Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / bluetooth / hci_conn.c
bloba9682534c3779fd12510d7f6a82bf1fcab6c88e9
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI connection handling. */
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
91 params->explicit_connect = false;
93 list_del_init(&params->action);
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(&params->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(&params->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
111 hci_update_background_scan(hdev);
114 static void hci_conn_cleanup(struct hci_conn *conn)
116 struct hci_dev *hdev = conn->hdev;
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
121 hci_chan_list_flush(conn);
123 hci_conn_hash_del(hdev, conn);
125 if (hdev->notify)
126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
128 hci_conn_del_sysfs(conn);
130 debugfs_remove_recursive(conn->debugfs);
132 hci_dev_put(hdev);
134 hci_conn_put(conn);
137 static void le_scan_cleanup(struct work_struct *work)
139 struct hci_conn *conn = container_of(work, struct hci_conn,
140 le_scan_cleanup);
141 struct hci_dev *hdev = conn->hdev;
142 struct hci_conn *c = NULL;
144 BT_DBG("%s hcon %p", hdev->name, conn);
146 hci_dev_lock(hdev);
148 /* Check that the hci_conn is still around */
149 rcu_read_lock();
150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
151 if (c == conn)
152 break;
154 rcu_read_unlock();
156 if (c == conn) {
157 hci_connect_le_scan_cleanup(conn);
158 hci_conn_cleanup(conn);
161 hci_dev_unlock(hdev);
162 hci_dev_put(hdev);
163 hci_conn_put(conn);
166 static void hci_connect_le_scan_remove(struct hci_conn *conn)
168 BT_DBG("%s hcon %p", conn->hdev->name, conn);
170 /* We can't call hci_conn_del/hci_conn_cleanup here since that
171 * could deadlock with another hci_conn_del() call that's holding
172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
173 * Instead, grab temporary extra references to the hci_dev and
174 * hci_conn and perform the necessary cleanup in a separate work
175 * callback.
178 hci_dev_hold(conn->hdev);
179 hci_conn_get(conn);
181 /* Even though we hold a reference to the hdev, many other
182 * things might get cleaned up meanwhile, including the hdev's
183 * own workqueue, so we can't use that for scheduling.
185 schedule_work(&conn->le_scan_cleanup);
188 static void hci_acl_create_connection(struct hci_conn *conn)
190 struct hci_dev *hdev = conn->hdev;
191 struct inquiry_entry *ie;
192 struct hci_cp_create_conn cp;
194 BT_DBG("hcon %p", conn);
196 conn->state = BT_CONNECT;
197 conn->out = true;
198 conn->role = HCI_ROLE_MASTER;
200 conn->attempt++;
202 conn->link_policy = hdev->link_policy;
204 memset(&cp, 0, sizeof(cp));
205 bacpy(&cp.bdaddr, &conn->dst);
206 cp.pscan_rep_mode = 0x02;
208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
209 if (ie) {
210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
211 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
212 cp.pscan_mode = ie->data.pscan_mode;
213 cp.clock_offset = ie->data.clock_offset |
214 cpu_to_le16(0x8000);
217 memcpy(conn->dev_class, ie->data.dev_class, 3);
218 if (ie->data.ssp_mode > 0)
219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
222 cp.pkt_type = cpu_to_le16(conn->pkt_type);
223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
224 cp.role_switch = 0x01;
225 else
226 cp.role_switch = 0x00;
228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
231 int hci_disconnect(struct hci_conn *conn, __u8 reason)
233 BT_DBG("hcon %p", conn);
235 /* When we are master of an established connection and it enters
236 * the disconnect timeout, then go ahead and try to read the
237 * current clock offset. Processing of the result is done
238 * within the event handling and hci_clock_offset_evt function.
