog_space().
2460 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2461 struct xfs_log_iovec
*reg
;
2462 struct xlog_op_header
*ophdr
;
2466 bool ordered
= false;
2468 /* ordered log vectors have no regions to write */
2469 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2470 ASSERT(lv
->lv_niovecs
== 0);
2476 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2477 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2479 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2480 if (start_rec_copy
) {
2482 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2486 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2490 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2491 sizeof(struct xlog_op_header
));
2493 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2494 iclog
->ic_size
-log_offset
,
2496 ©_off
, ©_len
,
2499 xlog_verify_dest_ptr(log
, ptr
);
2504 * Unmount records just log an opheader, so can have
2505 * empty payloads with no data region to copy. Hence we
2506 * only copy the payload if the vector says it has data
2509 ASSERT(copy_len
>= 0);
2511 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2512 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2515 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2517 data_cnt
+= contwr
? copy_len
: 0;
2519 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2520 &record_cnt
, &data_cnt
,
2529 * if we had a partial copy, we need to get more iclog
2530 * space but we don't want to increment the region
2531 * index because there is still more is this region to
2534 * If we completed writing this region, and we flushed
2535 * the iclog (indicated by resetting of the record
2536 * count), then we also need to get more log space. If
2537 * this was the last record, though, we are done and
2543 if (++index
== lv
->lv_niovecs
) {
2548 vecp
= lv
->lv_iovecp
;
2550 if (record_cnt
== 0 && !ordered
) {
2560 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2562 return xlog_state_release_iclog(log
, iclog
);
2564 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2565 *commit_iclog
= iclog
;
2570 /*****************************************************************************
2572 * State Machine functions
2574 *****************************************************************************
2577 /* Clean iclogs starting from the head. This ordering must be
2578 * maintained, so an iclog doesn't become ACTIVE beyond one that
2579 * is SYNCING. This is also required to maintain the notion that we use
2580 * a ordered wait queue to hold off would be writers to the log when every
2581 * iclog is trying to sync to disk.
2583 * State Change: DIRTY -> ACTIVE
2586 xlog_state_clean_log(
2589 xlog_in_core_t
*iclog
;
2592 iclog
= log
->l_iclog
;
2594 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2595 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2596 iclog
->ic_offset
= 0;
2597 ASSERT(iclog
->ic_callback
== NULL
);
2599 * If the number of ops in this iclog indicate it just
2600 * contains the dummy transaction, we can
2601 * change state into IDLE (the second time around).
2602 * Otherwise we should change the state into
2604 * We don't need to cover the dummy.
2607 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2612 * We have two dirty iclogs so start over
2613 * This could also be num of ops indicates
2614 * this is not the dummy going out.
2618 iclog
->ic_header
.h_num_logops
= 0;
2619 memset(iclog
->ic_header
.h_cycle_data
, 0,
2620 sizeof(iclog
->ic_header
.h_cycle_data
));
2621 iclog
->ic_header
.h_lsn
= 0;
2622 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2625 break; /* stop cleaning */
2626 iclog
= iclog
->ic_next
;
2627 } while (iclog
!= log
->l_iclog
);
2629 /* log is locked when we are called */
2631 * Change state for the dummy log recording.
2632 * We usually go to NEED. But we go to NEED2 if the changed indicates
2633 * we are done writing the dummy record.
2634 * If we are done with the second dummy recored (DONE2), then
2638 switch (log
->l_covered_state
) {
2639 case XLOG_STATE_COVER_IDLE
:
2640 case XLOG_STATE_COVER_NEED
:
2641 case XLOG_STATE_COVER_NEED2
:
2642 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2645 case XLOG_STATE_COVER_DONE
:
2647 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2649 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2652 case XLOG_STATE_COVER_DONE2
:
2654 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2656 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2663 } /* xlog_state_clean_log */
2666 xlog_get_lowest_lsn(
2669 xlog_in_core_t
*lsn_log
;
2670 xfs_lsn_t lowest_lsn
, lsn
;
2672 lsn_log
= log
->l_iclog
;
2675 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2676 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2677 if ((lsn
&& !lowest_lsn
) ||
2678 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2682 lsn_log
= lsn_log
->ic_next
;
2683 } while (lsn_log
!= log
->l_iclog
);
2689 xlog_state_do_callback(
2692 struct xlog_in_core
*ciclog
)
2694 xlog_in_core_t
*iclog
;
2695 xlog_in_core_t
*first_iclog
; /* used to know when we've
2696 * processed all iclogs once */
2697 xfs_log_callback_t
*cb
, *cb_next
;
2699 xfs_lsn_t lowest_lsn
;
2700 int ioerrors
; /* counter: iclogs with errors */
2701 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2702 int funcdidcallbacks
; /* flag: function did callbacks */
2703 int repeats
; /* for issuing console warnings if
2704 * looping too many times */
2707 spin_lock(&log
->l_icloglock
);
2708 first_iclog
= iclog
= log
->l_iclog
;
2710 funcdidcallbacks
= 0;
2715 * Scan all iclogs starting with the one pointed to by the
2716 * log. Reset this starting point each time the log is
2717 * unlocked (during callbacks).
