Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / ipv4 / udp.c
blobe5ef7c38c934c2f9fdbf368e9815eea9701139e4
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 return true;
144 #endif
145 return false;
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 const struct udp_hslot *hslot,
150 unsigned long *bitmap,
151 struct sock *sk, unsigned int log)
153 struct sock *sk2;
154 kuid_t uid = sock_i_uid(sk);
156 sk_for_each(sk2, &hslot->head) {
157 if (net_eq(sock_net(sk2), net) &&
158 sk2 != sk &&
159 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 (!sk2->sk_reuse || !sk->sk_reuse) &&
161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 inet_rcv_saddr_equal(sk, sk2, true)) {
164 if (sk2->sk_reuseport && sk->sk_reuseport &&
165 !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 uid_eq(uid, sock_i_uid(sk2))) {
167 if (!bitmap)
168 return 0;
169 } else {
170 if (!bitmap)
171 return 1;
172 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 bitmap);
177 return 0;
181 * Note: we still hold spinlock of primary hash chain, so no other writer
182 * can insert/delete a socket with local_port == num
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 struct udp_hslot *hslot2,
186 struct sock *sk)
188 struct sock *sk2;
189 kuid_t uid = sock_i_uid(sk);
190 int res = 0;
192 spin_lock(&hslot2->lock);
193 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 if (net_eq(sock_net(sk2), net) &&
195 sk2 != sk &&
196 (udp_sk(sk2)->udp_port_hash == num) &&
197 (!sk2->sk_reuse || !sk->sk_reuse) &&
198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 inet_rcv_saddr_equal(sk, sk2, true)) {
201 if (sk2->sk_reuseport && sk->sk_reuseport &&
202 !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 uid_eq(uid, sock_i_uid(sk2))) {
204 res = 0;
205 } else {
206 res = 1;
208 break;
211 spin_unlock(&hslot2->lock);
212 return res;
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
217 struct net *net = sock_net(sk);
218 kuid_t uid = sock_i_uid(sk);
219 struct sock *sk2;
221 sk_for_each(sk2, &hslot->head) {
222 if (net_eq(sock_net(sk2), net) &&
223 sk2 != sk &&
224 sk2->sk_family == sk->sk_family &&
225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 inet_rcv_saddr_equal(sk, sk2, false)) {
230 return reuseport_add_sock(sk, sk2);
234 return reuseport_alloc(sk);
238 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
240 * @sk: socket struct in question
241 * @snum: port number to look up
242 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243 * with NULL address
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 unsigned int hash2_nulladdr)
248 struct udp_hslot *hslot, *hslot2;
249 struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 int error = 1;
251 struct net *net = sock_net(sk);
253 if (!snum) {
254 int low, high, remaining;
255 unsigned int rand;
256 unsigned short first, last;
257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
259 inet_get_local_port_range(net, &low, &high);
260 remaining = (high - low) + 1;
262 rand = prandom_u32();
263 first = reciprocal_scale(rand, remaining) + low;
265 * force rand to be an odd multiple of UDP_HTABLE_SIZE
267 rand = (rand | 1) * (udptable->mask + 1);
268 last = first + udptable->mask + 1;
269 do {
270 hslot = udp_hashslot(udptable, net, first);
271 bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 spin_lock_bh(&hslot->lock);
273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 udptable->log);
276 snum = first;
278 * Iterate on all possible values of snum for this hash.
279 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 * give us randomization and full range coverage.
282 do {
283 if (low <= snum && snum <= high &&
284 !test_bit(snum >> udptable->log, bitmap) &&
285 !inet_is_local_reserved_port(net, snum))
286 goto found;
287 snum += rand;
288 } while (snum != first);
289 spin_unlock_bh(&hslot->lock);
290 cond_resched();
291 } while (++first != last);
292 goto fail;
293 } else {
294 hslot = udp_hashslot(udptable, net, snum);
295 spin_lock_bh(&hslot->lock);
296 if (hslot->count > 10) {
297 int exist;
298 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
300 slot2 &= udptable->mask;
301 hash2_nulladdr &= udptable->mask;
303 hslot2 = udp_hashslot2(udptable, slot2);
304 if (hslot->count < hslot2->count)
305 goto scan_primary_hash;
307 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 if (!exist && (hash2_nulladdr != slot2)) {
309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 sk);
313 if (exist)
314 goto fail_unlock;
315 else
316 goto found;
318 scan_primary_hash:
319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 goto fail_unlock;
322 found:
323 inet_sk(sk)->inet_num = snum;
324 udp_sk(sk)->udp_port_hash = snum;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 if (sk_unhashed(sk)) {
327 if (sk->sk_reuseport &&
328 udp_reuseport_add_sock(sk, hslot)) {
329 inet_sk(sk)->inet_num = 0;
330 udp_sk(sk)->udp_port_hash = 0;
331 udp_sk(sk)->udp_portaddr_hash ^= snum;
332 goto fail_unlock;
335 sk_add_node_rcu(sk, &hslot->head);
336 hslot->count++;
337 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
339 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 spin_lock(&hslot2->lock);
341 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 sk->sk_family == AF_INET6)
343 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 &hslot2->head);
345 else
346 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 &hslot2->head);
348 hslot2->count++;
349 spin_unlock(&hslot2->lock);
351 sock_set_flag(sk, SOCK_RCU_FREE);
352 error = 0;
353 fail_unlock:
354 spin_unlock_bh(&hslot->lock);
355 fail:
356 return error;
358 EXPORT_SYMBOL(udp_lib_get_port);
360 int udp_v4_get_port(struct sock *sk, unsigned short snum)
362 unsigned int hash2_nulladdr =
363 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
364 unsigned int hash2_partial =
365 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
367 /* precompute partial secondary hash */
368 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
369 return udp_lib_get_port(sk, snum, hash2_nulladdr);
372 static int compute_score(struct sock *sk, struct net *net,
373 __be32 saddr, __be16 sport,
374 __be32 daddr, unsigned short hnum,
375 int dif, int sdif, bool exact_dif)
377 int score;
378 struct inet_sock *inet;
380 if (!net_eq(sock_net(sk), net) ||
381 udp_sk(sk)->udp_port_hash != hnum ||
382 ipv6_only_sock(sk))
383 return -1;
385 score = (sk->sk_family == PF_INET) ? 2 : 1;
386 inet = inet_sk(sk);
388 if (inet->inet_rcv_saddr) {
389 if (inet->inet_rcv_saddr != daddr)
390 return -1;
391 score += 4;
394 if (inet->inet_daddr) {
395 if (inet->inet_daddr != saddr)
396 return -1;
397 score += 4;
400 if (inet->inet_dport) {
401 if (inet->inet_dport != sport)
402 return -1;
403 score += 4;
406 if (sk->sk_bound_dev_if || exact_dif) {
407 bool dev_match = (sk->sk_bound_dev_if == dif ||
408 sk->sk_bound_dev_if == sdif);
410 if (exact_dif && !dev_match)
411 return -1;
412 if (sk->sk_bound_dev_if && dev_match)
413 score += 4;
416 if (sk->sk_incoming_cpu == raw_smp_processor_id())
417 score++;
418 return score;
421 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
422 const __u16 lport, const __be32 faddr,
423 const __be16 fport)
425 static u32 udp_ehash_secret __read_mostly;
427 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
429 return __inet_ehashfn(laddr, lport, faddr, fport,
430 udp_ehash_secret + net_hash_mix(net));
433 /* called with rcu_read_lock() */
434 static struct sock *udp4_lib_lookup2(struct net *net,
435 __be32 saddr, __be16 sport,
436 __be32 daddr, unsigned int hnum,
437 int dif, int sdif, bool exact_dif,
438 struct udp_hslot *hslot2,
439 struct sk_buff *skb)
441 struct sock *sk, *result;
442 int score, badness;
443 u32 hash = 0;
445 result = NULL;
446 badness = 0;
447 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
448 score = compute_score(sk, net, saddr, sport,
449 daddr, hnum, dif, sdif, exact_dif);
450 if (score > badness) {
451 if (sk->sk_reuseport) {
452 hash = udp_ehashfn(net, daddr, hnum,
453 saddr, sport);
454 result = reuseport_select_sock(sk, hash, skb,
455 sizeof(struct udphdr));
456 if (result)
457 return result;
459 badness = score;
460 result = sk;
463 return result;
466 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
467 * harder than this. -DaveM
469 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
470 __be16 sport, __be32 daddr, __be16 dport, int dif,
471 int sdif, struct udp_table *udptable, struct sk_buff *skb)
473 struct sock *sk, *result;
474 unsigned short hnum = ntohs(dport);
475 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
476 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
477 bool exact_dif = udp_lib_exact_dif_match(net, skb);
478 int score, badness;
479 u32 hash = 0;
481 if (hslot->count > 10) {
482 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
483 slot2 = hash2 & udptable->mask;
484 hslot2 = &udptable->hash2[slot2];
485 if (hslot->count < hslot2->count)
486 goto begin;
488 result = udp4_lib_lookup2(net, saddr, sport,
489 daddr, hnum, dif, sdif,
490 exact_dif, hslot2, skb);
491 if (!result) {
492 unsigned int old_slot2 = slot2;
493 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
494 slot2 = hash2 & udptable->mask;
495 /* avoid searching the same slot again. */
496 if (unlikely(slot2 == old_slot2))
497 return result;
499 hslot2 = &udptable->hash2[slot2];
500 if (hslot->count < hslot2->count)
501 goto begin;
503 result = udp4_lib_lookup2(net, saddr, sport,
504 daddr, hnum, dif, sdif,
505 exact_dif, hslot2, skb);
507 return result;
509 begin:
510 result = NULL;
511 badness = 0;
512 sk_for_each_rcu(sk, &hslot->head) {
513 score = compute_score(sk, net, saddr, sport,
514 daddr, hnum, dif, sdif, exact_dif);
515 if (score > badness) {
516 if (sk->sk_reuseport) {
517 hash = udp_ehashfn(net, daddr, hnum,
518 saddr, sport);
519 result = reuseport_select_sock(sk, hash, skb,
520 sizeof(struct udphdr));
521 if (result)
522 return result;
524 result = sk;
525 badness = score;
528 return result;
530 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
532 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
533 __be16 sport, __be16 dport,
534 struct udp_table *udptable)
536 const struct iphdr *iph = ip_hdr(skb);
538 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
539 iph->daddr, dport, inet_iif(skb),
540 inet_sdif(skb), udptable, skb);
543 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
544 __be16 sport, __be16 dport)
546 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
548 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
550 /* Must be called under rcu_read_lock().