240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
242 struct hci_dev *hdev = conn->hdev;
243 struct hci_cp_read_clock_offset clkoff_cp;
245 clkoff_cp.handle = cpu_to_le16(conn->handle);
246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
247 &clkoff_cp);
250 return hci_abort_conn(conn, reason);
253 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
255 struct hci_dev *hdev = conn->hdev;
256 struct hci_cp_add_sco cp;
258 BT_DBG("hcon %p", conn);
260 conn->state = BT_CONNECT;
261 conn->out = true;
263 conn->attempt++;
265 cp.handle = cpu_to_le16(handle);
266 cp.pkt_type = cpu_to_le16(conn->pkt_type);
268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
273 struct hci_dev *hdev = conn->hdev;
274 struct hci_cp_setup_sync_conn cp;
275 const struct sco_param *param;
277 BT_DBG("hcon %p", conn);
279 conn->state = BT_CONNECT;
280 conn->out = true;
282 conn->attempt++;
284 cp.handle = cpu_to_le16(handle);
286 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
287 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
288 cp.voice_setting = cpu_to_le16(conn->setting);
290 switch (conn->setting & SCO_AIRMODE_MASK) {
291 case SCO_AIRMODE_TRANSP:
292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
293 return false;
294 param = &esco_param_msbc[conn->attempt - 1];
295 break;
296 case SCO_AIRMODE_CVSD:
297 if (lmp_esco_capable(conn->link)) {
298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
299 return false;
300 param = &esco_param_cvsd[conn->attempt - 1];
301 } else {
302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
303 return false;
304 param = &sco_param_cvsd[conn->attempt - 1];
306 break;
307 default:
308 return false;
311 cp.retrans_effort = param->retrans_effort;
312 cp.pkt_type = __cpu_to_le16(param->pkt_type);
313 cp.max_latency = __cpu_to_le16(param->max_latency);
315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
316 return false;
318 return true;
321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
322 u16 to_multiplier)
324 struct hci_dev *hdev = conn->hdev;
325 struct hci_conn_params *params;
326 struct hci_cp_le_conn_update cp;
328 hci_dev_lock(hdev);
330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
331 if (params) {
332 params->conn_min_interval = min;
333 params->conn_max_interval = max;
334 params->conn_latency = latency;
335 params->supervision_timeout = to_multiplier;
338 hci_dev_unlock(hdev);
340 memset(&cp, 0, sizeof(cp));
341 cp.handle = cpu_to_le16(conn->handle);
342 cp.conn_interval_min = cpu_to_le16(min);
343 cp.conn_interval_max = cpu_to_le16(max);
344 cp.conn_latency = cpu_to_le16(latency);
345 cp.supervision_timeout = cpu_to_le16(to_multiplier);
346 cp.min_ce_len = cpu_to_le16(0x0000);
347 cp.max_ce_len = cpu_to_le16(0x0000);
349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
351 if (params)
352 return 0x01;
354 return 0x00;
357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
358 __u8 ltk[16], __u8 key_size)
360 struct hci_dev *hdev = conn->hdev;
361 struct hci_cp_le_start_enc cp;
363 BT_DBG("hcon %p", conn);
365 memset(&cp, 0, sizeof(cp));
367 cp.handle = cpu_to_le16(conn->handle);
368 cp.rand = rand;
369 cp.ediv = ediv;
370 memcpy(cp.ltk, ltk, key_size);
372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
375 /* Device _must_ be locked */
376 void hci_sco_setup(struct hci_conn *conn, __u8 status)
378 struct hci_conn *sco = conn->link;
380 if (!sco)
381 return;
383 BT_DBG("hcon %p", conn);
385 if (!status) {
386 if (lmp_esco_capable(conn->hdev))
387 hci_setup_sync(sco, conn->handle);
388 else
389 hci_add_sco(sco, conn->handle);
390 } else {
391 hci_connect_cfm(sco, status);
392 hci_conn_del(sco);
396 static void hci_conn_timeout(struct work_struct *work)
398 struct hci_conn *conn = container_of(work, struct hci_conn,
399 disc_work.work);
400 int refcnt = atomic_read(&conn->refcnt);
402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
404 WARN_ON(refcnt < 0);
406 /* FIXME: It was observed that in pairing failed scenario, refcnt
407 * drops below 0. Probably this is because l2cap_conn_del calls
408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
409 * dropped. After that loop hci_chan_del is called which also drops
410 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
411 * otherwise drop it.
413 if (refcnt > 0)
414 return;
416 /* LE connections in scanning state need special handling */
417 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
418 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
419 hci_connect_le_scan_remove(conn);
420 return;
423 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
426 /* Enter sniff mode */
427 static void hci_conn_idle(struct work_struct *work)
429 struct hci_conn *conn = container_of(work, struct hci_conn,
430 idle_work.work);
431 struct hci_dev *hdev = conn->hdev;
433 BT_DBG("hcon %p mode %d", conn, conn->mode);
435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
436 return;
438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
439 return;
441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
442 struct hci_cp_sniff_subrate cp;
443 cp.handle = cpu_to_le16(conn->handle);
444 cp.max_latency = cpu_to_le16(0);
445 cp.min_remote_timeout = cpu_to_le16(0);
446 cp.min_local_timeout = cpu_to_le16(0);
447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
451 struct hci_cp_sniff_mode cp;
452 cp.handle = cpu_to_le16(conn->handle);
453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
455 cp.attempt = cpu_to_le16(4);
456 cp.timeout = cpu_to_le16(1);
457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
461 static void hci_conn_auto_accept(struct work_struct *work)
463 struct hci_conn *conn = container_of(work, struct hci_conn,
464 auto_accept_work.work);
466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
467 &conn->dst);
470 static void le_conn_timeout(struct work_struct *work)
472 struct hci_conn *conn = container_of(work, struct hci_conn,
473 le_conn_timeout.work);
474 struct hci_dev *hdev = conn->hdev;
476 BT_DBG("");
478 /* We could end up here due to having done directed advertising,
479 * so clean up the state if necessary. This should however only
480 * happen with broken hardware or if low duty cycle was used
481 * (which doesn't have a timeout of its own).
