2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_error.h"
47 #include "xfs_rmap_item.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_refcount_item.h"
50 #include "xfs_bmap_item.h"
52 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
59 xlog_clear_stale_blocks(
64 xlog_recover_check_summary(
67 #define xlog_recover_check_summary(log)
70 xlog_do_recovery_pass(
71 struct xlog
*, xfs_daddr_t
, xfs_daddr_t
, int, xfs_daddr_t
*);
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
77 struct xfs_buf_cancel
{
81 struct list_head bc_list
;
85 * Sector aligned buffer routines for buffer create/read/write/access
89 * Verify the log-relative block number and length in basic blocks are valid for
90 * an operation involving the given XFS log buffer. Returns true if the fields
91 * are valid, false otherwise.
99 if (blk_no
< 0 || blk_no
>= log
->l_logBBsize
)
101 if (bbcount
<= 0 || (blk_no
+ bbcount
) > log
->l_logBBsize
)
107 * Allocate a buffer to hold log data. The buffer needs to be able
108 * to map to a range of nbblks basic blocks at any valid (basic
109 * block) offset within the log.
119 * Pass log block 0 since we don't have an addr yet, buffer will be
122 if (!xlog_verify_bp(log
, 0, nbblks
)) {
123 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
125 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
130 * We do log I/O in units of log sectors (a power-of-2
131 * multiple of the basic block size), so we round up the
132 * requested size to accommodate the basic blocks required
133 * for complete log sectors.
135 * In addition, the buffer may be used for a non-sector-
136 * aligned block offset, in which case an I/O of the
137 * requested size could extend beyond the end of the
138 * buffer. If the requested size is only 1 basic block it
139 * will never straddle a sector boundary, so this won't be
140 * an issue. Nor will this be a problem if the log I/O is
141 * done in basic blocks (sector size 1). But otherwise we
142 * extend the buffer by one extra log sector to ensure
143 * there's space to accommodate this possibility.
145 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
146 nbblks
+= log
->l_sectBBsize
;
147 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
149 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
163 * Return the address of the start of the given block number's data
164 * in a log buffer. The buffer covers a log sector-aligned region.
173 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
175 ASSERT(offset
+ nbblks
<= bp
->b_length
);
176 return bp
->b_addr
+ BBTOB(offset
);
181 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
192 if (!xlog_verify_bp(log
, blk_no
, nbblks
)) {
194 "Invalid log block/length (0x%llx, 0x%x) for buffer",
196 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
197 return -EFSCORRUPTED
;
200 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
201 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
204 ASSERT(nbblks
<= bp
->b_length
);
206 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
207 bp
->b_flags
|= XBF_READ
;
208 bp
->b_io_length
= nbblks
;
211 error
= xfs_buf_submit_wait(bp
);
212 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
213 xfs_buf_ioerror_alert(bp
, __func__
);
227 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
231 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
236 * Read at an offset into the buffer. Returns with the buffer in it's original
237 * state regardless of the result of the read.
242 xfs_daddr_t blk_no
, /* block to read from */
243 int nbblks
, /* blocks to read */
247 char *orig_offset
= bp
->b_addr
;
248 int orig_len
= BBTOB(bp
->b_length
);
251 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
255 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
257 /* must reset buffer pointer even on error */
258 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
265 * Write out the buffer at the given block for the given number of blocks.
266 * The buffer is kept locked across the write and is returned locked.
267 * This can only be used for synchronous log writes.
278 if (!xlog_verify_bp(log
, blk_no
, nbblks
)) {
280 "Invalid log block/length (0x%llx, 0x%x) for buffer",
282 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
283 return -EFSCORRUPTED
;
286 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
287 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
290 ASSERT(nbblks
<= bp
->b_length
);
292 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
295 bp
->b_io_length
= nbblks
;
298 error
= xfs_bwrite(bp
);
300 xfs_buf_ioerror_alert(bp
, __func__
);
307 * dump debug superblock and log record information
310 xlog_header_check_dump(
312 xlog_rec_header_t
*head
)
314 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
315 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
316 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
317 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
320 #define xlog_header_check_dump(mp, head)
324 * check log record header for recovery
327 xlog_header_check_recover(
329 xlog_rec_header_t
*head
)
331 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
334 * IRIX doesn't write the h_fmt field and leaves it zeroed
335 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
336 * a dirty log created in IRIX.
338 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
340 "dirty log written in incompatible format - can't recover");
341 xlog_header_check_dump(mp
, head
);
342 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
343 XFS_ERRLEVEL_HIGH
, mp
);
344 return -EFSCORRUPTED
;
345 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
347 "dirty log entry has mismatched uuid - can't recover");
348 xlog_header_check_dump(mp
, head
);
349 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
350 XFS_ERRLEVEL_HIGH
, mp
);
351 return -EFSCORRUPTED
;
357 * read the head block of the log and check the header
360 xlog_header_check_mount(
362 xlog_rec_header_t
*head
)
364 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
366 if (uuid_is_null(&head
->h_fs_uuid
)) {
368 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
369 * h_fs_uuid is null, we assume this log was last mounted
370 * by IRIX and continue.
372 xfs_warn(mp
, "null uuid in log - IRIX style log");
373 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
374 xfs_warn(mp
, "log has mismatched uuid - can't recover");
375 xlog_header_check_dump(mp
, head
);
376 XFS_ERROR_REPORT("xlog_header_check_mount",
377 XFS_ERRLEVEL_HIGH
, mp
);
378 return -EFSCORRUPTED
;
389 * We're not going to bother about retrying
390 * this during recovery. One strike!
392 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
393 xfs_buf_ioerror_alert(bp
, __func__
);
394 xfs_force_shutdown(bp
->b_target
->bt_mount
,
395 SHUTDOWN_META_IO_ERROR
);
400 * On v5 supers, a bli could be attached to update the metadata LSN.
404 xfs_buf_item_relse(bp
);
405 ASSERT(bp
->b_log_item
== NULL
);
412 * This routine finds (to an approximation) the first block in the physical
413 * log which contains the given cycle. It uses a binary search algorithm.
414 * Note that the algorithm can not be perfect because the disk will not
415 * necessarily be perfect.
418 xlog_find_cycle_start(
421 xfs_daddr_t first_blk
,
422 xfs_daddr_t
*last_blk
,
432 mid_blk
= BLK_AVG(first_blk
, end_blk
);
433 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
434 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
437 mid_cycle
= xlog_get_cycle(offset
);
438 if (mid_cycle
== cycle
)
439 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
441 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
442 mid_blk
= BLK_AVG(first_blk
, end_blk
);
444 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
445 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
453 * Check that a range of blocks does not contain stop_on_cycle_no.
454 * Fill in *new_blk with the block offset where such a block is
455 * found, or with -1 (an invalid block number) if there is no such
456 * block in the range. The scan needs to occur from front to back
457 * and the pointer into the region must be updated since a later
458 * routine will need to perform another test.
461 xlog_find_verify_cycle(
463 xfs_daddr_t start_blk
,
465 uint stop_on_cycle_no
,
466 xfs_daddr_t
*new_blk
)
476 * Greedily allocate a buffer big enough to handle the full
477 * range of basic blocks we'll be examining. If that fails,
478 * try a smaller size. We need to be able to read at least
479 * a log sector, or we're out of luck.
481 bufblks
= 1 << ffs(nbblks
);
482 while (bufblks
> log
->l_logBBsize
)
484 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
486 if (bufblks
< log
->l_sectBBsize
)
490 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
493 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
495 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
499 for (j
= 0; j
< bcount
; j
++) {
500 cycle
= xlog_get_cycle(buf
);
501 if (cycle
== stop_on_cycle_no
) {
518 * Potentially backup over partial log record write.
520 * In the typical case, last_blk is the number of the block directly after
521 * a good log record. Therefore, we subtract one to get the block number
522 * of the last block in the given buffer. extra_bblks contains the number
523 * of blocks we would have read on a previous read. This happens when the
524 * last log record is split over the end of the physical log.
526 * extra_bblks is the number of blocks potentially verified on a previous
527 * call to this routine.
530 xlog_find_verify_log_record(
532 xfs_daddr_t start_blk
,
533 xfs_daddr_t
*last_blk
,
539 xlog_rec_header_t
*head
= NULL
;
542 int num_blks
= *last_blk
- start_blk
;
545 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
547 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
548 if (!(bp
= xlog_get_bp(log
, 1)))
552 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
555 offset
+= ((num_blks
- 1) << BBSHIFT
);
558 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
560 /* valid log record not found */
562 "Log inconsistent (didn't find previous header)");
569 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
574 head
= (xlog_rec_header_t
*)offset
;
576 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
584 * We hit the beginning of the physical log & still no header. Return
585 * to caller. If caller can handle a return of -1, then this routine
586 * will be called again for the end of the physical log.
594 * We have the final block of the good log (the first block
595 * of the log record _before_ the head. So we check the uuid.
597 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
601 * We may have found a log record header before we expected one.
602 * last_blk will be the 1st block # with a given cycle #. We may end
603 * up reading an entire log record. In this case, we don't want to
604 * reset last_blk. Only when last_blk points in the middle of a log
605 * record do we update last_blk.
607 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
608 uint h_size
= be32_to_cpu(head
->h_size
);
610 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
611 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
617 if (*last_blk
- i
+ extra_bblks
!=
618 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
627 * Head is defined to be the point of the log where the next log write
628 * could go. This means that incomplete LR writes at the end are
629 * eliminated when calculating the head. We aren't guaranteed that previous
630 * LR have complete transactions. We only know that a cycle number of
631 * current cycle number -1 won't be present in the log if we start writing
632 * from our current block number.
634 * last_blk contains the block number of the first block with a given
637 * Return: zero if normal, non-zero if error.
642 xfs_daddr_t
*return_head_blk
)
646 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
648 uint first_half_cycle
, last_half_cycle
;
650 int error
, log_bbnum
= log
->l_logBBsize
;
652 /* Is the end of the log device zeroed? */
653 error
= xlog_find_zeroed(log
, &first_blk
);
655 xfs_warn(log
->l_mp
, "empty log check failed");
659 *return_head_blk
= first_blk
;
661 /* Is the whole lot zeroed? */
663 /* Linux XFS shouldn't generate totally zeroed logs -
664 * mkfs etc write a dummy unmount record to a fresh
665 * log so we can store the uuid in there
667 xfs_warn(log
->l_mp
, "totally zeroed log");
673 first_blk
= 0; /* get cycle # of 1st block */
674 bp
= xlog_get_bp(log
, 1);
678 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
682 first_half_cycle
= xlog_get_cycle(offset
);
684 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
685 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
689 last_half_cycle
= xlog_get_cycle(offset
);
690 ASSERT(last_half_cycle
!= 0);
693 * If the 1st half cycle number is equal to the last half cycle number,
694 * then the entire log is stamped with the same cycle number. In this
695 * case, head_blk can't be set to zero (which makes sense). The below
696 * math doesn't work out properly with head_blk equal to zero. Instead,
697 * we set it to log_bbnum which is an invalid block number, but this
698 * value makes the math correct. If head_blk doesn't changed through
699 * all the tests below, *head_blk is set to zero at the very end rather
700 * than log_bbnum. In a sense, log_bbnum and zero are the same block
701 * in a circular file.
703 if (first_half_cycle
== last_half_cycle
) {
705 * In this case we believe that the entire log should have
706 * cycle number last_half_cycle. We need to scan backwards
707 * from the end verifying that there are no holes still
708 * containing last_half_cycle - 1. If we find such a hole,
709 * then the start of that hole will be the new head. The
710 * simple case looks like
711 * x | x ... | x - 1 | x
712 * Another case that fits this picture would be
713 * x | x + 1 | x ... | x
714 * In this case the head really is somewhere at the end of the
715 * log, as one of the latest writes at the beginning was
718 * x | x + 1 | x ... | x - 1 | x
719 * This is really the combination of the above two cases, and
720 * the head has to end up at the start of the x-1 hole at the
723 * In the 256k log case, we will read from the beginning to the
724 * end of the log and search for cycle numbers equal to x-1.
725 * We don't worry about the x+1 blocks that we encounter,
726 * because we know that they cannot be the head since the log
729 head_blk
= log_bbnum
;
730 stop_on_cycle
= last_half_cycle
- 1;
733 * In this case we want to find the first block with cycle
734 * number matching last_half_cycle. We expect the log to be
736 * x + 1 ... | x ... | x
737 * The first block with cycle number x (last_half_cycle) will
738 * be where the new head belongs. First we do a binary search
739 * for the first occurrence of last_half_cycle. The binary
740 * search may not be totally accurate, so then we scan back
741 * from there looking for occurrences of last_half_cycle before
742 * us. If that backwards scan wraps around the beginning of
743 * the log, then we look for occurrences of last_half_cycle - 1
744 * at the end of the log. The cases we're looking for look
746 * v binary search stopped here
747 * x + 1 ... | x | x + 1 | x ... | x
748 * ^ but we want to locate this spot
750 * <---------> less than scan distance
751 * x + 1 ... | x ... | x - 1 | x
752 * ^ we want to locate this spot
754 stop_on_cycle
= last_half_cycle
;
755 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
756 &head_blk
, last_half_cycle
)))
761 * Now validate the answer. Scan back some number of maximum possible
762 * blocks and make sure each one has the expected cycle number. The
763 * maximum is determined by the total possible amount of buffering
764 * in the in-core log. The following number can be made tighter if
765 * we actually look at the block size of the filesystem.
767 num_scan_bblks
= min_t(int, log_bbnum
, XLOG_TOTAL_REC_SHIFT(log
));
768 if (head_blk
>= num_scan_bblks
) {
770 * We are guaranteed that the entire check can be performed
773 start_blk
= head_blk
- num_scan_bblks
;
774 if ((error
= xlog_find_verify_cycle(log
,
775 start_blk
, num_scan_bblks
,
776 stop_on_cycle
, &new_blk
)))
780 } else { /* need to read 2 parts of log */
782 * We are going to scan backwards in the log in two parts.
783 * First we scan the physical end of the log. In this part
784 * of the log, we are looking for blocks with cycle number
785 * last_half_cycle - 1.
786 * If we find one, then we know that the log starts there, as
787 * we've found a hole that didn't get written in going around
788 * the end of the physical log. The simple case for this is
789 * x + 1 ... | x ... | x - 1 | x
790 * <---------> less than scan distance
791 * If all of the blocks at the end of the log have cycle number
792 * last_half_cycle, then we check the blocks at the start of
793 * the log looking for occurrences of last_half_cycle. If we
794 * find one, then our current estimate for the location of the
795 * first occurrence of last_half_cycle is wrong and we move
796 * back to the hole we've found. This case looks like
797 * x + 1 ... | x | x + 1 | x ...
798 * ^ binary search stopped here
799 * Another case we need to handle that only occurs in 256k
801 * x + 1 ... | x ... | x+1 | x ...
802 * ^ binary search stops here
803 * In a 256k log, the scan at the end of the log will see the
804 * x + 1 blocks. We need to skip past those since that is
805 * certainly not the head of the log. By searching for
806 * last_half_cycle-1 we accomplish that.
808 ASSERT(head_blk
<= INT_MAX
&&
809 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
810 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
811 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
812 num_scan_bblks
- (int)head_blk
,
813 (stop_on_cycle
- 1), &new_blk
)))
821 * Scan beginning of log now. The last part of the physical
822 * log is good. This scan needs to verify that it doesn't find
823 * the last_half_cycle.
826 ASSERT(head_blk
<= INT_MAX
);
827 if ((error
= xlog_find_verify_cycle(log
,
828 start_blk
, (int)head_blk
,
829 stop_on_cycle
, &new_blk
)))
837 * Now we need to make sure head_blk is not pointing to a block in
838 * the middle of a log record.
840 num_scan_bblks
= XLOG_REC_SHIFT(log
);
841 if (head_blk
>= num_scan_bblks
) {
842 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
844 /* start ptr at last block ptr before head_blk */
845 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
852 ASSERT(head_blk
<= INT_MAX
);
853 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
857 /* We hit the beginning of the log during our search */
858 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
860 ASSERT(start_blk
<= INT_MAX
&&
861 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
862 ASSERT(head_blk
<= INT_MAX
);
863 error
= xlog_find_verify_log_record(log
, start_blk
,
864 &new_blk
, (int)head_blk
);
869 if (new_blk
!= log_bbnum
)
876 if (head_blk
== log_bbnum
)
877 *return_head_blk
= 0;
879 *return_head_blk
= head_blk
;
881 * When returning here, we have a good block number. Bad block
882 * means that during a previous crash, we didn't have a clean break
883 * from cycle number N to cycle number N-1. In this case, we need
884 * to find the first block with cycle number N-1.
892 xfs_warn(log
->l_mp
, "failed to find log head");
897 * Seek backwards in the log for log record headers.
899 * Given a starting log block, walk backwards until we find the provided number
900 * of records or hit the provided tail block. The return value is the number of
901 * records encountered or a negative error code. The log block and buffer
902 * pointer of the last record seen are returned in rblk and rhead respectively.
905 xlog_rseek_logrec_hdr(
907 xfs_daddr_t head_blk
,
908 xfs_daddr_t tail_blk
,
912 struct xlog_rec_header
**rhead
,
924 * Walk backwards from the head block until we hit the tail or the first
927 end_blk
= head_blk
> tail_blk
? tail_blk
: 0;
928 for (i
= (int) head_blk
- 1; i
>= end_blk
; i
--) {
929 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
933 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
935 *rhead
= (struct xlog_rec_header
*) offset
;
936 if (++found
== count
)
942 * If we haven't hit the tail block or the log record header count,
943 * start looking again from the end of the physical log. Note that
944 * callers can pass head == tail if the tail is not yet known.