2719 * Keep looping through iclogs until one full pass is made
2720 * without running any callbacks.
2722 first_iclog
= log
->l_iclog
;
2723 iclog
= log
->l_iclog
;
2724 loopdidcallbacks
= 0;
2729 /* skip all iclogs in the ACTIVE & DIRTY states */
2730 if (iclog
->ic_state
&
2731 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2732 iclog
= iclog
->ic_next
;
2737 * Between marking a filesystem SHUTDOWN and stopping
2738 * the log, we do flush all iclogs to disk (if there
2739 * wasn't a log I/O error). So, we do want things to
2740 * go smoothly in case of just a SHUTDOWN w/o a
2743 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2745 * Can only perform callbacks in order. Since
2746 * this iclog is not in the DONE_SYNC/
2747 * DO_CALLBACK state, we skip the rest and
2748 * just try to clean up. If we set our iclog
2749 * to DO_CALLBACK, we will not process it when
2750 * we retry since a previous iclog is in the
2751 * CALLBACK and the state cannot change since
2752 * we are holding the l_icloglock.
2754 if (!(iclog
->ic_state
&
2755 (XLOG_STATE_DONE_SYNC
|
2756 XLOG_STATE_DO_CALLBACK
))) {
2757 if (ciclog
&& (ciclog
->ic_state
==
2758 XLOG_STATE_DONE_SYNC
)) {
2759 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2764 * We now have an iclog that is in either the
2765 * DO_CALLBACK or DONE_SYNC states. The other
2766 * states (WANT_SYNC, SYNCING, or CALLBACK were
2767 * caught by the above if and are going to
2768 * clean (i.e. we aren't doing their callbacks)
2773 * We will do one more check here to see if we
2774 * have chased our tail around.
2777 lowest_lsn
= xlog_get_lowest_lsn(log
);
2779 XFS_LSN_CMP(lowest_lsn
,
2780 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2781 iclog
= iclog
->ic_next
;
2782 continue; /* Leave this iclog for
2786 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2790 * Completion of a iclog IO does not imply that
2791 * a transaction has completed, as transactions
2792 * can be large enough to span many iclogs. We
2793 * cannot change the tail of the log half way
2794 * through a transaction as this may be the only
2795 * transaction in the log and moving th etail to
2796 * point to the middle of it will prevent
2797 * recovery from finding the start of the
2798 * transaction. Hence we should only update the
2799 * last_sync_lsn if this iclog contains
2800 * transaction completion callbacks on it.
2802 * We have to do this before we drop the
2803 * icloglock to ensure we are the only one that
2806 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2807 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2808 if (iclog
->ic_callback
)
2809 atomic64_set(&log
->l_last_sync_lsn
,
2810 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2815 spin_unlock(&log
->l_icloglock
);
2818 * Keep processing entries in the callback list until
2819 * we come around and it is empty. We need to
2820 * atomically see that the list is empty and change the
2821 * state to DIRTY so that we don't miss any more
2822 * callbacks being added.
2824 spin_lock(&iclog
->ic_callback_lock
);
2825 cb
= iclog
->ic_callback
;
2827 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2828 iclog
->ic_callback
= NULL
;
2829 spin_unlock(&iclog
->ic_callback_lock
);
2831 /* perform callbacks in the order given */
2832 for (; cb
; cb
= cb_next
) {
2833 cb_next
= cb
->cb_next
;
2834 cb
->cb_func(cb
->cb_arg
, aborted
);
2836 spin_lock(&iclog
->ic_callback_lock
);
2837 cb
= iclog
->ic_callback
;
2843 spin_lock(&log
->l_icloglock
);
2844 ASSERT(iclog
->ic_callback
== NULL
);
2845 spin_unlock(&iclog
->ic_callback_lock
);
2846 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2847 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2850 * Transition from DIRTY to ACTIVE if applicable.
2851 * NOP if STATE_IOERROR.
2853 xlog_state_clean_log(log
);
2855 /* wake up threads waiting in xfs_log_force() */
2856 wake_up_all(&iclog
->ic_force_wait
);
2858 iclog
= iclog
->ic_next
;
2859 } while (first_iclog
!= iclog
);
2861 if (repeats
> 5000) {
2862 flushcnt
+= repeats
;
2865 "%s: possible infinite loop (%d iterations)",
2866 __func__
, flushcnt
);
2868 } while (!ioerrors
&& loopdidcallbacks
);
2872 * Make one last gasp attempt to see if iclogs are being left in limbo.
2873 * If the above loop finds an iclog earlier than the current iclog and
2874 * in one of the syncing states, the current iclog is put into
2875 * DO_CALLBACK and the callbacks are deferred to the completion of the
2876 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2877 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2880 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2881 * for ic_state == SYNCING.