551 * Does increment socket refcount.
553 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
554 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
555 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
556 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
557 __be32 daddr, __be16 dport, int dif)
559 struct sock *sk;
561 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
562 dif, 0, &udp_table, NULL);
563 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
564 sk = NULL;
565 return sk;
567 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
568 #endif
570 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
571 __be16 loc_port, __be32 loc_addr,
572 __be16 rmt_port, __be32 rmt_addr,
573 int dif, int sdif, unsigned short hnum)
575 struct inet_sock *inet = inet_sk(sk);
577 if (!net_eq(sock_net(sk), net) ||
578 udp_sk(sk)->udp_port_hash != hnum ||
579 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
580 (inet->inet_dport != rmt_port && inet->inet_dport) ||
581 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
582 ipv6_only_sock(sk) ||
583 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
584 sk->sk_bound_dev_if != sdif))
585 return false;
586 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
587 return false;
588 return true;
592 * This routine is called by the ICMP module when it gets some
593 * sort of error condition. If err < 0 then the socket should
594 * be closed and the error returned to the user. If err > 0
595 * it's just the icmp type << 8 | icmp code.
596 * Header points to the ip header of the error packet. We move
597 * on past this. Then (as it used to claim before adjustment)
598 * header points to the first 8 bytes of the udp header. We need
599 * to find the appropriate port.
602 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
604 struct inet_sock *inet;
605 const struct iphdr *iph = (const struct iphdr *)skb->data;
606 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
607 const int type = icmp_hdr(skb)->type;
608 const int code = icmp_hdr(skb)->code;
609 struct sock *sk;
610 int harderr;
611 int err;
612 struct net *net = dev_net(skb->dev);
614 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
615 iph->saddr, uh->source, skb->dev->ifindex, 0,
616 udptable, NULL);
617 if (!sk) {
618 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
619 return; /* No socket for error */
622 err = 0;
623 harderr = 0;
624 inet = inet_sk(sk);
626 switch (type) {
627 default:
628 case ICMP_TIME_EXCEEDED:
629 err = EHOSTUNREACH;
630 break;
631 case ICMP_SOURCE_QUENCH:
632 goto out;
633 case ICMP_PARAMETERPROB:
634 err = EPROTO;
635 harderr = 1;
636 break;
637 case ICMP_DEST_UNREACH:
638 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
639 ipv4_sk_update_pmtu(skb, sk, info);
640 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
641 err = EMSGSIZE;
642 harderr = 1;
643 break;
645 goto out;
647 err = EHOSTUNREACH;
648 if (code <= NR_ICMP_UNREACH) {
649 harderr = icmp_err_convert[code].fatal;
650 err = icmp_err_convert[code].errno;
652 break;
653 case ICMP_REDIRECT:
654 ipv4_sk_redirect(skb, sk);
655 goto out;
659 * RFC1122: OK. Passes ICMP errors back to application, as per
660 * 4.1.3.3.
662 if (!inet->recverr) {
663 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
664 goto out;
665 } else
666 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
668 sk->sk_err = err;
669 sk->sk_error_report(sk);
670 out:
671 return;
674 void udp_err(struct sk_buff *skb, u32 info)
676 __udp4_lib_err(skb, info, &udp_table);
680 * Throw away all pending data and cancel the corking. Socket is locked.
682 void udp_flush_pending_frames(struct sock *sk)
684 struct udp_sock *up = udp_sk(sk);
686 if (up->pending) {
687 up->len = 0;
688 up->pending = 0;
689 ip_flush_pending_frames(sk);
692 EXPORT_SYMBOL(udp_flush_pending_frames);
695 * udp4_hwcsum - handle outgoing HW checksumming
696 * @skb: sk_buff containing the filled-in UDP header
697 * (checksum field must be zeroed out)
698 * @src: source IP address
699 * @dst: destination IP address
701 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
703 struct udphdr *uh = udp_hdr(skb);
704 int offset = skb_transport_offset(skb);
705 int len = skb->len - offset;
706 int hlen = len;
707 __wsum csum = 0;
709 if (!skb_has_frag_list(skb)) {
711 * Only one fragment on the socket.
713 skb->csum_start = skb_transport_header(skb) - skb->head;
714 skb->csum_offset = offsetof(struct udphdr, check);
715 uh->check = ~csum_tcpudp_magic(src, dst, len,
716 IPPROTO_UDP, 0);
717 } else {
718 struct sk_buff *frags;
721 * HW-checksum won't work as there are two or more
722 * fragments on the socket so that all csums of sk_buffs
723 * should be together
725 skb_walk_frags(skb, frags) {
726 csum = csum_add(csum, frags->csum);
727 hlen -= frags->len;
730 csum = skb_checksum(skb, offset, hlen, csum);
731 skb->ip_summed = CHECKSUM_NONE;
733 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
734 if (uh->check == 0)
735 uh->check = CSUM_MANGLED_0;
738 EXPORT_SYMBOL_GPL(udp4_hwcsum);
740 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
741 * for the simple case like when setting the checksum for a UDP tunnel.
743 void udp_set_csum(bool nocheck, struct sk_buff *skb,
744 __be32 saddr, __be32 daddr, int len)
746 struct udphdr *uh = udp_hdr(skb);
748 if (nocheck) {
749 uh->check = 0;
750 } else if (skb_is_gso(skb)) {
751 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
752 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
753 uh->check = 0;
754 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
755 if (uh->check == 0)
756 uh->check = CSUM_MANGLED_0;
757 } else {
758 skb->ip_summed = CHECKSUM_PARTIAL;
759 skb->csum_start = skb_transport_header(skb) - skb->head;
760 skb->csum_offset = offsetof(struct udphdr, check);
761 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
764 EXPORT_SYMBOL(udp_set_csum);
766 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
768 struct sock *sk = skb->sk;
769 struct inet_sock *inet = inet_sk(sk);
770 struct udphdr *uh;
771 int err = 0;
772 int is_udplite = IS_UDPLITE(sk);
773 int offset = skb_transport_offset(skb);
774 int len = skb->len - offset;
775 __wsum csum = 0;
778 * Create a UDP header
780 uh = udp_hdr(skb);
781 uh->source = inet->inet_sport;
782 uh->dest = fl4->fl4_dport;
783 uh->len = htons(len);
784 uh->check = 0;
786 if (is_udplite) /* UDP-Lite */
787 csum = udplite_csum(skb);
789 else if (sk->sk_no_check_tx) { /* UDP csum off */
791 skb->ip_summed = CHECKSUM_NONE;
792 goto send;
794 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
796 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
797 goto send;
799 } else
800 csum = udp_csum(skb);
802 /* add protocol-dependent pseudo-header */
803 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
804 sk->sk_protocol, csum);
805 if (uh->check == 0)
806 uh->check = CSUM_MANGLED_0;
808 send:
809 err = ip_send_skb(sock_net(sk), skb);
810 if (err) {
811 if (err == -ENOBUFS && !inet->recverr) {
812 UDP_INC_STATS(sock_net(sk),
813 UDP_MIB_SNDBUFERRORS, is_udplite);
814 err = 0;
816 } else
817 UDP_INC_STATS(sock_net(sk),
818 UDP_MIB_OUTDATAGRAMS, is_udplite);
819 return err;
823 * Push out all pending data as one UDP datagram. Socket is locked.
825 int udp_push_pending_frames(struct sock *sk)
827 struct udp_sock *up = udp_sk(sk);
828 struct inet_sock *inet = inet_sk(sk);
829 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
830 struct sk_buff *skb;
831 int err = 0;
833 skb = ip_finish_skb(sk, fl4);
834 if (!skb)
835 goto out;
837 err = udp_send_skb(skb, fl4);
839 out:
840 up->len = 0;
841 up->pending = 0;
842 return err;
844 EXPORT_SYMBOL(udp_push_pending_frames);
846 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
848 struct inet_sock *inet = inet_sk(sk);
849 struct udp_sock *up = udp_sk(sk);
850 struct flowi4 fl4_stack;
851 struct flowi4 *fl4;
852 int ulen = len;
853 struct ipcm_cookie ipc;
854 struct rtable *rt = NULL;
855 int free = 0;
856 int connected = 0;
857 __be32 daddr, faddr, saddr;
858 __be16 dport;
859 u8 tos;
860 int err, is_udplite = IS_UDPLITE(sk);
861 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
862 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
863 struct sk_buff *skb;
864 struct ip_options_data opt_copy;
866 if (len > 0xFFFF)
867 return -EMSGSIZE;
870 * Check the flags.