483 if (conn->role == HCI_ROLE_SLAVE) {
484 u8 enable = 0x00;
485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
486 &enable);
487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
488 return;
491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
495 u8 role)
497 struct hci_conn *conn;
499 BT_DBG("%s dst %pMR", hdev->name, dst);
501 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
502 if (!conn)
503 return NULL;
505 bacpy(&conn->dst, dst);
506 bacpy(&conn->src, &hdev->bdaddr);
507 conn->hdev = hdev;
508 conn->type = type;
509 conn->role = role;
510 conn->mode = HCI_CM_ACTIVE;
511 conn->state = BT_OPEN;
512 conn->auth_type = HCI_AT_GENERAL_BONDING;
513 conn->io_capability = hdev->io_capability;
514 conn->remote_auth = 0xff;
515 conn->key_type = 0xff;
516 conn->rssi = HCI_RSSI_INVALID;
517 conn->tx_power = HCI_TX_POWER_INVALID;
518 conn->max_tx_power = HCI_TX_POWER_INVALID;
520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
521 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
523 if (conn->role == HCI_ROLE_MASTER)
524 conn->out = true;
526 switch (type) {
527 case ACL_LINK:
528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
529 break;
530 case LE_LINK:
531 /* conn->src should reflect the local identity address */
532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
533 break;
534 case SCO_LINK:
535 if (lmp_esco_capable(hdev))
536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
537 (hdev->esco_type & EDR_ESCO_MASK);
538 else
539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
540 break;
541 case ESCO_LINK:
542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
543 break;
546 skb_queue_head_init(&conn->data_q);
548 INIT_LIST_HEAD(&conn->chan_list);
550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
556 atomic_set(&conn->refcnt, 0);
558 hci_dev_hold(hdev);
560 hci_conn_hash_add(hdev, conn);
561 if (hdev->notify)
562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
564 hci_conn_init_sysfs(conn);
566 return conn;
569 int hci_conn_del(struct hci_conn *conn)
571 struct hci_dev *hdev = conn->hdev;
573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
575 cancel_delayed_work_sync(&conn->disc_work);
576 cancel_delayed_work_sync(&conn->auto_accept_work);
577 cancel_delayed_work_sync(&conn->idle_work);
579 if (conn->type == ACL_LINK) {
580 struct hci_conn *sco = conn->link;
581 if (sco)
582 sco->link = NULL;
584 /* Unacked frames */
585 hdev->acl_cnt += conn->sent;
586 } else if (conn->type == LE_LINK) {
587 cancel_delayed_work(&conn->le_conn_timeout);
589 if (hdev->le_pkts)
590 hdev->le_cnt += conn->sent;
591 else
592 hdev->acl_cnt += conn->sent;
593 } else {
594 struct hci_conn *acl = conn->link;
595 if (acl) {
596 acl->link = NULL;
597 hci_conn_drop(acl);
601 if (conn->amp_mgr)
602 amp_mgr_put(conn->amp_mgr);
604 skb_queue_purge(&conn->data_q);
606 /* Remove the connection from the list and cleanup its remaining
607 * state. This is a separate function since for some cases like
608 * BT_CONNECT_SCAN we *only* want the cleanup part without the
609 * rest of hci_conn_del.