2883 if (funcdidcallbacks
) {
2884 first_iclog
= iclog
= log
->l_iclog
;
2886 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2888 * Terminate the loop if iclogs are found in states
2889 * which will cause other threads to clean up iclogs.
2891 * SYNCING - i/o completion will go through logs
2892 * DONE_SYNC - interrupt thread should be waiting for
2894 * IOERROR - give up hope all ye who enter here
2896 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2897 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2898 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2899 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2901 iclog
= iclog
->ic_next
;
2902 } while (first_iclog
!= iclog
);
2906 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2908 spin_unlock(&log
->l_icloglock
);
2911 wake_up_all(&log
->l_flush_wait
);
2916 * Finish transitioning this iclog to the dirty state.
2918 * Make sure that we completely execute this routine only when this is
2919 * the last call to the iclog. There is a good chance that iclog flushes,
2920 * when we reach the end of the physical log, get turned into 2 separate
2921 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2922 * routine. By using the reference count bwritecnt, we guarantee that only
2923 * the second completion goes through.
2925 * Callbacks could take time, so they are done outside the scope of the
2926 * global state machine log lock.
2929 xlog_state_done_syncing(
2930 xlog_in_core_t
*iclog
,
2933 struct xlog
*log
= iclog
->ic_log
;
2935 spin_lock(&log
->l_icloglock
);
2937 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2938 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2939 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2940 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2944 * If we got an error, either on the first buffer, or in the case of
2945 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2946 * and none should ever be attempted to be written to disk
2949 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2950 if (--iclog
->ic_bwritecnt
== 1) {
2951 spin_unlock(&log
->l_icloglock
);
2954 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2958 * Someone could be sleeping prior to writing out the next
2959 * iclog buffer, we wake them all, one will get to do the
2960 * I/O, the others get to wait for the result.
2962 wake_up_all(&iclog
->ic_write_wait
);
2963 spin_unlock(&log
->l_icloglock
);
2964 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2965 } /* xlog_state_done_syncing */
2969 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2970 * sleep. We wait on the flush queue on the head iclog as that should be
2971 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2972 * we will wait here and all new writes will sleep until a sync completes.
2974 * The in-core logs are used in a circular fashion. They are not used
2975 * out-of-order even when an iclog past the head is free.
2978 * * log_offset where xlog_write() can start writing into the in-core
2980 * * in-core log pointer to which xlog_write() should write.
2981 * * boolean indicating this is a continued write to an in-core log.
2982 * If this is the last write, then the in-core log's offset field
2983 * needs to be incremented, depending on the amount of data which
2987 xlog_state_get_iclog_space(
2990 struct xlog_in_core
**iclogp
,
2991 struct xlog_ticket
*ticket
,
2992 int *continued_write
,
2996 xlog_rec_header_t
*head
;
2997 xlog_in_core_t
*iclog
;
3001 spin_lock(&log
->l_icloglock
);
3002 if (XLOG_FORCED_SHUTDOWN(log
)) {
3003 spin_unlock(&log
->l_icloglock
);
3007 iclog
= log
->l_iclog
;
3008 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
3009 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
3011 /* Wait for log writes to have flushed */
3012 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
3016 head
= &iclog
->ic_header
;
3018 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
3019 log_offset
= iclog
->ic_offset
;
3021 /* On the 1st write to an iclog, figure out lsn. This works
3022 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3023 * committing to. If the offset is set, that's how many blocks
3026 if (log_offset
== 0) {
3027 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3028 xlog_tic_add_region(ticket
,
3030 XLOG_REG_TYPE_LRHEADER
);
3031 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3032 head
->h_lsn
= cpu_to_be64(
3033 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3034 ASSERT(log
->l_curr_block
>= 0);
3037 /* If there is enough room to write everything, then do it. Otherwise,
3038 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3039 * bit is on, so this will get flushed out. Don't update ic_offset
3040 * until you know exactly how many bytes get copied. Therefore, wait
3041 * until later to update ic_offset.
3043 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3044 * can fit into remaining data section.
3046 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3047 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3050 * If I'm the only one writing to this iclog, sync it to disk.
3051 * We need to do an atomic compare and decrement here to avoid
3052 * racing with concurrent atomic_dec_and_lock() calls in
3053 * xlog_state_release_iclog() when there is more than one
3054 * reference to the iclog.
3056 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
3057 /* we are the only one */
3058 spin_unlock(&log
->l_icloglock
);
3059 error
= xlog_state_release_iclog(log
, iclog
);
3063 spin_unlock(&log
->l_icloglock
);
3068 /* Do we have enough room to write the full amount in the remainder
3069 * of this iclog? Or must we continue a write on the next iclog and
3070 * mark this iclog as completely taken? In the case where we switch
3071 * iclogs (to mark it taken), this particular iclog will release/sync
3072 * to disk in xlog_write().