873 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
874 return -EOPNOTSUPP;
876 ipc.opt = NULL;
877 ipc.tx_flags = 0;
878 ipc.ttl = 0;
879 ipc.tos = -1;
881 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
883 fl4 = &inet->cork.fl.u.ip4;
884 if (up->pending) {
886 * There are pending frames.
887 * The socket lock must be held while it's corked.
889 lock_sock(sk);
890 if (likely(up->pending)) {
891 if (unlikely(up->pending != AF_INET)) {
892 release_sock(sk);
893 return -EINVAL;
895 goto do_append_data;
897 release_sock(sk);
899 ulen += sizeof(struct udphdr);
902 * Get and verify the address.
904 if (msg->msg_name) {
905 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
906 if (msg->msg_namelen < sizeof(*usin))
907 return -EINVAL;
908 if (usin->sin_family != AF_INET) {
909 if (usin->sin_family != AF_UNSPEC)
910 return -EAFNOSUPPORT;
913 daddr = usin->sin_addr.s_addr;
914 dport = usin->sin_port;
915 if (dport == 0)
916 return -EINVAL;
917 } else {
918 if (sk->sk_state != TCP_ESTABLISHED)
919 return -EDESTADDRREQ;
920 daddr = inet->inet_daddr;
921 dport = inet->inet_dport;
922 /* Open fast path for connected socket.
923 Route will not be used, if at least one option is set.
925 connected = 1;
928 ipc.sockc.tsflags = sk->sk_tsflags;
929 ipc.addr = inet->inet_saddr;
930 ipc.oif = sk->sk_bound_dev_if;
932 if (msg->msg_controllen) {
933 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
934 if (unlikely(err)) {
935 kfree(ipc.opt);
936 return err;
938 if (ipc.opt)
939 free = 1;
940 connected = 0;
942 if (!ipc.opt) {
943 struct ip_options_rcu *inet_opt;
945 rcu_read_lock();
946 inet_opt = rcu_dereference(inet->inet_opt);
947 if (inet_opt) {
948 memcpy(&opt_copy, inet_opt,
949 sizeof(*inet_opt) + inet_opt->opt.optlen);
950 ipc.opt = &opt_copy.opt;
952 rcu_read_unlock();
955 saddr = ipc.addr;
956 ipc.addr = faddr = daddr;
958 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
960 if (ipc.opt && ipc.opt->opt.srr) {
961 if (!daddr)
962 return -EINVAL;
963 faddr = ipc.opt->opt.faddr;
964 connected = 0;
966 tos = get_rttos(&ipc, inet);
967 if (sock_flag(sk, SOCK_LOCALROUTE) ||
968 (msg->msg_flags & MSG_DONTROUTE) ||
969 (ipc.opt && ipc.opt->opt.is_strictroute)) {
970 tos |= RTO_ONLINK;
971 connected = 0;
974 if (ipv4_is_multicast(daddr)) {
975 if (!ipc.oif)
976 ipc.oif = inet->mc_index;
977 if (!saddr)
978 saddr = inet->mc_addr;
979 connected = 0;
980 } else if (!ipc.oif) {
981 ipc.oif = inet->uc_index;
982 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
983 /* oif is set, packet is to local broadcast and
984 * and uc_index is set. oif is most likely set
985 * by sk_bound_dev_if. If uc_index != oif check if the
986 * oif is an L3 master and uc_index is an L3 slave.
987 * If so, we want to allow the send using the uc_index.
989 if (ipc.oif != inet->uc_index &&
990 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
991 inet->uc_index)) {
992 ipc.oif = inet->uc_index;
996 if (connected)
997 rt = (struct rtable *)sk_dst_check(sk, 0);
999 if (!rt) {
1000 struct net *net = sock_net(sk);
1001 __u8 flow_flags = inet_sk_flowi_flags(sk);
1003 fl4 = &fl4_stack;
1005 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1006 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1007 flow_flags,
1008 faddr, saddr, dport, inet->inet_sport,
1009 sk->sk_uid);
1011 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1012 rt = ip_route_output_flow(net, fl4, sk);
1013 if (IS_ERR(rt)) {
1014 err = PTR_ERR(rt);
1015 rt = NULL;
1016 if (err == -ENETUNREACH)
1017 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1018 goto out;
1021 err = -EACCES;
1022 if ((rt->rt_flags & RTCF_BROADCAST) &&
1023 !sock_flag(sk, SOCK_BROADCAST))
1024 goto out;
1025 if (connected)
1026 sk_dst_set(sk, dst_clone(&rt->dst));
1029 if (msg->msg_flags&MSG_CONFIRM)
1030 goto do_confirm;
1031 back_from_confirm:
1033 saddr = fl4->saddr;
1034 if (!ipc.addr)
1035 daddr = ipc.addr = fl4->daddr;
1037 /* Lockless fast path for the non-corking case. */
1038 if (!corkreq) {
1039 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1040 sizeof(struct udphdr), &ipc, &rt,
1041 msg->msg_flags);
1042 err = PTR_ERR(skb);
1043 if (!IS_ERR_OR_NULL(skb))
1044 err = udp_send_skb(skb, fl4);
1045 goto out;
1048 lock_sock(sk);
1049 if (unlikely(up->pending)) {
1050 /* The socket is already corked while preparing it. */
1051 /* ... which is an evident application bug. --ANK */
1052 release_sock(sk);
1054 net_dbg_ratelimited("socket already corked\n");
1055 err = -EINVAL;
1056 goto out;
1059 * Now cork the socket to pend data.
1061 fl4 = &inet->cork.fl.u.ip4;
1062 fl4->daddr = daddr;
1063 fl4->saddr = saddr;
1064 fl4->fl4_dport = dport;
1065 fl4->fl4_sport = inet->inet_sport;
1066 up->pending = AF_INET;
1068 do_append_data:
1069 up->len += ulen;
1070 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1071 sizeof(struct udphdr), &ipc, &rt,
1072 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1073 if (err)
1074 udp_flush_pending_frames(sk);
1075 else if (!corkreq)
1076 err = udp_push_pending_frames(sk);
1077 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1078 up->pending = 0;
1079 release_sock(sk);
1081 out:
1082 ip_rt_put(rt);
1083 if (free)
1084 kfree(ipc.opt);
1085 if (!err)
1086 return len;
1088 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1089 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1090 * we don't have a good statistic (IpOutDiscards but it can be too many
1091 * things). We could add another new stat but at least for now that
1092 * seems like overkill.
1094 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1095 UDP_INC_STATS(sock_net(sk),
1096 UDP_MIB_SNDBUFERRORS, is_udplite);
1098 return err;
1100 do_confirm:
1101 if (msg->msg_flags & MSG_PROBE)
1102 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1103 if (!(msg->msg_flags&MSG_PROBE) || len)
1104 goto back_from_confirm;
1105 err = 0;
1106 goto out;
1108 EXPORT_SYMBOL(udp_sendmsg);
1110 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1111 size_t size, int flags)
1113 struct inet_sock *inet = inet_sk(sk);
1114 struct udp_sock *up = udp_sk(sk);
1115 int ret;
1117 if (flags & MSG_SENDPAGE_NOTLAST)
1118 flags |= MSG_MORE;
1120 if (!up->pending) {
1121 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1123 /* Call udp_sendmsg to specify destination address which
1124 * sendpage interface can't pass.
1125 * This will succeed only when the socket is connected.