611 hci_conn_cleanup(conn);
613 return 0;
616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
618 int use_src = bacmp(src, BDADDR_ANY);
619 struct hci_dev *hdev = NULL, *d;
621 BT_DBG("%pMR -> %pMR", src, dst);
623 read_lock(&hci_dev_list_lock);
625 list_for_each_entry(d, &hci_dev_list, list) {
626 if (!test_bit(HCI_UP, &d->flags) ||
627 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
628 d->dev_type != HCI_PRIMARY)
629 continue;
631 /* Simple routing:
632 * No source address - find interface with bdaddr != dst
633 * Source address - find interface with bdaddr == src
636 if (use_src) {
637 bdaddr_t id_addr;
638 u8 id_addr_type;
640 if (src_type == BDADDR_BREDR) {
641 if (!lmp_bredr_capable(d))
642 continue;
643 bacpy(&id_addr, &d->bdaddr);
644 id_addr_type = BDADDR_BREDR;
645 } else {
646 if (!lmp_le_capable(d))
647 continue;
649 hci_copy_identity_address(d, &id_addr,
650 &id_addr_type);
652 /* Convert from HCI to three-value type */
653 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
654 id_addr_type = BDADDR_LE_PUBLIC;
655 else
656 id_addr_type = BDADDR_LE_RANDOM;
659 if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
660 hdev = d; break;
662 } else {
663 if (bacmp(&d->bdaddr, dst)) {
664 hdev = d; break;
669 if (hdev)
670 hdev = hci_dev_hold(hdev);
672 read_unlock(&hci_dev_list_lock);
673 return hdev;
675 EXPORT_SYMBOL(hci_get_route);
677 /* This function requires the caller holds hdev->lock */
678 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
680 struct hci_dev *hdev = conn->hdev;
681 struct hci_conn_params *params;
683 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
684 conn->dst_type);
685 if (params && params->conn) {
686 hci_conn_drop(params->conn);
687 hci_conn_put(params->conn);
688 params->conn = NULL;
691 conn->state = BT_CLOSED;
693 /* If the status indicates successful cancellation of
694 * the attempt (i.e. Unkown Connection Id) there's no point of
695 * notifying failure since we'll go back to keep trying to
696 * connect. The only exception is explicit connect requests
697 * where a timeout + cancel does indicate an actual failure.
699 if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
700 (params && params->explicit_connect))
701 mgmt_connect_failed(hdev, &conn->dst, conn->type,
702 conn->dst_type, status);
704 hci_connect_cfm(conn, status);
706 hci_conn_del(conn);
708 /* Since we may have temporarily stopped the background scanning in
709 * favor of connection establishment, we should restart it.
711 hci_update_background_scan(hdev);
713 /* Re-enable advertising in case this was a failed connection
714 * attempt as a peripheral.
716 hci_req_reenable_advertising(hdev);
719 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
721 struct hci_conn *conn;
723 hci_dev_lock(hdev);
725 conn = hci_lookup_le_connect(hdev);
727 if (!status) {
728 hci_connect_le_scan_cleanup(conn);
729 goto done;
732 bt_dev_err(hdev, "request failed to create LE connection: "
733 "status 0x%2.2x", status);
735 if (!conn)
736 goto done;
738 hci_le_conn_failed(conn, status);
740 done:
741 hci_dev_unlock(hdev);
744 static bool conn_use_rpa(struct hci_conn *conn)
746 struct hci_dev *hdev = conn->hdev;
748 return hci_dev_test_flag(hdev, HCI_PRIVACY);
751 static void hci_req_add_le_create_conn(struct hci_request *req,
752 struct hci_conn *conn)
754 struct hci_cp_le_create_conn cp;
755 struct hci_dev *hdev = conn->hdev;
756 u8 own_addr_type;
758 /* Update random address, but set require_privacy to false so
759 * that we never connect with an non-resolvable address.
761 if (hci_update_random_address(req, false, conn_use_rpa(conn),
762 &own_addr_type))
763 return;
765 memset(&cp, 0, sizeof(cp));
767 /* Set window to be the same value as the interval to enable
768 * continuous scanning.
770 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
771 cp.scan_window = cp.scan_interval;
773 bacpy(&cp.peer_addr, &conn->dst);
774 cp.peer_addr_type = conn->dst_type;
775 cp.own_address_type = own_addr_type;
776 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
777 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
778 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
779 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
780 cp.min_ce_len = cpu_to_le16(0x0000);
781 cp.max_ce_len = cpu_to_le16(0x0000);
783 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
785 conn->state = BT_CONNECT;
786 clear_bit(HCI_CONN_SCANNING, &conn->flags);
789 static void hci_req_directed_advertising(struct hci_request *req,
790 struct hci_conn *conn)
792 struct hci_dev *hdev = req->hdev;
793 struct hci_cp_le_set_adv_param cp;
794 u8 own_addr_type;
795 u8 enable;
797 /* Clear the HCI_LE_ADV bit temporarily so that the
798 * hci_update_random_address knows that it's safe to go ahead
799 * and write a new random address. The flag will be set back on
800 * as soon as the SET_ADV_ENABLE HCI command completes.
802 hci_dev_clear_flag(hdev, HCI_LE_ADV);
804 /* Set require_privacy to false so that the remote device has a
805 * chance of identifying us.
