Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / mac80211 / rx.c
blob56fe16b075381ff59fa6f949e0f973bc4a311d0a
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
50 __le16 fc = hdr->frame_control;
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
63 return hdr->addr3;
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
89 return NULL;
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static void remove_monitor_info(struct sk_buff *skb,
99 unsigned int present_fcs_len,
100 unsigned int rtap_vendor_space)
102 if (present_fcs_len)
103 __pskb_trim(skb, skb->len - present_fcs_len);
104 __pskb_pull(skb, rtap_vendor_space);
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 unsigned int rtap_vendor_space)
110 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 struct ieee80211_hdr *hdr;
113 hdr = (void *)(skb->data + rtap_vendor_space);
115 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 RX_FLAG_FAILED_PLCP_CRC |
117 RX_FLAG_ONLY_MONITOR))
118 return true;
120 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 return true;
123 if (ieee80211_is_ctl(hdr->frame_control) &&
124 !ieee80211_is_pspoll(hdr->frame_control) &&
125 !ieee80211_is_back_req(hdr->frame_control))
126 return true;
128 return false;
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 struct ieee80211_rx_status *status,
134 struct sk_buff *skb)
136 int len;
138 /* always present fields */
139 len = sizeof(struct ieee80211_radiotap_header) + 8;
141 /* allocate extra bitmaps */
142 if (status->chains)
143 len += 4 * hweight8(status->chains);
145 if (ieee80211_have_rx_timestamp(status)) {
146 len = ALIGN(len, 8);
147 len += 8;
149 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 len += 1;
152 /* antenna field, if we don't have per-chain info */
153 if (!status->chains)
154 len += 1;
156 /* padding for RX_FLAGS if necessary */
157 len = ALIGN(len, 2);
159 if (status->encoding == RX_ENC_HT) /* HT info */
160 len += 3;
162 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 len = ALIGN(len, 4);
164 len += 8;
167 if (status->encoding == RX_ENC_VHT) {
168 len = ALIGN(len, 2);
169 len += 12;
172 if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 len = ALIGN(len, 8);
174 len += 12;
177 if (status->chains) {
178 /* antenna and antenna signal fields */
179 len += 2 * hweight8(status->chains);
182 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
185 /* vendor presence bitmap */
186 len += 4;
187 /* alignment for fixed 6-byte vendor data header */
188 len = ALIGN(len, 2);
189 /* vendor data header */
190 len += 6;
191 if (WARN_ON(rtap->align == 0))
192 rtap->align = 1;
193 len = ALIGN(len, rtap->align);
194 len += rtap->len + rtap->pad;
197 return len;
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 struct sk_buff *skb,
202 int rtap_vendor_space)
204 struct {
205 struct ieee80211_hdr_3addr hdr;
206 u8 category;
207 u8 action_code;
208 } __packed action;
210 if (!sdata)
211 return;
213 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
215 if (skb->len < rtap_vendor_space + sizeof(action) +
216 VHT_MUMIMO_GROUPS_DATA_LEN)
217 return;
219 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 return;
222 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
224 if (!ieee80211_is_action(action.hdr.frame_control))
225 return;
227 if (action.category != WLAN_CATEGORY_VHT)
228 return;
230 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 return;
233 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 return;
236 skb = skb_copy(skb, GFP_ATOMIC);
237 if (!skb)
238 return;
240 skb_queue_tail(&sdata->skb_queue, skb);
241 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
245 * ieee80211_add_rx_radiotap_header - add radiotap header
247 * add a radiotap header containing all the fields which the hardware provided.
249 static void
250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
251 struct sk_buff *skb,
252 struct ieee80211_rate *rate,
253 int rtap_len, bool has_fcs)
255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
256 struct ieee80211_radiotap_header *rthdr;
257 unsigned char *pos;
258 __le32 *it_present;
259 u32 it_present_val;
260 u16 rx_flags = 0;
261 u16 channel_flags = 0;
262 int mpdulen, chain;
263 unsigned long chains = status->chains;
264 struct ieee80211_vendor_radiotap rtap = {};
266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
268 /* rtap.len and rtap.pad are undone immediately */
269 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
272 mpdulen = skb->len;
273 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
274 mpdulen += FCS_LEN;
276 rthdr = skb_push(skb, rtap_len);
277 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
278 it_present = &rthdr->it_present;
280 /* radiotap header, set always present flags */
281 rthdr->it_len = cpu_to_le16(rtap_len);
282 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
283 BIT(IEEE80211_RADIOTAP_CHANNEL) |
284 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
286 if (!status->chains)
287 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
289 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
290 it_present_val |=
291 BIT(IEEE80211_RADIOTAP_EXT) |
292 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
293 put_unaligned_le32(it_present_val, it_present);
294 it_present++;
295 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
296 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
299 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
300 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
301 BIT(IEEE80211_RADIOTAP_EXT);
302 put_unaligned_le32(it_present_val, it_present);
303 it_present++;
304 it_present_val = rtap.present;
307 put_unaligned_le32(it_present_val, it_present);
309 pos = (void *)(it_present + 1);
311 /* the order of the following fields is important */
313 /* IEEE80211_RADIOTAP_TSFT */
314 if (ieee80211_have_rx_timestamp(status)) {
315 /* padding */
316 while ((pos - (u8 *)rthdr) & 7)
317 *pos++ = 0;
318 put_unaligned_le64(
319 ieee80211_calculate_rx_timestamp(local, status,
320 mpdulen, 0),
321 pos);
322 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
323 pos += 8;
326 /* IEEE80211_RADIOTAP_FLAGS */
327 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
328 *pos |= IEEE80211_RADIOTAP_F_FCS;
329 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
330 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
331 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
332 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
333 pos++;
335 /* IEEE80211_RADIOTAP_RATE */
336 if (!rate || status->encoding != RX_ENC_LEGACY) {
338 * Without rate information don't add it. If we have,
339 * MCS information is a separate field in radiotap,
340 * added below. The byte here is needed as padding
341 * for the channel though, so initialise it to 0.