1127 ret = udp_sendmsg(sk, &msg, 0);
1128 if (ret < 0)
1129 return ret;
1132 lock_sock(sk);
1134 if (unlikely(!up->pending)) {
1135 release_sock(sk);
1137 net_dbg_ratelimited("cork failed\n");
1138 return -EINVAL;
1141 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1142 page, offset, size, flags);
1143 if (ret == -EOPNOTSUPP) {
1144 release_sock(sk);
1145 return sock_no_sendpage(sk->sk_socket, page, offset,
1146 size, flags);
1148 if (ret < 0) {
1149 udp_flush_pending_frames(sk);
1150 goto out;
1153 up->len += size;
1154 if (!(up->corkflag || (flags&MSG_MORE)))
1155 ret = udp_push_pending_frames(sk);
1156 if (!ret)
1157 ret = size;
1158 out:
1159 release_sock(sk);
1160 return ret;
1163 #define UDP_SKB_IS_STATELESS 0x80000000
1165 static void udp_set_dev_scratch(struct sk_buff *skb)
1167 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1169 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1170 scratch->_tsize_state = skb->truesize;
1171 #if BITS_PER_LONG == 64
1172 scratch->len = skb->len;
1173 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1174 scratch->is_linear = !skb_is_nonlinear(skb);
1175 #endif
1176 /* all head states execept sp (dst, sk, nf) are always cleared by
1177 * udp_rcv() and we need to preserve secpath, if present, to eventually
1178 * process IP_CMSG_PASSSEC at recvmsg() time
1180 if (likely(!skb_sec_path(skb)))
1181 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1184 static int udp_skb_truesize(struct sk_buff *skb)
1186 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1189 static bool udp_skb_has_head_state(struct sk_buff *skb)
1191 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1194 /* fully reclaim rmem/fwd memory allocated for skb */
1195 static void udp_rmem_release(struct sock *sk, int size, int partial,
1196 bool rx_queue_lock_held)
1198 struct udp_sock *up = udp_sk(sk);
1199 struct sk_buff_head *sk_queue;
1200 int amt;
1202 if (likely(partial)) {
1203 up->forward_deficit += size;
1204 size = up->forward_deficit;
1205 if (size < (sk->sk_rcvbuf >> 2))
1206 return;
1207 } else {
1208 size += up->forward_deficit;
1210 up->forward_deficit = 0;
1212 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1213 * if the called don't held it already
1215 sk_queue = &sk->sk_receive_queue;
1216 if (!rx_queue_lock_held)
1217 spin_lock(&sk_queue->lock);
1220 sk->sk_forward_alloc += size;
1221 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1222 sk->sk_forward_alloc -= amt;
1224 if (amt)
1225 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1227 atomic_sub(size, &sk->sk_rmem_alloc);
1229 /* this can save us from acquiring the rx queue lock on next receive */
1230 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1232 if (!rx_queue_lock_held)
1233 spin_unlock(&sk_queue->lock);
1236 /* Note: called with reader_queue.lock held.
1237 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1238 * This avoids a cache line miss while receive_queue lock is held.
1239 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1241 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1243 prefetch(&skb->data);
1244 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1246 EXPORT_SYMBOL(udp_skb_destructor);
1248 /* as above, but the caller held the rx queue lock, too */
1249 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1251 prefetch(&skb->data);
1252 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1255 /* Idea of busylocks is to let producers grab an extra spinlock
1256 * to relieve pressure on the receive_queue spinlock shared by consumer.
1257 * Under flood, this means that only one producer can be in line
1258 * trying to acquire the receive_queue spinlock.
1259 * These busylock can be allocated on a per cpu manner, instead of a
1260 * per socket one (that would consume a cache line per socket)
1262 static int udp_busylocks_log __read_mostly;
1263 static spinlock_t *udp_busylocks __read_mostly;
1265 static spinlock_t *busylock_acquire(void *ptr)
1267 spinlock_t *busy;
1269 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1270 spin_lock(busy);
1271 return busy;
1274 static void busylock_release(spinlock_t *busy)
1276 if (busy)
1277 spin_unlock(busy);
1280 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1282 struct sk_buff_head *list = &sk->sk_receive_queue;
1283 int rmem, delta, amt, err = -ENOMEM;
1284 spinlock_t *busy = NULL;
1285 int size;
1287 /* try to avoid the costly atomic add/sub pair when the receive
1288 * queue is full; always allow at least a packet
1290 rmem = atomic_read(&sk->sk_rmem_alloc);
1291 if (rmem > sk->sk_rcvbuf)
1292 goto drop;
1294 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1295 * having linear skbs :
1296 * - Reduce memory overhead and thus increase receive queue capacity
1297 * - Less cache line misses at copyout() time
1298 * - Less work at consume_skb() (less alien page frag freeing)
1300 if (rmem > (sk->sk_rcvbuf >> 1)) {
1301 skb_condense(skb);
1303 busy = busylock_acquire(sk);
1305 size = skb->truesize;
1306 udp_set_dev_scratch(skb);
1308 /* we drop only if the receive buf is full and the receive
1309 * queue contains some other skb
1311 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1312 if (rmem > (size + sk->sk_rcvbuf))
1313 goto uncharge_drop;
1315 spin_lock(&list->lock);
1316 if (size >= sk->sk_forward_alloc) {
1317 amt = sk_mem_pages(size);
1318 delta = amt << SK_MEM_QUANTUM_SHIFT;
1319 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1320 err = -ENOBUFS;
1321 spin_unlock(&list->lock);
1322 goto uncharge_drop;
1325 sk->sk_forward_alloc += delta;
1328 sk->sk_forward_alloc -= size;
1330 /* no need to setup a destructor, we will explicitly release the
1331 * forward allocated memory on dequeue
1333 sock_skb_set_dropcount(sk, skb);
1335 __skb_queue_tail(list, skb);
1336 spin_unlock(&list->lock);
1338 if (!sock_flag(sk, SOCK_DEAD))
1339 sk->sk_data_ready(sk);
1341 busylock_release(busy);
1342 return 0;
1344 uncharge_drop:
1345 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1347 drop:
1348 atomic_inc(&sk->sk_drops);
1349 busylock_release(busy);
1350 return err;
1352 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1354 void udp_destruct_sock(struct sock *sk)
1356 /* reclaim completely the forward allocated memory */
1357 struct udp_sock *up = udp_sk(sk);
1358 unsigned int total = 0;
1359 struct sk_buff *skb;
1361 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1362 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1363 total += skb->truesize;
1364 kfree_skb(skb);
1366 udp_rmem_release(sk, total, 0, true);
1368 inet_sock_destruct(sk);
1370 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1372 int udp_init_sock(struct sock *sk)
1374 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1375 sk->sk_destruct = udp_destruct_sock;
1376 return 0;
1378 EXPORT_SYMBOL_GPL(udp_init_sock);
1380 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1382 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1383 bool slow = lock_sock_fast(sk);
1385 sk_peek_offset_bwd(sk, len);
1386 unlock_sock_fast(sk, slow);
1389 if (!skb_unref(skb))
1390 return;
1392 /* In the more common cases we cleared the head states previously,
1393 * see __udp_queue_rcv_skb().
1395 if (unlikely(udp_skb_has_head_state(skb)))
1396 skb_release_head_state(skb);
1397 __consume_stateless_skb(skb);
1399 EXPORT_SYMBOL_GPL(skb_consume_udp);
1401 static struct sk_buff *__first_packet_length(struct sock *sk,
1402 struct sk_buff_head *rcvq,
1403 int *total)
1405 struct sk_buff *skb;
1407 while ((skb = skb_peek(rcvq)) != NULL) {
1408 if (udp_lib_checksum_complete(skb)) {
1409 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1410 IS_UDPLITE(sk));
1411 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1412 IS_UDPLITE(sk));
1413 atomic_inc(&sk->sk_drops);
1414 __skb_unlink(skb, rcvq);
1415 *total += skb->truesize;
1416 kfree_skb(skb);
1417 } else {
1418 /* the csum related bits could be changed, refresh
1419 * the scratch area
1421 udp_set_dev_scratch(skb);
1422 break;
1425 return skb;
1429 * first_packet_length - return length of first packet in receive queue
1430 * @sk: socket
1432 * Drops all bad checksum frames, until a valid one is found.
1433 * Returns the length of found skb, or -1 if none is found.
1435 static int first_packet_length(struct sock *sk)
1437 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1438 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1439 struct sk_buff *skb;
1440 int total = 0;
1441 int res;
1443 spin_lock_bh(&rcvq->lock);
1444 skb = __first_packet_length(sk, rcvq, &total);
1445 if (!skb && !skb_queue_empty(sk_queue)) {
1446 spin_lock(&sk_queue->lock);
1447 skb_queue_splice_tail_init(sk_queue, rcvq);
1448 spin_unlock(&sk_queue->lock);
1450 skb = __first_packet_length(sk, rcvq, &total);
1452 res = skb ? skb->len : -1;
1453 if (total)
1454 udp_rmem_release(sk, total, 1, false);
1455 spin_unlock_bh(&rcvq->lock);
1456 return res;
1460 * IOCTL requests applicable to the UDP protocol
1463 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1465 switch (cmd) {
1466 case SIOCOUTQ:
1468 int amount = sk_wmem_alloc_get(sk);
1470 return put_user(amount, (int __user *)arg);
1473 case SIOCINQ:
1475 int amount = max_t(int, 0, first_packet_length(sk));
1477 return put_user(amount, (int __user *)arg);
1480 default:
1481 return -ENOIOCTLCMD;
1484 return 0;
1486 EXPORT_SYMBOL(udp_ioctl);
1488 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1489 int noblock, int *peeked, int *off, int *err)
1491 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1492 struct sk_buff_head *queue;
1493 struct sk_buff *last;
1494 long timeo;
1495 int error;
1497 queue = &udp_sk(sk)->reader_queue;
1498 flags |= noblock ? MSG_DONTWAIT : 0;
1499 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1500 do {
1501 struct sk_buff *skb;
1503 error = sock_error(sk);
1504 if (error)
1505 break;
1507 error = -EAGAIN;
1508 *peeked = 0;
1509 do {
1510 spin_lock_bh(&queue->lock);
1511 skb = __skb_try_recv_from_queue(sk, queue, flags,
1512 udp_skb_destructor,
1513 peeked, off, err,
1514 &last);
1515 if (skb) {
1516 spin_unlock_bh(&queue->lock);
1517 return skb;
1520 if (skb_queue_empty(sk_queue)) {
1521 spin_unlock_bh(&queue->lock);
1522 goto busy_check;
1525 /* refill the reader queue and walk it again
1526 * keep both queues locked to avoid re-acquiring
1527 * the sk_receive_queue lock if fwd memory scheduling
1528 * is needed.