946 if (tail_blk
>= head_blk
&& found
!= count
) {
947 for (i
= log
->l_logBBsize
- 1; i
>= (int) tail_blk
; i
--) {
948 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
952 if (*(__be32
*)offset
==
953 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
956 *rhead
= (struct xlog_rec_header
*) offset
;
957 if (++found
== count
)
970 * Seek forward in the log for log record headers.
972 * Given head and tail blocks, walk forward from the tail block until we find
973 * the provided number of records or hit the head block. The return value is the
974 * number of records encountered or a negative error code. The log block and
975 * buffer pointer of the last record seen are returned in rblk and rhead
979 xlog_seek_logrec_hdr(
981 xfs_daddr_t head_blk
,
982 xfs_daddr_t tail_blk
,
986 struct xlog_rec_header
**rhead
,
998 * Walk forward from the tail block until we hit the head or the last
1001 end_blk
= head_blk
> tail_blk
? head_blk
: log
->l_logBBsize
- 1;
1002 for (i
= (int) tail_blk
; i
<= end_blk
; i
++) {
1003 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1007 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1009 *rhead
= (struct xlog_rec_header
*) offset
;
1010 if (++found
== count
)
1016 * If we haven't hit the head block or the log record header count,
1017 * start looking again from the start of the physical log.
1019 if (tail_blk
> head_blk
&& found
!= count
) {
1020 for (i
= 0; i
< (int) head_blk
; i
++) {
1021 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1025 if (*(__be32
*)offset
==
1026 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1029 *rhead
= (struct xlog_rec_header
*) offset
;
1030 if (++found
== count
)
1043 * Calculate distance from head to tail (i.e., unused space in the log).
1048 xfs_daddr_t head_blk
,
1049 xfs_daddr_t tail_blk
)
1051 if (head_blk
< tail_blk
)
1052 return tail_blk
- head_blk
;
1054 return tail_blk
+ (log
->l_logBBsize
- head_blk
);
1058 * Verify the log tail. This is particularly important when torn or incomplete
1059 * writes have been detected near the front of the log and the head has been
1060 * walked back accordingly.
1062 * We also have to handle the case where the tail was pinned and the head
1063 * blocked behind the tail right before a crash. If the tail had been pushed
1064 * immediately prior to the crash and the subsequent checkpoint was only
1065 * partially written, it's possible it overwrote the last referenced tail in the
1066 * log with garbage. This is not a coherency problem because the tail must have
1067 * been pushed before it can be overwritten, but appears as log corruption to
1068 * recovery because we have no way to know the tail was updated if the
1069 * subsequent checkpoint didn't write successfully.
1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072 * offending record is within max iclog bufs from the head, walk the tail
1073 * forward and retry until a valid tail is found or corruption is detected out
1074 * of the range of a possible overwrite.
1079 xfs_daddr_t head_blk
,
1080 xfs_daddr_t
*tail_blk
,
1083 struct xlog_rec_header
*thead
;
1085 xfs_daddr_t first_bad
;
1088 xfs_daddr_t tmp_tail
;
1089 xfs_daddr_t orig_tail
= *tail_blk
;
1091 bp
= xlog_get_bp(log
, 1);
1096 * Make sure the tail points to a record (returns positive count on
1099 error
= xlog_seek_logrec_hdr(log
, head_blk
, *tail_blk
, 1, bp
,
1100 &tmp_tail
, &thead
, &wrapped
);
1103 if (*tail_blk
!= tmp_tail
)
1104 *tail_blk
= tmp_tail
;
1107 * Run a CRC check from the tail to the head. We can't just check
1108 * MAX_ICLOGS records past the tail because the tail may point to stale
1109 * blocks cleared during the search for the head/tail. These blocks are
1110 * overwritten with zero-length records and thus record count is not a
1111 * reliable indicator of the iclog state before a crash.
1114 error
= xlog_do_recovery_pass(log
, head_blk
, *tail_blk
,
1115 XLOG_RECOVER_CRCPASS
, &first_bad
);
1116 while ((error
== -EFSBADCRC
|| error
== -EFSCORRUPTED
) && first_bad
) {
1120 * Is corruption within range of the head? If so, retry from
1121 * the next record. Otherwise return an error.
1123 tail_distance
= xlog_tail_distance(log
, head_blk
, first_bad
);
1124 if (tail_distance
> BTOBB(XLOG_MAX_ICLOGS
* hsize
))
1127 /* skip to the next record; returns positive count on success */
1128 error
= xlog_seek_logrec_hdr(log
, head_blk
, first_bad
, 2, bp
,
1129 &tmp_tail
, &thead
, &wrapped
);
1133 *tail_blk
= tmp_tail
;
1135 error
= xlog_do_recovery_pass(log
, head_blk
, *tail_blk
,
1136 XLOG_RECOVER_CRCPASS
, &first_bad
);
1139 if (!error
&& *tail_blk
!= orig_tail
)
1141 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142 orig_tail
, *tail_blk
);
1149 * Detect and trim torn writes from the head of the log.
1151 * Storage without sector atomicity guarantees can result in torn writes in the
1152 * log in the event of a crash. Our only means to detect this scenario is via
1153 * CRC verification. While we can't always be certain that CRC verification
1154 * failure is due to a torn write vs. an unrelated corruption, we do know that
1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157 * the log and treat failures in this range as torn writes as a matter of
1158 * policy. In the event of CRC failure, the head is walked back to the last good
1159 * record in the log and the tail is updated from that record and verified.
1164 xfs_daddr_t
*head_blk
, /* in/out: unverified head */
1165 xfs_daddr_t
*tail_blk
, /* out: tail block */
1167 xfs_daddr_t
*rhead_blk
, /* start blk of last record */
1168 struct xlog_rec_header
**rhead
, /* ptr to last record */
1169 bool *wrapped
) /* last rec. wraps phys. log */
1171 struct xlog_rec_header
*tmp_rhead
;
1172 struct xfs_buf
*tmp_bp
;
1173 xfs_daddr_t first_bad
;
1174 xfs_daddr_t tmp_rhead_blk
;
1180 * Check the head of the log for torn writes. Search backwards from the
1181 * head until we hit the tail or the maximum number of log record I/Os
1182 * that could have been in flight at one time. Use a temporary buffer so
1183 * we don't trash the rhead/bp pointers from the caller.
1185 tmp_bp
= xlog_get_bp(log
, 1);
1188 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *tail_blk
,
1189 XLOG_MAX_ICLOGS
, tmp_bp
, &tmp_rhead_blk
,
1190 &tmp_rhead
, &tmp_wrapped
);
1191 xlog_put_bp(tmp_bp
);
1196 * Now run a CRC verification pass over the records starting at the
1197 * block found above to the current head. If a CRC failure occurs, the
1198 * log block of the first bad record is saved in first_bad.
1200 error
= xlog_do_recovery_pass(log
, *head_blk
, tmp_rhead_blk
,
1201 XLOG_RECOVER_CRCPASS
, &first_bad
);
1202 if ((error
== -EFSBADCRC
|| error
== -EFSCORRUPTED
) && first_bad
) {
1204 * We've hit a potential torn write. Reset the error and warn
1209 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210 first_bad
, *head_blk
);
1213 * Get the header block and buffer pointer for the last good
1214 * record before the bad record.
1216 * Note that xlog_find_tail() clears the blocks at the new head
1217 * (i.e., the records with invalid CRC) if the cycle number
1218 * matches the the current cycle.
1220 found
= xlog_rseek_logrec_hdr(log
, first_bad
, *tail_blk
, 1, bp
,
1221 rhead_blk
, rhead
, wrapped
);
1224 if (found
== 0) /* XXX: right thing to do here? */
1228 * Reset the head block to the starting block of the first bad
1229 * log record and set the tail block based on the last good
1232 * Bail out if the updated head/tail match as this indicates
1233 * possible corruption outside of the acceptable
1234 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1236 *head_blk
= first_bad
;
1237 *tail_blk
= BLOCK_LSN(be64_to_cpu((*rhead
)->h_tail_lsn
));
1238 if (*head_blk
== *tail_blk
) {
1246 return xlog_verify_tail(log
, *head_blk
, tail_blk
,
1247 be32_to_cpu((*rhead
)->h_size
));
1251 * Check whether the head of the log points to an unmount record. In other
1252 * words, determine whether the log is clean. If so, update the in-core state
1256 xlog_check_unmount_rec(
1258 xfs_daddr_t
*head_blk
,
1259 xfs_daddr_t
*tail_blk
,
1260 struct xlog_rec_header
*rhead
,
1261 xfs_daddr_t rhead_blk
,
1265 struct xlog_op_header
*op_head
;
1266 xfs_daddr_t umount_data_blk
;
1267 xfs_daddr_t after_umount_blk
;
1275 * Look for unmount record. If we find it, then we know there was a
1276 * clean unmount. Since 'i' could be the last block in the physical
1277 * log, we convert to a log block before comparing to the head_blk.
1279 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280 * below. We won't want to clear the unmount record if there is one, so
1281 * we pass the lsn of the unmount record rather than the block after it.
1283 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1284 int h_size
= be32_to_cpu(rhead
->h_size
);
1285 int h_version
= be32_to_cpu(rhead
->h_version
);
1287 if ((h_version
& XLOG_VERSION_2
) &&
1288 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1289 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1290 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1298 after_umount_blk
= rhead_blk
+ hblks
+ BTOBB(be32_to_cpu(rhead
->h_len
));
1299 after_umount_blk
= do_mod(after_umount_blk
, log
->l_logBBsize
);
1300 if (*head_blk
== after_umount_blk
&&
1301 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1302 umount_data_blk
= rhead_blk
+ hblks
;
1303 umount_data_blk
= do_mod(umount_data_blk
, log
->l_logBBsize
);
1304 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1308 op_head
= (struct xlog_op_header
*)offset
;
1309 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1311 * Set tail and last sync so that newly written log
1312 * records will point recovery to after the current
1315 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1316 log
->l_curr_cycle
, after_umount_blk
);
1317 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1318 log
->l_curr_cycle
, after_umount_blk
);
1319 *tail_blk
= after_umount_blk
;
1331 xfs_daddr_t head_blk
,
1332 struct xlog_rec_header
*rhead
,
1333 xfs_daddr_t rhead_blk
,
1337 * Reset log values according to the state of the log when we
1338 * crashed. In the case where head_blk == 0, we bump curr_cycle
1339 * one because the next write starts a new cycle rather than
1340 * continuing the cycle of the last good log record. At this
1341 * point we have guaranteed that all partial log records have been
1342 * accounted for. Therefore, we know that the last good log record
1343 * written was complete and ended exactly on the end boundary
1344 * of the physical log.
1346 log
->l_prev_block
= rhead_blk
;
1347 log
->l_curr_block
= (int)head_blk
;
1348 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
1350 log
->l_curr_cycle
++;
1351 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
1352 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
1353 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
1354 BBTOB(log
->l_curr_block
));
1355 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
1356 BBTOB(log
->l_curr_block
));
1360 * Find the sync block number or the tail of the log.
1362 * This will be the block number of the last record to have its
1363 * associated buffers synced to disk. Every log record header has
1364 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1365 * to get a sync block number. The only concern is to figure out which
1366 * log record header to believe.
1368 * The following algorithm uses the log record header with the largest
1369 * lsn. The entire log record does not need to be valid. We only care
1370 * that the header is valid.
1372 * We could speed up search by using current head_blk buffer, but it is not
1378 xfs_daddr_t
*head_blk
,
1379 xfs_daddr_t
*tail_blk
)
1381 xlog_rec_header_t
*rhead
;
1382 char *offset
= NULL
;
1385 xfs_daddr_t rhead_blk
;
1387 bool wrapped
= false;
1391 * Find previous log record
1393 if ((error
= xlog_find_head(log
, head_blk
)))
1395 ASSERT(*head_blk
< INT_MAX
);
1397 bp
= xlog_get_bp(log
, 1);
1400 if (*head_blk
== 0) { /* special case */
1401 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1405 if (xlog_get_cycle(offset
) == 0) {
1407 /* leave all other log inited values alone */
1413 * Search backwards through the log looking for the log record header
1414 * block. This wraps all the way back around to the head so something is
1415 * seriously wrong if we can't find it.
1417 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *head_blk
, 1, bp
,
1418 &rhead_blk
, &rhead
, &wrapped
);
1422 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
1425 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
1428 * Set the log state based on the current head record.
1430 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
, wrapped
);
1431 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1434 * Look for an unmount record at the head of the log. This sets the log
1435 * state to determine whether recovery is necessary.
1437 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
, rhead
,
1438 rhead_blk
, bp
, &clean
);
1443 * Verify the log head if the log is not clean (e.g., we have anything
1444 * but an unmount record at the head). This uses CRC verification to
1445 * detect and trim torn writes. If discovered, CRC failures are
1446 * considered torn writes and the log head is trimmed accordingly.
1448 * Note that we can only run CRC verification when the log is dirty
1449 * because there's no guarantee that the log data behind an unmount
1450 * record is compatible with the current architecture.
1453 xfs_daddr_t orig_head
= *head_blk
;
1455 error
= xlog_verify_head(log
, head_blk
, tail_blk
, bp
,
1456 &rhead_blk
, &rhead
, &wrapped
);
1460 /* update in-core state again if the head changed */
1461 if (*head_blk
!= orig_head
) {
1462 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
,
1464 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1465 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
,
1466 rhead
, rhead_blk
, bp
,
1474 * Note that the unmount was clean. If the unmount was not clean, we
1475 * need to know this to rebuild the superblock counters from the perag
1476 * headers if we have a filesystem using non-persistent counters.
1479 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1482 * Make sure that there are no blocks in front of the head
1483 * with the same cycle number as the head. This can happen
1484 * because we allow multiple outstanding log writes concurrently,
1485 * and the later writes might make it out before earlier ones.
1487 * We use the lsn from before modifying it so that we'll never
1488 * overwrite the unmount record after a clean unmount.
1490 * Do this only if we are going to recover the filesystem
1492 * NOTE: This used to say "if (!readonly)"
1493 * However on Linux, we can & do recover a read-only filesystem.
1494 * We only skip recovery if NORECOVERY is specified on mount,
1495 * in which case we would not be here.
1497 * But... if the -device- itself is readonly, just skip this.
1498 * We can't recover this device anyway, so it won't matter.
1500 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1501 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1507 xfs_warn(log
->l_mp
, "failed to locate log tail");
1512 * Is the log zeroed at all?
1514 * The last binary search should be changed to perform an X block read
1515 * once X becomes small enough. You can then search linearly through
1516 * the X blocks. This will cut down on the number of reads we need to do.
1518 * If the log is partially zeroed, this routine will pass back the blkno
1519 * of the first block with cycle number 0. It won't have a complete LR
1523 * 0 => the log is completely written to
1524 * 1 => use *blk_no as the first block of the log
1525 * <0 => error has occurred
1530 xfs_daddr_t
*blk_no
)
1534 uint first_cycle
, last_cycle
;
1535 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1536 xfs_daddr_t num_scan_bblks
;
1537 int error
, log_bbnum
= log
->l_logBBsize
;
1541 /* check totally zeroed log */
1542 bp
= xlog_get_bp(log
, 1);
1545 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1549 first_cycle
= xlog_get_cycle(offset
);
1550 if (first_cycle
== 0) { /* completely zeroed log */
1556 /* check partially zeroed log */
1557 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1561 last_cycle
= xlog_get_cycle(offset
);
1562 if (last_cycle
!= 0) { /* log completely written to */
1565 } else if (first_cycle
!= 1) {
1567 * If the cycle of the last block is zero, the cycle of
1568 * the first block must be 1. If it's not, maybe we're
1569 * not looking at a log... Bail out.
1572 "Log inconsistent or not a log (last==0, first!=1)");
1577 /* we have a partially zeroed log */
1578 last_blk
= log_bbnum
-1;
1579 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1583 * Validate the answer. Because there is no way to guarantee that
1584 * the entire log is made up of log records which are the same size,
1585 * we scan over the defined maximum blocks. At this point, the maximum
1586 * is not chosen to mean anything special. XXXmiken
1588 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1589 ASSERT(num_scan_bblks
<= INT_MAX
);
1591 if (last_blk
< num_scan_bblks
)
1592 num_scan_bblks
= last_blk
;
1593 start_blk
= last_blk
- num_scan_bblks
;
1596 * We search for any instances of cycle number 0 that occur before
1597 * our current estimate of the head. What we're trying to detect is
1598 * 1 ... | 0 | 1 | 0...
1599 * ^ binary search ends here
1601 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1602 (int)num_scan_bblks
, 0, &new_blk
)))
1608 * Potentially backup over partial log record write. We don't need
1609 * to search the end of the log because we know it is zero.
1611 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1626 * These are simple subroutines used by xlog_clear_stale_blocks() below
1627 * to initialize a buffer full of empty log record headers and write
1628 * them into the log.
1639 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1641 memset(buf
, 0, BBSIZE
);
1642 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1643 recp
->h_cycle
= cpu_to_be32(cycle
);
1644 recp
->h_version
= cpu_to_be32(
1645 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1646 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1647 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1648 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1649 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1653 xlog_write_log_records(
1664 int sectbb
= log
->l_sectBBsize
;
1665 int end_block
= start_block
+ blocks
;
1671 * Greedily allocate a buffer big enough to handle the full
1672 * range of basic blocks to be written. If that fails, try
1673 * a smaller size. We need to be able to write at least a
1674 * log sector, or we're out of luck.