807 if (hci_update_random_address(req, false, conn_use_rpa(conn),
808 &own_addr_type) < 0)
809 return;
811 memset(&cp, 0, sizeof(cp));
812 cp.type = LE_ADV_DIRECT_IND;
813 cp.own_address_type = own_addr_type;
814 cp.direct_addr_type = conn->dst_type;
815 bacpy(&cp.direct_addr, &conn->dst);
816 cp.channel_map = hdev->le_adv_channel_map;
818 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
820 enable = 0x01;
821 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
823 conn->state = BT_CONNECT;
826 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
827 u8 dst_type, u8 sec_level, u16 conn_timeout,
828 u8 role)
830 struct hci_conn_params *params;
831 struct hci_conn *conn;
832 struct smp_irk *irk;
833 struct hci_request req;
834 int err;
836 /* Let's make sure that le is enabled.*/
837 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
838 if (lmp_le_capable(hdev))
839 return ERR_PTR(-ECONNREFUSED);
841 return ERR_PTR(-EOPNOTSUPP);
844 /* Since the controller supports only one LE connection attempt at a
845 * time, we return -EBUSY if there is any connection attempt running.
847 if (hci_lookup_le_connect(hdev))
848 return ERR_PTR(-EBUSY);
850 /* If there's already a connection object but it's not in
851 * scanning state it means it must already be established, in
852 * which case we can't do anything else except report a failure
853 * to connect.
855 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
856 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
857 return ERR_PTR(-EBUSY);
860 /* When given an identity address with existing identity
861 * resolving key, the connection needs to be established
862 * to a resolvable random address.
864 * Storing the resolvable random address is required here
865 * to handle connection failures. The address will later
866 * be resolved back into the original identity address
867 * from the connect request.
869 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
870 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
871 dst = &irk->rpa;
872 dst_type = ADDR_LE_DEV_RANDOM;
875 if (conn) {
876 bacpy(&conn->dst, dst);
877 } else {
878 conn = hci_conn_add(hdev, LE_LINK, dst, role);
879 if (!conn)
880 return ERR_PTR(-ENOMEM);
881 hci_conn_hold(conn);
882 conn->pending_sec_level = sec_level;
885 conn->dst_type = dst_type;
886 conn->sec_level = BT_SECURITY_LOW;
887 conn->conn_timeout = conn_timeout;
889 hci_req_init(&req, hdev);
891 /* Disable advertising if we're active. For master role
892 * connections most controllers will refuse to connect if
893 * advertising is enabled, and for slave role connections we
894 * anyway have to disable it in order to start directed
895 * advertising.
897 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
898 u8 enable = 0x00;
899 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
900 &enable);
903 /* If requested to connect as slave use directed advertising */
904 if (conn->role == HCI_ROLE_SLAVE) {
905 /* If we're active scanning most controllers are unable
906 * to initiate advertising. Simply reject the attempt.
908 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
909 hdev->le_scan_type == LE_SCAN_ACTIVE) {
910 hci_req_purge(&req);
911 hci_conn_del(conn);
912 return ERR_PTR(-EBUSY);
915 hci_req_directed_advertising(&req, conn);
916 goto create_conn;
919 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
920 if (params) {
921 conn->le_conn_min_interval = params->conn_min_interval;
922 conn->le_conn_max_interval = params->conn_max_interval;
923 conn->le_conn_latency = params->conn_latency;
924 conn->le_supv_timeout = params->supervision_timeout;
925 } else {
926 conn->le_conn_min_interval = hdev->le_conn_min_interval;
927 conn->le_conn_max_interval = hdev->le_conn_max_interval;
928 conn->le_conn_latency = hdev->le_conn_latency;
929 conn->le_supv_timeout = hdev->le_supv_timeout;
932 /* If controller is scanning, we stop it since some controllers are
933 * not able to scan and connect at the same time. Also set the
934 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
935 * handler for scan disabling knows to set the correct discovery
936 * state.
938 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
939 hci_req_add_le_scan_disable(&req);
940 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
943 hci_req_add_le_create_conn(&req, conn);
945 create_conn:
946 err = hci_req_run(&req, create_le_conn_complete);
947 if (err) {
948 hci_conn_del(conn);
949 return ERR_PTR(err);
952 return conn;
955 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
957 struct hci_conn *conn;
959 conn = hci_conn_hash_lookup_le(hdev, addr, type);
960 if (!conn)
961 return false;
963 if (conn->state != BT_CONNECTED)
964 return false;
966 return true;
969 /* This function requires the caller holds hdev->lock */
970 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
971 bdaddr_t *addr, u8 addr_type)
973 struct hci_conn_params *params;
975 if (is_connected(hdev, addr, addr_type))
976 return -EISCONN;
978 params = hci_conn_params_lookup(hdev, addr, addr_type);
979 if (!params) {
980 params = hci_conn_params_add(hdev, addr, addr_type);
981 if (!params)
982 return -ENOMEM;
984 /* If we created new params, mark them to be deleted in
985 * hci_connect_le_scan_cleanup. It's different case than
986 * existing disabled params, those will stay after cleanup.