1530 spin_lock(&sk_queue->lock);
1531 skb_queue_splice_tail_init(sk_queue, queue);
1533 skb = __skb_try_recv_from_queue(sk, queue, flags,
1534 udp_skb_dtor_locked,
1535 peeked, off, err,
1536 &last);
1537 spin_unlock(&sk_queue->lock);
1538 spin_unlock_bh(&queue->lock);
1539 if (skb)
1540 return skb;
1542 busy_check:
1543 if (!sk_can_busy_loop(sk))
1544 break;
1546 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1547 } while (!skb_queue_empty(sk_queue));
1549 /* sk_queue is empty, reader_queue may contain peeked packets */
1550 } while (timeo &&
1551 !__skb_wait_for_more_packets(sk, &error, &timeo,
1552 (struct sk_buff *)sk_queue));
1554 *err = error;
1555 return NULL;
1557 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1560 * This should be easy, if there is something there we
1561 * return it, otherwise we block.
1564 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1565 int flags, int *addr_len)
1567 struct inet_sock *inet = inet_sk(sk);
1568 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1569 struct sk_buff *skb;
1570 unsigned int ulen, copied;
1571 int peeked, peeking, off;
1572 int err;
1573 int is_udplite = IS_UDPLITE(sk);
1574 bool checksum_valid = false;
1576 if (flags & MSG_ERRQUEUE)
1577 return ip_recv_error(sk, msg, len, addr_len);
1579 try_again:
1580 peeking = flags & MSG_PEEK;
1581 off = sk_peek_offset(sk, flags);
1582 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1583 if (!skb)
1584 return err;
1586 ulen = udp_skb_len(skb);
1587 copied = len;
1588 if (copied > ulen - off)
1589 copied = ulen - off;
1590 else if (copied < ulen)
1591 msg->msg_flags |= MSG_TRUNC;
1594 * If checksum is needed at all, try to do it while copying the
1595 * data. If the data is truncated, or if we only want a partial
1596 * coverage checksum (UDP-Lite), do it before the copy.
1599 if (copied < ulen || peeking ||
1600 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1601 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1602 !__udp_lib_checksum_complete(skb);
1603 if (!checksum_valid)
1604 goto csum_copy_err;
1607 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1608 if (udp_skb_is_linear(skb))
1609 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1610 else
1611 err = skb_copy_datagram_msg(skb, off, msg, copied);
1612 } else {
1613 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1615 if (err == -EINVAL)
1616 goto csum_copy_err;
1619 if (unlikely(err)) {
1620 if (!peeked) {
1621 atomic_inc(&sk->sk_drops);
1622 UDP_INC_STATS(sock_net(sk),
1623 UDP_MIB_INERRORS, is_udplite);
1625 kfree_skb(skb);
1626 return err;
1629 if (!peeked)
1630 UDP_INC_STATS(sock_net(sk),
1631 UDP_MIB_INDATAGRAMS, is_udplite);
1633 sock_recv_ts_and_drops(msg, sk, skb);
1635 /* Copy the address. */
1636 if (sin) {
1637 sin->sin_family = AF_INET;
1638 sin->sin_port = udp_hdr(skb)->source;
1639 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1640 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1641 *addr_len = sizeof(*sin);
1643 if (inet->cmsg_flags)
1644 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1646 err = copied;
1647 if (flags & MSG_TRUNC)
1648 err = ulen;
1650 skb_consume_udp(sk, skb, peeking ? -err : err);
1651 return err;
1653 csum_copy_err:
1654 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1655 udp_skb_destructor)) {
1656 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1657 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1659 kfree_skb(skb);
1661 /* starting over for a new packet, but check if we need to yield */
1662 cond_resched();
1663 msg->msg_flags &= ~MSG_TRUNC;
1664 goto try_again;
1667 int __udp_disconnect(struct sock *sk, int flags)
1669 struct inet_sock *inet = inet_sk(sk);
1671 * 1003.1g - break association.
1674 sk->sk_state = TCP_CLOSE;
1675 inet->inet_daddr = 0;
1676 inet->inet_dport = 0;
1677 sock_rps_reset_rxhash(sk);
1678 sk->sk_bound_dev_if = 0;
1679 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1680 inet_reset_saddr(sk);
1682 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1683 sk->sk_prot->unhash(sk);
1684 inet->inet_sport = 0;
1686 sk_dst_reset(sk);
1687 return 0;
1689 EXPORT_SYMBOL(__udp_disconnect);
1691 int udp_disconnect(struct sock *sk, int flags)
1693 lock_sock(sk);
1694 __udp_disconnect(sk, flags);
1695 release_sock(sk);
1696 return 0;
1698 EXPORT_SYMBOL(udp_disconnect);
1700 void udp_lib_unhash(struct sock *sk)
1702 if (sk_hashed(sk)) {
1703 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1704 struct udp_hslot *hslot, *hslot2;
1706 hslot = udp_hashslot(udptable, sock_net(sk),
1707 udp_sk(sk)->udp_port_hash);
1708 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1710 spin_lock_bh(&hslot->lock);
1711 if (rcu_access_pointer(sk->sk_reuseport_cb))
1712 reuseport_detach_sock(sk);
1713 if (sk_del_node_init_rcu(sk)) {
1714 hslot->count--;
1715 inet_sk(sk)->inet_num = 0;
1716 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1718 spin_lock(&hslot2->lock);
1719 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1720 hslot2->count--;
1721 spin_unlock(&hslot2->lock);
1723 spin_unlock_bh(&hslot->lock);
1726 EXPORT_SYMBOL(udp_lib_unhash);
1729 * inet_rcv_saddr was changed, we must rehash secondary hash
1731 void udp_lib_rehash(struct sock *sk, u16 newhash)
1733 if (sk_hashed(sk)) {
1734 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1735 struct udp_hslot *hslot, *hslot2, *nhslot2;
1737 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1738 nhslot2 = udp_hashslot2(udptable, newhash);
1739 udp_sk(sk)->udp_portaddr_hash = newhash;
1741 if (hslot2 != nhslot2 ||
1742 rcu_access_pointer(sk->sk_reuseport_cb)) {
1743 hslot = udp_hashslot(udptable, sock_net(sk),
1744 udp_sk(sk)->udp_port_hash);
1745 /* we must lock primary chain too */
1746 spin_lock_bh(&hslot->lock);
1747 if (rcu_access_pointer(sk->sk_reuseport_cb))
1748 reuseport_detach_sock(sk);
1750 if (hslot2 != nhslot2) {
1751 spin_lock(&hslot2->lock);
1752 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1753 hslot2->count--;
1754 spin_unlock(&hslot2->lock);
1756 spin_lock(&nhslot2->lock);
1757 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1758 &nhslot2->head);
1759 nhslot2->count++;
1760 spin_unlock(&nhslot2->lock);
1763 spin_unlock_bh(&hslot->lock);
1767 EXPORT_SYMBOL(udp_lib_rehash);
1769 static void udp_v4_rehash(struct sock *sk)
1771 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1772 inet_sk(sk)->inet_rcv_saddr,
1773 inet_sk(sk)->inet_num);
1774 udp_lib_rehash(sk, new_hash);
1777 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1779 int rc;
1781 if (inet_sk(sk)->inet_daddr) {
1782 sock_rps_save_rxhash(sk, skb);
1783 sk_mark_napi_id(sk, skb);
1784 sk_incoming_cpu_update(sk);
1785 } else {
1786 sk_mark_napi_id_once(sk, skb);
1789 rc = __udp_enqueue_schedule_skb(sk, skb);
1790 if (rc < 0) {
1791 int is_udplite = IS_UDPLITE(sk);
1793 /* Note that an ENOMEM error is charged twice */
1794 if (rc == -ENOMEM)
1795 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1796 is_udplite);
1797 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1798 kfree_skb(skb);
1799 trace_udp_fail_queue_rcv_skb(rc, sk);
1800 return -1;
1803 return 0;
1806 static struct static_key udp_encap_needed __read_mostly;
1807 void udp_encap_enable(void)
1809 static_key_enable(&udp_encap_needed);
1811 EXPORT_SYMBOL(udp_encap_enable);
1813 /* returns:
1814 * -1: error
1815 * 0: success
1816 * >0: "udp encap" protocol resubmission
1818 * Note that in the success and error cases, the skb is assumed to
1819 * have either been requeued or freed.
1821 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1823 struct udp_sock *up = udp_sk(sk);
1824 int is_udplite = IS_UDPLITE(sk);
1827 * Charge it to the socket, dropping if the queue is full.
1829 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1830 goto drop;
1831 nf_reset(skb);
1833 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1834 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1837 * This is an encapsulation socket so pass the skb to
1838 * the socket's udp_encap_rcv() hook. Otherwise, just
1839 * fall through and pass this up the UDP socket.
1840 * up->encap_rcv() returns the following value:
1841 * =0 if skb was successfully passed to the encap
1842 * handler or was discarded by it.
1843 * >0 if skb should be passed on to UDP.