343 *pos = 0;
344 } else {
345 int shift = 0;
346 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
347 if (status->bw == RATE_INFO_BW_10)
348 shift = 1;
349 else if (status->bw == RATE_INFO_BW_5)
350 shift = 2;
351 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
353 pos++;
355 /* IEEE80211_RADIOTAP_CHANNEL */
356 put_unaligned_le16(status->freq, pos);
357 pos += 2;
358 if (status->bw == RATE_INFO_BW_10)
359 channel_flags |= IEEE80211_CHAN_HALF;
360 else if (status->bw == RATE_INFO_BW_5)
361 channel_flags |= IEEE80211_CHAN_QUARTER;
363 if (status->band == NL80211_BAND_5GHZ)
364 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
365 else if (status->encoding != RX_ENC_LEGACY)
366 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
367 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
368 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
369 else if (rate)
370 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
371 else
372 channel_flags |= IEEE80211_CHAN_2GHZ;
373 put_unaligned_le16(channel_flags, pos);
374 pos += 2;
376 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
377 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
378 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
379 *pos = status->signal;
380 rthdr->it_present |=
381 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
382 pos++;
385 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
387 if (!status->chains) {
388 /* IEEE80211_RADIOTAP_ANTENNA */
389 *pos = status->antenna;
390 pos++;
393 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
395 /* IEEE80211_RADIOTAP_RX_FLAGS */
396 /* ensure 2 byte alignment for the 2 byte field as required */
397 if ((pos - (u8 *)rthdr) & 1)
398 *pos++ = 0;
399 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
400 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
401 put_unaligned_le16(rx_flags, pos);
402 pos += 2;
404 if (status->encoding == RX_ENC_HT) {
405 unsigned int stbc;
407 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
408 *pos++ = local->hw.radiotap_mcs_details;
409 *pos = 0;
410 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
411 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
412 if (status->bw == RATE_INFO_BW_40)
413 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
414 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
415 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
416 if (status->enc_flags & RX_ENC_FLAG_LDPC)
417 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
418 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
419 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
420 pos++;
421 *pos++ = status->rate_idx;
424 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
425 u16 flags = 0;
427 /* ensure 4 byte alignment */
428 while ((pos - (u8 *)rthdr) & 3)
429 pos++;
430 rthdr->it_present |=
431 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
432 put_unaligned_le32(status->ampdu_reference, pos);
433 pos += 4;
434 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
435 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
436 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
437 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
438 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
439 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
440 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
441 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
442 put_unaligned_le16(flags, pos);
443 pos += 2;
444 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
445 *pos++ = status->ampdu_delimiter_crc;
446 else
447 *pos++ = 0;
448 *pos++ = 0;
451 if (status->encoding == RX_ENC_VHT) {
452 u16 known = local->hw.radiotap_vht_details;
454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
455 put_unaligned_le16(known, pos);
456 pos += 2;
457 /* flags */
458 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
459 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
460 /* in VHT, STBC is binary */
461 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
462 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
463 if (status->enc_flags & RX_ENC_FLAG_BF)
464 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
465 pos++;
466 /* bandwidth */
467 switch (status->bw) {
468 case RATE_INFO_BW_80:
469 *pos++ = 4;
470 break;
471 case RATE_INFO_BW_160:
472 *pos++ = 11;
473 break;
474 case RATE_INFO_BW_40:
475 *pos++ = 1;
476 break;
477 default:
478 *pos++ = 0;
480 /* MCS/NSS */
481 *pos = (status->rate_idx << 4) | status->nss;
482 pos += 4;
483 /* coding field */
484 if (status->enc_flags & RX_ENC_FLAG_LDPC)
485 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
486 pos++;
487 /* group ID */
488 pos++;
489 /* partial_aid */
490 pos += 2;
493 if (local->hw.radiotap_timestamp.units_pos >= 0) {
494 u16 accuracy = 0;
495 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
497 rthdr->it_present |=
498 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
500 /* ensure 8 byte alignment */
501 while ((pos - (u8 *)rthdr) & 7)
502 pos++;
504 put_unaligned_le64(status->device_timestamp, pos);
505 pos += sizeof(u64);
507 if (local->hw.radiotap_timestamp.accuracy >= 0) {
508 accuracy = local->hw.radiotap_timestamp.accuracy;
509 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
511 put_unaligned_le16(accuracy, pos);
512 pos += sizeof(u16);
514 *pos++ = local->hw.radiotap_timestamp.units_pos;
515 *pos++ = flags;
518 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
519 *pos++ = status->chain_signal[chain];
520 *pos++ = chain;
