2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
83 #include <net/ip_fib.h>
84 #include <net/fib_notifier.h>
85 #include <trace/events/fib.h>
86 #include "fib_lookup.h"
88 static int call_fib_entry_notifier(struct notifier_block
*nb
, struct net
*net
,
89 enum fib_event_type event_type
, u32 dst
,
90 int dst_len
, struct fib_alias
*fa
)
92 struct fib_entry_notifier_info info
= {
100 return call_fib4_notifier(nb
, net
, event_type
, &info
.info
);
103 static int call_fib_entry_notifiers(struct net
*net
,
104 enum fib_event_type event_type
, u32 dst
,
105 int dst_len
, struct fib_alias
*fa
,
106 struct netlink_ext_ack
*extack
)
108 struct fib_entry_notifier_info info
= {
109 .info
.extack
= extack
,
117 return call_fib4_notifiers(net
, event_type
, &info
.info
);
120 #define MAX_STAT_DEPTH 32
122 #define KEYLENGTH (8*sizeof(t_key))
123 #define KEY_MAX ((t_key)~0)
125 typedef unsigned int t_key
;
127 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
128 #define IS_TNODE(n) ((n)->bits)
129 #define IS_LEAF(n) (!(n)->bits)
133 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
134 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
137 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
138 struct hlist_head leaf
;
139 /* This array is valid if (pos | bits) > 0 (TNODE) */
140 struct key_vector __rcu
*tnode
[0];
146 t_key empty_children
; /* KEYLENGTH bits needed */
147 t_key full_children
; /* KEYLENGTH bits needed */
148 struct key_vector __rcu
*parent
;
149 struct key_vector kv
[1];
150 #define tn_bits kv[0].bits
153 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
154 #define LEAF_SIZE TNODE_SIZE(1)
156 #ifdef CONFIG_IP_FIB_TRIE_STATS
157 struct trie_use_stats
{
159 unsigned int backtrack
;
160 unsigned int semantic_match_passed
;
161 unsigned int semantic_match_miss
;
162 unsigned int null_node_hit
;
163 unsigned int resize_node_skipped
;
168 unsigned int totdepth
;
169 unsigned int maxdepth
;
172 unsigned int nullpointers
;
173 unsigned int prefixes
;
174 unsigned int nodesizes
[MAX_STAT_DEPTH
];
178 struct key_vector kv
[1];
179 #ifdef CONFIG_IP_FIB_TRIE_STATS
180 struct trie_use_stats __percpu
*stats
;
184 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
185 static size_t tnode_free_size
;
188 * synchronize_rcu after call_rcu for that many pages; it should be especially
189 * useful before resizing the root node with PREEMPT_NONE configs; the value was
190 * obtained experimentally, aiming to avoid visible slowdown.
192 static const int sync_pages
= 128;
194 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
195 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
197 static inline struct tnode
*tn_info(struct key_vector
*kv
)
199 return container_of(kv
, struct tnode
, kv
[0]);
202 /* caller must hold RTNL */
203 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
204 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
206 /* caller must hold RCU read lock or RTNL */
207 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
208 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
210 /* wrapper for rcu_assign_pointer */
211 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
214 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
217 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
219 /* This provides us with the number of children in this node, in the case of a
220 * leaf this will return 0 meaning none of the children are accessible.
222 static inline unsigned long child_length(const struct key_vector
*tn
)
224 return (1ul << tn
->bits
) & ~(1ul);
227 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
229 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
231 unsigned long index
= key
^ kv
->key
;
233 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
236 return index
>> kv
->pos
;
239 /* To understand this stuff, an understanding of keys and all their bits is
240 * necessary. Every node in the trie has a key associated with it, but not
241 * all of the bits in that key are significant.
243 * Consider a node 'n' and its parent 'tp'.
245 * If n is a leaf, every bit in its key is significant. Its presence is
246 * necessitated by path compression, since during a tree traversal (when
247 * searching for a leaf - unless we are doing an insertion) we will completely
248 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
249 * a potentially successful search, that we have indeed been walking the
252 * Note that we can never "miss" the correct key in the tree if present by
253 * following the wrong path. Path compression ensures that segments of the key
254 * that are the same for all keys with a given prefix are skipped, but the
255 * skipped part *is* identical for each node in the subtrie below the skipped
256 * bit! trie_insert() in this implementation takes care of that.
258 * if n is an internal node - a 'tnode' here, the various parts of its key
259 * have many different meanings.
262 * _________________________________________________________________
263 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
264 * -----------------------------------------------------------------
265 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
267 * _________________________________________________________________
268 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
269 * -----------------------------------------------------------------
270 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
277 * First, let's just ignore the bits that come before the parent tp, that is
278 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
279 * point we do not use them for anything.
281 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
282 * index into the parent's child array. That is, they will be used to find
283 * 'n' among tp's children.
285 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
288 * All the bits we have seen so far are significant to the node n. The rest
289 * of the bits are really not needed or indeed known in n->key.
291 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
292 * n's child array, and will of course be different for each child.
294 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
298 static const int halve_threshold
= 25;
299 static const int inflate_threshold
= 50;
300 static const int halve_threshold_root
= 15;
301 static const int inflate_threshold_root
= 30;
303 static void __alias_free_mem(struct rcu_head
*head
)
305 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
306 kmem_cache_free(fn_alias_kmem
, fa
);
309 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
311 call_rcu(&fa
->rcu
, __alias_free_mem
);
314 #define TNODE_KMALLOC_MAX \
315 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
316 #define TNODE_VMALLOC_MAX \
317 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
319 static void __node_free_rcu(struct rcu_head
*head
)
321 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
324 kmem_cache_free(trie_leaf_kmem
, n
);
329 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
331 static struct tnode
*tnode_alloc(int bits
)
335 /* verify bits is within bounds */
336 if (bits
> TNODE_VMALLOC_MAX
)
339 /* determine size and verify it is non-zero and didn't overflow */
340 size
= TNODE_SIZE(1ul << bits
);
342 if (size
<= PAGE_SIZE
)
343 return kzalloc(size
, GFP_KERNEL
);
345 return vzalloc(size
);
348 static inline void empty_child_inc(struct key_vector
*n
)
350 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
353 static inline void empty_child_dec(struct key_vector
*n
)
355 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
358 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
360 struct key_vector
*l
;
363 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
367 /* initialize key vector */
372 l
->slen
= fa
->fa_slen
;
374 /* link leaf to fib alias */
375 INIT_HLIST_HEAD(&l
->leaf
);
376 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
381 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
383 unsigned int shift
= pos
+ bits
;
384 struct key_vector
*tn
;
387 /* verify bits and pos their msb bits clear and values are valid */
388 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
390 tnode
= tnode_alloc(bits
);
394 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
395 sizeof(struct key_vector
*) << bits
);
397 if (bits
== KEYLENGTH
)
398 tnode
->full_children
= 1;
400 tnode
->empty_children
= 1ul << bits
;
403 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
411 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
412 * and no bits are skipped. See discussion in dyntree paper p. 6
414 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
416 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
419 /* Add a child at position i overwriting the old value.