1676 bufblks
= 1 << ffs(blocks
);
1677 while (bufblks
> log
->l_logBBsize
)
1679 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1681 if (bufblks
< sectbb
)
1685 /* We may need to do a read at the start to fill in part of
1686 * the buffer in the starting sector not covered by the first
1689 balign
= round_down(start_block
, sectbb
);
1690 if (balign
!= start_block
) {
1691 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1695 j
= start_block
- balign
;
1698 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1699 int bcount
, endcount
;
1701 bcount
= min(bufblks
, end_block
- start_block
);
1702 endcount
= bcount
- j
;
1704 /* We may need to do a read at the end to fill in part of
1705 * the buffer in the final sector not covered by the write.
1706 * If this is the same sector as the above read, skip it.
1708 ealign
= round_down(end_block
, sectbb
);
1709 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1710 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1711 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1718 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1719 for (; j
< endcount
; j
++) {
1720 xlog_add_record(log
, offset
, cycle
, i
+j
,
1721 tail_cycle
, tail_block
);
1724 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1727 start_block
+= endcount
;
1737 * This routine is called to blow away any incomplete log writes out
1738 * in front of the log head. We do this so that we won't become confused
1739 * if we come up, write only a little bit more, and then crash again.
1740 * If we leave the partial log records out there, this situation could
1741 * cause us to think those partial writes are valid blocks since they
1742 * have the current cycle number. We get rid of them by overwriting them
1743 * with empty log records with the old cycle number rather than the
1746 * The tail lsn is passed in rather than taken from
1747 * the log so that we will not write over the unmount record after a
1748 * clean unmount in a 512 block log. Doing so would leave the log without
1749 * any valid log records in it until a new one was written. If we crashed
1750 * during that time we would not be able to recover.
1753 xlog_clear_stale_blocks(
1757 int tail_cycle
, head_cycle
;
1758 int tail_block
, head_block
;
1759 int tail_distance
, max_distance
;
1763 tail_cycle
= CYCLE_LSN(tail_lsn
);
1764 tail_block
= BLOCK_LSN(tail_lsn
);
1765 head_cycle
= log
->l_curr_cycle
;
1766 head_block
= log
->l_curr_block
;
1769 * Figure out the distance between the new head of the log
1770 * and the tail. We want to write over any blocks beyond the
1771 * head that we may have written just before the crash, but
1772 * we don't want to overwrite the tail of the log.
1774 if (head_cycle
== tail_cycle
) {
1776 * The tail is behind the head in the physical log,
1777 * so the distance from the head to the tail is the
1778 * distance from the head to the end of the log plus
1779 * the distance from the beginning of the log to the
1782 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1783 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1785 return -EFSCORRUPTED
;
1787 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1790 * The head is behind the tail in the physical log,
1791 * so the distance from the head to the tail is just
1792 * the tail block minus the head block.
1794 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1795 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1797 return -EFSCORRUPTED
;
1799 tail_distance
= tail_block
- head_block
;
1803 * If the head is right up against the tail, we can't clear
1806 if (tail_distance
<= 0) {
1807 ASSERT(tail_distance
== 0);
1811 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1813 * Take the smaller of the maximum amount of outstanding I/O
1814 * we could have and the distance to the tail to clear out.
1815 * We take the smaller so that we don't overwrite the tail and
1816 * we don't waste all day writing from the head to the tail
1819 max_distance
= MIN(max_distance
, tail_distance
);
1821 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1823 * We can stomp all the blocks we need to without
1824 * wrapping around the end of the log. Just do it
1825 * in a single write. Use the cycle number of the
1826 * current cycle minus one so that the log will look like:
1829 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1830 head_block
, max_distance
, tail_cycle
,
1836 * We need to wrap around the end of the physical log in
1837 * order to clear all the blocks. Do it in two separate
1838 * I/Os. The first write should be from the head to the
1839 * end of the physical log, and it should use the current
1840 * cycle number minus one just like above.
1842 distance
= log
->l_logBBsize
- head_block
;
1843 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1844 head_block
, distance
, tail_cycle
,
1851 * Now write the blocks at the start of the physical log.
1852 * This writes the remainder of the blocks we want to clear.
1853 * It uses the current cycle number since we're now on the
1854 * same cycle as the head so that we get:
1855 * n ... n ... | n - 1 ...
1856 * ^^^^^ blocks we're writing
1858 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1859 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1860 tail_cycle
, tail_block
);
1868 /******************************************************************************
1870 * Log recover routines
1872 ******************************************************************************
1876 * Sort the log items in the transaction.
1878 * The ordering constraints are defined by the inode allocation and unlink
1879 * behaviour. The rules are:
1881 * 1. Every item is only logged once in a given transaction. Hence it
1882 * represents the last logged state of the item. Hence ordering is
1883 * dependent on the order in which operations need to be performed so
1884 * required initial conditions are always met.
1886 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1887 * there's nothing to replay from them so we can simply cull them
1888 * from the transaction. However, we can't do that until after we've
1889 * replayed all the other items because they may be dependent on the
1890 * cancelled buffer and replaying the cancelled buffer can remove it
1891 * form the cancelled buffer table. Hence they have tobe done last.
1893 * 3. Inode allocation buffers must be replayed before inode items that
1894 * read the buffer and replay changes into it. For filesystems using the
1895 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896 * treated the same as inode allocation buffers as they create and
1897 * initialise the buffers directly.
1899 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1900 * This ensures that inodes are completely flushed to the inode buffer
1901 * in a "free" state before we remove the unlinked inode list pointer.
1903 * Hence the ordering needs to be inode allocation buffers first, inode items
1904 * second, inode unlink buffers third and cancelled buffers last.
1906 * But there's a problem with that - we can't tell an inode allocation buffer
1907 * apart from a regular buffer, so we can't separate them. We can, however,
1908 * tell an inode unlink buffer from the others, and so we can separate them out
1909 * from all the other buffers and move them to last.
1911 * Hence, 4 lists, in order from head to tail:
1912 * - buffer_list for all buffers except cancelled/inode unlink buffers
1913 * - item_list for all non-buffer items
1914 * - inode_buffer_list for inode unlink buffers
1915 * - cancel_list for the cancelled buffers
1917 * Note that we add objects to the tail of the lists so that first-to-last
1918 * ordering is preserved within the lists. Adding objects to the head of the
1919 * list means when we traverse from the head we walk them in last-to-first
1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921 * but for all other items there may be specific ordering that we need to
1925 xlog_recover_reorder_trans(
1927 struct xlog_recover
*trans
,
1930 xlog_recover_item_t
*item
, *n
;
1932 LIST_HEAD(sort_list
);
1933 LIST_HEAD(cancel_list
);
1934 LIST_HEAD(buffer_list
);
1935 LIST_HEAD(inode_buffer_list
);
1936 LIST_HEAD(inode_list
);
1938 list_splice_init(&trans
->r_itemq
, &sort_list
);
1939 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1940 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1942 switch (ITEM_TYPE(item
)) {
1943 case XFS_LI_ICREATE
:
1944 list_move_tail(&item
->ri_list
, &buffer_list
);
1947 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1948 trace_xfs_log_recover_item_reorder_head(log
,
1950 list_move(&item
->ri_list
, &cancel_list
);
1953 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1954 list_move(&item
->ri_list
, &inode_buffer_list
);
1957 list_move_tail(&item
->ri_list
, &buffer_list
);
1961 case XFS_LI_QUOTAOFF
:
1970 trace_xfs_log_recover_item_reorder_tail(log
,
1972 list_move_tail(&item
->ri_list
, &inode_list
);
1976 "%s: unrecognized type of log operation",
1980 * return the remaining items back to the transaction
1981 * item list so they can be freed in caller.
1983 if (!list_empty(&sort_list
))
1984 list_splice_init(&sort_list
, &trans
->r_itemq
);
1990 ASSERT(list_empty(&sort_list
));
1991 if (!list_empty(&buffer_list
))
1992 list_splice(&buffer_list
, &trans
->r_itemq
);
1993 if (!list_empty(&inode_list
))
1994 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1995 if (!list_empty(&inode_buffer_list
))
1996 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1997 if (!list_empty(&cancel_list
))
1998 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
2003 * Build up the table of buf cancel records so that we don't replay
2004 * cancelled data in the second pass. For buffer records that are
2005 * not cancel records, there is nothing to do here so we just return.
2007 * If we get a cancel record which is already in the table, this indicates
2008 * that the buffer was cancelled multiple times. In order to ensure
2009 * that during pass 2 we keep the record in the table until we reach its
2010 * last occurrence in the log, we keep a reference count in the cancel
2011 * record in the table to tell us how many times we expect to see this
2012 * record during the second pass.
2015 xlog_recover_buffer_pass1(
2017 struct xlog_recover_item
*item
)
2019 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2020 struct list_head
*bucket
;
2021 struct xfs_buf_cancel
*bcp
;
2024 * If this isn't a cancel buffer item, then just return.
2026 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
2027 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
2032 * Insert an xfs_buf_cancel record into the hash table of them.
2033 * If there is already an identical record, bump its reference count.
2035 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
2036 list_for_each_entry(bcp
, bucket
, bc_list
) {
2037 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
2038 bcp
->bc_len
== buf_f
->blf_len
) {
2040 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
2045 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
2046 bcp
->bc_blkno
= buf_f
->blf_blkno
;
2047 bcp
->bc_len
= buf_f
->blf_len
;
2048 bcp
->bc_refcount
= 1;
2049 list_add_tail(&bcp
->bc_list
, bucket
);
2051 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
2056 * Check to see whether the buffer being recovered has a corresponding
2057 * entry in the buffer cancel record table. If it is, return the cancel
2058 * buffer structure to the caller.
2060 STATIC
struct xfs_buf_cancel
*
2061 xlog_peek_buffer_cancelled(
2065 unsigned short flags
)
2067 struct list_head
*bucket
;
2068 struct xfs_buf_cancel
*bcp
;
2070 if (!log
->l_buf_cancel_table
) {
2071 /* empty table means no cancelled buffers in the log */
2072 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2076 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
2077 list_for_each_entry(bcp
, bucket
, bc_list
) {
2078 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
2083 * We didn't find a corresponding entry in the table, so return 0 so
2084 * that the buffer is NOT cancelled.
2086 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2091 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092 * otherwise return 0. If the buffer is actually a buffer cancel item
2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094 * table and remove it from the table if this is the last reference.
2096 * We remove the cancel record from the table when we encounter its last
2097 * occurrence in the log so that if the same buffer is re-used again after its
2098 * last cancellation we actually replay the changes made at that point.
2101 xlog_check_buffer_cancelled(
2105 unsigned short flags
)
2107 struct xfs_buf_cancel
*bcp
;
2109 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
2114 * We've go a match, so return 1 so that the recovery of this buffer
2115 * is cancelled. If this buffer is actually a buffer cancel log
2116 * item, then decrement the refcount on the one in the table and
2117 * remove it if this is the last reference.
2119 if (flags
& XFS_BLF_CANCEL
) {
2120 if (--bcp
->bc_refcount
== 0) {
2121 list_del(&bcp
->bc_list
);
2129 * Perform recovery for a buffer full of inodes. In these buffers, the only
2130 * data which should be recovered is that which corresponds to the
2131 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2132 * data for the inodes is always logged through the inodes themselves rather
2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2135 * The only time when buffers full of inodes are fully recovered is when the
2136 * buffer is full of newly allocated inodes. In this case the buffer will
2137 * not be marked as an inode buffer and so will be sent to
2138 * xlog_recover_do_reg_buffer() below during recovery.
2141 xlog_recover_do_inode_buffer(
2142 struct xfs_mount
*mp
,
2143 xlog_recover_item_t
*item
,
2145 xfs_buf_log_format_t
*buf_f
)
2151 int reg_buf_offset
= 0;
2152 int reg_buf_bytes
= 0;
2153 int next_unlinked_offset
;
2155 xfs_agino_t
*logged_nextp
;
2156 xfs_agino_t
*buffer_nextp
;
2158 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
2161 * Post recovery validation only works properly on CRC enabled
2164 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2165 bp
->b_ops
= &xfs_inode_buf_ops
;
2167 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
2168 for (i
= 0; i
< inodes_per_buf
; i
++) {
2169 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
2170 offsetof(xfs_dinode_t
, di_next_unlinked
);
2172 while (next_unlinked_offset
>=
2173 (reg_buf_offset
+ reg_buf_bytes
)) {
2175 * The next di_next_unlinked field is beyond
2176 * the current logged region. Find the next
2177 * logged region that contains or is beyond
2178 * the current di_next_unlinked field.
2181 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2182 buf_f
->blf_map_size
, bit
);
2185 * If there are no more logged regions in the
2186 * buffer, then we're done.
2191 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2192 buf_f
->blf_map_size
, bit
);
2194 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
2195 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
2200 * If the current logged region starts after the current
2201 * di_next_unlinked field, then move on to the next
2202 * di_next_unlinked field.
2204 if (next_unlinked_offset
< reg_buf_offset
)
2207 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
2208 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
2209 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
2210 BBTOB(bp
->b_io_length
));
2213 * The current logged region contains a copy of the
2214 * current di_next_unlinked field. Extract its value
2215 * and copy it to the buffer copy.
2217 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
2218 next_unlinked_offset
- reg_buf_offset
;
2219 if (unlikely(*logged_nextp
== 0)) {
2221 "Bad inode buffer log record (ptr = "PTR_FMT
", bp = "PTR_FMT
"). "
2222 "Trying to replay bad (0) inode di_next_unlinked field.",
2224 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225 XFS_ERRLEVEL_LOW
, mp
);
2226 return -EFSCORRUPTED
;
2229 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
2230 *buffer_nextp
= *logged_nextp
;
2233 * If necessary, recalculate the CRC in the on-disk inode. We
2234 * have to leave the inode in a consistent state for whoever
2237 xfs_dinode_calc_crc(mp
,
2238 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
2246 * V5 filesystems know the age of the buffer on disk being recovered. We can
2247 * have newer objects on disk than we are replaying, and so for these cases we
2248 * don't want to replay the current change as that will make the buffer contents
2249 * temporarily invalid on disk.
2251 * The magic number might not match the buffer type we are going to recover
2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2253 * extract the LSN of the existing object in the buffer based on it's current
2254 * magic number. If we don't recognise the magic number in the buffer, then
2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256 * so can recover the buffer.
2258 * Note: we cannot rely solely on magic number matches to determine that the
2259 * buffer has a valid LSN - we also need to verify that it belongs to this
2260 * filesystem, so we need to extract the object's LSN and compare it to that
2261 * which we read from the superblock. If the UUIDs don't match, then we've got a
2262 * stale metadata block from an old filesystem instance that we need to recover
2266 xlog_recover_get_buf_lsn(
2267 struct xfs_mount
*mp
,
2273 void *blk
= bp
->b_addr
;
2277 /* v4 filesystems always recover immediately */
2278 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2279 goto recover_immediately
;
2281 magic32
= be32_to_cpu(*(__be32
*)blk
);
2283 case XFS_ABTB_CRC_MAGIC
:
2284 case XFS_ABTC_CRC_MAGIC
:
2285 case XFS_ABTB_MAGIC
:
2286 case XFS_ABTC_MAGIC
:
2287 case XFS_RMAP_CRC_MAGIC
:
2288 case XFS_REFC_CRC_MAGIC
:
2289 case XFS_IBT_CRC_MAGIC
:
2290 case XFS_IBT_MAGIC
: {
2291 struct xfs_btree_block
*btb
= blk
;
2293 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
2294 uuid
= &btb
->bb_u
.s
.bb_uuid
;
2297 case XFS_BMAP_CRC_MAGIC
:
2298 case XFS_BMAP_MAGIC
: {
2299 struct xfs_btree_block
*btb
= blk
;
2301 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
2302 uuid
= &btb
->bb_u
.l
.bb_uuid
;
2306 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
2307 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
2309 case XFS_AGFL_MAGIC
:
2310 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
2311 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
2314 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
2315 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
2317 case XFS_SYMLINK_MAGIC
:
2318 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
2319 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
2321 case XFS_DIR3_BLOCK_MAGIC
:
2322 case XFS_DIR3_DATA_MAGIC
:
2323 case XFS_DIR3_FREE_MAGIC
:
2324 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
2325 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
2327 case XFS_ATTR3_RMT_MAGIC
:
2329 * Remote attr blocks are written synchronously, rather than
2330 * being logged. That means they do not contain a valid LSN
2331 * (i.e. transactionally ordered) in them, and hence any time we
2332 * see a buffer to replay over the top of a remote attribute
2333 * block we should simply do so.
2335 goto recover_immediately
;
2338 * superblock uuids are magic. We may or may not have a
2339 * sb_meta_uuid on disk, but it will be set in the in-core
2340 * superblock. We set the uuid pointer for verification
2341 * according to the superblock feature mask to ensure we check
2342 * the relevant UUID in the superblock.
2344 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
2345 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
2346 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
2348 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
2354 if (lsn
!= (xfs_lsn_t
)-1) {
2355 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
2356 goto recover_immediately
;
2360 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
2362 case XFS_DIR3_LEAF1_MAGIC
:
2363 case XFS_DIR3_LEAFN_MAGIC
:
2364 case XFS_DA3_NODE_MAGIC
:
2365 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
2366 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
2372 if (lsn
!= (xfs_lsn_t
)-1) {
2373 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
2374 goto recover_immediately
;
2379 * We do individual object checks on dquot and inode buffers as they
2380 * have their own individual LSN records. Also, we could have a stale
2381 * buffer here, so we have to at least recognise these buffer types.