523 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
524 /* ensure 2 byte alignment for the vendor field as required */
525 if ((pos - (u8 *)rthdr) & 1)
526 *pos++ = 0;
527 *pos++ = rtap.oui[0];
528 *pos++ = rtap.oui[1];
529 *pos++ = rtap.oui[2];
530 *pos++ = rtap.subns;
531 put_unaligned_le16(rtap.len, pos);
532 pos += 2;
533 /* align the actual payload as requested */
534 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
535 *pos++ = 0;
536 /* data (and possible padding) already follows */
540 static struct sk_buff *
541 ieee80211_make_monitor_skb(struct ieee80211_local *local,
542 struct sk_buff **origskb,
543 struct ieee80211_rate *rate,
544 int rtap_vendor_space, bool use_origskb)
546 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
547 int rt_hdrlen, needed_headroom;
548 struct sk_buff *skb;
550 /* room for the radiotap header based on driver features */
551 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
552 needed_headroom = rt_hdrlen - rtap_vendor_space;
554 if (use_origskb) {
555 /* only need to expand headroom if necessary */
556 skb = *origskb;
557 *origskb = NULL;
560 * This shouldn't trigger often because most devices have an
561 * RX header they pull before we get here, and that should
562 * be big enough for our radiotap information. We should
563 * probably export the length to drivers so that we can have
564 * them allocate enough headroom to start with.
566 if (skb_headroom(skb) < needed_headroom &&
567 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
568 dev_kfree_skb(skb);
569 return NULL;
571 } else {
573 * Need to make a copy and possibly remove radiotap header
574 * and FCS from the original.
576 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
578 if (!skb)
579 return NULL;
582 /* prepend radiotap information */
583 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
585 skb_reset_mac_header(skb);
586 skb->ip_summed = CHECKSUM_UNNECESSARY;
587 skb->pkt_type = PACKET_OTHERHOST;
588 skb->protocol = htons(ETH_P_802_2);
590 return skb;
594 * This function copies a received frame to all monitor interfaces and
595 * returns a cleaned-up SKB that no longer includes the FCS nor the
596 * radiotap header the driver might have added.
598 static struct sk_buff *
599 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
600 struct ieee80211_rate *rate)
602 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
603 struct ieee80211_sub_if_data *sdata;
604 struct sk_buff *monskb = NULL;
605 int present_fcs_len = 0;
606 unsigned int rtap_vendor_space = 0;
607 struct ieee80211_sub_if_data *monitor_sdata =
608 rcu_dereference(local->monitor_sdata);
609 bool only_monitor = false;
611 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
612 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
614 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
618 * First, we may need to make a copy of the skb because
619 * (1) we need to modify it for radiotap (if not present), and
620 * (2) the other RX handlers will modify the skb we got.
622 * We don't need to, of course, if we aren't going to return
623 * the SKB because it has a bad FCS/PLCP checksum.
626 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
627 if (unlikely(origskb->len <= FCS_LEN)) {
628 /* driver bug */
629 WARN_ON(1);
630 dev_kfree_skb(origskb);
631 return NULL;
633 present_fcs_len = FCS_LEN;
636 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
637 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
638 dev_kfree_skb(origskb);
639 return NULL;
642 only_monitor = should_drop_frame(origskb, present_fcs_len,
643 rtap_vendor_space);
645 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
646 if (only_monitor) {
647 dev_kfree_skb(origskb);
648 return NULL;
651 remove_monitor_info(origskb, present_fcs_len,
652 rtap_vendor_space);
653 return origskb;
656 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
658 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
659 bool last_monitor = list_is_last(&sdata->u.mntr.list,
660 &local->mon_list);
662 if (!monskb)
663 monskb = ieee80211_make_monitor_skb(local, &origskb,
664 rate,
665 rtap_vendor_space,
666 only_monitor &&
667 last_monitor);
669 if (monskb) {
670 struct sk_buff *skb;
672 if (last_monitor) {
673 skb = monskb;
674 monskb = NULL;
675 } else {
676 skb = skb_clone(monskb, GFP_ATOMIC);
679 if (skb) {
680 skb->dev = sdata->dev;
681 ieee80211_rx_stats(skb->dev, skb->len);
682 netif_receive_skb(skb);
686 if (last_monitor)
687 break;
690 /* this happens if last_monitor was erroneously false */
691 dev_kfree_skb(monskb);
693 /* ditto */
694 if (!origskb)
695 return NULL;
697 remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
698 return origskb;
701 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
704 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
705 int tid, seqno_idx, security_idx;
707 /* does the frame have a qos control field? */
708 if (ieee80211_is_data_qos(hdr->frame_control)) {
709 u8 *qc = ieee80211_get_qos_ctl(hdr);
710 /* frame has qos control */
711 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
712 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
713 status->rx_flags |= IEEE80211_RX_AMSDU;
715 seqno_idx = tid;
716 security_idx = tid;
717 } else {
719 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
721 * Sequence numbers for management frames, QoS data
722 * frames with a broadcast/multicast address in the
723 * Address 1 field, and all non-QoS data frames sent
724 * by QoS STAs are assigned using an additional single
725 * modulo-4096 counter, [...]