1844 * <0 if skb should be resubmitted as proto -N
1847 /* if we're overly short, let UDP handle it */
1848 encap_rcv = READ_ONCE(up->encap_rcv);
1849 if (encap_rcv) {
1850 int ret;
1852 /* Verify checksum before giving to encap */
1853 if (udp_lib_checksum_complete(skb))
1854 goto csum_error;
1856 ret = encap_rcv(sk, skb);
1857 if (ret <= 0) {
1858 __UDP_INC_STATS(sock_net(sk),
1859 UDP_MIB_INDATAGRAMS,
1860 is_udplite);
1861 return -ret;
1865 /* FALLTHROUGH -- it's a UDP Packet */
1869 * UDP-Lite specific tests, ignored on UDP sockets
1871 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1874 * MIB statistics other than incrementing the error count are
1875 * disabled for the following two types of errors: these depend
1876 * on the application settings, not on the functioning of the
1877 * protocol stack as such.
1879 * RFC 3828 here recommends (sec 3.3): "There should also be a
1880 * way ... to ... at least let the receiving application block
1881 * delivery of packets with coverage values less than a value
1882 * provided by the application."
1884 if (up->pcrlen == 0) { /* full coverage was set */
1885 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1886 UDP_SKB_CB(skb)->cscov, skb->len);
1887 goto drop;
1889 /* The next case involves violating the min. coverage requested
1890 * by the receiver. This is subtle: if receiver wants x and x is
1891 * greater than the buffersize/MTU then receiver will complain
1892 * that it wants x while sender emits packets of smaller size y.
1893 * Therefore the above ...()->partial_cov statement is essential.
1895 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1896 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1897 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1898 goto drop;
1902 prefetch(&sk->sk_rmem_alloc);
1903 if (rcu_access_pointer(sk->sk_filter) &&
1904 udp_lib_checksum_complete(skb))
1905 goto csum_error;
1907 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1908 goto drop;
1910 udp_csum_pull_header(skb);
1912 ipv4_pktinfo_prepare(sk, skb);
1913 return __udp_queue_rcv_skb(sk, skb);
1915 csum_error:
1916 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1917 drop:
1918 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1919 atomic_inc(&sk->sk_drops);
1920 kfree_skb(skb);
1921 return -1;
1924 /* For TCP sockets, sk_rx_dst is protected by socket lock
1925 * For UDP, we use xchg() to guard against concurrent changes.
1927 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1929 struct dst_entry *old;
1931 if (dst_hold_safe(dst)) {
1932 old = xchg(&sk->sk_rx_dst, dst);
1933 dst_release(old);
1934 return old != dst;
1936 return false;
1938 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1941 * Multicasts and broadcasts go to each listener.
1943 * Note: called only from the BH handler context.
1945 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1946 struct udphdr *uh,
1947 __be32 saddr, __be32 daddr,
1948 struct udp_table *udptable,
1949 int proto)
1951 struct sock *sk, *first = NULL;
1952 unsigned short hnum = ntohs(uh->dest);
1953 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1954 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1955 unsigned int offset = offsetof(typeof(*sk), sk_node);
1956 int dif = skb->dev->ifindex;
1957 int sdif = inet_sdif(skb);
1958 struct hlist_node *node;
1959 struct sk_buff *nskb;
1961 if (use_hash2) {
1962 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1963 udptable->mask;
1964 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1965 start_lookup:
1966 hslot = &udptable->hash2[hash2];
1967 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1970 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1971 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1972 uh->source, saddr, dif, sdif, hnum))
1973 continue;
1975 if (!first) {
1976 first = sk;
1977 continue;
1979 nskb = skb_clone(skb, GFP_ATOMIC);
1981 if (unlikely(!nskb)) {
1982 atomic_inc(&sk->sk_drops);
1983 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1984 IS_UDPLITE(sk));
1985 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1986 IS_UDPLITE(sk));
1987 continue;
1989 if (udp_queue_rcv_skb(sk, nskb) > 0)
1990 consume_skb(nskb);
1993 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1994 if (use_hash2 && hash2 != hash2_any) {
1995 hash2 = hash2_any;
1996 goto start_lookup;
1999 if (first) {
2000 if (udp_queue_rcv_skb(first, skb) > 0)
2001 consume_skb(skb);
2002 } else {
2003 kfree_skb(skb);
2004 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2005 proto == IPPROTO_UDPLITE);
2007 return 0;
2010 /* Initialize UDP checksum. If exited with zero value (success),
2011 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2012 * Otherwise, csum completion requires chacksumming packet body,
2013 * including udp header and folding it to skb->csum.
2015 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2016 int proto)
2018 int err;
2020 UDP_SKB_CB(skb)->partial_cov = 0;
2021 UDP_SKB_CB(skb)->cscov = skb->len;
2023 if (proto == IPPROTO_UDPLITE) {
2024 err = udplite_checksum_init(skb, uh);
2025 if (err)
2026 return err;
2028 if (UDP_SKB_CB(skb)->partial_cov) {
2029 skb->csum = inet_compute_pseudo(skb, proto);
2030 return 0;
2034 /* Note, we are only interested in != 0 or == 0, thus the
2035 * force to int.
2037 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2038 inet_compute_pseudo);
2042 * All we need to do is get the socket, and then do a checksum.
2045 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2046 int proto)
2048 struct sock *sk;
2049 struct udphdr *uh;
2050 unsigned short ulen;
2051 struct rtable *rt = skb_rtable(skb);
2052 __be32 saddr, daddr;
2053 struct net *net = dev_net(skb->dev);
2056 * Validate the packet.
2058 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2059 goto drop; /* No space for header. */
2061 uh = udp_hdr(skb);
2062 ulen = ntohs(uh->len);
2063 saddr = ip_hdr(skb)->saddr;
2064 daddr = ip_hdr(skb)->daddr;
2066 if (ulen > skb->len)
2067 goto short_packet;
2069 if (proto == IPPROTO_UDP) {
2070 /* UDP validates ulen. */
2071 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2072 goto short_packet;
2073 uh = udp_hdr(skb);
2076 if (udp4_csum_init(skb, uh, proto))
2077 goto csum_error;
2079 sk = skb_steal_sock(skb);
2080 if (sk) {
2081 struct dst_entry *dst = skb_dst(skb);
2082 int ret;
2084 if (unlikely(sk->sk_rx_dst != dst))
2085 udp_sk_rx_dst_set(sk, dst);
2087 ret = udp_queue_rcv_skb(sk, skb);
2088 sock_put(sk);
2089 /* a return value > 0 means to resubmit the input, but
2090 * it wants the return to be -protocol, or 0
2092 if (ret > 0)
2093 return -ret;
2094 return 0;
2097 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2098 return __udp4_lib_mcast_deliver(net, skb, uh,
2099 saddr, daddr, udptable, proto);
2101 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2102 if (sk) {
2103 int ret;
2105 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2106 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2107 inet_compute_pseudo);
2109 ret = udp_queue_rcv_skb(sk, skb);
2111 /* a return value > 0 means to resubmit the input, but
2112 * it wants the return to be -protocol, or 0
2114 if (ret > 0)
2115 return -ret;
2116 return 0;
2119 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2120 goto drop;
2121 nf_reset(skb);
2123 /* No socket. Drop packet silently, if checksum is wrong */
2124 if (udp_lib_checksum_complete(skb))
2125 goto csum_error;
2127 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2128 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2131 * Hmm. We got an UDP packet to a port to which we
2132 * don't wanna listen. Ignore it.
2134 kfree_skb(skb);
2135 return 0;
2137 short_packet:
2138 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2139 proto == IPPROTO_UDPLITE ? "Lite" : "",
2140 &saddr, ntohs(uh->source),
2141 ulen, skb->len,
2142 &daddr, ntohs(uh->dest));
2143 goto drop;
2145 csum_error:
2147 * RFC1122: OK. Discards the bad packet silently (as far as
2148 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2150 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2151 proto == IPPROTO_UDPLITE ? "Lite" : "",
2152 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2153 ulen);
2154 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2155 drop:
2156 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2157 kfree_skb(skb);
2158 return 0;
2161 /* We can only early demux multicast if there is a single matching socket.
2162 * If more than one socket found returns NULL
2164 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2165 __be16 loc_port, __be32 loc_addr,
2166 __be16 rmt_port, __be32 rmt_addr,
2167 int dif, int sdif)
2169 struct sock *sk, *result;
2170 unsigned short hnum = ntohs(loc_port);
2171 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2172 struct udp_hslot *hslot = &udp_table.hash[slot];
2174 /* Do not bother scanning a too big list */
2175 if (hslot->count > 10)
2176 return NULL;
2178 result = NULL;
2179 sk_for_each_rcu(sk, &hslot->head) {
2180 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2181 rmt_port, rmt_addr, dif, sdif, hnum)) {
2182 if (result)
2183 return NULL;
2184 result = sk;
2188 return result;
2191 /* For unicast we should only early demux connected sockets or we can
2192 * break forwarding setups. The chains here can be long so only check
2193 * if the first socket is an exact match and if not move on.