420 * Update the value of full_children and empty_children.
422 static void put_child(struct key_vector
*tn
, unsigned long i
,
423 struct key_vector
*n
)
425 struct key_vector
*chi
= get_child(tn
, i
);
428 BUG_ON(i
>= child_length(tn
));
430 /* update emptyChildren, overflow into fullChildren */
436 /* update fullChildren */
437 wasfull
= tnode_full(tn
, chi
);
438 isfull
= tnode_full(tn
, n
);
440 if (wasfull
&& !isfull
)
441 tn_info(tn
)->full_children
--;
442 else if (!wasfull
&& isfull
)
443 tn_info(tn
)->full_children
++;
445 if (n
&& (tn
->slen
< n
->slen
))
448 rcu_assign_pointer(tn
->tnode
[i
], n
);
451 static void update_children(struct key_vector
*tn
)
455 /* update all of the child parent pointers */
456 for (i
= child_length(tn
); i
;) {
457 struct key_vector
*inode
= get_child(tn
, --i
);
462 /* Either update the children of a tnode that
463 * already belongs to us or update the child
464 * to point to ourselves.
466 if (node_parent(inode
) == tn
)
467 update_children(inode
);
469 node_set_parent(inode
, tn
);
473 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
474 struct key_vector
*n
)
477 rcu_assign_pointer(tp
->tnode
[0], n
);
479 put_child(tp
, get_index(key
, tp
), n
);
482 static inline void tnode_free_init(struct key_vector
*tn
)
484 tn_info(tn
)->rcu
.next
= NULL
;
487 static inline void tnode_free_append(struct key_vector
*tn
,
488 struct key_vector
*n
)
490 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
491 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
494 static void tnode_free(struct key_vector
*tn
)
496 struct callback_head
*head
= &tn_info(tn
)->rcu
;
500 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
503 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
506 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
512 static struct key_vector
*replace(struct trie
*t
,
513 struct key_vector
*oldtnode
,
514 struct key_vector
*tn
)
516 struct key_vector
*tp
= node_parent(oldtnode
);
519 /* setup the parent pointer out of and back into this node */
520 NODE_INIT_PARENT(tn
, tp
);
521 put_child_root(tp
, tn
->key
, tn
);
523 /* update all of the child parent pointers */
526 /* all pointers should be clean so we are done */
527 tnode_free(oldtnode
);
529 /* resize children now that oldtnode is freed */
530 for (i
= child_length(tn
); i
;) {
531 struct key_vector
*inode
= get_child(tn
, --i
);
533 /* resize child node */
534 if (tnode_full(tn
, inode
))
535 tn
= resize(t
, inode
);
541 static struct key_vector
*inflate(struct trie
*t
,
542 struct key_vector
*oldtnode
)
544 struct key_vector
*tn
;
548 pr_debug("In inflate\n");
550 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
554 /* prepare oldtnode to be freed */
555 tnode_free_init(oldtnode
);
557 /* Assemble all of the pointers in our cluster, in this case that
558 * represents all of the pointers out of our allocated nodes that
559 * point to existing tnodes and the links between our allocated
562 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
563 struct key_vector
*inode
= get_child(oldtnode
, --i
);
564 struct key_vector
*node0
, *node1
;
571 /* A leaf or an internal node with skipped bits */
572 if (!tnode_full(oldtnode
, inode
)) {
573 put_child(tn
, get_index(inode
->key
, tn
), inode
);
577 /* drop the node in the old tnode free list */
578 tnode_free_append(oldtnode
, inode
);
580 /* An internal node with two children */
581 if (inode
->bits
== 1) {
582 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
583 put_child(tn
, 2 * i
, get_child(inode
, 0));
587 /* We will replace this node 'inode' with two new
588 * ones, 'node0' and 'node1', each with half of the
589 * original children. The two new nodes will have
590 * a position one bit further down the key and this
591 * means that the "significant" part of their keys
592 * (see the discussion near the top of this file)
593 * will differ by one bit, which will be "0" in
594 * node0's key and "1" in node1's key. Since we are
595 * moving the key position by one step, the bit that
596 * we are moving away from - the bit at position
597 * (tn->pos) - is the one that will differ between
598 * node0 and node1. So... we synthesize that bit in the
601 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
604 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
606 tnode_free_append(tn
, node1
);
609 tnode_free_append(tn
, node0
);
611 /* populate child pointers in new nodes */
612 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
613 put_child(node1
, --j
, get_child(inode
, --k
));
614 put_child(node0
, j
, get_child(inode
, j
));
615 put_child(node1
, --j
, get_child(inode
, --k
));
616 put_child(node0
, j
, get_child(inode
, j
));
619 /* link new nodes to parent */
620 NODE_INIT_PARENT(node1
, tn
);
621 NODE_INIT_PARENT(node0
, tn
);
623 /* link parent to nodes */
624 put_child(tn
, 2 * i
+ 1, node1
);
625 put_child(tn
, 2 * i
, node0
);
628 /* setup the parent pointers into and out of this node */
629 return replace(t
, oldtnode
, tn
);
631 /* all pointers should be clean so we are done */
637 static struct key_vector
*halve(struct trie
*t
,
638 struct key_vector
*oldtnode
)
640 struct key_vector
*tn
;
643 pr_debug("In halve\n");
645 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
649 /* prepare oldtnode to be freed */
650 tnode_free_init(oldtnode
);
652 /* Assemble all of the pointers in our cluster, in this case that
653 * represents all of the pointers out of our allocated nodes that
654 * point to existing tnodes and the links between our allocated
657 for (i
= child_length(oldtnode
); i
;) {
658 struct key_vector
*node1
= get_child(oldtnode
, --i
);
659 struct key_vector
*node0
= get_child(oldtnode
, --i
);
660 struct key_vector
*inode
;
662 /* At least one of the children is empty */
663 if (!node1
|| !node0
) {
664 put_child(tn
, i
/ 2, node1
? : node0
);
668 /* Two nonempty children */
669 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
672 tnode_free_append(tn
, inode
);
674 /* initialize pointers out of node */
675 put_child(inode
, 1, node1
);
676 put_child(inode
, 0, node0
);
677 NODE_INIT_PARENT(inode
, tn
);
679 /* link parent to node */
680 put_child(tn
, i
/ 2, inode
);
683 /* setup the parent pointers into and out of this node */
684 return replace(t
, oldtnode
, tn
);
686 /* all pointers should be clean so we are done */
692 static struct key_vector
*collapse(struct trie
*t
,
693 struct key_vector
*oldtnode
)
695 struct key_vector
*n
, *tp
;
698 /* scan the tnode looking for that one child that might still exist */
699 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
700 n
= get_child(oldtnode
, --i
);
702 /* compress one level */
703 tp
= node_parent(oldtnode
);
704 put_child_root(tp
, oldtnode
->key
, n
);
705 node_set_parent(n
, tp
);
713 static unsigned char update_suffix(struct key_vector
*tn
)
715 unsigned char slen
= tn
->pos
;
716 unsigned long stride
, i
;
717 unsigned char slen_max
;
719 /* only vector 0 can have a suffix length greater than or equal to
720 * tn->pos + tn->bits, the second highest node will have a suffix
721 * length at most of tn->pos + tn->bits - 1
723 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
725 /* search though the list of children looking for nodes that might
726 * have a suffix greater than the one we currently have. This is
727 * why we start with a stride of 2 since a stride of 1 would
728 * represent the nodes with suffix length equal to tn->pos
730 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
731 struct key_vector
*n
= get_child(tn
, i
);
733 if (!n
|| (n
->slen
<= slen
))
736 /* update stride and slen based on new value */
737 stride
<<= (n
->slen
- slen
);
741 /* stop searching if we have hit the maximum possible value */
742 if (slen
>= slen_max
)
751 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
752 * the Helsinki University of Technology and Matti Tikkanen of Nokia
753 * Telecommunications, page 6:
754 * "A node is doubled if the ratio of non-empty children to all
755 * children in the *doubled* node is at least 'high'."