727 * We also use that counter for non-QoS STAs.
729 seqno_idx = IEEE80211_NUM_TIDS;
730 security_idx = 0;
731 if (ieee80211_is_mgmt(hdr->frame_control))
732 security_idx = IEEE80211_NUM_TIDS;
733 tid = 0;
736 rx->seqno_idx = seqno_idx;
737 rx->security_idx = security_idx;
738 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
739 * For now, set skb->priority to 0 for other cases. */
740 rx->skb->priority = (tid > 7) ? 0 : tid;
744 * DOC: Packet alignment
746 * Drivers always need to pass packets that are aligned to two-byte boundaries
747 * to the stack.
749 * Additionally, should, if possible, align the payload data in a way that
750 * guarantees that the contained IP header is aligned to a four-byte
751 * boundary. In the case of regular frames, this simply means aligning the
752 * payload to a four-byte boundary (because either the IP header is directly
753 * contained, or IV/RFC1042 headers that have a length divisible by four are
754 * in front of it). If the payload data is not properly aligned and the
755 * architecture doesn't support efficient unaligned operations, mac80211
756 * will align the data.
758 * With A-MSDU frames, however, the payload data address must yield two modulo
759 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
760 * push the IP header further back to a multiple of four again. Thankfully, the
761 * specs were sane enough this time around to require padding each A-MSDU
762 * subframe to a length that is a multiple of four.
764 * Padding like Atheros hardware adds which is between the 802.11 header and
765 * the payload is not supported, the driver is required to move the 802.11
766 * header to be directly in front of the payload in that case.
768 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
770 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
771 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
772 #endif
776 /* rx handlers */
778 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
782 if (is_multicast_ether_addr(hdr->addr1))
783 return 0;
785 return ieee80211_is_robust_mgmt_frame(skb);
789 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
791 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
793 if (!is_multicast_ether_addr(hdr->addr1))
794 return 0;
796 return ieee80211_is_robust_mgmt_frame(skb);
800 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
801 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
803 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
804 struct ieee80211_mmie *mmie;
805 struct ieee80211_mmie_16 *mmie16;
807 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
808 return -1;
810 if (!ieee80211_is_robust_mgmt_frame(skb))
811 return -1; /* not a robust management frame */
813 mmie = (struct ieee80211_mmie *)
814 (skb->data + skb->len - sizeof(*mmie));
815 if (mmie->element_id == WLAN_EID_MMIE &&
816 mmie->length == sizeof(*mmie) - 2)
817 return le16_to_cpu(mmie->key_id);
819 mmie16 = (struct ieee80211_mmie_16 *)
820 (skb->data + skb->len - sizeof(*mmie16));
821 if (skb->len >= 24 + sizeof(*mmie16) &&
822 mmie16->element_id == WLAN_EID_MMIE &&
823 mmie16->length == sizeof(*mmie16) - 2)
824 return le16_to_cpu(mmie16->key_id);
826 return -1;
829 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
830 struct sk_buff *skb)
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
833 __le16 fc;
834 int hdrlen;
835 u8 keyid;
837 fc = hdr->frame_control;
838 hdrlen = ieee80211_hdrlen(fc);
840 if (skb->len < hdrlen + cs->hdr_len)
841 return -EINVAL;
843 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
844 keyid &= cs->key_idx_mask;
845 keyid >>= cs->key_idx_shift;
847 return keyid;
850 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
853 char *dev_addr = rx->sdata->vif.addr;
855 if (ieee80211_is_data(hdr->frame_control)) {
856 if (is_multicast_ether_addr(hdr->addr1)) {
857 if (ieee80211_has_tods(hdr->frame_control) ||
858 !ieee80211_has_fromds(hdr->frame_control))
859 return RX_DROP_MONITOR;
860 if (ether_addr_equal(hdr->addr3, dev_addr))
861 return RX_DROP_MONITOR;
862 } else {
863 if (!ieee80211_has_a4(hdr->frame_control))
864 return RX_DROP_MONITOR;
865 if (ether_addr_equal(hdr->addr4, dev_addr))
866 return RX_DROP_MONITOR;
870 /* If there is not an established peer link and this is not a peer link
871 * establisment frame, beacon or probe, drop the frame.