2383 * A notd complexity here is inode unlinked list processing - it logs
2384 * the inode directly in the buffer, but we don't know which inodes have
2385 * been modified, and there is no global buffer LSN. Hence we need to
2386 * recover all inode buffer types immediately. This problem will be
2387 * fixed by logical logging of the unlinked list modifications.
2389 magic16
= be16_to_cpu(*(__be16
*)blk
);
2391 case XFS_DQUOT_MAGIC
:
2392 case XFS_DINODE_MAGIC
:
2393 goto recover_immediately
;
2398 /* unknown buffer contents, recover immediately */
2400 recover_immediately
:
2401 return (xfs_lsn_t
)-1;
2406 * Validate the recovered buffer is of the correct type and attach the
2407 * appropriate buffer operations to them for writeback. Magic numbers are in a
2409 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2410 * the first 32 bits of the buffer (most blocks),
2411 * inside a struct xfs_da_blkinfo at the start of the buffer.
2414 xlog_recover_validate_buf_type(
2415 struct xfs_mount
*mp
,
2417 xfs_buf_log_format_t
*buf_f
,
2418 xfs_lsn_t current_lsn
)
2420 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
2424 char *warnmsg
= NULL
;
2427 * We can only do post recovery validation on items on CRC enabled
2428 * fielsystems as we need to know when the buffer was written to be able
2429 * to determine if we should have replayed the item. If we replay old
2430 * metadata over a newer buffer, then it will enter a temporarily
2431 * inconsistent state resulting in verification failures. Hence for now
2432 * just avoid the verification stage for non-crc filesystems
2434 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2437 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
2438 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
2439 magicda
= be16_to_cpu(info
->magic
);
2440 switch (xfs_blft_from_flags(buf_f
)) {
2441 case XFS_BLFT_BTREE_BUF
:
2443 case XFS_ABTB_CRC_MAGIC
:
2444 case XFS_ABTC_CRC_MAGIC
:
2445 case XFS_ABTB_MAGIC
:
2446 case XFS_ABTC_MAGIC
:
2447 bp
->b_ops
= &xfs_allocbt_buf_ops
;
2449 case XFS_IBT_CRC_MAGIC
:
2450 case XFS_FIBT_CRC_MAGIC
:
2452 case XFS_FIBT_MAGIC
:
2453 bp
->b_ops
= &xfs_inobt_buf_ops
;
2455 case XFS_BMAP_CRC_MAGIC
:
2456 case XFS_BMAP_MAGIC
:
2457 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2459 case XFS_RMAP_CRC_MAGIC
:
2460 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
2462 case XFS_REFC_CRC_MAGIC
:
2463 bp
->b_ops
= &xfs_refcountbt_buf_ops
;
2466 warnmsg
= "Bad btree block magic!";
2470 case XFS_BLFT_AGF_BUF
:
2471 if (magic32
!= XFS_AGF_MAGIC
) {
2472 warnmsg
= "Bad AGF block magic!";
2475 bp
->b_ops
= &xfs_agf_buf_ops
;
2477 case XFS_BLFT_AGFL_BUF
:
2478 if (magic32
!= XFS_AGFL_MAGIC
) {
2479 warnmsg
= "Bad AGFL block magic!";
2482 bp
->b_ops
= &xfs_agfl_buf_ops
;
2484 case XFS_BLFT_AGI_BUF
:
2485 if (magic32
!= XFS_AGI_MAGIC
) {
2486 warnmsg
= "Bad AGI block magic!";
2489 bp
->b_ops
= &xfs_agi_buf_ops
;
2491 case XFS_BLFT_UDQUOT_BUF
:
2492 case XFS_BLFT_PDQUOT_BUF
:
2493 case XFS_BLFT_GDQUOT_BUF
:
2494 #ifdef CONFIG_XFS_QUOTA
2495 if (magic16
!= XFS_DQUOT_MAGIC
) {
2496 warnmsg
= "Bad DQUOT block magic!";
2499 bp
->b_ops
= &xfs_dquot_buf_ops
;
2502 "Trying to recover dquots without QUOTA support built in!");
2506 case XFS_BLFT_DINO_BUF
:
2507 if (magic16
!= XFS_DINODE_MAGIC
) {
2508 warnmsg
= "Bad INODE block magic!";
2511 bp
->b_ops
= &xfs_inode_buf_ops
;
2513 case XFS_BLFT_SYMLINK_BUF
:
2514 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2515 warnmsg
= "Bad symlink block magic!";
2518 bp
->b_ops
= &xfs_symlink_buf_ops
;
2520 case XFS_BLFT_DIR_BLOCK_BUF
:
2521 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2522 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2523 warnmsg
= "Bad dir block magic!";
2526 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2528 case XFS_BLFT_DIR_DATA_BUF
:
2529 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2530 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2531 warnmsg
= "Bad dir data magic!";
2534 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2536 case XFS_BLFT_DIR_FREE_BUF
:
2537 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2538 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2539 warnmsg
= "Bad dir3 free magic!";
2542 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2544 case XFS_BLFT_DIR_LEAF1_BUF
:
2545 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2546 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2547 warnmsg
= "Bad dir leaf1 magic!";
2550 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2552 case XFS_BLFT_DIR_LEAFN_BUF
:
2553 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2554 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2555 warnmsg
= "Bad dir leafn magic!";
2558 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2560 case XFS_BLFT_DA_NODE_BUF
:
2561 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2562 magicda
!= XFS_DA3_NODE_MAGIC
) {
2563 warnmsg
= "Bad da node magic!";
2566 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2568 case XFS_BLFT_ATTR_LEAF_BUF
:
2569 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2570 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2571 warnmsg
= "Bad attr leaf magic!";
2574 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2576 case XFS_BLFT_ATTR_RMT_BUF
:
2577 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2578 warnmsg
= "Bad attr remote magic!";
2581 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2583 case XFS_BLFT_SB_BUF
:
2584 if (magic32
!= XFS_SB_MAGIC
) {
2585 warnmsg
= "Bad SB block magic!";
2588 bp
->b_ops
= &xfs_sb_buf_ops
;
2590 #ifdef CONFIG_XFS_RT
2591 case XFS_BLFT_RTBITMAP_BUF
:
2592 case XFS_BLFT_RTSUMMARY_BUF
:
2593 /* no magic numbers for verification of RT buffers */
2594 bp
->b_ops
= &xfs_rtbuf_ops
;
2596 #endif /* CONFIG_XFS_RT */
2598 xfs_warn(mp
, "Unknown buffer type %d!",
2599 xfs_blft_from_flags(buf_f
));
2604 * Nothing else to do in the case of a NULL current LSN as this means
2605 * the buffer is more recent than the change in the log and will be
2608 if (current_lsn
== NULLCOMMITLSN
)
2612 xfs_warn(mp
, warnmsg
);
2617 * We must update the metadata LSN of the buffer as it is written out to
2618 * ensure that older transactions never replay over this one and corrupt
2619 * the buffer. This can occur if log recovery is interrupted at some
2620 * point after the current transaction completes, at which point a
2621 * subsequent mount starts recovery from the beginning.
2623 * Write verifiers update the metadata LSN from log items attached to
2624 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625 * the verifier. We'll clean it up in our ->iodone() callback.
2628 struct xfs_buf_log_item
*bip
;
2630 ASSERT(!bp
->b_iodone
|| bp
->b_iodone
== xlog_recover_iodone
);
2631 bp
->b_iodone
= xlog_recover_iodone
;
2632 xfs_buf_item_init(bp
, mp
);
2633 bip
= bp
->b_log_item
;
2634 bip
->bli_item
.li_lsn
= current_lsn
;
2639 * Perform a 'normal' buffer recovery. Each logged region of the
2640 * buffer should be copied over the corresponding region in the
2641 * given buffer. The bitmap in the buf log format structure indicates
2642 * where to place the logged data.
2645 xlog_recover_do_reg_buffer(
2646 struct xfs_mount
*mp
,
2647 xlog_recover_item_t
*item
,
2649 xfs_buf_log_format_t
*buf_f
,
2650 xfs_lsn_t current_lsn
)
2657 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2660 i
= 1; /* 0 is the buf format structure */
2662 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2663 buf_f
->blf_map_size
, bit
);
2666 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2667 buf_f
->blf_map_size
, bit
);
2669 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2670 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2671 ASSERT(BBTOB(bp
->b_io_length
) >=
2672 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2675 * The dirty regions logged in the buffer, even though
2676 * contiguous, may span multiple chunks. This is because the
2677 * dirty region may span a physical page boundary in a buffer
2678 * and hence be split into two separate vectors for writing into
2679 * the log. Hence we need to trim nbits back to the length of
2680 * the current region being copied out of the log.
2682 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2683 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2686 * Do a sanity check if this is a dquot buffer. Just checking
2687 * the first dquot in the buffer should do. XXXThis is
2688 * probably a good thing to do for other buf types also.
2691 if (buf_f
->blf_flags
&
2692 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2693 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2695 "XFS: NULL dquot in %s.", __func__
);
2698 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2700 "XFS: dquot too small (%d) in %s.",
2701 item
->ri_buf
[i
].i_len
, __func__
);
2704 fa
= xfs_dquot_verify(mp
, item
->ri_buf
[i
].i_addr
,
2708 "dquot corrupt at %pS trying to replay into block 0x%llx",
2714 memcpy(xfs_buf_offset(bp
,
2715 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2716 item
->ri_buf
[i
].i_addr
, /* source */
2717 nbits
<<XFS_BLF_SHIFT
); /* length */
2723 /* Shouldn't be any more regions */
2724 ASSERT(i
== item
->ri_total
);
2726 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, current_lsn
);
2730 * Perform a dquot buffer recovery.
2731 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2732 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2733 * Else, treat it as a regular buffer and do recovery.
2735 * Return false if the buffer was tossed and true if we recovered the buffer to
2736 * indicate to the caller if the buffer needs writing.
2739 xlog_recover_do_dquot_buffer(
2740 struct xfs_mount
*mp
,
2742 struct xlog_recover_item
*item
,
2744 struct xfs_buf_log_format
*buf_f
)
2748 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2751 * Filesystems are required to send in quota flags at mount time.
2757 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2758 type
|= XFS_DQ_USER
;
2759 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2760 type
|= XFS_DQ_PROJ
;
2761 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2762 type
|= XFS_DQ_GROUP
;
2764 * This type of quotas was turned off, so ignore this buffer
2766 if (log
->l_quotaoffs_flag
& type
)
2769 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, NULLCOMMITLSN
);
2774 * This routine replays a modification made to a buffer at runtime.
2775 * There are actually two types of buffer, regular and inode, which
2776 * are handled differently. Inode buffers are handled differently
2777 * in that we only recover a specific set of data from them, namely
2778 * the inode di_next_unlinked fields. This is because all other inode
2779 * data is actually logged via inode records and any data we replay
2780 * here which overlaps that may be stale.
2782 * When meta-data buffers are freed at run time we log a buffer item
2783 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2784 * of the buffer in the log should not be replayed at recovery time.
2785 * This is so that if the blocks covered by the buffer are reused for
2786 * file data before we crash we don't end up replaying old, freed
2787 * meta-data into a user's file.
2789 * To handle the cancellation of buffer log items, we make two passes
2790 * over the log during recovery. During the first we build a table of
2791 * those buffers which have been cancelled, and during the second we
2792 * only replay those buffers which do not have corresponding cancel
2793 * records in the table. See xlog_recover_buffer_pass[1,2] above
2794 * for more details on the implementation of the table of cancel records.
2797 xlog_recover_buffer_pass2(
2799 struct list_head
*buffer_list
,
2800 struct xlog_recover_item
*item
,
2801 xfs_lsn_t current_lsn
)
2803 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2804 xfs_mount_t
*mp
= log
->l_mp
;
2811 * In this pass we only want to recover all the buffers which have
2812 * not been cancelled and are not cancellation buffers themselves.
2814 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2815 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2816 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2820 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2823 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2824 buf_flags
|= XBF_UNMAPPED
;
2826 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2830 error
= bp
->b_error
;
2832 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2837 * Recover the buffer only if we get an LSN from it and it's less than
2838 * the lsn of the transaction we are replaying.
2840 * Note that we have to be extremely careful of readahead here.
2841 * Readahead does not attach verfiers to the buffers so if we don't
2842 * actually do any replay after readahead because of the LSN we found
2843 * in the buffer if more recent than that current transaction then we
2844 * need to attach the verifier directly. Failure to do so can lead to
2845 * future recovery actions (e.g. EFI and unlinked list recovery) can
2846 * operate on the buffers and they won't get the verifier attached. This
2847 * can lead to blocks on disk having the correct content but a stale
2850 * It is safe to assume these clean buffers are currently up to date.
2851 * If the buffer is dirtied by a later transaction being replayed, then
2852 * the verifier will be reset to match whatever recover turns that
2855 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2856 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2857 trace_xfs_log_recover_buf_skip(log
, buf_f
);
2858 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, NULLCOMMITLSN
);
2862 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2863 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2866 } else if (buf_f
->blf_flags
&
2867 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2870 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2874 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
2878 * Perform delayed write on the buffer. Asynchronous writes will be
2879 * slower when taking into account all the buffers to be flushed.
2881 * Also make sure that only inode buffers with good sizes stay in
2882 * the buffer cache. The kernel moves inodes in buffers of 1 block
2883 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2884 * buffers in the log can be a different size if the log was generated
2885 * by an older kernel using unclustered inode buffers or a newer kernel
2886 * running with a different inode cluster size. Regardless, if the
2887 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2888 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2889 * the buffer out of the buffer cache so that the buffer won't
2890 * overlap with future reads of those inodes.
2892 if (XFS_DINODE_MAGIC
==
2893 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2894 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2895 (uint32_t)log
->l_mp
->m_inode_cluster_size
))) {
2897 error
= xfs_bwrite(bp
);
2899 ASSERT(bp
->b_target
->bt_mount
== mp
);
2900 bp
->b_iodone
= xlog_recover_iodone
;
2901 xfs_buf_delwri_queue(bp
, buffer_list
);
2910 * Inode fork owner changes
2912 * If we have been told that we have to reparent the inode fork, it's because an
2913 * extent swap operation on a CRC enabled filesystem has been done and we are
2914 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2917 * The complexity here is that we don't have an inode context to work with, so
2918 * after we've replayed the inode we need to instantiate one. This is where the
2921 * We are in the middle of log recovery, so we can't run transactions. That
2922 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2923 * that will result in the corresponding iput() running the inode through
2924 * xfs_inactive(). If we've just replayed an inode core that changes the link
2925 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2926 * transactions (bad!).
2928 * So, to avoid this, we instantiate an inode directly from the inode core we've
2929 * just recovered. We have the buffer still locked, and all we really need to
2930 * instantiate is the inode core and the forks being modified. We can do this
2931 * manually, then run the inode btree owner change, and then tear down the
2932 * xfs_inode without having to run any transactions at all.
2934 * Also, because we don't have a transaction context available here but need to
2935 * gather all the buffers we modify for writeback so we pass the buffer_list
2936 * instead for the operation to use.
2940 xfs_recover_inode_owner_change(
2941 struct xfs_mount
*mp
,
2942 struct xfs_dinode
*dip
,
2943 struct xfs_inode_log_format
*in_f
,
2944 struct list_head
*buffer_list
)
2946 struct xfs_inode
*ip
;
2949 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2951 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2955 /* instantiate the inode */
2956 xfs_inode_from_disk(ip
, dip
);
2957 ASSERT(ip
->i_d
.di_version
>= 3);
2959 error
= xfs_iformat_fork(ip
, dip
);
2963 if (!xfs_inode_verify_forks(ip
)) {
2964 error
= -EFSCORRUPTED
;
2968 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2969 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2970 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2971 ip
->i_ino
, buffer_list
);
2976 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2977 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2978 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2979 ip
->i_ino
, buffer_list
);
2990 xlog_recover_inode_pass2(
2992 struct list_head
*buffer_list
,
2993 struct xlog_recover_item
*item
,
2994 xfs_lsn_t current_lsn
)
2996 struct xfs_inode_log_format
*in_f
;
2997 xfs_mount_t
*mp
= log
->l_mp
;
3006 struct xfs_log_dinode
*ldip
;
3010 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3011 in_f
= item
->ri_buf
[0].i_addr
;
3013 in_f
= kmem_alloc(sizeof(struct xfs_inode_log_format
), KM_SLEEP
);
3015 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
3021 * Inode buffers can be freed, look out for it,
3022 * and do not replay the inode.
3024 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
3025 in_f
->ilf_len
, 0)) {
3027 trace_xfs_log_recover_inode_cancel(log
, in_f
);
3030 trace_xfs_log_recover_inode_recover(log
, in_f
);
3032 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
3033 &xfs_inode_buf_ops
);
3038 error
= bp
->b_error
;
3040 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
3043 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
3044 dip
= xfs_buf_offset(bp
, in_f
->ilf_boffset
);
3047 * Make sure the place we're flushing out to really looks
3050 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
3052 "%s: Bad inode magic number, dip = "PTR_FMT
", dino bp = "PTR_FMT
", ino = %Ld",
3053 __func__
, dip
, bp
, in_f
->ilf_ino
);
3054 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3055 XFS_ERRLEVEL_LOW
, mp
);
3056 error
= -EFSCORRUPTED
;
3059 ldip
= item
->ri_buf
[1].i_addr
;
3060 if (unlikely(ldip
->di_magic
!= XFS_DINODE_MAGIC
)) {
3062 "%s: Bad inode log record, rec ptr "PTR_FMT
", ino %Ld",
3063 __func__
, item
, in_f
->ilf_ino
);
3064 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3065 XFS_ERRLEVEL_LOW
, mp
);
3066 error
= -EFSCORRUPTED
;
3071 * If the inode has an LSN in it, recover the inode only if it's less
3072 * than the lsn of the transaction we are replaying. Note: we still
3073 * need to replay an owner change even though the inode is more recent
3074 * than the transaction as there is no guarantee that all the btree
3075 * blocks are more recent than this transaction, too.