988 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
991 /* We're trying to connect, so make sure params are at pend_le_conns */
992 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
993 params->auto_connect == HCI_AUTO_CONN_REPORT ||
994 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
995 list_del_init(&params->action);
996 list_add(&params->action, &hdev->pend_le_conns);
999 params->explicit_connect = true;
1001 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1002 params->auto_connect);
1004 return 0;
1007 /* This function requires the caller holds hdev->lock */
1008 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1009 u8 dst_type, u8 sec_level,
1010 u16 conn_timeout)
1012 struct hci_conn *conn;
1014 /* Let's make sure that le is enabled.*/
1015 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1016 if (lmp_le_capable(hdev))
1017 return ERR_PTR(-ECONNREFUSED);
1019 return ERR_PTR(-EOPNOTSUPP);
1022 /* Some devices send ATT messages as soon as the physical link is
1023 * established. To be able to handle these ATT messages, the user-
1024 * space first establishes the connection and then starts the pairing
1025 * process.
1027 * So if a hci_conn object already exists for the following connection
1028 * attempt, we simply update pending_sec_level and auth_type fields
1029 * and return the object found.
1031 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1032 if (conn) {
1033 if (conn->pending_sec_level < sec_level)
1034 conn->pending_sec_level = sec_level;
1035 goto done;
1038 BT_DBG("requesting refresh of dst_addr");
1040 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1041 if (!conn)
1042 return ERR_PTR(-ENOMEM);
1044 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0)
1045 return ERR_PTR(-EBUSY);
1047 conn->state = BT_CONNECT;
1048 set_bit(HCI_CONN_SCANNING, &conn->flags);
1049 conn->dst_type = dst_type;
1050 conn->sec_level = BT_SECURITY_LOW;
1051 conn->pending_sec_level = sec_level;
1052 conn->conn_timeout = conn_timeout;
1054 hci_update_background_scan(hdev);
1056 done:
1057 hci_conn_hold(conn);
1058 return conn;
1061 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1062 u8 sec_level, u8 auth_type)
1064 struct hci_conn *acl;
1066 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1067 if (lmp_bredr_capable(hdev))
1068 return ERR_PTR(-ECONNREFUSED);
1070 return ERR_PTR(-EOPNOTSUPP);
1073 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1074 if (!acl) {
1075 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1076 if (!acl)
1077 return ERR_PTR(-ENOMEM);
1080 hci_conn_hold(acl);
1082 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1083 acl->sec_level = BT_SECURITY_LOW;
1084 acl->pending_sec_level = sec_level;
1085 acl->auth_type = auth_type;
1086 hci_acl_create_connection(acl);
1089 return acl;
1092 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1093 __u16 setting)
1095 struct hci_conn *acl;
1096 struct hci_conn *sco;
1098 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
1099 if (IS_ERR(acl))
1100 return acl;
1102 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1103 if (!sco) {
1104 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1105 if (!sco) {
1106 hci_conn_drop(acl);
1107 return ERR_PTR(-ENOMEM);
1111 acl->link = sco;
1112 sco->link = acl;
1114 hci_conn_hold(sco);
1116 sco->setting = setting;
1118 if (acl->state == BT_CONNECTED &&
1119 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1120 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1121 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1123 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1124 /* defer SCO setup until mode change completed */
1125 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1126 return sco;
1129 hci_sco_setup(acl, 0x00);
1132 return sco;
1135 /* Check link security requirement */
1136 int hci_conn_check_link_mode(struct hci_conn *conn)
1138 BT_DBG("hcon %p", conn);
1140 /* In Secure Connections Only mode, it is required that Secure
1141 * Connections is used and the link is encrypted with AES-CCM
1142 * using a P-256 authenticated combination key.
1144 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1145 if (!hci_conn_sc_enabled(conn) ||
1146 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1147 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1148 return 0;
1151 if (hci_conn_ssp_enabled(conn) &&
1152 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1153 return 0;
1155 return 1;
1158 /* Authenticate remote device */
1159 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1161 BT_DBG("hcon %p", conn);
1163 if (conn->pending_sec_level > sec_level)
1164 sec_level = conn->pending_sec_level;
1166 if (sec_level > conn->sec_level)
1167 conn->pending_sec_level = sec_level;
1168 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1169 return 1;
1171 /* Make sure we preserve an existing MITM requirement*/
1172 auth_type |= (conn->auth_type & 0x01);
1174 conn->auth_type = auth_type;
1176 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1177 struct hci_cp_auth_requested cp;
1179 cp.handle = cpu_to_le16(conn->handle);
1180 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1181 sizeof(cp), &cp);
1183 /* If we're already encrypted set the REAUTH_PEND flag,
1184 * otherwise set the ENCRYPT_PEND.