2195 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2196 __be16 loc_port, __be32 loc_addr,
2197 __be16 rmt_port, __be32 rmt_addr,
2198 int dif, int sdif)
2200 unsigned short hnum = ntohs(loc_port);
2201 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2202 unsigned int slot2 = hash2 & udp_table.mask;
2203 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2204 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2205 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2206 struct sock *sk;
2208 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2209 if (INET_MATCH(sk, net, acookie, rmt_addr,
2210 loc_addr, ports, dif, sdif))
2211 return sk;
2212 /* Only check first socket in chain */
2213 break;
2215 return NULL;
2218 int udp_v4_early_demux(struct sk_buff *skb)
2220 struct net *net = dev_net(skb->dev);
2221 struct in_device *in_dev = NULL;
2222 const struct iphdr *iph;
2223 const struct udphdr *uh;
2224 struct sock *sk = NULL;
2225 struct dst_entry *dst;
2226 int dif = skb->dev->ifindex;
2227 int sdif = inet_sdif(skb);
2228 int ours;
2230 /* validate the packet */
2231 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2232 return 0;
2234 iph = ip_hdr(skb);
2235 uh = udp_hdr(skb);
2237 if (skb->pkt_type == PACKET_MULTICAST) {
2238 in_dev = __in_dev_get_rcu(skb->dev);
2240 if (!in_dev)
2241 return 0;
2243 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2244 iph->protocol);
2245 if (!ours)
2246 return 0;
2248 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2249 uh->source, iph->saddr,
2250 dif, sdif);
2251 } else if (skb->pkt_type == PACKET_HOST) {
2252 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2253 uh->source, iph->saddr, dif, sdif);
2256 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2257 return 0;
2259 skb->sk = sk;
2260 skb->destructor = sock_efree;
2261 dst = READ_ONCE(sk->sk_rx_dst);
2263 if (dst)
2264 dst = dst_check(dst, 0);
2265 if (dst) {
2266 u32 itag = 0;
2268 /* set noref for now.
2269 * any place which wants to hold dst has to call
2270 * dst_hold_safe()
2272 skb_dst_set_noref(skb, dst);
2274 /* for unconnected multicast sockets we need to validate
2275 * the source on each packet
2277 if (!inet_sk(sk)->inet_daddr && in_dev)
2278 return ip_mc_validate_source(skb, iph->daddr,
2279 iph->saddr, iph->tos,
2280 skb->dev, in_dev, &itag);
2282 return 0;
2285 int udp_rcv(struct sk_buff *skb)
2287 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2290 void udp_destroy_sock(struct sock *sk)
2292 struct udp_sock *up = udp_sk(sk);
2293 bool slow = lock_sock_fast(sk);
2294 udp_flush_pending_frames(sk);
2295 unlock_sock_fast(sk, slow);
2296 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2297 void (*encap_destroy)(struct sock *sk);
2298 encap_destroy = READ_ONCE(up->encap_destroy);
2299 if (encap_destroy)
2300 encap_destroy(sk);
2305 * Socket option code for UDP
2307 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2308 char __user *optval, unsigned int optlen,
2309 int (*push_pending_frames)(struct sock *))
2311 struct udp_sock *up = udp_sk(sk);
2312 int val, valbool;
2313 int err = 0;
2314 int is_udplite = IS_UDPLITE(sk);
2316 if (optlen < sizeof(int))
2317 return -EINVAL;
2319 if (get_user(val, (int __user *)optval))
2320 return -EFAULT;
2322 valbool = val ? 1 : 0;
2324 switch (optname) {
2325 case UDP_CORK:
2326 if (val != 0) {
2327 up->corkflag = 1;
2328 } else {
2329 up->corkflag = 0;
2330 lock_sock(sk);
2331 push_pending_frames(sk);
2332 release_sock(sk);
2334 break;
2336 case UDP_ENCAP:
2337 switch (val) {
2338 case 0:
2339 case UDP_ENCAP_ESPINUDP:
2340 case UDP_ENCAP_ESPINUDP_NON_IKE:
2341 up->encap_rcv = xfrm4_udp_encap_rcv;
2342 /* FALLTHROUGH */
2343 case UDP_ENCAP_L2TPINUDP:
2344 up->encap_type = val;
2345 udp_encap_enable();
2346 break;
2347 default:
2348 err = -ENOPROTOOPT;
2349 break;
2351 break;
2353 case UDP_NO_CHECK6_TX:
2354 up->no_check6_tx = valbool;
2355 break;
2357 case UDP_NO_CHECK6_RX:
2358 up->no_check6_rx = valbool;
2359 break;
2362 * UDP-Lite's partial checksum coverage (RFC 3828).
2364 /* The sender sets actual checksum coverage length via this option.
2365 * The case coverage > packet length is handled by send module. */
2366 case UDPLITE_SEND_CSCOV:
2367 if (!is_udplite) /* Disable the option on UDP sockets */
2368 return -ENOPROTOOPT;
2369 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2370 val = 8;
2371 else if (val > USHRT_MAX)
2372 val = USHRT_MAX;
2373 up->pcslen = val;
2374 up->pcflag |= UDPLITE_SEND_CC;
2375 break;
2377 /* The receiver specifies a minimum checksum coverage value. To make
2378 * sense, this should be set to at least 8 (as done below). If zero is
2379 * used, this again means full checksum coverage. */
2380 case UDPLITE_RECV_CSCOV:
2381 if (!is_udplite) /* Disable the option on UDP sockets */
2382 return -ENOPROTOOPT;
2383 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2384 val = 8;
2385 else if (val > USHRT_MAX)
2386 val = USHRT_MAX;
2387 up->pcrlen = val;
2388 up->pcflag |= UDPLITE_RECV_CC;
2389 break;
2391 default:
2392 err = -ENOPROTOOPT;
2393 break;
2396 return err;
2398 EXPORT_SYMBOL(udp_lib_setsockopt);
2400 int udp_setsockopt(struct sock *sk, int level, int optname,
2401 char __user *optval, unsigned int optlen)
2403 if (level == SOL_UDP || level == SOL_UDPLITE)
2404 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2405 udp_push_pending_frames);
2406 return ip_setsockopt(sk, level, optname, optval, optlen);
2409 #ifdef CONFIG_COMPAT
2410 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2411 char __user *optval, unsigned int optlen)
2413 if (level == SOL_UDP || level == SOL_UDPLITE)
2414 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2415 udp_push_pending_frames);
2416 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2418 #endif
2420 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2421 char __user *optval, int __user *optlen)
2423 struct udp_sock *up = udp_sk(sk);
2424 int val, len;
2426 if (get_user(len, optlen))
2427 return -EFAULT;
2429 len = min_t(unsigned int, len, sizeof(int));
2431 if (len < 0)
2432 return -EINVAL;
2434 switch (optname) {
2435 case UDP_CORK:
2436 val = up->corkflag;
2437 break;
2439 case UDP_ENCAP:
2440 val = up->encap_type;
2441 break;
2443 case UDP_NO_CHECK6_TX:
2444 val = up->no_check6_tx;
2445 break;
2447 case UDP_NO_CHECK6_RX:
2448 val = up->no_check6_rx;
2449 break;
2451 /* The following two cannot be changed on UDP sockets, the return is
2452 * always 0 (which corresponds to the full checksum coverage of UDP). */
2453 case UDPLITE_SEND_CSCOV:
2454 val = up->pcslen;
2455 break;
2457 case UDPLITE_RECV_CSCOV:
2458 val = up->pcrlen;
2459 break;
2461 default:
2462 return -ENOPROTOOPT;
2465 if (put_user(len, optlen))
2466 return -EFAULT;
2467 if (copy_to_user(optval, &val, len))
2468 return -EFAULT;
2469 return 0;
2471 EXPORT_SYMBOL(udp_lib_getsockopt);
2473 int udp_getsockopt(struct sock *sk, int level, int optname,
2474 char __user *optval, int __user *optlen)
2476 if (level == SOL_UDP || level == SOL_UDPLITE)
2477 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2478 return ip_getsockopt(sk, level, optname, optval, optlen);
2481 #ifdef CONFIG_COMPAT
2482 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2483 char __user *optval, int __user *optlen)
2485 if (level == SOL_UDP || level == SOL_UDPLITE)
2486 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2487 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2489 #endif
2491 * udp_poll - wait for a UDP event.
2492 * @file - file struct
2493 * @sock - socket
2494 * @wait - poll table
2496 * This is same as datagram poll, except for the special case of
2497 * blocking sockets. If application is using a blocking fd
2498 * and a packet with checksum error is in the queue;
2499 * then it could get return from select indicating data available
2500 * but then block when reading it. Add special case code
2501 * to work around these arguably broken applications.