3074 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3075 *continued_write
= 0;
3076 iclog
->ic_offset
+= len
;
3078 *continued_write
= 1;
3079 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3083 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3084 spin_unlock(&log
->l_icloglock
);
3086 *logoffsetp
= log_offset
;
3088 } /* xlog_state_get_iclog_space */
3090 /* The first cnt-1 times through here we don't need to
3091 * move the grant write head because the permanent
3092 * reservation has reserved cnt times the unit amount.
3093 * Release part of current permanent unit reservation and
3094 * reset current reservation to be one units worth. Also
3095 * move grant reservation head forward.
3098 xlog_regrant_reserve_log_space(
3100 struct xlog_ticket
*ticket
)
3102 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3104 if (ticket
->t_cnt
> 0)
3107 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3108 ticket
->t_curr_res
);
3109 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3110 ticket
->t_curr_res
);
3111 ticket
->t_curr_res
= ticket
->t_unit_res
;
3112 xlog_tic_reset_res(ticket
);
3114 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3116 /* just return if we still have some of the pre-reserved space */
3117 if (ticket
->t_cnt
> 0)
3120 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3121 ticket
->t_unit_res
);
3123 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3125 ticket
->t_curr_res
= ticket
->t_unit_res
;
3126 xlog_tic_reset_res(ticket
);
3127 } /* xlog_regrant_reserve_log_space */
3131 * Give back the space left from a reservation.
3133 * All the information we need to make a correct determination of space left
3134 * is present. For non-permanent reservations, things are quite easy. The
3135 * count should have been decremented to zero. We only need to deal with the
3136 * space remaining in the current reservation part of the ticket. If the
3137 * ticket contains a permanent reservation, there may be left over space which
3138 * needs to be released. A count of N means that N-1 refills of the current
3139 * reservation can be done before we need to ask for more space. The first
3140 * one goes to fill up the first current reservation. Once we run out of
3141 * space, the count will stay at zero and the only space remaining will be
3142 * in the current reservation field.
3145 xlog_ungrant_log_space(
3147 struct xlog_ticket
*ticket
)
3151 if (ticket
->t_cnt
> 0)
3154 trace_xfs_log_ungrant_enter(log
, ticket
);
3155 trace_xfs_log_ungrant_sub(log
, ticket
);
3158 * If this is a permanent reservation ticket, we may be able to free
3159 * up more space based on the remaining count.
3161 bytes
= ticket
->t_curr_res
;
3162 if (ticket
->t_cnt
> 0) {
3163 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3164 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3167 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3168 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3170 trace_xfs_log_ungrant_exit(log
, ticket
);
3172 xfs_log_space_wake(log
->l_mp
);
3176 * Flush iclog to disk if this is the last reference to the given iclog and
3177 * the WANT_SYNC bit is set.
3179 * When this function is entered, the iclog is not necessarily in the
3180 * WANT_SYNC state. It may be sitting around waiting to get filled.
3185 xlog_state_release_iclog(
3187 struct xlog_in_core
*iclog
)
3189 int sync
= 0; /* do we sync? */
3191 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3194 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3195 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3198 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3199 spin_unlock(&log
->l_icloglock
);
3202 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3203 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3205 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3206 /* update tail before writing to iclog */
3207 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3209 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3210 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3211 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3212 /* cycle incremented when incrementing curr_block */
3214 spin_unlock(&log
->l_icloglock
);
3217 * We let the log lock go, so it's possible that we hit a log I/O
3218 * error or some other SHUTDOWN condition that marks the iclog
3219 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3220 * this iclog has consistent data, so we ignore IOERROR
3221 * flags after this point.
3224 return xlog_sync(log
, iclog
);
3226 } /* xlog_state_release_iclog */
3230 * This routine will mark the current iclog in the ring as WANT_SYNC
3231 * and move the current iclog pointer to the next iclog in the ring.
3232 * When this routine is called from xlog_state_get_iclog_space(), the
3233 * exact size of the iclog has not yet been determined. All we know is
3234 * that every data block. We have run out of space in this log record.
3237 xlog_state_switch_iclogs(
3239 struct xlog_in_core
*iclog
,
3242 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3244 eventual_size
= iclog
->ic_offset
;
3245 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3246 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3247 log
->l_prev_block
= log
->l_curr_block
;
3248 log
->l_prev_cycle
= log
->l_curr_cycle
;
3250 /* roll log?: ic_offset changed later */
3251 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3253 /* Round up to next log-sunit */
3254 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3255 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3256 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3257 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3260 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3262 * Rewind the current block before the cycle is bumped to make
3263 * sure that the combined LSN never transiently moves forward
3264 * when the log wraps to the next cycle. This is to support the
3265 * unlocked sample of these fields from xlog_valid_lsn(). Most
3266 * other cases should acquire l_icloglock.
3268 log
->l_curr_block
-= log
->l_logBBsize
;
3269 ASSERT(log
->l_curr_block
>= 0);
3271 log
->l_curr_cycle
++;
3272 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3273 log
->l_curr_cycle
++;
3275 ASSERT(iclog
== log
->l_iclog
);
3276 log
->l_iclog
= iclog
->ic_next
;
3277 } /* xlog_state_switch_iclogs */
3280 * Write out all data in the in-core log as of this exact moment in time.