874 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
875 struct ieee80211_mgmt *mgmt;
877 if (!ieee80211_is_mgmt(hdr->frame_control))
878 return RX_DROP_MONITOR;
880 if (ieee80211_is_action(hdr->frame_control)) {
881 u8 category;
883 /* make sure category field is present */
884 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
885 return RX_DROP_MONITOR;
887 mgmt = (struct ieee80211_mgmt *)hdr;
888 category = mgmt->u.action.category;
889 if (category != WLAN_CATEGORY_MESH_ACTION &&
890 category != WLAN_CATEGORY_SELF_PROTECTED)
891 return RX_DROP_MONITOR;
892 return RX_CONTINUE;
895 if (ieee80211_is_probe_req(hdr->frame_control) ||
896 ieee80211_is_probe_resp(hdr->frame_control) ||
897 ieee80211_is_beacon(hdr->frame_control) ||
898 ieee80211_is_auth(hdr->frame_control))
899 return RX_CONTINUE;
901 return RX_DROP_MONITOR;
904 return RX_CONTINUE;
907 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
908 int index)
910 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
911 struct sk_buff *tail = skb_peek_tail(frames);
912 struct ieee80211_rx_status *status;
914 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
915 return true;
917 if (!tail)
918 return false;
920 status = IEEE80211_SKB_RXCB(tail);
921 if (status->flag & RX_FLAG_AMSDU_MORE)
922 return false;
924 return true;
927 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
928 struct tid_ampdu_rx *tid_agg_rx,
929 int index,
930 struct sk_buff_head *frames)
932 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
933 struct sk_buff *skb;
934 struct ieee80211_rx_status *status;
936 lockdep_assert_held(&tid_agg_rx->reorder_lock);
938 if (skb_queue_empty(skb_list))
939 goto no_frame;
941 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
942 __skb_queue_purge(skb_list);
943 goto no_frame;
946 /* release frames from the reorder ring buffer */
947 tid_agg_rx->stored_mpdu_num--;
948 while ((skb = __skb_dequeue(skb_list))) {
949 status = IEEE80211_SKB_RXCB(skb);
950 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
951 __skb_queue_tail(frames, skb);
954 no_frame:
955 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
956 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
959 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
960 struct tid_ampdu_rx *tid_agg_rx,
961 u16 head_seq_num,
962 struct sk_buff_head *frames)
964 int index;
966 lockdep_assert_held(&tid_agg_rx->reorder_lock);
968 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
969 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
970 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
971 frames);
976 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
977 * the skb was added to the buffer longer than this time ago, the earlier
978 * frames that have not yet been received are assumed to be lost and the skb
979 * can be released for processing. This may also release other skb's from the
980 * reorder buffer if there are no additional gaps between the frames.
982 * Callers must hold tid_agg_rx->reorder_lock.
984 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
986 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
987 struct tid_ampdu_rx *tid_agg_rx,
988 struct sk_buff_head *frames)
990 int index, i, j;
992 lockdep_assert_held(&tid_agg_rx->reorder_lock);
994 /* release the buffer until next missing frame */
995 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
996 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
997 tid_agg_rx->stored_mpdu_num) {
999 * No buffers ready to be released, but check whether any
1000 * frames in the reorder buffer have timed out.
1002 int skipped = 1;
1003 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1004 j = (j + 1) % tid_agg_rx->buf_size) {
1005 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1006 skipped++;
1007 continue;
1009 if (skipped &&
1010 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1011 HT_RX_REORDER_BUF_TIMEOUT))
1012 goto set_release_timer;
1014 /* don't leave incomplete A-MSDUs around */
1015 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1016 i = (i + 1) % tid_agg_rx->buf_size)
1017 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1019 ht_dbg_ratelimited(sdata,
1020 "release an RX reorder frame due to timeout on earlier frames\n");
1021 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1022 frames);
1025 * Increment the head seq# also for the skipped slots.
1027 tid_agg_rx->head_seq_num =
1028 (tid_agg_rx->head_seq_num +
1029 skipped) & IEEE80211_SN_MASK;
1030 skipped = 0;
1032 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1033 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1034 frames);
1035 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1038 if (tid_agg_rx->stored_mpdu_num) {
1039 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1041 for (; j != (index - 1) % tid_agg_rx->buf_size;
1042 j = (j + 1) % tid_agg_rx->buf_size) {
1043 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1044 break;
1047 set_release_timer:
1049 if (!tid_agg_rx->removed)
1050 mod_timer(&tid_agg_rx->reorder_timer,
1051 tid_agg_rx->reorder_time[j] + 1 +
1052 HT_RX_REORDER_BUF_TIMEOUT);
1053 } else {
1054 del_timer(&tid_agg_rx->reorder_timer);
1059 * As this function belongs to the RX path it must be under
1060 * rcu_read_lock protection. It returns false if the frame
1061 * can be processed immediately, true if it was consumed.
1063 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1064 struct tid_ampdu_rx *tid_agg_rx,
1065 struct sk_buff *skb,
1066 struct sk_buff_head *frames)
1068 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1069 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1070 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1071 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1072 u16 head_seq_num, buf_size;
1073 int index;
1074 bool ret = true;
1076 spin_lock(&tid_agg_rx->reorder_lock);
1079 * Offloaded BA sessions have no known starting sequence number so pick
1080 * one from first Rxed frame for this tid after BA was started.