3077 if (dip
->di_version
>= 3) {
3078 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
3080 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3081 trace_xfs_log_recover_inode_skip(log
, in_f
);
3083 goto out_owner_change
;
3088 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3089 * are transactional and if ordering is necessary we can determine that
3090 * more accurately by the LSN field in the V3 inode core. Don't trust
3091 * the inode versions we might be changing them here - use the
3092 * superblock flag to determine whether we need to look at di_flushiter
3093 * to skip replay when the on disk inode is newer than the log one
3095 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
3096 ldip
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
3098 * Deal with the wrap case, DI_MAX_FLUSH is less
3099 * than smaller numbers
3101 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
3102 ldip
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
3105 trace_xfs_log_recover_inode_skip(log
, in_f
);
3111 /* Take the opportunity to reset the flush iteration count */
3112 ldip
->di_flushiter
= 0;
3114 if (unlikely(S_ISREG(ldip
->di_mode
))) {
3115 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3116 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
3117 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3118 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3120 "%s: Bad regular inode log record, rec ptr "PTR_FMT
", "
3121 "ino ptr = "PTR_FMT
", ino bp = "PTR_FMT
", ino %Ld",
3122 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3123 error
= -EFSCORRUPTED
;
3126 } else if (unlikely(S_ISDIR(ldip
->di_mode
))) {
3127 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3128 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
3129 (ldip
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
3130 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3131 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3133 "%s: Bad dir inode log record, rec ptr "PTR_FMT
", "
3134 "ino ptr = "PTR_FMT
", ino bp = "PTR_FMT
", ino %Ld",
3135 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3136 error
= -EFSCORRUPTED
;
3140 if (unlikely(ldip
->di_nextents
+ ldip
->di_anextents
> ldip
->di_nblocks
)){
3141 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3142 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3144 "%s: Bad inode log record, rec ptr "PTR_FMT
", dino ptr "PTR_FMT
", "
3145 "dino bp "PTR_FMT
", ino %Ld, total extents = %d, nblocks = %Ld",
3146 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
3147 ldip
->di_nextents
+ ldip
->di_anextents
,
3149 error
= -EFSCORRUPTED
;
3152 if (unlikely(ldip
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
3153 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3154 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3156 "%s: Bad inode log record, rec ptr "PTR_FMT
", dino ptr "PTR_FMT
", "
3157 "dino bp "PTR_FMT
", ino %Ld, forkoff 0x%x", __func__
,
3158 item
, dip
, bp
, in_f
->ilf_ino
, ldip
->di_forkoff
);
3159 error
= -EFSCORRUPTED
;
3162 isize
= xfs_log_dinode_size(ldip
->di_version
);
3163 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3165 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3167 "%s: Bad inode log record length %d, rec ptr "PTR_FMT
,
3168 __func__
, item
->ri_buf
[1].i_len
, item
);
3169 error
= -EFSCORRUPTED
;
3173 /* recover the log dinode inode into the on disk inode */
3174 xfs_log_dinode_to_disk(ldip
, dip
);
3176 /* the rest is in on-disk format */
3177 if (item
->ri_buf
[1].i_len
> isize
) {
3178 memcpy((char *)dip
+ isize
,
3179 item
->ri_buf
[1].i_addr
+ isize
,
3180 item
->ri_buf
[1].i_len
- isize
);
3183 fields
= in_f
->ilf_fields
;
3184 if (fields
& XFS_ILOG_DEV
)
3185 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
3187 if (in_f
->ilf_size
== 2)
3188 goto out_owner_change
;
3189 len
= item
->ri_buf
[2].i_len
;
3190 src
= item
->ri_buf
[2].i_addr
;
3191 ASSERT(in_f
->ilf_size
<= 4);
3192 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
3193 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
3194 (len
== in_f
->ilf_dsize
));
3196 switch (fields
& XFS_ILOG_DFORK
) {
3197 case XFS_ILOG_DDATA
:
3199 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
3202 case XFS_ILOG_DBROOT
:
3203 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
3204 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
3205 XFS_DFORK_DSIZE(dip
, mp
));
3210 * There are no data fork flags set.
3212 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
3217 * If we logged any attribute data, recover it. There may or
3218 * may not have been any other non-core data logged in this
3221 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3222 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
3227 len
= item
->ri_buf
[attr_index
].i_len
;
3228 src
= item
->ri_buf
[attr_index
].i_addr
;
3229 ASSERT(len
== in_f
->ilf_asize
);
3231 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3232 case XFS_ILOG_ADATA
:
3234 dest
= XFS_DFORK_APTR(dip
);
3235 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
3236 memcpy(dest
, src
, len
);
3239 case XFS_ILOG_ABROOT
:
3240 dest
= XFS_DFORK_APTR(dip
);
3241 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
3242 len
, (xfs_bmdr_block_t
*)dest
,
3243 XFS_DFORK_ASIZE(dip
, mp
));
3247 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
3255 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
3256 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
3258 /* re-generate the checksum. */
3259 xfs_dinode_calc_crc(log
->l_mp
, dip
);
3261 ASSERT(bp
->b_target
->bt_mount
== mp
);
3262 bp
->b_iodone
= xlog_recover_iodone
;
3263 xfs_buf_delwri_queue(bp
, buffer_list
);
3274 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3275 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3279 xlog_recover_quotaoff_pass1(
3281 struct xlog_recover_item
*item
)
3283 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
3287 * The logitem format's flag tells us if this was user quotaoff,
3288 * group/project quotaoff or both.
3290 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
3291 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
3292 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
3293 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
3294 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
3295 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
3301 * Recover a dquot record
3304 xlog_recover_dquot_pass2(
3306 struct list_head
*buffer_list
,
3307 struct xlog_recover_item
*item
,
3308 xfs_lsn_t current_lsn
)
3310 xfs_mount_t
*mp
= log
->l_mp
;
3312 struct xfs_disk_dquot
*ddq
, *recddq
;
3315 xfs_dq_logformat_t
*dq_f
;
3320 * Filesystems are required to send in quota flags at mount time.
3322 if (mp
->m_qflags
== 0)
3325 recddq
= item
->ri_buf
[1].i_addr
;
3326 if (recddq
== NULL
) {
3327 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
3330 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
3331 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
3332 item
->ri_buf
[1].i_len
, __func__
);
3337 * This type of quotas was turned off, so ignore this record.
3339 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3341 if (log
->l_quotaoffs_flag
& type
)
3345 * At this point we know that quota was _not_ turned off.
3346 * Since the mount flags are not indicating to us otherwise, this
3347 * must mean that quota is on, and the dquot needs to be replayed.
3348 * Remember that we may not have fully recovered the superblock yet,
3349 * so we can't do the usual trick of looking at the SB quota bits.
3351 * The other possibility, of course, is that the quota subsystem was
3352 * removed since the last mount - ENOSYS.
3354 dq_f
= item
->ri_buf
[0].i_addr
;
3356 fa
= xfs_dquot_verify(mp
, recddq
, dq_f
->qlf_id
, 0, 0);
3358 xfs_alert(mp
, "corrupt dquot ID 0x%x in log at %pS",
3362 ASSERT(dq_f
->qlf_len
== 1);
3365 * At this point we are assuming that the dquots have been allocated
3366 * and hence the buffer has valid dquots stamped in it. It should,
3367 * therefore, pass verifier validation. If the dquot is bad, then the
3368 * we'll return an error here, so we don't need to specifically check
3369 * the dquot in the buffer after the verifier has run.
3371 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3372 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
3373 &xfs_dquot_buf_ops
);
3378 ddq
= xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
3381 * If the dquot has an LSN in it, recover the dquot only if it's less
3382 * than the lsn of the transaction we are replaying.
3384 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3385 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
3386 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
3388 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3393 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
3394 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3395 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
3399 ASSERT(dq_f
->qlf_size
== 2);
3400 ASSERT(bp
->b_target
->bt_mount
== mp
);
3401 bp
->b_iodone
= xlog_recover_iodone
;
3402 xfs_buf_delwri_queue(bp
, buffer_list
);
3410 * This routine is called to create an in-core extent free intent
3411 * item from the efi format structure which was logged on disk.
3412 * It allocates an in-core efi, copies the extents from the format
3413 * structure into it, and adds the efi to the AIL with the given
3417 xlog_recover_efi_pass2(
3419 struct xlog_recover_item
*item
,
3423 struct xfs_mount
*mp
= log
->l_mp
;
3424 struct xfs_efi_log_item
*efip
;
3425 struct xfs_efi_log_format
*efi_formatp
;
3427 efi_formatp
= item
->ri_buf
[0].i_addr
;
3429 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
3430 error
= xfs_efi_copy_format(&item
->ri_buf
[0], &efip
->efi_format
);
3432 xfs_efi_item_free(efip
);
3435 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
3437 spin_lock(&log
->l_ailp
->xa_lock
);
3439 * The EFI has two references. One for the EFD and one for EFI to ensure
3440 * it makes it into the AIL. Insert the EFI into the AIL directly and
3441 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3444 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
3445 xfs_efi_release(efip
);
3451 * This routine is called when an EFD format structure is found in a committed
3452 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3453 * was still in the log. To do this it searches the AIL for the EFI with an id
3454 * equal to that in the EFD format structure. If we find it we drop the EFD
3455 * reference, which removes the EFI from the AIL and frees it.
3458 xlog_recover_efd_pass2(
3460 struct xlog_recover_item
*item
)
3462 xfs_efd_log_format_t
*efd_formatp
;
3463 xfs_efi_log_item_t
*efip
= NULL
;
3464 xfs_log_item_t
*lip
;
3466 struct xfs_ail_cursor cur
;
3467 struct xfs_ail
*ailp
= log
->l_ailp
;
3469 efd_formatp
= item
->ri_buf
[0].i_addr
;
3470 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
3471 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
3472 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
3473 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
3474 efi_id
= efd_formatp
->efd_efi_id
;
3477 * Search for the EFI with the id in the EFD format structure in the
3480 spin_lock(&ailp
->xa_lock
);
3481 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3482 while (lip
!= NULL
) {
3483 if (lip
->li_type
== XFS_LI_EFI
) {
3484 efip
= (xfs_efi_log_item_t
*)lip
;
3485 if (efip
->efi_format
.efi_id
== efi_id
) {
3487 * Drop the EFD reference to the EFI. This
3488 * removes the EFI from the AIL and frees it.
3490 spin_unlock(&ailp
->xa_lock
);
3491 xfs_efi_release(efip
);
3492 spin_lock(&ailp
->xa_lock
);
3496 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3499 xfs_trans_ail_cursor_done(&cur
);
3500 spin_unlock(&ailp
->xa_lock
);
3506 * This routine is called to create an in-core extent rmap update
3507 * item from the rui format structure which was logged on disk.
3508 * It allocates an in-core rui, copies the extents from the format
3509 * structure into it, and adds the rui to the AIL with the given
3513 xlog_recover_rui_pass2(
3515 struct xlog_recover_item
*item
,
3519 struct xfs_mount
*mp
= log
->l_mp
;
3520 struct xfs_rui_log_item
*ruip
;
3521 struct xfs_rui_log_format
*rui_formatp
;
3523 rui_formatp
= item
->ri_buf
[0].i_addr
;
3525 ruip
= xfs_rui_init(mp
, rui_formatp
->rui_nextents
);
3526 error
= xfs_rui_copy_format(&item
->ri_buf
[0], &ruip
->rui_format
);
3528 xfs_rui_item_free(ruip
);
3531 atomic_set(&ruip
->rui_next_extent
, rui_formatp
->rui_nextents
);
3533 spin_lock(&log
->l_ailp
->xa_lock
);
3535 * The RUI has two references. One for the RUD and one for RUI to ensure
3536 * it makes it into the AIL. Insert the RUI into the AIL directly and
3537 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3540 xfs_trans_ail_update(log
->l_ailp
, &ruip
->rui_item
, lsn
);
3541 xfs_rui_release(ruip
);
3547 * This routine is called when an RUD format structure is found in a committed
3548 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3549 * was still in the log. To do this it searches the AIL for the RUI with an id
3550 * equal to that in the RUD format structure. If we find it we drop the RUD
3551 * reference, which removes the RUI from the AIL and frees it.
3554 xlog_recover_rud_pass2(
3556 struct xlog_recover_item
*item
)
3558 struct xfs_rud_log_format
*rud_formatp
;
3559 struct xfs_rui_log_item
*ruip
= NULL
;
3560 struct xfs_log_item
*lip
;
3562 struct xfs_ail_cursor cur
;
3563 struct xfs_ail
*ailp
= log
->l_ailp
;
3565 rud_formatp
= item
->ri_buf
[0].i_addr
;
3566 ASSERT(item
->ri_buf
[0].i_len
== sizeof(struct xfs_rud_log_format
));
3567 rui_id
= rud_formatp
->rud_rui_id
;
3570 * Search for the RUI with the id in the RUD format structure in the
3573 spin_lock(&ailp
->xa_lock
);
3574 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3575 while (lip
!= NULL
) {
3576 if (lip
->li_type
== XFS_LI_RUI
) {
3577 ruip
= (struct xfs_rui_log_item
*)lip
;
3578 if (ruip
->rui_format
.rui_id
== rui_id
) {
3580 * Drop the RUD reference to the RUI. This
3581 * removes the RUI from the AIL and frees it.
3583 spin_unlock(&ailp
->xa_lock
);
3584 xfs_rui_release(ruip
);
3585 spin_lock(&ailp
->xa_lock
);
3589 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3592 xfs_trans_ail_cursor_done(&cur
);
3593 spin_unlock(&ailp
->xa_lock
);
3599 * Copy an CUI format buffer from the given buf, and into the destination
3600 * CUI format structure. The CUI/CUD items were designed not to need any
3601 * special alignment handling.
3604 xfs_cui_copy_format(
3605 struct xfs_log_iovec
*buf
,
3606 struct xfs_cui_log_format
*dst_cui_fmt
)
3608 struct xfs_cui_log_format
*src_cui_fmt
;
3611 src_cui_fmt
= buf
->i_addr
;
3612 len
= xfs_cui_log_format_sizeof(src_cui_fmt
->cui_nextents
);
3614 if (buf
->i_len
== len
) {
3615 memcpy(dst_cui_fmt
, src_cui_fmt
, len
);
3618 return -EFSCORRUPTED
;
3622 * This routine is called to create an in-core extent refcount update
3623 * item from the cui format structure which was logged on disk.
3624 * It allocates an in-core cui, copies the extents from the format
3625 * structure into it, and adds the cui to the AIL with the given
3629 xlog_recover_cui_pass2(
3631 struct xlog_recover_item
*item
,
3635 struct xfs_mount
*mp
= log
->l_mp
;
3636 struct xfs_cui_log_item
*cuip
;
3637 struct xfs_cui_log_format
*cui_formatp
;
3639 cui_formatp
= item
->ri_buf
[0].i_addr
;
3641 cuip
= xfs_cui_init(mp
, cui_formatp
->cui_nextents
);
3642 error
= xfs_cui_copy_format(&item
->ri_buf
[0], &cuip
->cui_format
);
3644 xfs_cui_item_free(cuip
);
3647 atomic_set(&cuip
->cui_next_extent
, cui_formatp
->cui_nextents
);
3649 spin_lock(&log
->l_ailp
->xa_lock
);
3651 * The CUI has two references. One for the CUD and one for CUI to ensure
3652 * it makes it into the AIL. Insert the CUI into the AIL directly and
3653 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3656 xfs_trans_ail_update(log
->l_ailp
, &cuip
->cui_item
, lsn
);
3657 xfs_cui_release(cuip
);
3663 * This routine is called when an CUD format structure is found in a committed
3664 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3665 * was still in the log. To do this it searches the AIL for the CUI with an id
3666 * equal to that in the CUD format structure. If we find it we drop the CUD
3667 * reference, which removes the CUI from the AIL and frees it.
3670 xlog_recover_cud_pass2(
3672 struct xlog_recover_item
*item
)
3674 struct xfs_cud_log_format
*cud_formatp
;
3675 struct xfs_cui_log_item
*cuip
= NULL
;
3676 struct xfs_log_item
*lip
;
3678 struct xfs_ail_cursor cur
;
3679 struct xfs_ail
*ailp
= log
->l_ailp
;
3681 cud_formatp
= item
->ri_buf
[0].i_addr
;
3682 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_cud_log_format
))
3683 return -EFSCORRUPTED
;
3684 cui_id
= cud_formatp
->cud_cui_id
;
3687 * Search for the CUI with the id in the CUD format structure in the
3690 spin_lock(&ailp
->xa_lock
);
3691 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3692 while (lip
!= NULL
) {
3693 if (lip
->li_type
== XFS_LI_CUI
) {
3694 cuip
= (struct xfs_cui_log_item
*)lip
;
3695 if (cuip
->cui_format
.cui_id
== cui_id
) {
3697 * Drop the CUD reference to the CUI. This
3698 * removes the CUI from the AIL and frees it.