3282 * Data may be written to the in-core log during this call. However,
3283 * we don't guarantee this data will be written out. A change from past
3284 * implementation means this routine will *not* write out zero length LRs.
3286 * Basically, we try and perform an intelligent scan of the in-core logs.
3287 * If we determine there is no flushable data, we just return. There is no
3288 * flushable data if:
3290 * 1. the current iclog is active and has no data; the previous iclog
3291 * is in the active or dirty state.
3292 * 2. the current iclog is drity, and the previous iclog is in the
3293 * active or dirty state.
3297 * 1. the current iclog is not in the active nor dirty state.
3298 * 2. the current iclog dirty, and the previous iclog is not in the
3299 * active nor dirty state.
3300 * 3. the current iclog is active, and there is another thread writing
3301 * to this particular iclog.
3302 * 4. a) the current iclog is active and has no other writers
3303 * b) when we return from flushing out this iclog, it is still
3304 * not in the active nor dirty state.
3308 struct xfs_mount
*mp
,
3312 struct xlog
*log
= mp
->m_log
;
3313 struct xlog_in_core
*iclog
;
3316 XFS_STATS_INC(mp
, xs_log_force
);
3318 xlog_cil_force(log
);
3320 spin_lock(&log
->l_icloglock
);
3322 iclog
= log
->l_iclog
;
3323 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3324 spin_unlock(&log
->l_icloglock
);
3328 /* If the head iclog is not active nor dirty, we just attach
3329 * ourselves to the head and go to sleep.
3331 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3332 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3334 * If the head is dirty or (active and empty), then
3335 * we need to look at the previous iclog. If the previous
3336 * iclog is active or dirty we are done. There is nothing
3337 * to sync out. Otherwise, we attach ourselves to the
3338 * previous iclog and go to sleep.
3340 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3341 (atomic_read(&iclog
->ic_refcnt
) == 0
3342 && iclog
->ic_offset
== 0)) {
3343 iclog
= iclog
->ic_prev
;
3344 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3345 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3350 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3351 /* We are the only one with access to this
3352 * iclog. Flush it out now. There should
3353 * be a roundoff of zero to show that someone
3354 * has already taken care of the roundoff from
3355 * the previous sync.
3357 atomic_inc(&iclog
->ic_refcnt
);
3358 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3359 xlog_state_switch_iclogs(log
, iclog
, 0);
3360 spin_unlock(&log
->l_icloglock
);
3362 if (xlog_state_release_iclog(log
, iclog
))
3367 spin_lock(&log
->l_icloglock
);
3368 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3369 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3374 /* Someone else is writing to this iclog.
3375 * Use its call to flush out the data. However,
3376 * the other thread may not force out this LR,
3377 * so we mark it WANT_SYNC.
3379 xlog_state_switch_iclogs(log
, iclog
, 0);
3385 /* By the time we come around again, the iclog could've been filled
3386 * which would give it another lsn. If we have a new lsn, just
3387 * return because the relevant data has been flushed.
3390 if (flags
& XFS_LOG_SYNC
) {
3392 * We must check if we're shutting down here, before
3393 * we wait, while we're holding the l_icloglock.
3394 * Then we check again after waking up, in case our
3395 * sleep was disturbed by a bad news.
3397 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3398 spin_unlock(&log
->l_icloglock
);
3401 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3402 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3404 * No need to grab the log lock here since we're
3405 * only deciding whether or not to return EIO
3406 * and the memory read should be atomic.
3408 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3413 spin_unlock(&log
->l_icloglock
);
3419 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3420 * about errors or whether the log was flushed or not. This is the normal
3421 * interface to use when trying to unpin items or move the log forward.
3428 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3429 _xfs_log_force(mp
, flags
, NULL
);
3433 * Force the in-core log to disk for a specific LSN.
3435 * Find in-core log with lsn.
3436 * If it is in the DIRTY state, just return.
3437 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3438 * state and go to sleep or return.
3439 * If it is in any other state, go to sleep or return.
3441 * Synchronous forces are implemented with a signal variable. All callers
3442 * to force a given lsn to disk will wait on a the sv attached to the
3443 * specific in-core log. When given in-core log finally completes its
3444 * write to disk, that thread will wake up all threads waiting on the
3449 struct xfs_mount
*mp
,
3454 struct xlog
*log
= mp
->m_log
;
3455 struct xlog_in_core
*iclog
;
3456 int already_slept
= 0;
3460 XFS_STATS_INC(mp
, xs_log_force
);
3462 lsn
= xlog_cil_force_lsn(log
, lsn
);
3463 if (lsn
== NULLCOMMITLSN
)
3467 spin_lock(&log
->l_icloglock
);
3468 iclog
= log
->l_iclog
;
3469 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3470 spin_unlock(&log
->l_icloglock
);
3475 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3476 iclog
= iclog
->ic_next
;
3480 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3481 spin_unlock(&log
->l_icloglock
);
3485 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3487 * We sleep here if we haven't already slept (e.g.