757 * 'high' in this instance is the variable 'inflate_threshold'. It
758 * is expressed as a percentage, so we multiply it with
759 * child_length() and instead of multiplying by 2 (since the
760 * child array will be doubled by inflate()) and multiplying
761 * the left-hand side by 100 (to handle the percentage thing) we
762 * multiply the left-hand side by 50.
764 * The left-hand side may look a bit weird: child_length(tn)
765 * - tn->empty_children is of course the number of non-null children
766 * in the current node. tn->full_children is the number of "full"
767 * children, that is non-null tnodes with a skip value of 0.
768 * All of those will be doubled in the resulting inflated tnode, so
769 * we just count them one extra time here.
771 * A clearer way to write this would be:
773 * to_be_doubled = tn->full_children;
774 * not_to_be_doubled = child_length(tn) - tn->empty_children -
777 * new_child_length = child_length(tn) * 2;
779 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
781 * if (new_fill_factor >= inflate_threshold)
783 * ...and so on, tho it would mess up the while () loop.
786 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
790 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
791 * inflate_threshold * new_child_length
793 * expand not_to_be_doubled and to_be_doubled, and shorten:
794 * 100 * (child_length(tn) - tn->empty_children +
795 * tn->full_children) >= inflate_threshold * new_child_length
797 * expand new_child_length:
798 * 100 * (child_length(tn) - tn->empty_children +
799 * tn->full_children) >=
800 * inflate_threshold * child_length(tn) * 2
803 * 50 * (tn->full_children + child_length(tn) -
804 * tn->empty_children) >= inflate_threshold *
808 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
810 unsigned long used
= child_length(tn
);
811 unsigned long threshold
= used
;
813 /* Keep root node larger */
814 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
815 used
-= tn_info(tn
)->empty_children
;
816 used
+= tn_info(tn
)->full_children
;
818 /* if bits == KEYLENGTH then pos = 0, and will fail below */
820 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
823 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
825 unsigned long used
= child_length(tn
);
826 unsigned long threshold
= used
;
828 /* Keep root node larger */
829 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
830 used
-= tn_info(tn
)->empty_children
;
832 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
834 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
837 static inline bool should_collapse(struct key_vector
*tn
)
839 unsigned long used
= child_length(tn
);
841 used
-= tn_info(tn
)->empty_children
;
843 /* account for bits == KEYLENGTH case */
844 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
847 /* One child or none, time to drop us from the trie */
852 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
854 #ifdef CONFIG_IP_FIB_TRIE_STATS
855 struct trie_use_stats __percpu
*stats
= t
->stats
;
857 struct key_vector
*tp
= node_parent(tn
);
858 unsigned long cindex
= get_index(tn
->key
, tp
);
859 int max_work
= MAX_WORK
;
861 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
862 tn
, inflate_threshold
, halve_threshold
);
864 /* track the tnode via the pointer from the parent instead of
865 * doing it ourselves. This way we can let RCU fully do its
866 * thing without us interfering
868 BUG_ON(tn
!= get_child(tp
, cindex
));
870 /* Double as long as the resulting node has a number of
871 * nonempty nodes that are above the threshold.
873 while (should_inflate(tp
, tn
) && max_work
) {
876 #ifdef CONFIG_IP_FIB_TRIE_STATS
877 this_cpu_inc(stats
->resize_node_skipped
);
883 tn
= get_child(tp
, cindex
);
886 /* update parent in case inflate failed */
887 tp
= node_parent(tn
);
889 /* Return if at least one inflate is run */
890 if (max_work
!= MAX_WORK
)
893 /* Halve as long as the number of empty children in this
894 * node is above threshold.
896 while (should_halve(tp
, tn
) && max_work
) {
899 #ifdef CONFIG_IP_FIB_TRIE_STATS
900 this_cpu_inc(stats
->resize_node_skipped
);
906 tn
= get_child(tp
, cindex
);
909 /* Only one child remains */
910 if (should_collapse(tn
))
911 return collapse(t
, tn
);
913 /* update parent in case halve failed */
914 return node_parent(tn
);
917 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
919 unsigned char node_slen
= tn
->slen
;
921 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
922 slen
= update_suffix(tn
);
923 if (node_slen
== slen
)
926 tn
= node_parent(tn
);
927 node_slen
= tn
->slen
;
931 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
933 while (tn
->slen
< slen
) {
935 tn
= node_parent(tn
);
939 /* rcu_read_lock needs to be hold by caller from readside */
940 static struct key_vector
*fib_find_node(struct trie
*t
,
941 struct key_vector
**tp
, u32 key
)
943 struct key_vector
*pn
, *n
= t
->kv
;
944 unsigned long index
= 0;
948 n
= get_child_rcu(n
, index
);
953 index
= get_cindex(key
, n
);
955 /* This bit of code is a bit tricky but it combines multiple
956 * checks into a single check. The prefix consists of the
957 * prefix plus zeros for the bits in the cindex. The index
958 * is the difference between the key and this value. From
959 * this we can actually derive several pieces of data.
960 * if (index >= (1ul << bits))
961 * we have a mismatch in skip bits and failed
963 * we know the value is cindex
965 * This check is safe even if bits == KEYLENGTH due to the
966 * fact that we can only allocate a node with 32 bits if a
967 * long is greater than 32 bits.
969 if (index
>= (1ul << n
->bits
)) {
974 /* keep searching until we find a perfect match leaf or NULL */
975 } while (IS_TNODE(n
));
982 /* Return the first fib alias matching TOS with
983 * priority less than or equal to PRIO.