3700 spin_unlock(&ailp
->xa_lock
);
3701 xfs_cui_release(cuip
);
3702 spin_lock(&ailp
->xa_lock
);
3706 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3709 xfs_trans_ail_cursor_done(&cur
);
3710 spin_unlock(&ailp
->xa_lock
);
3716 * Copy an BUI format buffer from the given buf, and into the destination
3717 * BUI format structure. The BUI/BUD items were designed not to need any
3718 * special alignment handling.
3721 xfs_bui_copy_format(
3722 struct xfs_log_iovec
*buf
,
3723 struct xfs_bui_log_format
*dst_bui_fmt
)
3725 struct xfs_bui_log_format
*src_bui_fmt
;
3728 src_bui_fmt
= buf
->i_addr
;
3729 len
= xfs_bui_log_format_sizeof(src_bui_fmt
->bui_nextents
);
3731 if (buf
->i_len
== len
) {
3732 memcpy(dst_bui_fmt
, src_bui_fmt
, len
);
3735 return -EFSCORRUPTED
;
3739 * This routine is called to create an in-core extent bmap update
3740 * item from the bui format structure which was logged on disk.
3741 * It allocates an in-core bui, copies the extents from the format
3742 * structure into it, and adds the bui to the AIL with the given
3746 xlog_recover_bui_pass2(
3748 struct xlog_recover_item
*item
,
3752 struct xfs_mount
*mp
= log
->l_mp
;
3753 struct xfs_bui_log_item
*buip
;
3754 struct xfs_bui_log_format
*bui_formatp
;
3756 bui_formatp
= item
->ri_buf
[0].i_addr
;
3758 if (bui_formatp
->bui_nextents
!= XFS_BUI_MAX_FAST_EXTENTS
)
3759 return -EFSCORRUPTED
;
3760 buip
= xfs_bui_init(mp
);
3761 error
= xfs_bui_copy_format(&item
->ri_buf
[0], &buip
->bui_format
);
3763 xfs_bui_item_free(buip
);
3766 atomic_set(&buip
->bui_next_extent
, bui_formatp
->bui_nextents
);
3768 spin_lock(&log
->l_ailp
->xa_lock
);
3770 * The RUI has two references. One for the RUD and one for RUI to ensure
3771 * it makes it into the AIL. Insert the RUI into the AIL directly and
3772 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3775 xfs_trans_ail_update(log
->l_ailp
, &buip
->bui_item
, lsn
);
3776 xfs_bui_release(buip
);
3782 * This routine is called when an BUD format structure is found in a committed
3783 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3784 * was still in the log. To do this it searches the AIL for the BUI with an id
3785 * equal to that in the BUD format structure. If we find it we drop the BUD
3786 * reference, which removes the BUI from the AIL and frees it.
3789 xlog_recover_bud_pass2(
3791 struct xlog_recover_item
*item
)
3793 struct xfs_bud_log_format
*bud_formatp
;
3794 struct xfs_bui_log_item
*buip
= NULL
;
3795 struct xfs_log_item
*lip
;
3797 struct xfs_ail_cursor cur
;
3798 struct xfs_ail
*ailp
= log
->l_ailp
;
3800 bud_formatp
= item
->ri_buf
[0].i_addr
;
3801 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_bud_log_format
))
3802 return -EFSCORRUPTED
;
3803 bui_id
= bud_formatp
->bud_bui_id
;
3806 * Search for the BUI with the id in the BUD format structure in the
3809 spin_lock(&ailp
->xa_lock
);
3810 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3811 while (lip
!= NULL
) {
3812 if (lip
->li_type
== XFS_LI_BUI
) {
3813 buip
= (struct xfs_bui_log_item
*)lip
;
3814 if (buip
->bui_format
.bui_id
== bui_id
) {
3816 * Drop the BUD reference to the BUI. This
3817 * removes the BUI from the AIL and frees it.
3819 spin_unlock(&ailp
->xa_lock
);
3820 xfs_bui_release(buip
);
3821 spin_lock(&ailp
->xa_lock
);
3825 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3828 xfs_trans_ail_cursor_done(&cur
);
3829 spin_unlock(&ailp
->xa_lock
);
3835 * This routine is called when an inode create format structure is found in a
3836 * committed transaction in the log. It's purpose is to initialise the inodes
3837 * being allocated on disk. This requires us to get inode cluster buffers that
3838 * match the range to be initialised, stamped with inode templates and written
3839 * by delayed write so that subsequent modifications will hit the cached buffer
3840 * and only need writing out at the end of recovery.
3843 xlog_recover_do_icreate_pass2(
3845 struct list_head
*buffer_list
,
3846 xlog_recover_item_t
*item
)
3848 struct xfs_mount
*mp
= log
->l_mp
;
3849 struct xfs_icreate_log
*icl
;
3850 xfs_agnumber_t agno
;
3851 xfs_agblock_t agbno
;
3854 xfs_agblock_t length
;
3855 int blks_per_cluster
;
3861 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3862 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3863 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3867 if (icl
->icl_size
!= 1) {
3868 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3872 agno
= be32_to_cpu(icl
->icl_ag
);
3873 if (agno
>= mp
->m_sb
.sb_agcount
) {
3874 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3877 agbno
= be32_to_cpu(icl
->icl_agbno
);
3878 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3879 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3882 isize
= be32_to_cpu(icl
->icl_isize
);
3883 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3884 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3887 count
= be32_to_cpu(icl
->icl_count
);
3889 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3892 length
= be32_to_cpu(icl
->icl_length
);
3893 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3894 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3899 * The inode chunk is either full or sparse and we only support
3900 * m_ialloc_min_blks sized sparse allocations at this time.
3902 if (length
!= mp
->m_ialloc_blks
&&
3903 length
!= mp
->m_ialloc_min_blks
) {
3905 "%s: unsupported chunk length", __FUNCTION__
);
3909 /* verify inode count is consistent with extent length */
3910 if ((count
>> mp
->m_sb
.sb_inopblog
) != length
) {
3912 "%s: inconsistent inode count and chunk length",
3918 * The icreate transaction can cover multiple cluster buffers and these
3919 * buffers could have been freed and reused. Check the individual
3920 * buffers for cancellation so we don't overwrite anything written after
3923 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
3924 bb_per_cluster
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
3925 nbufs
= length
/ blks_per_cluster
;
3926 for (i
= 0, cancel_count
= 0; i
< nbufs
; i
++) {
3929 daddr
= XFS_AGB_TO_DADDR(mp
, agno
,
3930 agbno
+ i
* blks_per_cluster
);
3931 if (xlog_check_buffer_cancelled(log
, daddr
, bb_per_cluster
, 0))
3936 * We currently only use icreate for a single allocation at a time. This
3937 * means we should expect either all or none of the buffers to be
3938 * cancelled. Be conservative and skip replay if at least one buffer is
3939 * cancelled, but warn the user that something is awry if the buffers
3940 * are not consistent.
3942 * XXX: This must be refined to only skip cancelled clusters once we use
3943 * icreate for multiple chunk allocations.
3945 ASSERT(!cancel_count
|| cancel_count
== nbufs
);
3947 if (cancel_count
!= nbufs
)
3949 "WARNING: partial inode chunk cancellation, skipped icreate.");
3950 trace_xfs_log_recover_icreate_cancel(log
, icl
);
3954 trace_xfs_log_recover_icreate_recover(log
, icl
);
3955 return xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, count
, agno
, agbno
,
3956 length
, be32_to_cpu(icl
->icl_gen
));
3960 xlog_recover_buffer_ra_pass2(
3962 struct xlog_recover_item
*item
)
3964 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3965 struct xfs_mount
*mp
= log
->l_mp
;
3967 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3968 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3972 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3973 buf_f
->blf_len
, NULL
);
3977 xlog_recover_inode_ra_pass2(
3979 struct xlog_recover_item
*item
)
3981 struct xfs_inode_log_format ilf_buf
;
3982 struct xfs_inode_log_format
*ilfp
;
3983 struct xfs_mount
*mp
= log
->l_mp
;
3986 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3987 ilfp
= item
->ri_buf
[0].i_addr
;
3990 memset(ilfp
, 0, sizeof(*ilfp
));
3991 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3996 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3999 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
4000 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
4004 xlog_recover_dquot_ra_pass2(
4006 struct xlog_recover_item
*item
)
4008 struct xfs_mount
*mp
= log
->l_mp
;
4009 struct xfs_disk_dquot
*recddq
;
4010 struct xfs_dq_logformat
*dq_f
;
4015 if (mp
->m_qflags
== 0)
4018 recddq
= item
->ri_buf
[1].i_addr
;
4021 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
4024 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
4026 if (log
->l_quotaoffs_flag
& type
)
4029 dq_f
= item
->ri_buf
[0].i_addr
;
4031 ASSERT(dq_f
->qlf_len
== 1);
4033 len
= XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
);
4034 if (xlog_peek_buffer_cancelled(log
, dq_f
->qlf_blkno
, len
, 0))
4037 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
, len
,
4038 &xfs_dquot_buf_ra_ops
);
4042 xlog_recover_ra_pass2(
4044 struct xlog_recover_item
*item
)
4046 switch (ITEM_TYPE(item
)) {
4048 xlog_recover_buffer_ra_pass2(log
, item
);
4051 xlog_recover_inode_ra_pass2(log
, item
);
4054 xlog_recover_dquot_ra_pass2(log
, item
);
4058 case XFS_LI_QUOTAOFF
:
4071 xlog_recover_commit_pass1(
4073 struct xlog_recover
*trans
,
4074 struct xlog_recover_item
*item
)
4076 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
4078 switch (ITEM_TYPE(item
)) {
4080 return xlog_recover_buffer_pass1(log
, item
);
4081 case XFS_LI_QUOTAOFF
:
4082 return xlog_recover_quotaoff_pass1(log
, item
);
4087 case XFS_LI_ICREATE
:
4094 /* nothing to do in pass 1 */
4097 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4098 __func__
, ITEM_TYPE(item
));
4105 xlog_recover_commit_pass2(
4107 struct xlog_recover
*trans
,
4108 struct list_head
*buffer_list
,
4109 struct xlog_recover_item
*item
)
4111 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
4113 switch (ITEM_TYPE(item
)) {
4115 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
4118 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
4121 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
4123 return xlog_recover_efd_pass2(log
, item
);
4125 return xlog_recover_rui_pass2(log
, item
, trans
->r_lsn
);
4127 return xlog_recover_rud_pass2(log
, item
);
4129 return xlog_recover_cui_pass2(log
, item
, trans
->r_lsn
);
4131 return xlog_recover_cud_pass2(log
, item
);
4133 return xlog_recover_bui_pass2(log
, item
, trans
->r_lsn
);
4135 return xlog_recover_bud_pass2(log
, item
);
4137 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
4139 case XFS_LI_ICREATE
:
4140 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
4141 case XFS_LI_QUOTAOFF
:
4142 /* nothing to do in pass2 */
4145 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4146 __func__
, ITEM_TYPE(item
));
4153 xlog_recover_items_pass2(
4155 struct xlog_recover
*trans
,
4156 struct list_head
*buffer_list
,
4157 struct list_head
*item_list
)
4159 struct xlog_recover_item
*item
;
4162 list_for_each_entry(item
, item_list
, ri_list
) {
4163 error
= xlog_recover_commit_pass2(log
, trans
,
4173 * Perform the transaction.
4175 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4176 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4179 xlog_recover_commit_trans(
4181 struct xlog_recover
*trans
,
4183 struct list_head
*buffer_list
)
4186 int items_queued
= 0;
4187 struct xlog_recover_item
*item
;
4188 struct xlog_recover_item
*next
;
4189 LIST_HEAD (ra_list
);
4190 LIST_HEAD (done_list
);
4192 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4194 hlist_del_init(&trans
->r_list
);
4196 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
4200 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
4202 case XLOG_RECOVER_PASS1
:
4203 error
= xlog_recover_commit_pass1(log
, trans
, item
);
4205 case XLOG_RECOVER_PASS2
:
4206 xlog_recover_ra_pass2(log
, item
);
4207 list_move_tail(&item
->ri_list
, &ra_list
);
4209 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
4210 error
= xlog_recover_items_pass2(log
, trans
,
4211 buffer_list
, &ra_list
);
4212 list_splice_tail_init(&ra_list
, &done_list
);
4226 if (!list_empty(&ra_list
)) {
4228 error
= xlog_recover_items_pass2(log
, trans
,
4229 buffer_list
, &ra_list
);
4230 list_splice_tail_init(&ra_list
, &done_list
);
4233 if (!list_empty(&done_list
))
4234 list_splice_init(&done_list
, &trans
->r_itemq
);
4240 xlog_recover_add_item(
4241 struct list_head
*head
)
4243 xlog_recover_item_t
*item
;
4245 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
4246 INIT_LIST_HEAD(&item
->ri_list
);
4247 list_add_tail(&item
->ri_list
, head
);
4251 xlog_recover_add_to_cont_trans(
4253 struct xlog_recover
*trans
,
4257 xlog_recover_item_t
*item
;
4258 char *ptr
, *old_ptr
;
4262 * If the transaction is empty, the header was split across this and the
4263 * previous record. Copy the rest of the header.
4265 if (list_empty(&trans
->r_itemq
)) {
4266 ASSERT(len
<= sizeof(struct xfs_trans_header
));
4267 if (len
> sizeof(struct xfs_trans_header
)) {
4268 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4272 xlog_recover_add_item(&trans
->r_itemq
);
4273 ptr
= (char *)&trans
->r_theader
+
4274 sizeof(struct xfs_trans_header
) - len
;
4275 memcpy(ptr
, dp
, len
);
4279 /* take the tail entry */
4280 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4282 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
4283 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
4285 ptr
= kmem_realloc(old_ptr
, len
+ old_len
, KM_SLEEP
);
4286 memcpy(&ptr
[old_len
], dp
, len
);
4287 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
4288 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
4289 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
4294 * The next region to add is the start of a new region. It could be
4295 * a whole region or it could be the first part of a new region. Because
4296 * of this, the assumption here is that the type and size fields of all
4297 * format structures fit into the first 32 bits of the structure.
4299 * This works because all regions must be 32 bit aligned. Therefore, we
4300 * either have both fields or we have neither field. In the case we have
4301 * neither field, the data part of the region is zero length. We only have
4302 * a log_op_header and can throw away the header since a new one will appear
4303 * later. If we have at least 4 bytes, then we can determine how many regions
4304 * will appear in the current log item.
4307 xlog_recover_add_to_trans(
4309 struct xlog_recover
*trans
,
4313 struct xfs_inode_log_format
*in_f
; /* any will do */
4314 xlog_recover_item_t
*item
;
4319 if (list_empty(&trans
->r_itemq
)) {
4320 /* we need to catch log corruptions here */
4321 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
4322 xfs_warn(log
->l_mp
, "%s: bad header magic number",
4328 if (len
> sizeof(struct xfs_trans_header
)) {
4329 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4335 * The transaction header can be arbitrarily split across op
4336 * records. If we don't have the whole thing here, copy what we
4337 * do have and handle the rest in the next record.
4339 if (len
== sizeof(struct xfs_trans_header
))
4340 xlog_recover_add_item(&trans
->r_itemq
);
4341 memcpy(&trans
->r_theader
, dp
, len
);
4345 ptr
= kmem_alloc(len
, KM_SLEEP
);
4346 memcpy(ptr
, dp
, len
);
4347 in_f
= (struct xfs_inode_log_format
*)ptr
;
4349 /* take the tail entry */
4350 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4351 if (item
->ri_total
!= 0 &&
4352 item
->ri_total
== item
->ri_cnt
) {
4353 /* tail item is in use, get a new one */
4354 xlog_recover_add_item(&trans
->r_itemq
);
4355 item
= list_entry(trans
->r_itemq
.prev
,
4356 xlog_recover_item_t
, ri_list
);
4359 if (item
->ri_total
== 0) { /* first region to be added */
4360 if (in_f
->ilf_size
== 0 ||
4361 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
4363 "bad number of regions (%d) in inode log format",
4370 item
->ri_total
= in_f
->ilf_size
;
4372 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
4375 ASSERT(item
->ri_total
> item
->ri_cnt
);
4376 /* Description region is ri_buf[0] */
4377 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
4378 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
4380 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
4385 * Free up any resources allocated by the transaction
4387 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4390 xlog_recover_free_trans(
4391 struct xlog_recover
*trans
)
4393 xlog_recover_item_t
*item
, *n
;
4396 hlist_del_init(&trans
->r_list
);
4398 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
4399 /* Free the regions in the item. */
4400 list_del(&item
->ri_list
);
4401 for (i
= 0; i
< item
->ri_cnt
; i
++)
4402 kmem_free(item
->ri_buf
[i
].i_addr
);
4403 /* Free the item itself */
4404 kmem_free(item
->ri_buf
);
4407 /* Free the transaction recover structure */
4412 * On error or completion, trans is freed.
4415 xlog_recovery_process_trans(
4417 struct xlog_recover
*trans
,
4422 struct list_head
*buffer_list
)
4425 bool freeit
= false;
4427 /* mask off ophdr transaction container flags */
4428 flags
&= ~XLOG_END_TRANS
;
4429 if (flags
& XLOG_WAS_CONT_TRANS
)
4430 flags
&= ~XLOG_CONTINUE_TRANS
;
4433 * Callees must not free the trans structure. We'll decide if we need to
4434 * free it or not based on the operation being done and it's result.