3488 * this is the first time we've looked at the correct
3489 * iclog buf) and the buffer before us is going to
3490 * be sync'ed. The reason for this is that if we
3491 * are doing sync transactions here, by waiting for
3492 * the previous I/O to complete, we can allow a few
3493 * more transactions into this iclog before we close
3496 * Otherwise, we mark the buffer WANT_SYNC, and bump
3497 * up the refcnt so we can release the log (which
3498 * drops the ref count). The state switch keeps new
3499 * transaction commits from using this buffer. When
3500 * the current commits finish writing into the buffer,
3501 * the refcount will drop to zero and the buffer will
3504 if (!already_slept
&&
3505 (iclog
->ic_prev
->ic_state
&
3506 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3507 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3509 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3511 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3516 atomic_inc(&iclog
->ic_refcnt
);
3517 xlog_state_switch_iclogs(log
, iclog
, 0);
3518 spin_unlock(&log
->l_icloglock
);
3519 if (xlog_state_release_iclog(log
, iclog
))
3523 spin_lock(&log
->l_icloglock
);
3526 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3528 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3530 * Don't wait on completion if we know that we've
3531 * gotten a log write error.
3533 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3534 spin_unlock(&log
->l_icloglock
);
3537 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3538 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3540 * No need to grab the log lock here since we're
3541 * only deciding whether or not to return EIO
3542 * and the memory read should be atomic.
3544 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3546 } else { /* just return */
3547 spin_unlock(&log
->l_icloglock
);
3551 } while (iclog
!= log
->l_iclog
);
3553 spin_unlock(&log
->l_icloglock
);
3558 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3559 * about errors or whether the log was flushed or not. This is the normal
3560 * interface to use when trying to unpin items or move the log forward.
3568 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3569 _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3573 * Called when we want to mark the current iclog as being ready to sync to
3577 xlog_state_want_sync(
3579 struct xlog_in_core
*iclog
)
3581 assert_spin_locked(&log
->l_icloglock
);
3583 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3584 xlog_state_switch_iclogs(log
, iclog
, 0);
3586 ASSERT(iclog
->ic_state
&
3587 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3592 /*****************************************************************************
3596 *****************************************************************************
3600 * Free a used ticket when its refcount falls to zero.
3604 xlog_ticket_t
*ticket
)
3606 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3607 if (atomic_dec_and_test(&ticket
->t_ref
))
3608 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3613 xlog_ticket_t
*ticket
)
3615 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3616 atomic_inc(&ticket
->t_ref
);
3621 * Figure out the total log space unit (in bytes) that would be
3622 * required for a log ticket.
3625 xfs_log_calc_unit_res(
3626 struct xfs_mount
*mp
,
3629 struct xlog
*log
= mp
->m_log
;
3634 * Permanent reservations have up to 'cnt'-1 active log operations
3635 * in the log. A unit in this case is the amount of space for one
3636 * of these log operations. Normal reservations have a cnt of 1
3637 * and their unit amount is the total amount of space required.
3639 * The following lines of code account for non-transaction data
3640 * which occupy space in the on-disk log.
3642 * Normal form of a transaction is:
3643 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3644 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3646 * We need to account for all the leadup data and trailer data
3647 * around the transaction data.
3648 * And then we need to account for the worst case in terms of using
3650 * The worst case will happen if:
3651 * - the placement of the transaction happens to be such that the
3652 * roundoff is at its maximum
3653 * - the transaction data is synced before the commit record is synced
3654 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3655 * Therefore the commit record is in its own Log Record.
3656 * This can happen as the commit record is called with its
3657 * own region to xlog_write().
3658 * This then means that in the worst case, roundoff can happen for
3659 * the commit-rec as well.
3660 * The commit-rec is smaller than padding in this scenario and so it is
3661 * not added separately.
3664 /* for trans header */
3665 unit_bytes
+= sizeof(xlog_op_header_t
);
3666 unit_bytes
+= sizeof(xfs_trans_header_t
);
3669 unit_bytes
+= sizeof(xlog_op_header_t
);
3672 * for LR headers - the space for data in an iclog is the size minus
3673 * the space used for the headers. If we use the iclog size, then we
3674 * undercalculate the number of headers required.
3676 * Furthermore - the addition of op headers for split-recs might
3677 * increase the space required enough to require more log and op
3678 * headers, so take that into account too.
3680 * IMPORTANT: This reservation makes the assumption that if this
3681 * transaction is the first in an iclog and hence has the LR headers
3682 * accounted to it, then the remaining space in the iclog is
3683 * exclusively for this transaction. i.e. if the transaction is larger
3684 * than the iclog, it will be the only thing in that iclog.
3685 * Fundamentally, this means we must pass the entire log vector to
3686 * xlog_write to guarantee this.