985 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
986 u8 tos
, u32 prio
, u32 tb_id
)
988 struct fib_alias
*fa
;
993 hlist_for_each_entry(fa
, fah
, fa_list
) {
994 if (fa
->fa_slen
< slen
)
996 if (fa
->fa_slen
!= slen
)
998 if (fa
->tb_id
> tb_id
)
1000 if (fa
->tb_id
!= tb_id
)
1002 if (fa
->fa_tos
> tos
)
1004 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1011 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1013 while (!IS_TRIE(tn
))
1017 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1018 struct fib_alias
*new, t_key key
)
1020 struct key_vector
*n
, *l
;
1022 l
= leaf_new(key
, new);
1026 /* retrieve child from parent node */
1027 n
= get_child(tp
, get_index(key
, tp
));
1029 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031 * Add a new tnode here
1032 * first tnode need some special handling
1033 * leaves us in position for handling as case 3
1036 struct key_vector
*tn
;
1038 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1042 /* initialize routes out of node */
1043 NODE_INIT_PARENT(tn
, tp
);
1044 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1046 /* start adding routes into the node */
1047 put_child_root(tp
, key
, tn
);
1048 node_set_parent(n
, tn
);
1050 /* parent now has a NULL spot where the leaf can go */
1054 /* Case 3: n is NULL, and will just insert a new leaf */
1055 node_push_suffix(tp
, new->fa_slen
);
1056 NODE_INIT_PARENT(l
, tp
);
1057 put_child_root(tp
, key
, l
);
1058 trie_rebalance(t
, tp
);
1067 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1068 struct key_vector
*l
, struct fib_alias
*new,
1069 struct fib_alias
*fa
, t_key key
)
1072 return fib_insert_node(t
, tp
, new, key
);
1075 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1077 struct fib_alias
*last
;
1079 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1080 if (new->fa_slen
< last
->fa_slen
)
1082 if ((new->fa_slen
== last
->fa_slen
) &&
1083 (new->tb_id
> last
->tb_id
))
1089 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1091 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1094 /* if we added to the tail node then we need to update slen */
1095 if (l
->slen
< new->fa_slen
) {
1096 l
->slen
= new->fa_slen
;
1097 node_push_suffix(tp
, new->fa_slen
);
1103 static bool fib_valid_key_len(u32 key
, u8 plen
, struct netlink_ext_ack
*extack
)
1105 if (plen
> KEYLENGTH
) {
1106 NL_SET_ERR_MSG(extack
, "Invalid prefix length");
1110 if ((plen
< KEYLENGTH
) && (key
<< plen
)) {
1111 NL_SET_ERR_MSG(extack
,
1112 "Invalid prefix for given prefix length");
1119 /* Caller must hold RTNL. */
1120 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1121 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1123 enum fib_event_type event
= FIB_EVENT_ENTRY_ADD
;
1124 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1125 struct fib_alias
*fa
, *new_fa
;
1126 struct key_vector
*l
, *tp
;
1127 u16 nlflags
= NLM_F_EXCL
;
1128 struct fib_info
*fi
;
1129 u8 plen
= cfg
->fc_dst_len
;
1130 u8 slen
= KEYLENGTH
- plen
;
1131 u8 tos
= cfg
->fc_tos
;
1135 key
= ntohl(cfg
->fc_dst
);
1137 if (!fib_valid_key_len(key
, plen
, extack
))
1140 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1142 fi
= fib_create_info(cfg
, extack
);
1148 l
= fib_find_node(t
, &tp
, key
);
1149 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1152 /* Now fa, if non-NULL, points to the first fib alias
1153 * with the same keys [prefix,tos,priority], if such key already
1154 * exists or to the node before which we will insert new one.
1156 * If fa is NULL, we will need to allocate a new one and
1157 * insert to the tail of the section matching the suffix length
1161 if (fa
&& fa
->fa_tos
== tos
&&
1162 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1163 struct fib_alias
*fa_first
, *fa_match
;
1166 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1169 nlflags
&= ~NLM_F_EXCL
;
1172 * 1. Find exact match for type, scope, fib_info to avoid
1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1178 hlist_for_each_entry_from(fa
, fa_list
) {
1179 if ((fa
->fa_slen
!= slen
) ||
1180 (fa
->tb_id
!= tb
->tb_id
) ||
1181 (fa
->fa_tos
!= tos
))
1183 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1185 if (fa
->fa_type
== cfg
->fc_type
&&
1186 fa
->fa_info
== fi
) {
1192 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1193 struct fib_info
*fi_drop
;
1196 nlflags
|= NLM_F_REPLACE
;
1204 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1208 fi_drop
= fa
->fa_info
;
1209 new_fa
->fa_tos
= fa
->fa_tos
;
1210 new_fa
->fa_info
= fi
;
1211 new_fa
->fa_type
= cfg
->fc_type
;
1212 state
= fa
->fa_state
;
1213 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1214 new_fa
->fa_slen
= fa
->fa_slen
;
1215 new_fa
->tb_id
= tb
->tb_id
;
1216 new_fa
->fa_default
= -1;
1218 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_REPLACE
,
1219 key
, plen
, new_fa
, extack
);
1220 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1221 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1223 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1225 alias_free_mem_rcu(fa
);
1227 fib_release_info(fi_drop
);
1228 if (state
& FA_S_ACCESSED
)
1229 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1233 /* Error if we find a perfect match which
1234 * uses the same scope, type, and nexthop
1240 if (cfg
->fc_nlflags
& NLM_F_APPEND
) {
1241 event
= FIB_EVENT_ENTRY_APPEND
;
1242 nlflags
|= NLM_F_APPEND
;
1248 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1251 nlflags
|= NLM_F_CREATE
;
1253 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1257 new_fa
->fa_info
= fi
;
1258 new_fa
->fa_tos
= tos
;
1259 new_fa
->fa_type
= cfg
->fc_type
;
1260 new_fa
->fa_state
= 0;
1261 new_fa
->fa_slen
= slen
;
1262 new_fa
->tb_id
= tb
->tb_id
;
1263 new_fa
->fa_default
= -1;
1265 /* Insert new entry to the list. */
1266 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1268 goto out_free_new_fa
;
1271 tb
->tb_num_default
++;
1273 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1274 call_fib_entry_notifiers(net
, event
, key
, plen
, new_fa
, extack
);
1275 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1276 &cfg
->fc_nlinfo
, nlflags
);
1281 kmem_cache_free(fn_alias_kmem
, new_fa
);
1283 fib_release_info(fi
);
1288 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1290 t_key prefix
= n
->key
;
1292 return (key
^ prefix
) & (prefix
| -prefix
);
1295 /* should be called with rcu_read_lock */
1296 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1297 struct fib_result
*res
, int fib_flags
)
1299 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1300 #ifdef CONFIG_IP_FIB_TRIE_STATS
1301 struct trie_use_stats __percpu
*stats
= t
->stats
;
1303 const t_key key
= ntohl(flp
->daddr
);
1304 struct key_vector
*n
, *pn
;
1305 struct fib_alias
*fa
;
1306 unsigned long index
;
1309 trace_fib_table_lookup(tb
->tb_id
, flp
);
1314 n
= get_child_rcu(pn
, cindex
);
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 this_cpu_inc(stats
->gets
);
1322 /* Step 1: Travel to the longest prefix match in the trie */
1324 index
= get_cindex(key
, n
);
1326 /* This bit of code is a bit tricky but it combines multiple
1327 * checks into a single check. The prefix consists of the
1328 * prefix plus zeros for the "bits" in the prefix. The index
1329 * is the difference between the key and this value. From
1330 * this we can actually derive several pieces of data.