1082 if (unlikely(tid_agg_rx->auto_seq)) {
1083 tid_agg_rx->auto_seq = false;
1084 tid_agg_rx->ssn = mpdu_seq_num;
1085 tid_agg_rx->head_seq_num = mpdu_seq_num;
1088 buf_size = tid_agg_rx->buf_size;
1089 head_seq_num = tid_agg_rx->head_seq_num;
1092 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1093 * be reordered.
1095 if (unlikely(!tid_agg_rx->started)) {
1096 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1097 ret = false;
1098 goto out;
1100 tid_agg_rx->started = true;
1103 /* frame with out of date sequence number */
1104 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1105 dev_kfree_skb(skb);
1106 goto out;
1110 * If frame the sequence number exceeds our buffering window
1111 * size release some previous frames to make room for this one.
1113 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1114 head_seq_num = ieee80211_sn_inc(
1115 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1116 /* release stored frames up to new head to stack */
1117 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1118 head_seq_num, frames);
1121 /* Now the new frame is always in the range of the reordering buffer */
1123 index = mpdu_seq_num % tid_agg_rx->buf_size;
1125 /* check if we already stored this frame */
1126 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1127 dev_kfree_skb(skb);
1128 goto out;
1132 * If the current MPDU is in the right order and nothing else
1133 * is stored we can process it directly, no need to buffer it.
1134 * If it is first but there's something stored, we may be able
1135 * to release frames after this one.
1137 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1138 tid_agg_rx->stored_mpdu_num == 0) {
1139 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1140 tid_agg_rx->head_seq_num =
1141 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1142 ret = false;
1143 goto out;
1146 /* put the frame in the reordering buffer */
1147 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1148 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1149 tid_agg_rx->reorder_time[index] = jiffies;
1150 tid_agg_rx->stored_mpdu_num++;
1151 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1154 out:
1155 spin_unlock(&tid_agg_rx->reorder_lock);
1156 return ret;
1160 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1161 * true if the MPDU was buffered, false if it should be processed.
1163 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1164 struct sk_buff_head *frames)
1166 struct sk_buff *skb = rx->skb;
1167 struct ieee80211_local *local = rx->local;
1168 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1169 struct sta_info *sta = rx->sta;
1170 struct tid_ampdu_rx *tid_agg_rx;
1171 u16 sc;
1172 u8 tid, ack_policy;
1174 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1175 is_multicast_ether_addr(hdr->addr1))
1176 goto dont_reorder;
1179 * filter the QoS data rx stream according to
1180 * STA/TID and check if this STA/TID is on aggregation
1183 if (!sta)
1184 goto dont_reorder;
1186 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1187 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1188 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1190 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1191 if (!tid_agg_rx) {
1192 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1193 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1194 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1195 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1196 WLAN_BACK_RECIPIENT,
1197 WLAN_REASON_QSTA_REQUIRE_SETUP);
1198 goto dont_reorder;
1201 /* qos null data frames are excluded */
1202 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1203 goto dont_reorder;
1205 /* not part of a BA session */
1206 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1207 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1208 goto dont_reorder;
1210 /* new, potentially un-ordered, ampdu frame - process it */
1212 /* reset session timer */
1213 if (tid_agg_rx->timeout)
1214 tid_agg_rx->last_rx = jiffies;
1216 /* if this mpdu is fragmented - terminate rx aggregation session */
1217 sc = le16_to_cpu(hdr->seq_ctrl);
1218 if (sc & IEEE80211_SCTL_FRAG) {
1219 skb_queue_tail(&rx->sdata->skb_queue, skb);
1220 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1221 return;
1225 * No locking needed -- we will only ever process one
1226 * RX packet at a time, and thus own tid_agg_rx. All
1227 * other code manipulating it needs to (and does) make
1228 * sure that we cannot get to it any more before doing
1229 * anything with it.
1231 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1232 frames))
1233 return;
1235 dont_reorder:
1236 __skb_queue_tail(frames, skb);
1239 static ieee80211_rx_result debug_noinline
1240 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1245 if (status->flag & RX_FLAG_DUP_VALIDATED)
1246 return RX_CONTINUE;
1249 * Drop duplicate 802.11 retransmissions
1250 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1253 if (rx->skb->len < 24)
1254 return RX_CONTINUE;
1256 if (ieee80211_is_ctl(hdr->frame_control) ||
1257 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1258 is_multicast_ether_addr(hdr->addr1))
1259 return RX_CONTINUE;
1261 if (!rx->sta)
1262 return RX_CONTINUE;
1264 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1265 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1266 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1267 rx->sta->rx_stats.num_duplicates++;
1268 return RX_DROP_UNUSABLE;
1269 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1270 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1273 return RX_CONTINUE;
1276 static ieee80211_rx_result debug_noinline
1277 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1281 /* Drop disallowed frame classes based on STA auth/assoc state;
1282 * IEEE 802.11, Chap 5.5.