3688 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3689 num_headers
= howmany(unit_bytes
, iclog_space
);
3691 /* for split-recs - ophdrs added when data split over LRs */
3692 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3694 /* add extra header reservations if we overrun */
3695 while (!num_headers
||
3696 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3697 unit_bytes
+= sizeof(xlog_op_header_t
);
3700 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3702 /* for commit-rec LR header - note: padding will subsume the ophdr */
3703 unit_bytes
+= log
->l_iclog_hsize
;
3705 /* for roundoff padding for transaction data and one for commit record */
3706 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3707 /* log su roundoff */
3708 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3711 unit_bytes
+= 2 * BBSIZE
;
3718 * Allocate and initialise a new log ticket.
3720 struct xlog_ticket
*
3727 xfs_km_flags_t alloc_flags
)
3729 struct xlog_ticket
*tic
;
3732 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3736 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3738 atomic_set(&tic
->t_ref
, 1);
3739 tic
->t_task
= current
;
3740 INIT_LIST_HEAD(&tic
->t_queue
);
3741 tic
->t_unit_res
= unit_res
;
3742 tic
->t_curr_res
= unit_res
;
3745 tic
->t_tid
= prandom_u32();
3746 tic
->t_clientid
= client
;
3747 tic
->t_flags
= XLOG_TIC_INITED
;
3749 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3751 xlog_tic_reset_res(tic
);
3757 /******************************************************************************
3759 * Log debug routines
3761 ******************************************************************************
3765 * Make sure that the destination ptr is within the valid data region of
3766 * one of the iclogs. This uses backup pointers stored in a different
3767 * part of the log in case we trash the log structure.
3770 xlog_verify_dest_ptr(
3777 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3778 if (ptr
>= log
->l_iclog_bak
[i
] &&
3779 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3784 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3788 * Check to make sure the grant write head didn't just over lap the tail. If
3789 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3790 * the cycles differ by exactly one and check the byte count.
3792 * This check is run unlocked, so can give false positives. Rather than assert
3793 * on failures, use a warn-once flag and a panic tag to allow the admin to
3794 * determine if they want to panic the machine when such an error occurs. For
3795 * debug kernels this will have the same effect as using an assert but, unlinke
3796 * an assert, it can be turned off at runtime.
3799 xlog_verify_grant_tail(
3802 int tail_cycle
, tail_blocks
;
3805 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3806 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3807 if (tail_cycle
!= cycle
) {
3808 if (cycle
- 1 != tail_cycle
&&
3809 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3810 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3811 "%s: cycle - 1 != tail_cycle", __func__
);
3812 log
->l_flags
|= XLOG_TAIL_WARN
;
3815 if (space
> BBTOB(tail_blocks
) &&
3816 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3817 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3818 "%s: space > BBTOB(tail_blocks)", __func__
);
3819 log
->l_flags
|= XLOG_TAIL_WARN
;
3824 /* check if it will fit */
3826 xlog_verify_tail_lsn(
3828 struct xlog_in_core
*iclog
,
3833 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3835 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3836 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3837 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3839 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3841 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3842 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3844 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3845 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3846 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3848 } /* xlog_verify_tail_lsn */
3851 * Perform a number of checks on the iclog before writing to disk.
3853 * 1. Make sure the iclogs are still circular
3854 * 2. Make sure we have a good magic number
3855 * 3. Make sure we don't have magic numbers in the data
3856 * 4. Check fields of each log operation header for:
3857 * A. Valid client identifier
3858 * B. tid ptr value falls in valid ptr space (user space code)
3859 * C. Length in log record header is correct according to the
3860 * individual operation headers within record.
3861 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3862 * log, check the preceding blocks of the physical log to make sure all
3863 * the cycle numbers agree with the current cycle number.
3868 struct xlog_in_core
*iclog
,
3872 xlog_op_header_t
*ophead
;
3873 xlog_in_core_t
*icptr
;
3874 xlog_in_core_2_t
*xhdr
;
3875 void *base_ptr
, *ptr
, *p
;
3876 ptrdiff_t field_offset
;
3878 int len
, i
, j
, k
, op_len
;
3881 /* check validity of iclog pointers */
3882 spin_lock(&log
->l_icloglock
);
3883 icptr
= log
->l_iclog
;
3884 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3887 if (icptr
!= log
->l_iclog
)
3888 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3889 spin_unlock(&log
->l_icloglock
);
3891 /* check log magic numbers */
3892 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3893 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3895 base_ptr
= ptr
= &iclog
->ic_header
;
3896 p
= &iclog
->ic_header
;
3897 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3898 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3899 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3904 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3905 base_ptr
= ptr
= iclog
->ic_datap
;
3907 xhdr
= iclog
->ic_data
;
3908 for (i
= 0; i
< len
; i
++) {
3911 /* clientid is only 1 byte */
3912 p
= &ophead
->oh_clientid
;
3913 field_offset
= p
- base_ptr
;
3914 if (!syncing
|| (field_offset
& 0x1ff)) {
3915 clientid
= ophead
->oh_clientid
;
3917 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3918 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3919 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3920 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3921 clientid
= xlog_get_client_id(
3922 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3924 clientid
= xlog_get_client_id(
3925 iclog
->ic_header
.h_cycle_data
[idx
]);
3928 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3930 "%s: invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3931 __func__
, clientid
, ophead
,
3932 (unsigned long)field_offset
);
3935 p
= &ophead
->oh_len
;
3936 field_offset
= p
- base_ptr
;
3937 if (!syncing
|| (field_offset
& 0x1ff)) {
3938 op_len
= be32_to_cpu(ophead
->oh_len
);
3940 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3941 (uintptr_t)iclog
->ic_datap
);
3942 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3943 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3944 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3945 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3947 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3950 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3952 } /* xlog_verify_iclog */
3956 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3962 xlog_in_core_t
*iclog
, *ic
;
3964 iclog
= log
->l_iclog
;
3965 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3967 * Mark all the incore logs IOERROR.