1331 * if (index >= (1ul << bits))
1332 * we have a mismatch in skip bits and failed
1334 * we know the value is cindex
1336 * This check is safe even if bits == KEYLENGTH due to the
1337 * fact that we can only allocate a node with 32 bits if a
1338 * long is greater than 32 bits.
1340 if (index
>= (1ul << n
->bits
))
1343 /* we have found a leaf. Prefixes have already been compared */
1347 /* only record pn and cindex if we are going to be chopping
1348 * bits later. Otherwise we are just wasting cycles.
1350 if (n
->slen
> n
->pos
) {
1355 n
= get_child_rcu(n
, index
);
1360 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1362 /* record the pointer where our next node pointer is stored */
1363 struct key_vector __rcu
**cptr
= n
->tnode
;
1365 /* This test verifies that none of the bits that differ
1366 * between the key and the prefix exist in the region of
1367 * the lsb and higher in the prefix.
1369 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1372 /* exit out and process leaf */
1373 if (unlikely(IS_LEAF(n
)))
1376 /* Don't bother recording parent info. Since we are in
1377 * prefix match mode we will have to come back to wherever
1378 * we started this traversal anyway
1381 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1383 #ifdef CONFIG_IP_FIB_TRIE_STATS
1385 this_cpu_inc(stats
->null_node_hit
);
1387 /* If we are at cindex 0 there are no more bits for
1388 * us to strip at this level so we must ascend back
1389 * up one level to see if there are any more bits to
1390 * be stripped there.
1393 t_key pkey
= pn
->key
;
1395 /* If we don't have a parent then there is
1396 * nothing for us to do as we do not have any
1397 * further nodes to parse.
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 this_cpu_inc(stats
->backtrack
);
1404 /* Get Child's index */
1405 pn
= node_parent_rcu(pn
);
1406 cindex
= get_index(pkey
, pn
);
1409 /* strip the least significant bit from the cindex */
1410 cindex
&= cindex
- 1;
1412 /* grab pointer for next child node */
1413 cptr
= &pn
->tnode
[cindex
];
1418 /* this line carries forward the xor from earlier in the function */
1419 index
= key
^ n
->key
;
1421 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1422 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1423 struct fib_info
*fi
= fa
->fa_info
;
1426 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1427 if (index
>= (1ul << fa
->fa_slen
))
1430 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1434 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1436 fib_alias_accessed(fa
);
1437 err
= fib_props
[fa
->fa_type
].error
;
1438 if (unlikely(err
< 0)) {
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 this_cpu_inc(stats
->semantic_match_passed
);
1444 if (fi
->fib_flags
& RTNH_F_DEAD
)
1446 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1447 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1448 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1450 if (nh
->nh_flags
& RTNH_F_DEAD
)
1453 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1454 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1455 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1457 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1458 if (flp
->flowi4_oif
&&
1459 flp
->flowi4_oif
!= nh
->nh_oif
)
1463 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1464 refcount_inc(&fi
->fib_clntref
);
1466 res
->prefix
= htonl(n
->key
);
1467 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1468 res
->nh_sel
= nhsel
;
1469 res
->type
= fa
->fa_type
;
1470 res
->scope
= fi
->fib_scope
;
1473 res
->fa_head
= &n
->leaf
;
1474 #ifdef CONFIG_IP_FIB_TRIE_STATS
1475 this_cpu_inc(stats
->semantic_match_passed
);
1477 trace_fib_table_lookup_nh(nh
);
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 this_cpu_inc(stats
->semantic_match_miss
);
1487 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1489 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1490 struct key_vector
*l
, struct fib_alias
*old
)
1492 /* record the location of the previous list_info entry */
1493 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1494 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1496 /* remove the fib_alias from the list */
1497 hlist_del_rcu(&old
->fa_list
);
1499 /* if we emptied the list this leaf will be freed and we can sort
1500 * out parent suffix lengths as a part of trie_rebalance
1502 if (hlist_empty(&l
->leaf
)) {
1503 if (tp
->slen
== l
->slen
)
1504 node_pull_suffix(tp
, tp
->pos
);
1505 put_child_root(tp
, l
->key
, NULL
);
1507 trie_rebalance(t
, tp
);
1511 /* only access fa if it is pointing at the last valid hlist_node */
1515 /* update the trie with the latest suffix length */
1516 l
->slen
= fa
->fa_slen
;
1517 node_pull_suffix(tp
, fa
->fa_slen
);
1520 /* Caller must hold RTNL. */
1521 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1522 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1524 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1525 struct fib_alias
*fa
, *fa_to_delete
;
1526 struct key_vector
*l
, *tp
;
1527 u8 plen
= cfg
->fc_dst_len
;
1528 u8 slen
= KEYLENGTH
- plen
;
1529 u8 tos
= cfg
->fc_tos
;
1532 key
= ntohl(cfg
->fc_dst
);
1534 if (!fib_valid_key_len(key
, plen
, extack
))
1537 l
= fib_find_node(t
, &tp
, key
);
1541 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1545 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1547 fa_to_delete
= NULL
;
1548 hlist_for_each_entry_from(fa
, fa_list
) {
1549 struct fib_info
*fi
= fa
->fa_info
;
1551 if ((fa
->fa_slen
!= slen
) ||
1552 (fa
->tb_id
!= tb
->tb_id
) ||
1553 (fa
->fa_tos
!= tos
))
1556 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1557 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1558 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1559 (!cfg
->fc_prefsrc
||
1560 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1561 (!cfg
->fc_protocol
||
1562 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1563 fib_nh_match(cfg
, fi
, extack
) == 0 &&
1564 fib_metrics_match(cfg
, fi
)) {
1573 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
, plen
,
1574 fa_to_delete
, extack
);
1575 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1576 &cfg
->fc_nlinfo
, 0);
1579 tb
->tb_num_default
--;
1581 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1583 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1584 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1586 fib_release_info(fa_to_delete
->fa_info
);
1587 alias_free_mem_rcu(fa_to_delete
);
1591 /* Scan for the next leaf starting at the provided key value */
1592 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1594 struct key_vector
*pn
, *n
= *tn
;
1595 unsigned long cindex
;
1597 /* this loop is meant to try and find the key in the trie */
1599 /* record parent and next child index */
1601 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1603 if (cindex
>> pn
->bits
)
1606 /* descend into the next child */
1607 n
= get_child_rcu(pn
, cindex
++);
1611 /* guarantee forward progress on the keys */
1612 if (IS_LEAF(n
) && (n
->key
>= key
))
1614 } while (IS_TNODE(n
));
1616 /* this loop will search for the next leaf with a greater key */
1617 while (!IS_TRIE(pn
)) {
1618 /* if we exhausted the parent node we will need to climb */