4437 /* expected flag values */
4439 case XLOG_CONTINUE_TRANS
:
4440 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
4442 case XLOG_WAS_CONT_TRANS
:
4443 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
4445 case XLOG_COMMIT_TRANS
:
4446 error
= xlog_recover_commit_trans(log
, trans
, pass
,
4448 /* success or fail, we are now done with this transaction. */
4452 /* unexpected flag values */
4453 case XLOG_UNMOUNT_TRANS
:
4454 /* just skip trans */
4455 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
4458 case XLOG_START_TRANS
:
4460 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
4465 if (error
|| freeit
)
4466 xlog_recover_free_trans(trans
);
4471 * Lookup the transaction recovery structure associated with the ID in the
4472 * current ophdr. If the transaction doesn't exist and the start flag is set in
4473 * the ophdr, then allocate a new transaction for future ID matches to find.
4474 * Either way, return what we found during the lookup - an existing transaction
4477 STATIC
struct xlog_recover
*
4478 xlog_recover_ophdr_to_trans(
4479 struct hlist_head rhash
[],
4480 struct xlog_rec_header
*rhead
,
4481 struct xlog_op_header
*ohead
)
4483 struct xlog_recover
*trans
;
4485 struct hlist_head
*rhp
;
4487 tid
= be32_to_cpu(ohead
->oh_tid
);
4488 rhp
= &rhash
[XLOG_RHASH(tid
)];
4489 hlist_for_each_entry(trans
, rhp
, r_list
) {
4490 if (trans
->r_log_tid
== tid
)
4495 * skip over non-start transaction headers - we could be
4496 * processing slack space before the next transaction starts
4498 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
4501 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
4504 * This is a new transaction so allocate a new recovery container to
4505 * hold the recovery ops that will follow.
4507 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
4508 trans
->r_log_tid
= tid
;
4509 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
4510 INIT_LIST_HEAD(&trans
->r_itemq
);
4511 INIT_HLIST_NODE(&trans
->r_list
);
4512 hlist_add_head(&trans
->r_list
, rhp
);
4515 * Nothing more to do for this ophdr. Items to be added to this new
4516 * transaction will be in subsequent ophdr containers.
4522 xlog_recover_process_ophdr(
4524 struct hlist_head rhash
[],
4525 struct xlog_rec_header
*rhead
,
4526 struct xlog_op_header
*ohead
,
4530 struct list_head
*buffer_list
)
4532 struct xlog_recover
*trans
;
4536 /* Do we understand who wrote this op? */
4537 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
4538 ohead
->oh_clientid
!= XFS_LOG
) {
4539 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
4540 __func__
, ohead
->oh_clientid
);
4546 * Check the ophdr contains all the data it is supposed to contain.
4548 len
= be32_to_cpu(ohead
->oh_len
);
4549 if (dp
+ len
> end
) {
4550 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
4555 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
4557 /* nothing to do, so skip over this ophdr */
4562 * The recovered buffer queue is drained only once we know that all
4563 * recovery items for the current LSN have been processed. This is
4566 * - Buffer write submission updates the metadata LSN of the buffer.
4567 * - Log recovery skips items with a metadata LSN >= the current LSN of
4568 * the recovery item.
4569 * - Separate recovery items against the same metadata buffer can share
4570 * a current LSN. I.e., consider that the LSN of a recovery item is
4571 * defined as the starting LSN of the first record in which its
4572 * transaction appears, that a record can hold multiple transactions,
4573 * and/or that a transaction can span multiple records.
4575 * In other words, we are allowed to submit a buffer from log recovery
4576 * once per current LSN. Otherwise, we may incorrectly skip recovery
4577 * items and cause corruption.
4579 * We don't know up front whether buffers are updated multiple times per
4580 * LSN. Therefore, track the current LSN of each commit log record as it
4581 * is processed and drain the queue when it changes. Use commit records
4582 * because they are ordered correctly by the logging code.
4584 if (log
->l_recovery_lsn
!= trans
->r_lsn
&&
4585 ohead
->oh_flags
& XLOG_COMMIT_TRANS
) {
4586 error
= xfs_buf_delwri_submit(buffer_list
);
4589 log
->l_recovery_lsn
= trans
->r_lsn
;
4592 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
4593 ohead
->oh_flags
, pass
, buffer_list
);
4597 * There are two valid states of the r_state field. 0 indicates that the
4598 * transaction structure is in a normal state. We have either seen the
4599 * start of the transaction or the last operation we added was not a partial
4600 * operation. If the last operation we added to the transaction was a
4601 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4603 * NOTE: skip LRs with 0 data length.
4606 xlog_recover_process_data(
4608 struct hlist_head rhash
[],
4609 struct xlog_rec_header
*rhead
,
4612 struct list_head
*buffer_list
)
4614 struct xlog_op_header
*ohead
;
4619 end
= dp
+ be32_to_cpu(rhead
->h_len
);
4620 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
4622 /* check the log format matches our own - else we can't recover */
4623 if (xlog_header_check_recover(log
->l_mp
, rhead
))
4626 trace_xfs_log_recover_record(log
, rhead
, pass
);
4627 while ((dp
< end
) && num_logops
) {
4629 ohead
= (struct xlog_op_header
*)dp
;
4630 dp
+= sizeof(*ohead
);
4633 /* errors will abort recovery */
4634 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
4635 dp
, end
, pass
, buffer_list
);
4639 dp
+= be32_to_cpu(ohead
->oh_len
);
4645 /* Recover the EFI if necessary. */
4647 xlog_recover_process_efi(
4648 struct xfs_mount
*mp
,
4649 struct xfs_ail
*ailp
,
4650 struct xfs_log_item
*lip
)
4652 struct xfs_efi_log_item
*efip
;
4656 * Skip EFIs that we've already processed.
4658 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4659 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
))
4662 spin_unlock(&ailp
->xa_lock
);
4663 error
= xfs_efi_recover(mp
, efip
);
4664 spin_lock(&ailp
->xa_lock
);
4669 /* Release the EFI since we're cancelling everything. */
4671 xlog_recover_cancel_efi(
4672 struct xfs_mount
*mp
,
4673 struct xfs_ail
*ailp
,
4674 struct xfs_log_item
*lip
)
4676 struct xfs_efi_log_item
*efip
;
4678 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4680 spin_unlock(&ailp
->xa_lock
);
4681 xfs_efi_release(efip
);
4682 spin_lock(&ailp
->xa_lock
);
4685 /* Recover the RUI if necessary. */
4687 xlog_recover_process_rui(
4688 struct xfs_mount
*mp
,
4689 struct xfs_ail
*ailp
,
4690 struct xfs_log_item
*lip
)
4692 struct xfs_rui_log_item
*ruip
;
4696 * Skip RUIs that we've already processed.
4698 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4699 if (test_bit(XFS_RUI_RECOVERED
, &ruip
->rui_flags
))
4702 spin_unlock(&ailp
->xa_lock
);
4703 error
= xfs_rui_recover(mp
, ruip
);
4704 spin_lock(&ailp
->xa_lock
);
4709 /* Release the RUI since we're cancelling everything. */
4711 xlog_recover_cancel_rui(
4712 struct xfs_mount
*mp
,
4713 struct xfs_ail
*ailp
,
4714 struct xfs_log_item
*lip
)
4716 struct xfs_rui_log_item
*ruip
;
4718 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4720 spin_unlock(&ailp
->xa_lock
);
4721 xfs_rui_release(ruip
);
4722 spin_lock(&ailp
->xa_lock
);
4725 /* Recover the CUI if necessary. */
4727 xlog_recover_process_cui(
4728 struct xfs_mount
*mp
,
4729 struct xfs_ail
*ailp
,
4730 struct xfs_log_item
*lip
,
4731 struct xfs_defer_ops
*dfops
)
4733 struct xfs_cui_log_item
*cuip
;
4737 * Skip CUIs that we've already processed.
4739 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4740 if (test_bit(XFS_CUI_RECOVERED
, &cuip
->cui_flags
))
4743 spin_unlock(&ailp
->xa_lock
);
4744 error
= xfs_cui_recover(mp
, cuip
, dfops
);
4745 spin_lock(&ailp
->xa_lock
);
4750 /* Release the CUI since we're cancelling everything. */
4752 xlog_recover_cancel_cui(
4753 struct xfs_mount
*mp
,
4754 struct xfs_ail
*ailp
,
4755 struct xfs_log_item
*lip
)
4757 struct xfs_cui_log_item
*cuip
;
4759 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4761 spin_unlock(&ailp
->xa_lock
);
4762 xfs_cui_release(cuip
);
4763 spin_lock(&ailp
->xa_lock
);
4766 /* Recover the BUI if necessary. */
4768 xlog_recover_process_bui(
4769 struct xfs_mount
*mp
,
4770 struct xfs_ail
*ailp
,
4771 struct xfs_log_item
*lip
,
4772 struct xfs_defer_ops
*dfops
)
4774 struct xfs_bui_log_item
*buip
;
4778 * Skip BUIs that we've already processed.
4780 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4781 if (test_bit(XFS_BUI_RECOVERED
, &buip
->bui_flags
))
4784 spin_unlock(&ailp
->xa_lock
);
4785 error
= xfs_bui_recover(mp
, buip
, dfops
);
4786 spin_lock(&ailp
->xa_lock
);
4791 /* Release the BUI since we're cancelling everything. */
4793 xlog_recover_cancel_bui(
4794 struct xfs_mount
*mp
,
4795 struct xfs_ail
*ailp
,
4796 struct xfs_log_item
*lip
)
4798 struct xfs_bui_log_item
*buip
;
4800 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4802 spin_unlock(&ailp
->xa_lock
);
4803 xfs_bui_release(buip
);
4804 spin_lock(&ailp
->xa_lock
);
4807 /* Is this log item a deferred action intent? */
4808 static inline bool xlog_item_is_intent(struct xfs_log_item
*lip
)
4810 switch (lip
->li_type
) {
4821 /* Take all the collected deferred ops and finish them in order. */
4823 xlog_finish_defer_ops(
4824 struct xfs_mount
*mp
,
4825 struct xfs_defer_ops
*dfops
)
4827 struct xfs_trans
*tp
;
4833 * We're finishing the defer_ops that accumulated as a result of
4834 * recovering unfinished intent items during log recovery. We
4835 * reserve an itruncate transaction because it is the largest
4836 * permanent transaction type. Since we're the only user of the fs
4837 * right now, take 93% (15/16) of the available free blocks. Use
4838 * weird math to avoid a 64-bit division.
4840 freeblks
= percpu_counter_sum(&mp
->m_fdblocks
);
4843 resblks
= min_t(int64_t, UINT_MAX
, freeblks
);
4844 resblks
= (resblks
* 15) >> 4;
4845 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, resblks
,
4846 0, XFS_TRANS_RESERVE
, &tp
);
4850 error
= xfs_defer_finish(&tp
, dfops
);
4854 return xfs_trans_commit(tp
);
4857 xfs_trans_cancel(tp
);
4862 * When this is called, all of the log intent items which did not have
4863 * corresponding log done items should be in the AIL. What we do now
4864 * is update the data structures associated with each one.
4866 * Since we process the log intent items in normal transactions, they
4867 * will be removed at some point after the commit. This prevents us
4868 * from just walking down the list processing each one. We'll use a
4869 * flag in the intent item to skip those that we've already processed
4870 * and use the AIL iteration mechanism's generation count to try to
4871 * speed this up at least a bit.
4873 * When we start, we know that the intents are the only things in the
4874 * AIL. As we process them, however, other items are added to the
4878 xlog_recover_process_intents(
4881 struct xfs_defer_ops dfops
;
4882 struct xfs_ail_cursor cur
;
4883 struct xfs_log_item
*lip
;
4884 struct xfs_ail
*ailp
;
4885 xfs_fsblock_t firstfsb
;
4887 #if defined(DEBUG) || defined(XFS_WARN)
4892 spin_lock(&ailp
->xa_lock
);
4893 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4894 #if defined(DEBUG) || defined(XFS_WARN)
4895 last_lsn
= xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
);
4897 xfs_defer_init(&dfops
, &firstfsb
);
4898 while (lip
!= NULL
) {
4900 * We're done when we see something other than an intent.
4901 * There should be no intents left in the AIL now.
4903 if (!xlog_item_is_intent(lip
)) {
4905 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4906 ASSERT(!xlog_item_is_intent(lip
));
4912 * We should never see a redo item with a LSN higher than
4913 * the last transaction we found in the log at the start
4916 ASSERT(XFS_LSN_CMP(last_lsn
, lip
->li_lsn
) >= 0);
4919 * NOTE: If your intent processing routine can create more
4920 * deferred ops, you /must/ attach them to the dfops in this
4921 * routine or else those subsequent intents will get
4922 * replayed in the wrong order!
4924 switch (lip
->li_type
) {
4926 error
= xlog_recover_process_efi(log
->l_mp
, ailp
, lip
);
4929 error
= xlog_recover_process_rui(log
->l_mp
, ailp
, lip
);
4932 error
= xlog_recover_process_cui(log
->l_mp
, ailp
, lip
,
4936 error
= xlog_recover_process_bui(log
->l_mp
, ailp
, lip
,
4942 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4945 xfs_trans_ail_cursor_done(&cur
);
4946 spin_unlock(&ailp
->xa_lock
);
4948 xfs_defer_cancel(&dfops
);
4950 error
= xlog_finish_defer_ops(log
->l_mp
, &dfops
);
4956 * A cancel occurs when the mount has failed and we're bailing out.
4957 * Release all pending log intent items so they don't pin the AIL.
4960 xlog_recover_cancel_intents(
4963 struct xfs_log_item
*lip
;
4965 struct xfs_ail_cursor cur
;
4966 struct xfs_ail
*ailp
;
4969 spin_lock(&ailp
->xa_lock
);
4970 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4971 while (lip
!= NULL
) {
4973 * We're done when we see something other than an intent.
4974 * There should be no intents left in the AIL now.
4976 if (!xlog_item_is_intent(lip
)) {
4978 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4979 ASSERT(!xlog_item_is_intent(lip
));
4984 switch (lip
->li_type
) {
4986 xlog_recover_cancel_efi(log
->l_mp
, ailp
, lip
);
4989 xlog_recover_cancel_rui(log
->l_mp
, ailp
, lip
);
4992 xlog_recover_cancel_cui(log
->l_mp
, ailp
, lip
);
4995 xlog_recover_cancel_bui(log
->l_mp
, ailp
, lip
);
4999 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
5002 xfs_trans_ail_cursor_done(&cur
);
5003 spin_unlock(&ailp
->xa_lock
);
5008 * This routine performs a transaction to null out a bad inode pointer
5009 * in an agi unlinked inode hash bucket.
5012 xlog_recover_clear_agi_bucket(
5014 xfs_agnumber_t agno
,
5023 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_clearagi
, 0, 0, 0, &tp
);
5027 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
5031 agi
= XFS_BUF_TO_AGI(agibp
);
5032 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
5033 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
5034 (sizeof(xfs_agino_t
) * bucket
);
5035 xfs_trans_log_buf(tp
, agibp
, offset
,
5036 (offset
+ sizeof(xfs_agino_t
) - 1));
5038 error
= xfs_trans_commit(tp
);
5044 xfs_trans_cancel(tp
);
5046 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
5051 xlog_recover_process_one_iunlink(
5052 struct xfs_mount
*mp
,
5053 xfs_agnumber_t agno
,
5057 struct xfs_buf
*ibp
;
5058 struct xfs_dinode
*dip
;
5059 struct xfs_inode
*ip
;
5063 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
5064 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
5069 * Get the on disk inode to find the next inode in the bucket.
5071 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
5075 xfs_iflags_clear(ip
, XFS_IRECOVERY
);
5076 ASSERT(VFS_I(ip
)->i_nlink
== 0);
5077 ASSERT(VFS_I(ip
)->i_mode
!= 0);
5079 /* setup for the next pass */
5080 agino
= be32_to_cpu(dip
->di_next_unlinked
);
5084 * Prevent any DMAPI event from being sent when the reference on
5085 * the inode is dropped.
5087 ip
->i_d
.di_dmevmask
= 0;
5096 * We can't read in the inode this bucket points to, or this inode
5097 * is messed up. Just ditch this bucket of inodes. We will lose
5098 * some inodes and space, but at least we won't hang.
5100 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5101 * clear the inode pointer in the bucket.
5103 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
5108 * xlog_iunlink_recover
5110 * This is called during recovery to process any inodes which
5111 * we unlinked but not freed when the system crashed. These
5112 * inodes will be on the lists in the AGI blocks. What we do
5113 * here is scan all the AGIs and fully truncate and free any
5114 * inodes found on the lists. Each inode is removed from the
5115 * lists when it has been fully truncated and is freed. The
5116 * freeing of the inode and its removal from the list must be
5120 xlog_recover_process_iunlinks(
5124 xfs_agnumber_t agno
;
5135 * Prevent any DMAPI event from being sent while in this function.
5137 mp_dmevmask
= mp
->m_dmevmask
;
5140 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5142 * Find the agi for this ag.
5144 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5147 * AGI is b0rked. Don't process it.
5149 * We should probably mark the filesystem as corrupt
5150 * after we've recovered all the ag's we can....
5155 * Unlock the buffer so that it can be acquired in the normal
5156 * course of the transaction to truncate and free each inode.
5157 * Because we are not racing with anyone else here for the AGI
5158 * buffer, we don't even need to hold it locked to read the
5159 * initial unlinked bucket entries out of the buffer. We keep
5160 * buffer reference though, so that it stays pinned in memory
5161 * while we need the buffer.