1284 * mac80211 filters only based on association state, i.e. it drops
1285 * Class 3 frames from not associated stations. hostapd sends
1286 * deauth/disassoc frames when needed. In addition, hostapd is
1287 * responsible for filtering on both auth and assoc states.
1290 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1291 return ieee80211_rx_mesh_check(rx);
1293 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1294 ieee80211_is_pspoll(hdr->frame_control)) &&
1295 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1296 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1297 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1298 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1300 * accept port control frames from the AP even when it's not
1301 * yet marked ASSOC to prevent a race where we don't set the
1302 * assoc bit quickly enough before it sends the first frame
1304 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1305 ieee80211_is_data_present(hdr->frame_control)) {
1306 unsigned int hdrlen;
1307 __be16 ethertype;
1309 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1311 if (rx->skb->len < hdrlen + 8)
1312 return RX_DROP_MONITOR;
1314 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1315 if (ethertype == rx->sdata->control_port_protocol)
1316 return RX_CONTINUE;
1319 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1320 cfg80211_rx_spurious_frame(rx->sdata->dev,
1321 hdr->addr2,
1322 GFP_ATOMIC))
1323 return RX_DROP_UNUSABLE;
1325 return RX_DROP_MONITOR;
1328 return RX_CONTINUE;
1332 static ieee80211_rx_result debug_noinline
1333 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1335 struct ieee80211_local *local;
1336 struct ieee80211_hdr *hdr;
1337 struct sk_buff *skb;
1339 local = rx->local;
1340 skb = rx->skb;
1341 hdr = (struct ieee80211_hdr *) skb->data;
1343 if (!local->pspolling)
1344 return RX_CONTINUE;
1346 if (!ieee80211_has_fromds(hdr->frame_control))
1347 /* this is not from AP */
1348 return RX_CONTINUE;
1350 if (!ieee80211_is_data(hdr->frame_control))
1351 return RX_CONTINUE;
1353 if (!ieee80211_has_moredata(hdr->frame_control)) {
1354 /* AP has no more frames buffered for us */
1355 local->pspolling = false;
1356 return RX_CONTINUE;
1359 /* more data bit is set, let's request a new frame from the AP */
1360 ieee80211_send_pspoll(local, rx->sdata);
1362 return RX_CONTINUE;
1365 static void sta_ps_start(struct sta_info *sta)
1367 struct ieee80211_sub_if_data *sdata = sta->sdata;
1368 struct ieee80211_local *local = sdata->local;
1369 struct ps_data *ps;
1370 int tid;
1372 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1373 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1374 ps = &sdata->bss->ps;
1375 else
1376 return;
1378 atomic_inc(&ps->num_sta_ps);
1379 set_sta_flag(sta, WLAN_STA_PS_STA);
1380 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1381 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1382 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1383 sta->sta.addr, sta->sta.aid);
1385 ieee80211_clear_fast_xmit(sta);
1387 if (!sta->sta.txq[0])
1388 return;
1390 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1391 if (txq_has_queue(sta->sta.txq[tid]))
1392 set_bit(tid, &sta->txq_buffered_tids);
1393 else
1394 clear_bit(tid, &sta->txq_buffered_tids);
1398 static void sta_ps_end(struct sta_info *sta)
1400 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1401 sta->sta.addr, sta->sta.aid);
1403 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1405 * Clear the flag only if the other one is still set
1406 * so that the TX path won't start TX'ing new frames
1407 * directly ... In the case that the driver flag isn't
1408 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1410 clear_sta_flag(sta, WLAN_STA_PS_STA);
1411 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1412 sta->sta.addr, sta->sta.aid);
1413 return;
1416 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1417 clear_sta_flag(sta, WLAN_STA_PS_STA);
1418 ieee80211_sta_ps_deliver_wakeup(sta);
1421 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1423 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1424 bool in_ps;
1426 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1428 /* Don't let the same PS state be set twice */
1429 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1430 if ((start && in_ps) || (!start && !in_ps))
1431 return -EINVAL;
1433 if (start)
1434 sta_ps_start(sta);
1435 else
1436 sta_ps_end(sta);
1438 return 0;
1440 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1442 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1444 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1446 if (test_sta_flag(sta, WLAN_STA_SP))
1447 return;
1449 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1450 ieee80211_sta_ps_deliver_poll_response(sta);
1451 else
1452 set_sta_flag(sta, WLAN_STA_PSPOLL);
1454 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1456 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1458 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1459 int ac = ieee80211_ac_from_tid(tid);
1462 * If this AC is not trigger-enabled do nothing unless the
1463 * driver is calling us after it already checked.
1465 * NB: This could/should check a separate bitmap of trigger-
1466 * enabled queues, but for now we only implement uAPSD w/o
1467 * TSPEC changes to the ACs, so they're always the same.