1619 if (cindex
>= (1ul << pn
->bits
)) {
1620 t_key pkey
= pn
->key
;
1622 pn
= node_parent_rcu(pn
);
1623 cindex
= get_index(pkey
, pn
) + 1;
1627 /* grab the next available node */
1628 n
= get_child_rcu(pn
, cindex
++);
1632 /* no need to compare keys since we bumped the index */
1636 /* Rescan start scanning in new node */
1642 return NULL
; /* Root of trie */
1644 /* if we are at the limit for keys just return NULL for the tnode */
1649 static void fib_trie_free(struct fib_table
*tb
)
1651 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1652 struct key_vector
*pn
= t
->kv
;
1653 unsigned long cindex
= 1;
1654 struct hlist_node
*tmp
;
1655 struct fib_alias
*fa
;
1657 /* walk trie in reverse order and free everything */
1659 struct key_vector
*n
;
1662 t_key pkey
= pn
->key
;
1668 pn
= node_parent(pn
);
1670 /* drop emptied tnode */
1671 put_child_root(pn
, n
->key
, NULL
);
1674 cindex
= get_index(pkey
, pn
);
1679 /* grab the next available node */
1680 n
= get_child(pn
, cindex
);
1685 /* record pn and cindex for leaf walking */
1687 cindex
= 1ul << n
->bits
;
1692 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1693 hlist_del_rcu(&fa
->fa_list
);
1694 alias_free_mem_rcu(fa
);
1697 put_child_root(pn
, n
->key
, NULL
);
1701 #ifdef CONFIG_IP_FIB_TRIE_STATS
1702 free_percpu(t
->stats
);
1707 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1709 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1710 struct key_vector
*l
, *tp
= ot
->kv
;
1711 struct fib_table
*local_tb
;
1712 struct fib_alias
*fa
;
1716 if (oldtb
->tb_data
== oldtb
->__data
)
1719 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1723 lt
= (struct trie
*)local_tb
->tb_data
;
1725 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1726 struct key_vector
*local_l
= NULL
, *local_tp
;
1728 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1729 struct fib_alias
*new_fa
;
1731 if (local_tb
->tb_id
!= fa
->tb_id
)
1734 /* clone fa for new local table */
1735 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1739 memcpy(new_fa
, fa
, sizeof(*fa
));
1741 /* insert clone into table */
1743 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1745 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1747 kmem_cache_free(fn_alias_kmem
, new_fa
);
1752 /* stop loop if key wrapped back to 0 */
1760 fib_trie_free(local_tb
);
1765 /* Caller must hold RTNL */
1766 void fib_table_flush_external(struct fib_table
*tb
)
1768 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1769 struct key_vector
*pn
= t
->kv
;
1770 unsigned long cindex
= 1;
1771 struct hlist_node
*tmp
;
1772 struct fib_alias
*fa
;
1774 /* walk trie in reverse order */
1776 unsigned char slen
= 0;
1777 struct key_vector
*n
;
1780 t_key pkey
= pn
->key
;
1782 /* cannot resize the trie vector */
1786 /* update the suffix to address pulled leaves */
1787 if (pn
->slen
> pn
->pos
)
1790 /* resize completed node */
1792 cindex
= get_index(pkey
, pn
);
1797 /* grab the next available node */
1798 n
= get_child(pn
, cindex
);
1803 /* record pn and cindex for leaf walking */
1805 cindex
= 1ul << n
->bits
;
1810 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1811 /* if alias was cloned to local then we just
1812 * need to remove the local copy from main
1814 if (tb
->tb_id
!= fa
->tb_id
) {
1815 hlist_del_rcu(&fa
->fa_list
);
1816 alias_free_mem_rcu(fa
);
1820 /* record local slen */
1824 /* update leaf slen */
1827 if (hlist_empty(&n
->leaf
)) {
1828 put_child_root(pn
, n
->key
, NULL
);
1834 /* Caller must hold RTNL. */
1835 int fib_table_flush(struct net
*net
, struct fib_table
*tb
)
1837 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1838 struct key_vector
*pn
= t
->kv
;
1839 unsigned long cindex
= 1;
1840 struct hlist_node
*tmp
;
1841 struct fib_alias
*fa
;
1844 /* walk trie in reverse order */
1846 unsigned char slen
= 0;
1847 struct key_vector
*n
;
1850 t_key pkey
= pn
->key
;
1852 /* cannot resize the trie vector */
1856 /* update the suffix to address pulled leaves */
1857 if (pn
->slen
> pn
->pos
)
1860 /* resize completed node */
1862 cindex
= get_index(pkey
, pn
);
1867 /* grab the next available node */
1868 n
= get_child(pn
, cindex
);
1873 /* record pn and cindex for leaf walking */
1875 cindex
= 1ul << n
->bits
;
1880 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1881 struct fib_info
*fi
= fa
->fa_info
;
1883 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
) ||
1884 tb
->tb_id
!= fa
->tb_id
) {
1889 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
,
1891 KEYLENGTH
- fa
->fa_slen
, fa
,
1893 hlist_del_rcu(&fa
->fa_list
);
1894 fib_release_info(fa
->fa_info
);
1895 alias_free_mem_rcu(fa
);
1899 /* update leaf slen */
1902 if (hlist_empty(&n
->leaf
)) {
1903 put_child_root(pn
, n
->key
, NULL
);
1908 pr_debug("trie_flush found=%d\n", found
);
1912 static void fib_leaf_notify(struct net
*net
, struct key_vector
*l
,
1913 struct fib_table
*tb
, struct notifier_block
*nb
)
1915 struct fib_alias
*fa
;
1917 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1918 struct fib_info
*fi
= fa
->fa_info
;
1923 /* local and main table can share the same trie,
1924 * so don't notify twice for the same entry.
1926 if (tb
->tb_id
!= fa
->tb_id
)
1929 call_fib_entry_notifier(nb
, net
, FIB_EVENT_ENTRY_ADD
, l
->key
,
1930 KEYLENGTH
- fa
->fa_slen
, fa
);
1934 static void fib_table_notify(struct net
*net
, struct fib_table
*tb
,
1935 struct notifier_block
*nb
)
1937 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1938 struct key_vector
*l
, *tp
= t
->kv
;
1941 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1942 fib_leaf_notify(net
, l
, tb
, nb
);
1945 /* stop in case of wrap around */
1951 void fib_notify(struct net
*net
, struct notifier_block
*nb
)
1955 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1956 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
1957 struct fib_table
*tb
;
1959 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
)
1960 fib_table_notify(net
, tb
, nb
);
1964 static void __trie_free_rcu(struct rcu_head
*head
)
1966 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1967 #ifdef CONFIG_IP_FIB_TRIE_STATS
1968 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1970 if (tb
->tb_data
== tb
->__data
)
1971 free_percpu(t
->stats
);
1972 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1976 void fib_free_table(struct fib_table
*tb
)
1978 call_rcu(&tb
->rcu
, __trie_free_rcu
);
1981 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
1982 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1984 __be32 xkey
= htonl(l
->key
);
1985 struct fib_alias
*fa
;
1991 /* rcu_read_lock is hold by caller */
1992 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2000 if (tb
->tb_id
!= fa
->tb_id
) {
2005 err
= fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
2006 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2007 tb
->tb_id
, fa
->fa_type
,
2008 xkey
, KEYLENGTH
- fa
->fa_slen
,
2009 fa
->fa_tos
, fa
->fa_info
, NLM_F_MULTI
);
2021 /* rcu_read_lock needs to be hold by caller from readside */
2022 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2023 struct netlink_callback
*cb
)
2025 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2026 struct key_vector
*l
, *tp
= t
->kv
;
2027 /* Dump starting at last key.