1186 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1187 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1188 else
1189 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1192 return 0;
1195 /* Encrypt the the link */
1196 static void hci_conn_encrypt(struct hci_conn *conn)
1198 BT_DBG("hcon %p", conn);
1200 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1201 struct hci_cp_set_conn_encrypt cp;
1202 cp.handle = cpu_to_le16(conn->handle);
1203 cp.encrypt = 0x01;
1204 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1205 &cp);
1209 /* Enable security */
1210 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1211 bool initiator)
1213 BT_DBG("hcon %p", conn);
1215 if (conn->type == LE_LINK)
1216 return smp_conn_security(conn, sec_level);
1218 /* For sdp we don't need the link key. */
1219 if (sec_level == BT_SECURITY_SDP)
1220 return 1;
1222 /* For non 2.1 devices and low security level we don't need the link
1223 key. */
1224 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1225 return 1;
1227 /* For other security levels we need the link key. */
1228 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1229 goto auth;
1231 /* An authenticated FIPS approved combination key has sufficient
1232 * security for security level 4. */
1233 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1234 sec_level == BT_SECURITY_FIPS)
1235 goto encrypt;
1237 /* An authenticated combination key has sufficient security for
1238 security level 3. */
1239 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1240 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1241 sec_level == BT_SECURITY_HIGH)
1242 goto encrypt;
1244 /* An unauthenticated combination key has sufficient security for
1245 security level 1 and 2. */
1246 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1247 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1248 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1249 goto encrypt;
1251 /* A combination key has always sufficient security for the security
1252 levels 1 or 2. High security level requires the combination key
1253 is generated using maximum PIN code length (16).
1254 For pre 2.1 units. */
1255 if (conn->key_type == HCI_LK_COMBINATION &&
1256 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1257 conn->pin_length == 16))
1258 goto encrypt;
1260 auth:
1261 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1262 return 0;
1264 if (initiator)
1265 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1267 if (!hci_conn_auth(conn, sec_level, auth_type))
1268 return 0;
1270 encrypt:
1271 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1272 return 1;
1274 hci_conn_encrypt(conn);
1275 return 0;
1277 EXPORT_SYMBOL(hci_conn_security);
1279 /* Check secure link requirement */
1280 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1282 BT_DBG("hcon %p", conn);
1284 /* Accept if non-secure or higher security level is required */
1285 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1286 return 1;
1288 /* Accept if secure or higher security level is already present */
1289 if (conn->sec_level == BT_SECURITY_HIGH ||
1290 conn->sec_level == BT_SECURITY_FIPS)
1291 return 1;
1293 /* Reject not secure link */
1294 return 0;
1296 EXPORT_SYMBOL(hci_conn_check_secure);
1298 /* Switch role */
1299 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1301 BT_DBG("hcon %p", conn);
1303 if (role == conn->role)
1304 return 1;
1306 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1307 struct hci_cp_switch_role cp;
1308 bacpy(&cp.bdaddr, &conn->dst);
1309 cp.role = role;
1310 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1313 return 0;
1315 EXPORT_SYMBOL(hci_conn_switch_role);
1317 /* Enter active mode */
1318 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1320 struct hci_dev *hdev = conn->hdev;
1322 BT_DBG("hcon %p mode %d", conn, conn->mode);
1324 if (conn->mode != HCI_CM_SNIFF)
1325 goto timer;
1327 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1328 goto timer;
1330 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1331 struct hci_cp_exit_sniff_mode cp;
1332 cp.handle = cpu_to_le16(conn->handle);
1333 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1336 timer:
1337 if (hdev->idle_timeout > 0)
1338 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1339 msecs_to_jiffies(hdev->idle_timeout));
1342 /* Drop all connection on the device */
1343 void hci_conn_hash_flush(struct hci_dev *hdev)
1345 struct hci_conn_hash *h = &hdev->conn_hash;
1346 struct hci_conn *c, *n;
1348 BT_DBG("hdev %s", hdev->name);
1350 list_for_each_entry_safe(c, n, &h->list, list) {
1351 c->state = BT_CLOSED;
1353 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1354 hci_conn_del(c);
1358 /* Check pending connect attempts */
1359 void hci_conn_check_pending(struct hci_dev *hdev)