3968 * From now on, no log flushes will result.
3972 ic
->ic_state
= XLOG_STATE_IOERROR
;
3974 } while (ic
!= iclog
);
3978 * Return non-zero, if state transition has already happened.
3984 * This is called from xfs_force_shutdown, when we're forcibly
3985 * shutting down the filesystem, typically because of an IO error.
3986 * Our main objectives here are to make sure that:
3987 * a. if !logerror, flush the logs to disk. Anything modified
3988 * after this is ignored.
3989 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3990 * parties to find out, 'atomically'.
3991 * c. those who're sleeping on log reservations, pinned objects and
3992 * other resources get woken up, and be told the bad news.
3993 * d. nothing new gets queued up after (b) and (c) are done.
3995 * Note: for the !logerror case we need to flush the regions held in memory out
3996 * to disk first. This needs to be done before the log is marked as shutdown,
3997 * otherwise the iclog writes will fail.
4000 xfs_log_force_umount(
4001 struct xfs_mount
*mp
,
4010 * If this happens during log recovery, don't worry about
4011 * locking; the log isn't open for business yet.
4014 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
4015 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
4017 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4022 * Somebody could've already done the hard work for us.
4023 * No need to get locks for this.
4025 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
4026 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
4031 * Flush all the completed transactions to disk before marking the log
4032 * being shut down. We need to do it in this order to ensure that
4033 * completed operations are safely on disk before we shut down, and that
4034 * we don't have to issue any buffer IO after the shutdown flags are set
4035 * to guarantee this.
4038 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
4041 * mark the filesystem and the as in a shutdown state and wake
4042 * everybody up to tell them the bad news.
4044 spin_lock(&log
->l_icloglock
);
4045 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
4047 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4050 * Mark the log and the iclogs with IO error flags to prevent any
4051 * further log IO from being issued or completed.
4053 log
->l_flags
|= XLOG_IO_ERROR
;
4054 retval
= xlog_state_ioerror(log
);
4055 spin_unlock(&log
->l_icloglock
);
4058 * We don't want anybody waiting for log reservations after this. That
4059 * means we have to wake up everybody queued up on reserveq as well as
4060 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4061 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4062 * action is protected by the grant locks.
4064 xlog_grant_head_wake_all(&log
->l_reserve_head
);
4065 xlog_grant_head_wake_all(&log
->l_write_head
);
4068 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4069 * as if the log writes were completed. The abort handling in the log
4070 * item committed callback functions will do this again under lock to
4073 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4074 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4076 #ifdef XFSERRORDEBUG
4078 xlog_in_core_t
*iclog
;
4080 spin_lock(&log
->l_icloglock
);
4081 iclog
= log
->l_iclog
;
4083 ASSERT(iclog
->ic_callback
== 0);
4084 iclog
= iclog
->ic_next
;
4085 } while (iclog
!= log
->l_iclog
);
4086 spin_unlock(&log
->l_icloglock
);
4089 /* return non-zero if log IOERROR transition had already happened */
4097 xlog_in_core_t
*iclog
;
4099 iclog
= log
->l_iclog
;
4101 /* endianness does not matter here, zero is zero in
4104 if (iclog
->ic_header
.h_num_logops
)
4106 iclog
= iclog
->ic_next
;
4107 } while (iclog
!= log
->l_iclog
);
4112 * Verify that an LSN stamped into a piece of metadata is valid. This is
4113 * intended for use in read verifiers on v5 superblocks.
4117 struct xfs_mount
*mp
,
4120 struct xlog
*log
= mp
->m_log
;
4124 * norecovery mode skips mount-time log processing and unconditionally
4125 * resets the in-core LSN. We can't validate in this mode, but
4126 * modifications are not allowed anyways so just return true.
4128 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4132 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4133 * handled by recovery and thus safe to ignore here.
4135 if (lsn
== NULLCOMMITLSN
)
4138 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4140 /* warn the user about what's gone wrong before verifier failure */
4142 spin_lock(&log
->l_icloglock
);
4144 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4145 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4146 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4147 log
->l_curr_cycle
, log
->l_curr_block
);
4148 spin_unlock(&log
->l_icloglock
);