2028 * Note: 0.0.0.0/0 (ie default) is first key.
2030 int count
= cb
->args
[2];
2031 t_key key
= cb
->args
[3];
2033 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2036 err
= fn_trie_dump_leaf(l
, tb
, skb
, cb
);
2039 cb
->args
[2] = count
;
2046 memset(&cb
->args
[4], 0,
2047 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2049 /* stop loop if key wrapped back to 0 */
2055 cb
->args
[2] = count
;
2060 void __init
fib_trie_init(void)
2062 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2063 sizeof(struct fib_alias
),
2064 0, SLAB_PANIC
, NULL
);
2066 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2068 0, SLAB_PANIC
, NULL
);
2071 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2073 struct fib_table
*tb
;
2075 size_t sz
= sizeof(*tb
);
2078 sz
+= sizeof(struct trie
);
2080 tb
= kzalloc(sz
, GFP_KERNEL
);
2085 tb
->tb_num_default
= 0;
2086 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2091 t
= (struct trie
*) tb
->tb_data
;
2092 t
->kv
[0].pos
= KEYLENGTH
;
2093 t
->kv
[0].slen
= KEYLENGTH
;
2094 #ifdef CONFIG_IP_FIB_TRIE_STATS
2095 t
->stats
= alloc_percpu(struct trie_use_stats
);
2105 #ifdef CONFIG_PROC_FS
2106 /* Depth first Trie walk iterator */
2107 struct fib_trie_iter
{
2108 struct seq_net_private p
;
2109 struct fib_table
*tb
;
2110 struct key_vector
*tnode
;
2115 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2117 unsigned long cindex
= iter
->index
;
2118 struct key_vector
*pn
= iter
->tnode
;
2121 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2122 iter
->tnode
, iter
->index
, iter
->depth
);
2124 while (!IS_TRIE(pn
)) {
2125 while (cindex
< child_length(pn
)) {
2126 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2133 iter
->index
= cindex
;
2135 /* push down one level */
2144 /* Current node exhausted, pop back up */
2146 pn
= node_parent_rcu(pn
);
2147 cindex
= get_index(pkey
, pn
) + 1;
2151 /* record root node so further searches know we are done */
2158 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2161 struct key_vector
*n
, *pn
;
2167 n
= rcu_dereference(pn
->tnode
[0]);
2184 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2186 struct key_vector
*n
;
2187 struct fib_trie_iter iter
;
2189 memset(s
, 0, sizeof(*s
));
2192 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2194 struct fib_alias
*fa
;
2197 s
->totdepth
+= iter
.depth
;
2198 if (iter
.depth
> s
->maxdepth
)
2199 s
->maxdepth
= iter
.depth
;
2201 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2205 if (n
->bits
< MAX_STAT_DEPTH
)
2206 s
->nodesizes
[n
->bits
]++;
2207 s
->nullpointers
+= tn_info(n
)->empty_children
;
2214 * This outputs /proc/net/fib_triestats
2216 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2218 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2221 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2225 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2226 avdepth
/ 100, avdepth
% 100);
2227 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2229 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2230 bytes
= LEAF_SIZE
* stat
->leaves
;
2232 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2233 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2235 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2236 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2238 max
= MAX_STAT_DEPTH
;
2239 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2243 for (i
= 1; i
< max
; i
++)
2244 if (stat
->nodesizes
[i
] != 0) {
2245 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2246 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2248 seq_putc(seq
, '\n');
2249 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2251 bytes
+= sizeof(struct key_vector
*) * pointers
;
2252 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2253 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2256 #ifdef CONFIG_IP_FIB_TRIE_STATS
2257 static void trie_show_usage(struct seq_file
*seq
,
2258 const struct trie_use_stats __percpu
*stats
)
2260 struct trie_use_stats s
= { 0 };
2263 /* loop through all of the CPUs and gather up the stats */
2264 for_each_possible_cpu(cpu
) {
2265 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2267 s
.gets
+= pcpu
->gets
;
2268 s
.backtrack
+= pcpu
->backtrack
;
2269 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2270 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2271 s
.null_node_hit
+= pcpu
->null_node_hit
;
2272 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2275 seq_printf(seq
, "\nCounters:\n---------\n");
2276 seq_printf(seq
, "gets = %u\n", s
.gets
);
2277 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2278 seq_printf(seq
, "semantic match passed = %u\n",
2279 s
.semantic_match_passed
);
2280 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2281 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2282 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2284 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2286 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2288 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2289 seq_puts(seq
, "Local:\n");
2290 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2291 seq_puts(seq
, "Main:\n");
2293 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2297 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2299 struct net
*net
= (struct net
*)seq
->private;
2303 "Basic info: size of leaf:"
2304 " %zd bytes, size of tnode: %zd bytes.\n",
2305 LEAF_SIZE
, TNODE_SIZE(0));
2307 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2308 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2309 struct fib_table
*tb
;
2311 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2312 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2313 struct trie_stat stat
;
2318 fib_table_print(seq
, tb
);
2320 trie_collect_stats(t
, &stat
);
2321 trie_show_stats(seq
, &stat
);
2322 #ifdef CONFIG_IP_FIB_TRIE_STATS
2323 trie_show_usage(seq
, t
->stats
);
2331 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2333 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2336 static const struct file_operations fib_triestat_fops
= {
2337 .open
= fib_triestat_seq_open
,
2339 .llseek
= seq_lseek
,
2340 .release
= single_release_net
,
2343 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2345 struct fib_trie_iter
*iter
= seq
->private;
2346 struct net
*net
= seq_file_net(seq
);
2350 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2351 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2352 struct fib_table
*tb
;
2354 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2355 struct key_vector
*n
;
2357 for (n
= fib_trie_get_first(iter
,
2358 (struct trie
*) tb
->tb_data
);
2359 n
; n
= fib_trie_get_next(iter
))
2370 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2374 return fib_trie_get_idx(seq
, *pos
);
2377 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2379 struct fib_trie_iter
*iter
= seq
->private;
2380 struct net
*net
= seq_file_net(seq
);
2381 struct fib_table
*tb
= iter
->tb
;
2382 struct hlist_node
*tb_node
;
2384 struct key_vector
*n
;
2387 /* next node in same table */