1361 struct hci_conn *conn;
1363 BT_DBG("hdev %s", hdev->name);
1365 hci_dev_lock(hdev);
1367 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1368 if (conn)
1369 hci_acl_create_connection(conn);
1371 hci_dev_unlock(hdev);
1374 static u32 get_link_mode(struct hci_conn *conn)
1376 u32 link_mode = 0;
1378 if (conn->role == HCI_ROLE_MASTER)
1379 link_mode |= HCI_LM_MASTER;
1381 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1382 link_mode |= HCI_LM_ENCRYPT;
1384 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1385 link_mode |= HCI_LM_AUTH;
1387 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1388 link_mode |= HCI_LM_SECURE;
1390 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1391 link_mode |= HCI_LM_FIPS;
1393 return link_mode;
1396 int hci_get_conn_list(void __user *arg)
1398 struct hci_conn *c;
1399 struct hci_conn_list_req req, *cl;
1400 struct hci_conn_info *ci;
1401 struct hci_dev *hdev;
1402 int n = 0, size, err;
1404 if (copy_from_user(&req, arg, sizeof(req)))
1405 return -EFAULT;
1407 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1408 return -EINVAL;
1410 size = sizeof(req) + req.conn_num * sizeof(*ci);
1412 cl = kmalloc(size, GFP_KERNEL);
1413 if (!cl)
1414 return -ENOMEM;
1416 hdev = hci_dev_get(req.dev_id);
1417 if (!hdev) {
1418 kfree(cl);
1419 return -ENODEV;
1422 ci = cl->conn_info;
1424 hci_dev_lock(hdev);
1425 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1426 bacpy(&(ci + n)->bdaddr, &c->dst);
1427 (ci + n)->handle = c->handle;
1428 (ci + n)->type = c->type;
1429 (ci + n)->out = c->out;
1430 (ci + n)->state = c->state;
1431 (ci + n)->link_mode = get_link_mode(c);
1432 if (++n >= req.conn_num)
1433 break;
1435 hci_dev_unlock(hdev);
1437 cl->dev_id = hdev->id;
1438 cl->conn_num = n;
1439 size = sizeof(req) + n * sizeof(*ci);
1441 hci_dev_put(hdev);
1443 err = copy_to_user(arg, cl, size);
1444 kfree(cl);
1446 return err ? -EFAULT : 0;
1449 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1451 struct hci_conn_info_req req;
1452 struct hci_conn_info ci;
1453 struct hci_conn *conn;
1454 char __user *ptr = arg + sizeof(req);
1456 if (copy_from_user(&req, arg, sizeof(req)))
1457 return -EFAULT;
1459 hci_dev_lock(hdev);
1460 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1461 if (conn) {
1462 bacpy(&ci.bdaddr, &conn->dst);
1463 ci.handle = conn->handle;
1464 ci.type = conn->type;
1465 ci.out = conn->out;
1466 ci.state = conn->state;
1467 ci.link_mode = get_link_mode(conn);
1469 hci_dev_unlock(hdev);
1471 if (!conn)
1472 return -ENOENT;
1474 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1477 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1479 struct hci_auth_info_req req;
1480 struct hci_conn *conn;
1482 if (copy_from_user(&req, arg, sizeof(req)))
1483 return -EFAULT;
1485 hci_dev_lock(hdev);
1486 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1487 if (conn)
1488 req.type = conn->auth_type;
1489 hci_dev_unlock(hdev);
1491 if (!conn)
1492 return -ENOENT;
1494 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1497 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1499 struct hci_dev *hdev = conn->hdev;
1500 struct hci_chan *chan;
1502 BT_DBG("%s hcon %p", hdev->name, conn);
1504 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1505 BT_DBG("Refusing to create new hci_chan");
1506 return NULL;
1509 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1510 if (!chan)
1511 return NULL;
1513 chan->conn = hci_conn_get(conn);
1514 skb_queue_head_init(&chan->data_q);
1515 chan->state = BT_CONNECTED;
1517 list_add_rcu(&chan->list, &conn->chan_list);
1519 return chan;
1522 void hci_chan_del(struct hci_chan *chan)
1524 struct hci_conn *conn = chan->conn;
1525 struct hci_dev *hdev = conn->hdev;
1527 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1529 list_del_rcu(&chan->list);
1531 synchronize_rcu();
1533 /* Prevent new hci_chan's to be created for this hci_conn */
1534 set_bit(HCI_CONN_DROP, &conn->flags);
1536 hci_conn_put(conn);
1538 skb_queue_purge(&chan->data_q);
1539 kfree(chan);
1542 void hci_chan_list_flush(struct hci_conn *conn)
1544 struct hci_chan *chan, *n;
1546 BT_DBG("hcon %p", conn);
1548 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1549 hci_chan_del(chan);
1552 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1553 __u16 handle)
1555 struct hci_chan *hchan;
1557 list_for_each_entry(hchan, &hcon->chan_list, list) {
1558 if (hchan->handle == handle)
1559 return hchan;
1562 return NULL;
1565 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1567 struct hci_conn_hash *h = &hdev->conn_hash;
1568 struct hci_conn *hcon;
1569 struct hci_chan *hchan = NULL;
1571 rcu_read_lock();
1573 list_for_each_entry_rcu(hcon, &h->list, list) {
1574 hchan = __hci_chan_lookup_handle(hcon, handle);
1575 if (hchan)
1576 break;
1579 rcu_read_unlock();
1581 return hchan;