2503 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2505 __poll_t mask = datagram_poll(file, sock, wait);
2506 struct sock *sk = sock->sk;
2508 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2509 mask |= EPOLLIN | EPOLLRDNORM;
2511 /* Check for false positives due to checksum errors */
2512 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2513 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2514 mask &= ~(EPOLLIN | EPOLLRDNORM);
2516 return mask;
2519 EXPORT_SYMBOL(udp_poll);
2521 int udp_abort(struct sock *sk, int err)
2523 lock_sock(sk);
2525 sk->sk_err = err;
2526 sk->sk_error_report(sk);
2527 __udp_disconnect(sk, 0);
2529 release_sock(sk);
2531 return 0;
2533 EXPORT_SYMBOL_GPL(udp_abort);
2535 struct proto udp_prot = {
2536 .name = "UDP",
2537 .owner = THIS_MODULE,
2538 .close = udp_lib_close,
2539 .connect = ip4_datagram_connect,
2540 .disconnect = udp_disconnect,
2541 .ioctl = udp_ioctl,
2542 .init = udp_init_sock,
2543 .destroy = udp_destroy_sock,
2544 .setsockopt = udp_setsockopt,
2545 .getsockopt = udp_getsockopt,
2546 .sendmsg = udp_sendmsg,
2547 .recvmsg = udp_recvmsg,
2548 .sendpage = udp_sendpage,
2549 .release_cb = ip4_datagram_release_cb,
2550 .hash = udp_lib_hash,
2551 .unhash = udp_lib_unhash,
2552 .rehash = udp_v4_rehash,
2553 .get_port = udp_v4_get_port,
2554 .memory_allocated = &udp_memory_allocated,
2555 .sysctl_mem = sysctl_udp_mem,
2556 .sysctl_wmem = &sysctl_udp_wmem_min,
2557 .sysctl_rmem = &sysctl_udp_rmem_min,
2558 .obj_size = sizeof(struct udp_sock),
2559 .h.udp_table = &udp_table,
2560 #ifdef CONFIG_COMPAT
2561 .compat_setsockopt = compat_udp_setsockopt,
2562 .compat_getsockopt = compat_udp_getsockopt,
2563 #endif
2564 .diag_destroy = udp_abort,
2566 EXPORT_SYMBOL(udp_prot);
2568 /* ------------------------------------------------------------------------ */
2569 #ifdef CONFIG_PROC_FS
2571 static struct sock *udp_get_first(struct seq_file *seq, int start)
2573 struct sock *sk;
2574 struct udp_iter_state *state = seq->private;
2575 struct net *net = seq_file_net(seq);
2577 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2578 ++state->bucket) {
2579 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2581 if (hlist_empty(&hslot->head))
2582 continue;
2584 spin_lock_bh(&hslot->lock);
2585 sk_for_each(sk, &hslot->head) {
2586 if (!net_eq(sock_net(sk), net))
2587 continue;
2588 if (sk->sk_family == state->family)
2589 goto found;
2591 spin_unlock_bh(&hslot->lock);
2593 sk = NULL;
2594 found:
2595 return sk;
2598 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2600 struct udp_iter_state *state = seq->private;
2601 struct net *net = seq_file_net(seq);
2603 do {
2604 sk = sk_next(sk);
2605 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2607 if (!sk) {
2608 if (state->bucket <= state->udp_table->mask)
2609 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2610 return udp_get_first(seq, state->bucket + 1);
2612 return sk;
2615 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2617 struct sock *sk = udp_get_first(seq, 0);
2619 if (sk)
2620 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2621 --pos;
2622 return pos ? NULL : sk;
2625 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2627 struct udp_iter_state *state = seq->private;
2628 state->bucket = MAX_UDP_PORTS;
2630 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2633 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2635 struct sock *sk;
2637 if (v == SEQ_START_TOKEN)
2638 sk = udp_get_idx(seq, 0);
2639 else
2640 sk = udp_get_next(seq, v);
2642 ++*pos;
2643 return sk;
2646 static void udp_seq_stop(struct seq_file *seq, void *v)
2648 struct udp_iter_state *state = seq->private;
2650 if (state->bucket <= state->udp_table->mask)
2651 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2654 int udp_seq_open(struct inode *inode, struct file *file)
2656 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2657 struct udp_iter_state *s;
2658 int err;
2660 err = seq_open_net(inode, file, &afinfo->seq_ops,
2661 sizeof(struct udp_iter_state));
2662 if (err < 0)
2663 return err;
2665 s = ((struct seq_file *)file->private_data)->private;
2666 s->family = afinfo->family;
2667 s->udp_table = afinfo->udp_table;
2668 return err;
2670 EXPORT_SYMBOL(udp_seq_open);
2672 /* ------------------------------------------------------------------------ */
2673 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2675 struct proc_dir_entry *p;
2676 int rc = 0;
2678 afinfo->seq_ops.start = udp_seq_start;
2679 afinfo->seq_ops.next = udp_seq_next;
2680 afinfo->seq_ops.stop = udp_seq_stop;
2682 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2683 afinfo->seq_fops, afinfo);
2684 if (!p)
2685 rc = -ENOMEM;
2686 return rc;
2688 EXPORT_SYMBOL(udp_proc_register);
2690 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2692 remove_proc_entry(afinfo->name, net->proc_net);
2694 EXPORT_SYMBOL(udp_proc_unregister);
2696 /* ------------------------------------------------------------------------ */
2697 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2698 int bucket)
2700 struct inet_sock *inet = inet_sk(sp);
2701 __be32 dest = inet->inet_daddr;
2702 __be32 src = inet->inet_rcv_saddr;
2703 __u16 destp = ntohs(inet->inet_dport);
2704 __u16 srcp = ntohs(inet->inet_sport);
2706 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2707 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2708 bucket, src, srcp, dest, destp, sp->sk_state,
2709 sk_wmem_alloc_get(sp),
2710 sk_rmem_alloc_get(sp),
2711 0, 0L, 0,
2712 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2713 0, sock_i_ino(sp),
2714 refcount_read(&sp->sk_refcnt), sp,
2715 atomic_read(&sp->sk_drops));
2718 int udp4_seq_show(struct seq_file *seq, void *v)
2720 seq_setwidth(seq, 127);
2721 if (v == SEQ_START_TOKEN)
2722 seq_puts(seq, " sl local_address rem_address st tx_queue "
2723 "rx_queue tr tm->when retrnsmt uid timeout "
2724 "inode ref pointer drops");
2725 else {
2726 struct udp_iter_state *state = seq->private;
2728 udp4_format_sock(v, seq, state->bucket);
2730 seq_pad(seq, '\n');
2731 return 0;
2734 static const struct file_operations udp_afinfo_seq_fops = {
2735 .open = udp_seq_open,
2736 .read = seq_read,
2737 .llseek = seq_lseek,
2738 .release = seq_release_net
2741 /* ------------------------------------------------------------------------ */
2742 static struct udp_seq_afinfo udp4_seq_afinfo = {
2743 .name = "udp",
2744 .family = AF_INET,
2745 .udp_table = &udp_table,
2746 .seq_fops = &udp_afinfo_seq_fops,
2747 .seq_ops = {
2748 .show = udp4_seq_show,
2752 static int __net_init udp4_proc_init_net(struct net *net)
2754 return udp_proc_register(net, &udp4_seq_afinfo);
2757 static void __net_exit udp4_proc_exit_net(struct net *net)
2759 udp_proc_unregister(net, &udp4_seq_afinfo);
2762 static struct pernet_operations udp4_net_ops = {
2763 .init = udp4_proc_init_net,
2764 .exit = udp4_proc_exit_net,
2767 int __init udp4_proc_init(void)
2769 return register_pernet_subsys(&udp4_net_ops);
2772 void udp4_proc_exit(void)
2774 unregister_pernet_subsys(&udp4_net_ops);
2776 #endif /* CONFIG_PROC_FS */
2778 static __initdata unsigned long uhash_entries;
2779 static int __init set_uhash_entries(char *str)
2781 ssize_t ret;
2783 if (!str)
2784 return 0;
2786 ret = kstrtoul(str, 0, &uhash_entries);
2787 if (ret)
2788 return 0;
2790 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2791 uhash_entries = UDP_HTABLE_SIZE_MIN;
2792 return 1;
2794 __setup("uhash_entries=", set_uhash_entries);
2796 void __init udp_table_init(struct udp_table *table, const char *name)
2798 unsigned int i;
2800 table->hash = alloc_large_system_hash(name,
2801 2 * sizeof(struct udp_hslot),
2802 uhash_entries,
2803 21, /* one slot per 2 MB */
2805 &table->log,
2806 &table->mask,
2807 UDP_HTABLE_SIZE_MIN,
2808 64 * 1024);
2810 table->hash2 = table->hash + (table->mask + 1);
2811 for (i = 0; i <= table->mask; i++) {
2812 INIT_HLIST_HEAD(&table->hash[i].head);
2813 table->hash[i].count = 0;
2814 spin_lock_init(&table->hash[i].lock);
2816 for (i = 0; i <= table->mask; i++) {
2817 INIT_HLIST_HEAD(&table->hash2[i].head);
2818 table->hash2[i].count = 0;
2819 spin_lock_init(&table->hash2[i].lock);
2823 u32 udp_flow_hashrnd(void)
2825 static u32 hashrnd __read_mostly;
2827 net_get_random_once(&hashrnd, sizeof(hashrnd));
2829 return hashrnd;
2831 EXPORT_SYMBOL(udp_flow_hashrnd);
2833 void __init udp_init(void)
2835 unsigned long limit;
2836 unsigned int i;
2838 udp_table_init(&udp_table, "UDP");
2839 limit = nr_free_buffer_pages() / 8;
2840 limit = max(limit, 128UL);
2841 sysctl_udp_mem[0] = limit / 4 * 3;
2842 sysctl_udp_mem[1] = limit;
2843 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2845 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2846 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2848 /* 16 spinlocks per cpu */
2849 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2850 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2851 GFP_KERNEL);
2852 if (!udp_busylocks)
2853 panic("UDP: failed to alloc udp_busylocks\n");
2854 for (i = 0; i < (1U << udp_busylocks_log); i++)
2855 spin_lock_init(udp_busylocks + i);