5163 agi
= XFS_BUF_TO_AGI(agibp
);
5164 xfs_buf_unlock(agibp
);
5166 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
5167 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
5168 while (agino
!= NULLAGINO
) {
5169 agino
= xlog_recover_process_one_iunlink(mp
,
5170 agno
, agino
, bucket
);
5173 xfs_buf_rele(agibp
);
5176 mp
->m_dmevmask
= mp_dmevmask
;
5181 struct xlog_rec_header
*rhead
,
5187 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
5188 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
5189 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
5193 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5194 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
5195 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
5196 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5197 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5198 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
5207 * CRC check, unpack and process a log record.
5210 xlog_recover_process(
5212 struct hlist_head rhash
[],
5213 struct xlog_rec_header
*rhead
,
5216 struct list_head
*buffer_list
)
5219 __le32 old_crc
= rhead
->h_crc
;
5223 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
5226 * Nothing else to do if this is a CRC verification pass. Just return
5227 * if this a record with a non-zero crc. Unfortunately, mkfs always
5228 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5229 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5230 * know precisely what failed.
5232 if (pass
== XLOG_RECOVER_CRCPASS
) {
5233 if (old_crc
&& crc
!= old_crc
)
5239 * We're in the normal recovery path. Issue a warning if and only if the
5240 * CRC in the header is non-zero. This is an advisory warning and the
5241 * zero CRC check prevents warnings from being emitted when upgrading
5242 * the kernel from one that does not add CRCs by default.
5244 if (crc
!= old_crc
) {
5245 if (old_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
5246 xfs_alert(log
->l_mp
,
5247 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5248 le32_to_cpu(old_crc
),
5250 xfs_hex_dump(dp
, 32);
5254 * If the filesystem is CRC enabled, this mismatch becomes a
5255 * fatal log corruption failure.
5257 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
5258 return -EFSCORRUPTED
;
5261 error
= xlog_unpack_data(rhead
, dp
, log
);
5265 return xlog_recover_process_data(log
, rhash
, rhead
, dp
, pass
,
5270 xlog_valid_rec_header(
5272 struct xlog_rec_header
*rhead
,
5277 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
5278 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5279 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5280 return -EFSCORRUPTED
;
5283 (!rhead
->h_version
||
5284 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
5285 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
5286 __func__
, be32_to_cpu(rhead
->h_version
));
5290 /* LR body must have data or it wouldn't have been written */
5291 hlen
= be32_to_cpu(rhead
->h_len
);
5292 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
5293 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5294 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5295 return -EFSCORRUPTED
;
5297 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
5298 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5299 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5300 return -EFSCORRUPTED
;
5306 * Read the log from tail to head and process the log records found.
5307 * Handle the two cases where the tail and head are in the same cycle
5308 * and where the active portion of the log wraps around the end of
5309 * the physical log separately. The pass parameter is passed through
5310 * to the routines called to process the data and is not looked at
5314 xlog_do_recovery_pass(
5316 xfs_daddr_t head_blk
,
5317 xfs_daddr_t tail_blk
,
5319 xfs_daddr_t
*first_bad
) /* out: first bad log rec */
5321 xlog_rec_header_t
*rhead
;
5322 xfs_daddr_t blk_no
, rblk_no
;
5323 xfs_daddr_t rhead_blk
;
5325 xfs_buf_t
*hbp
, *dbp
;
5326 int error
= 0, h_size
, h_len
;
5328 int bblks
, split_bblks
;
5329 int hblks
, split_hblks
, wrapped_hblks
;
5331 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
5332 LIST_HEAD (buffer_list
);
5334 ASSERT(head_blk
!= tail_blk
);
5335 blk_no
= rhead_blk
= tail_blk
;
5337 for (i
= 0; i
< XLOG_RHASH_SIZE
; i
++)
5338 INIT_HLIST_HEAD(&rhash
[i
]);
5341 * Read the header of the tail block and get the iclog buffer size from
5342 * h_size. Use this to tell how many sectors make up the log header.
5344 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5346 * When using variable length iclogs, read first sector of
5347 * iclog header and extract the header size from it. Get a
5348 * new hbp that is the correct size.
5350 hbp
= xlog_get_bp(log
, 1);
5354 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
5358 rhead
= (xlog_rec_header_t
*)offset
;
5359 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
5364 * xfsprogs has a bug where record length is based on lsunit but
5365 * h_size (iclog size) is hardcoded to 32k. Now that we
5366 * unconditionally CRC verify the unmount record, this means the
5367 * log buffer can be too small for the record and cause an
5370 * Detect this condition here. Use lsunit for the buffer size as
5371 * long as this looks like the mkfs case. Otherwise, return an
5372 * error to avoid a buffer overrun.
5374 h_size
= be32_to_cpu(rhead
->h_size
);
5375 h_len
= be32_to_cpu(rhead
->h_len
);
5376 if (h_len
> h_size
) {
5377 if (h_len
<= log
->l_mp
->m_logbsize
&&
5378 be32_to_cpu(rhead
->h_num_logops
) == 1) {
5380 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5381 h_size
, log
->l_mp
->m_logbsize
);
5382 h_size
= log
->l_mp
->m_logbsize
;
5384 return -EFSCORRUPTED
;
5387 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
5388 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
5389 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
5390 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
5393 hbp
= xlog_get_bp(log
, hblks
);
5398 ASSERT(log
->l_sectBBsize
== 1);
5400 hbp
= xlog_get_bp(log
, 1);
5401 h_size
= XLOG_BIG_RECORD_BSIZE
;
5406 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
5412 memset(rhash
, 0, sizeof(rhash
));
5413 if (tail_blk
> head_blk
) {
5415 * Perform recovery around the end of the physical log.
5416 * When the head is not on the same cycle number as the tail,
5417 * we can't do a sequential recovery.
5419 while (blk_no
< log
->l_logBBsize
) {
5421 * Check for header wrapping around physical end-of-log
5423 offset
= hbp
->b_addr
;
5426 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
5427 /* Read header in one read */
5428 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
5433 /* This LR is split across physical log end */
5434 if (blk_no
!= log
->l_logBBsize
) {
5435 /* some data before physical log end */
5436 ASSERT(blk_no
<= INT_MAX
);
5437 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
5438 ASSERT(split_hblks
> 0);
5439 error
= xlog_bread(log
, blk_no
,
5447 * Note: this black magic still works with
5448 * large sector sizes (non-512) only because:
5449 * - we increased the buffer size originally
5450 * by 1 sector giving us enough extra space
5451 * for the second read;
5452 * - the log start is guaranteed to be sector
5454 * - we read the log end (LR header start)
5455 * _first_, then the log start (LR header end)
5456 * - order is important.
5458 wrapped_hblks
= hblks
- split_hblks
;
5459 error
= xlog_bread_offset(log
, 0,
5461 offset
+ BBTOB(split_hblks
));
5465 rhead
= (xlog_rec_header_t
*)offset
;
5466 error
= xlog_valid_rec_header(log
, rhead
,
5467 split_hblks
? blk_no
: 0);
5471 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5475 * Read the log record data in multiple reads if it
5476 * wraps around the end of the log. Note that if the
5477 * header already wrapped, blk_no could point past the
5478 * end of the log. The record data is contiguous in
5481 if (blk_no
+ bblks
<= log
->l_logBBsize
||
5482 blk_no
>= log
->l_logBBsize
) {
5483 /* mod blk_no in case the header wrapped and
5484 * pushed it beyond the end of the log */
5485 rblk_no
= do_mod(blk_no
, log
->l_logBBsize
);
5486 error
= xlog_bread(log
, rblk_no
, bblks
, dbp
,
5491 /* This log record is split across the
5492 * physical end of log */
5493 offset
= dbp
->b_addr
;
5495 if (blk_no
!= log
->l_logBBsize
) {
5496 /* some data is before the physical
5498 ASSERT(!wrapped_hblks
);
5499 ASSERT(blk_no
<= INT_MAX
);
5501 log
->l_logBBsize
- (int)blk_no
;
5502 ASSERT(split_bblks
> 0);
5503 error
= xlog_bread(log
, blk_no
,
5511 * Note: this black magic still works with
5512 * large sector sizes (non-512) only because:
5513 * - we increased the buffer size originally
5514 * by 1 sector giving us enough extra space
5515 * for the second read;
5516 * - the log start is guaranteed to be sector
5518 * - we read the log end (LR header start)
5519 * _first_, then the log start (LR header end)
5520 * - order is important.
5522 error
= xlog_bread_offset(log
, 0,
5523 bblks
- split_bblks
, dbp
,
5524 offset
+ BBTOB(split_bblks
));
5529 error
= xlog_recover_process(log
, rhash
, rhead
, offset
,
5530 pass
, &buffer_list
);
5538 ASSERT(blk_no
>= log
->l_logBBsize
);
5539 blk_no
-= log
->l_logBBsize
;
5543 /* read first part of physical log */
5544 while (blk_no
< head_blk
) {
5545 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
5549 rhead
= (xlog_rec_header_t
*)offset
;
5550 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
5554 /* blocks in data section */
5555 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5556 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
5561 error
= xlog_recover_process(log
, rhash
, rhead
, offset
, pass
,
5566 blk_no
+= bblks
+ hblks
;
5576 * Submit buffers that have been added from the last record processed,
5577 * regardless of error status.
5579 if (!list_empty(&buffer_list
))
5580 error2
= xfs_buf_delwri_submit(&buffer_list
);
5582 if (error
&& first_bad
)
5583 *first_bad
= rhead_blk
;
5586 * Transactions are freed at commit time but transactions without commit
5587 * records on disk are never committed. Free any that may be left in the
5590 for (i
= 0; i
< XLOG_RHASH_SIZE
; i
++) {
5591 struct hlist_node
*tmp
;
5592 struct xlog_recover
*trans
;
5594 hlist_for_each_entry_safe(trans
, tmp
, &rhash
[i
], r_list
)
5595 xlog_recover_free_trans(trans
);
5598 return error
? error
: error2
;
5602 * Do the recovery of the log. We actually do this in two phases.
5603 * The two passes are necessary in order to implement the function
5604 * of cancelling a record written into the log. The first pass
5605 * determines those things which have been cancelled, and the
5606 * second pass replays log items normally except for those which
5607 * have been cancelled. The handling of the replay and cancellations
5608 * takes place in the log item type specific routines.
5610 * The table of items which have cancel records in the log is allocated
5611 * and freed at this level, since only here do we know when all of
5612 * the log recovery has been completed.
5615 xlog_do_log_recovery(
5617 xfs_daddr_t head_blk
,
5618 xfs_daddr_t tail_blk
)
5622 ASSERT(head_blk
!= tail_blk
);
5625 * First do a pass to find all of the cancelled buf log items.
5626 * Store them in the buf_cancel_table for use in the second pass.
5628 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
5629 sizeof(struct list_head
),
5631 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5632 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
5634 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5635 XLOG_RECOVER_PASS1
, NULL
);
5637 kmem_free(log
->l_buf_cancel_table
);
5638 log
->l_buf_cancel_table
= NULL
;
5642 * Then do a second pass to actually recover the items in the log.
5643 * When it is complete free the table of buf cancel items.
5645 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5646 XLOG_RECOVER_PASS2
, NULL
);
5651 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5652 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
5656 kmem_free(log
->l_buf_cancel_table
);
5657 log
->l_buf_cancel_table
= NULL
;
5663 * Do the actual recovery
5668 xfs_daddr_t head_blk
,
5669 xfs_daddr_t tail_blk
)
5671 struct xfs_mount
*mp
= log
->l_mp
;
5676 trace_xfs_log_recover(log
, head_blk
, tail_blk
);
5679 * First replay the images in the log.
5681 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
5686 * If IO errors happened during recovery, bail out.
5688 if (XFS_FORCED_SHUTDOWN(mp
)) {
5693 * We now update the tail_lsn since much of the recovery has completed
5694 * and there may be space available to use. If there were no extent
5695 * or iunlinks, we can free up the entire log and set the tail_lsn to
5696 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5697 * lsn of the last known good LR on disk. If there are extent frees
5698 * or iunlinks they will have some entries in the AIL; so we look at
5699 * the AIL to determine how to set the tail_lsn.
5701 xlog_assign_tail_lsn(mp
);
5704 * Now that we've finished replaying all buffer and inode
5705 * updates, re-read in the superblock and reverify it.
5707 bp
= xfs_getsb(mp
, 0);
5708 bp
->b_flags
&= ~(XBF_DONE
| XBF_ASYNC
);
5709 ASSERT(!(bp
->b_flags
& XBF_WRITE
));
5710 bp
->b_flags
|= XBF_READ
;
5711 bp
->b_ops
= &xfs_sb_buf_ops
;
5713 error
= xfs_buf_submit_wait(bp
);
5715 if (!XFS_FORCED_SHUTDOWN(mp
)) {
5716 xfs_buf_ioerror_alert(bp
, __func__
);
5723 /* Convert superblock from on-disk format */
5725 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
5728 /* re-initialise in-core superblock and geometry structures */
5729 xfs_reinit_percpu_counters(mp
);
5730 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
5732 xfs_warn(mp
, "Failed post-recovery per-ag init: %d", error
);
5735 mp
->m_alloc_set_aside
= xfs_alloc_set_aside(mp
);
5737 xlog_recover_check_summary(log
);
5739 /* Normal transactions can now occur */
5740 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
5745 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5747 * Return error or zero.
5753 xfs_daddr_t head_blk
, tail_blk
;
5756 /* find the tail of the log */
5757 error
= xlog_find_tail(log
, &head_blk
, &tail_blk
);
5762 * The superblock was read before the log was available and thus the LSN
5763 * could not be verified. Check the superblock LSN against the current
5764 * LSN now that it's known.
5766 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
) &&
5767 !xfs_log_check_lsn(log
->l_mp
, log
->l_mp
->m_sb
.sb_lsn
))
5770 if (tail_blk
!= head_blk
) {
5771 /* There used to be a comment here:
5773 * disallow recovery on read-only mounts. note -- mount
5774 * checks for ENOSPC and turns it into an intelligent
5776 * ...but this is no longer true. Now, unless you specify
5777 * NORECOVERY (in which case this function would never be
5778 * called), we just go ahead and recover. We do this all
5779 * under the vfs layer, so we can get away with it unless
5780 * the device itself is read-only, in which case we fail.
5782 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
5787 * Version 5 superblock log feature mask validation. We know the
5788 * log is dirty so check if there are any unknown log features
5789 * in what we need to recover. If there are unknown features
5790 * (e.g. unsupported transactions, then simply reject the
5791 * attempt at recovery before touching anything.
5793 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
5794 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
5795 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
5797 "Superblock has unknown incompatible log features (0x%x) enabled.",
5798 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
5799 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
5801 "The log can not be fully and/or safely recovered by this kernel.");
5803 "Please recover the log on a kernel that supports the unknown features.");
5808 * Delay log recovery if the debug hook is set. This is debug
5809 * instrumention to coordinate simulation of I/O failures with
5812 if (xfs_globals
.log_recovery_delay
) {
5813 xfs_notice(log
->l_mp
,
5814 "Delaying log recovery for %d seconds.",
5815 xfs_globals
.log_recovery_delay
);
5816 msleep(xfs_globals
.log_recovery_delay
* 1000);
5819 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
5820 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5823 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
5824 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
5830 * In the first part of recovery we replay inodes and buffers and build
5831 * up the list of extent free items which need to be processed. Here
5832 * we process the extent free items and clean up the on disk unlinked
5833 * inode lists. This is separated from the first part of recovery so
5834 * that the root and real-time bitmap inodes can be read in from disk in
5835 * between the two stages. This is necessary so that we can free space
5836 * in the real-time portion of the file system.
5839 xlog_recover_finish(
5843 * Now we're ready to do the transactions needed for the
5844 * rest of recovery. Start with completing all the extent
5845 * free intent records and then process the unlinked inode
5846 * lists. At this point, we essentially run in normal mode
5847 * except that we're still performing recovery actions
5848 * rather than accepting new requests.
5850 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
5852 error
= xlog_recover_process_intents(log
);
5854 xfs_alert(log
->l_mp
, "Failed to recover intents");
5859 * Sync the log to get all the intents out of the AIL.
5860 * This isn't absolutely necessary, but it helps in
5861 * case the unlink transactions would have problems
5862 * pushing the intents out of the way.
5864 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
5866 xlog_recover_process_iunlinks(log
);
5868 xlog_recover_check_summary(log
);
5870 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
5871 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5873 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
5875 xfs_info(log
->l_mp
, "Ending clean mount");
5881 xlog_recover_cancel(
5886 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
)
5887 error
= xlog_recover_cancel_intents(log
);
5894 * Read all of the agf and agi counters and check that they
5895 * are consistent with the superblock counters.
5898 xlog_recover_check_summary(
5905 xfs_agnumber_t agno
;
5916 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5917 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
5919 xfs_alert(mp
, "%s agf read failed agno %d error %d",
5920 __func__
, agno
, error
);
5922 agfp
= XFS_BUF_TO_AGF(agfbp
);
5923 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
5924 be32_to_cpu(agfp
->agf_flcount
);
5925 xfs_buf_relse(agfbp
);
5928 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5930 xfs_alert(mp
, "%s agi read failed agno %d error %d",
5931 __func__
, agno
, error
);
5933 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
5935 itotal
+= be32_to_cpu(agi
->agi_count
);
5936 ifree
+= be32_to_cpu(agi
->agi_freecount
);
5937 xfs_buf_relse(agibp
);