2388 n
= fib_trie_get_next(iter
);
2392 /* walk rest of this hash chain */
2393 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2394 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2395 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2396 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2401 /* new hash chain */
2402 while (++h
< FIB_TABLE_HASHSZ
) {
2403 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2404 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2405 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2417 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2423 static void seq_indent(struct seq_file
*seq
, int n
)
2429 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2432 case RT_SCOPE_UNIVERSE
: return "universe";
2433 case RT_SCOPE_SITE
: return "site";
2434 case RT_SCOPE_LINK
: return "link";
2435 case RT_SCOPE_HOST
: return "host";
2436 case RT_SCOPE_NOWHERE
: return "nowhere";
2438 snprintf(buf
, len
, "scope=%d", s
);
2443 static const char *const rtn_type_names
[__RTN_MAX
] = {
2444 [RTN_UNSPEC
] = "UNSPEC",
2445 [RTN_UNICAST
] = "UNICAST",
2446 [RTN_LOCAL
] = "LOCAL",
2447 [RTN_BROADCAST
] = "BROADCAST",
2448 [RTN_ANYCAST
] = "ANYCAST",
2449 [RTN_MULTICAST
] = "MULTICAST",
2450 [RTN_BLACKHOLE
] = "BLACKHOLE",
2451 [RTN_UNREACHABLE
] = "UNREACHABLE",
2452 [RTN_PROHIBIT
] = "PROHIBIT",
2453 [RTN_THROW
] = "THROW",
2455 [RTN_XRESOLVE
] = "XRESOLVE",
2458 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2460 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2461 return rtn_type_names
[t
];
2462 snprintf(buf
, len
, "type %u", t
);
2466 /* Pretty print the trie */
2467 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2469 const struct fib_trie_iter
*iter
= seq
->private;
2470 struct key_vector
*n
= v
;
2472 if (IS_TRIE(node_parent_rcu(n
)))
2473 fib_table_print(seq
, iter
->tb
);
2476 __be32 prf
= htonl(n
->key
);
2478 seq_indent(seq
, iter
->depth
-1);
2479 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2480 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2481 tn_info(n
)->full_children
,
2482 tn_info(n
)->empty_children
);
2484 __be32 val
= htonl(n
->key
);
2485 struct fib_alias
*fa
;
2487 seq_indent(seq
, iter
->depth
);
2488 seq_printf(seq
, " |-- %pI4\n", &val
);
2490 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2491 char buf1
[32], buf2
[32];
2493 seq_indent(seq
, iter
->depth
+ 1);
2494 seq_printf(seq
, " /%zu %s %s",
2495 KEYLENGTH
- fa
->fa_slen
,
2496 rtn_scope(buf1
, sizeof(buf1
),
2497 fa
->fa_info
->fib_scope
),
2498 rtn_type(buf2
, sizeof(buf2
),
2501 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2502 seq_putc(seq
, '\n');
2509 static const struct seq_operations fib_trie_seq_ops
= {
2510 .start
= fib_trie_seq_start
,
2511 .next
= fib_trie_seq_next
,
2512 .stop
= fib_trie_seq_stop
,
2513 .show
= fib_trie_seq_show
,
2516 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2518 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2519 sizeof(struct fib_trie_iter
));
2522 static const struct file_operations fib_trie_fops
= {
2523 .open
= fib_trie_seq_open
,
2525 .llseek
= seq_lseek
,
2526 .release
= seq_release_net
,
2529 struct fib_route_iter
{
2530 struct seq_net_private p
;
2531 struct fib_table
*main_tb
;
2532 struct key_vector
*tnode
;
2537 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2540 struct key_vector
*l
, **tp
= &iter
->tnode
;
2543 /* use cached location of previously found key */
2544 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2553 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2558 /* handle unlikely case of a key wrap */
2564 iter
->key
= l
->key
; /* remember it */
2566 iter
->pos
= 0; /* forget it */
2571 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2574 struct fib_route_iter
*iter
= seq
->private;
2575 struct fib_table
*tb
;
2580 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2585 t
= (struct trie
*)tb
->tb_data
;
2586 iter
->tnode
= t
->kv
;
2589 return fib_route_get_idx(iter
, *pos
);
2592 iter
->key
= KEY_MAX
;
2594 return SEQ_START_TOKEN
;
2597 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2599 struct fib_route_iter
*iter
= seq
->private;
2600 struct key_vector
*l
= NULL
;
2601 t_key key
= iter
->key
+ 1;
2605 /* only allow key of 0 for start of sequence */
2606 if ((v
== SEQ_START_TOKEN
) || key
)
2607 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2619 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2625 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2627 unsigned int flags
= 0;
2629 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2631 if (fi
&& fi
->fib_nh
->nh_gw
)
2632 flags
|= RTF_GATEWAY
;
2633 if (mask
== htonl(0xFFFFFFFF))
2640 * This outputs /proc/net/route.
2641 * The format of the file is not supposed to be changed
2642 * and needs to be same as fib_hash output to avoid breaking
2645 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2647 struct fib_route_iter
*iter
= seq
->private;
2648 struct fib_table
*tb
= iter
->main_tb
;
2649 struct fib_alias
*fa
;
2650 struct key_vector
*l
= v
;
2653 if (v
== SEQ_START_TOKEN
) {
2654 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2655 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2660 prefix
= htonl(l
->key
);
2662 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2663 const struct fib_info
*fi
= fa
->fa_info
;
2664 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2665 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2667 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2668 (fa
->fa_type
== RTN_MULTICAST
))
2671 if (fa
->tb_id
!= tb
->tb_id
)
2674 seq_setwidth(seq
, 127);
2678 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2679 "%d\t%08X\t%d\t%u\t%u",
2680 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2682 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2686 fi
->fib_advmss
+ 40 : 0),
2691 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2692 "%d\t%08X\t%d\t%u\t%u",
2693 prefix
, 0, flags
, 0, 0, 0,
2702 static const struct seq_operations fib_route_seq_ops
= {
2703 .start
= fib_route_seq_start
,
2704 .next
= fib_route_seq_next
,
2705 .stop
= fib_route_seq_stop
,
2706 .show
= fib_route_seq_show
,
2709 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2711 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2712 sizeof(struct fib_route_iter
));
2715 static const struct file_operations fib_route_fops
= {
2716 .open
= fib_route_seq_open
,
2718 .llseek
= seq_lseek
,
2719 .release
= seq_release_net
,
2722 int __net_init
fib_proc_init(struct net
*net
)
2724 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2727 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2728 &fib_triestat_fops
))
2731 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2737 remove_proc_entry("fib_triestat", net
->proc_net
);
2739 remove_proc_entry("fib_trie", net
->proc_net
);
2744 void __net_exit
fib_proc_exit(struct net
*net
)
2746 remove_proc_entry("fib_trie", net
->proc_net
);
2747 remove_proc_entry("fib_triestat", net
->proc_net
);
2748 remove_proc_entry("route", net
->proc_net
);
2751 #endif /* CONFIG_PROC_FS */