1469 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1470 tid != IEEE80211_NUM_TIDS)
1471 return;
1473 /* if we are in a service period, do nothing */
1474 if (test_sta_flag(sta, WLAN_STA_SP))
1475 return;
1477 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1478 ieee80211_sta_ps_deliver_uapsd(sta);
1479 else
1480 set_sta_flag(sta, WLAN_STA_UAPSD);
1482 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1487 struct ieee80211_sub_if_data *sdata = rx->sdata;
1488 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1491 if (!rx->sta)
1492 return RX_CONTINUE;
1494 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1495 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1496 return RX_CONTINUE;
1499 * The device handles station powersave, so don't do anything about
1500 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1501 * it to mac80211 since they're handled.)
1503 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1504 return RX_CONTINUE;
1507 * Don't do anything if the station isn't already asleep. In
1508 * the uAPSD case, the station will probably be marked asleep,
1509 * in the PS-Poll case the station must be confused ...
1511 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1512 return RX_CONTINUE;
1514 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1515 ieee80211_sta_pspoll(&rx->sta->sta);
1517 /* Free PS Poll skb here instead of returning RX_DROP that would
1518 * count as an dropped frame. */
1519 dev_kfree_skb(rx->skb);
1521 return RX_QUEUED;
1522 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1523 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1524 ieee80211_has_pm(hdr->frame_control) &&
1525 (ieee80211_is_data_qos(hdr->frame_control) ||
1526 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1527 u8 tid;
1529 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1531 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1534 return RX_CONTINUE;
1537 static ieee80211_rx_result debug_noinline
1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1540 struct sta_info *sta = rx->sta;
1541 struct sk_buff *skb = rx->skb;
1542 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1544 int i;
1546 if (!sta)
1547 return RX_CONTINUE;
1550 * Update last_rx only for IBSS packets which are for the current
1551 * BSSID and for station already AUTHORIZED to avoid keeping the
1552 * current IBSS network alive in cases where other STAs start
1553 * using different BSSID. This will also give the station another
1554 * chance to restart the authentication/authorization in case
1555 * something went wrong the first time.
1557 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1558 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1559 NL80211_IFTYPE_ADHOC);
1560 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1561 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1562 sta->rx_stats.last_rx = jiffies;
1563 if (ieee80211_is_data(hdr->frame_control) &&
1564 !is_multicast_ether_addr(hdr->addr1))
1565 sta->rx_stats.last_rate =
1566 sta_stats_encode_rate(status);
1568 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1569 sta->rx_stats.last_rx = jiffies;
1570 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1572 * Mesh beacons will update last_rx when if they are found to
1573 * match the current local configuration when processed.
1575 sta->rx_stats.last_rx = jiffies;
1576 if (ieee80211_is_data(hdr->frame_control))
1577 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1580 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1581 ieee80211_sta_rx_notify(rx->sdata, hdr);
1583 sta->rx_stats.fragments++;
1585 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1586 sta->rx_stats.bytes += rx->skb->len;
1587 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1589 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1590 sta->rx_stats.last_signal = status->signal;
1591 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1594 if (status->chains) {
1595 sta->rx_stats.chains = status->chains;
1596 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1597 int signal = status->chain_signal[i];
1599 if (!(status->chains & BIT(i)))
1600 continue;
1602 sta->rx_stats.chain_signal_last[i] = signal;
1603 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1604 -signal);
1609 * Change STA power saving mode only at the end of a frame
1610 * exchange sequence, and only for a data or management
1611 * frame as specified in IEEE 802.11-2016 11.2.3.2
1613 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1614 !ieee80211_has_morefrags(hdr->frame_control) &&
1615 (ieee80211_is_mgmt(hdr->frame_control) ||
1616 ieee80211_is_data(hdr->frame_control)) &&
1617 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1618 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1619 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1620 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1621 if (!ieee80211_has_pm(hdr->frame_control))
1622 sta_ps_end(sta);
1623 } else {
1624 if (ieee80211_has_pm(hdr->frame_control))
1625 sta_ps_start(sta);
1629 /* mesh power save support */
1630 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1631 ieee80211_mps_rx_h_sta_process(sta, hdr);
1634 * Drop (qos-)data::nullfunc frames silently, since they
1635 * are used only to control station power saving mode.
1637 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1638 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1639 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1642 * If we receive a 4-addr nullfunc frame from a STA
1643 * that was not moved to a 4-addr STA vlan yet send
1644 * the event to userspace and for older hostapd drop
1645 * the frame to the monitor interface.
1647 if (ieee80211_has_a4(hdr->frame_control) &&
1648 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1649 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1650 !rx->sdata->u.vlan.sta))) {
1651 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1652 cfg80211_rx_unexpected_4addr_frame(
1653 rx->sdata->dev, sta->sta.addr,
1654 GFP_ATOMIC);
1655 return RX_DROP_MONITOR;
1658 * Update counter and free packet here to avoid
1659 * counting this as a dropped packed.
1661 sta->rx_stats.packets++;
1662 dev_kfree_skb(rx->skb);
1663 return RX_QUEUED;
1666 return RX_CONTINUE;
1667 } /* ieee80211_rx_h_sta_process */
1669 static ieee80211_rx_result debug_noinline
1670 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1672 struct sk_buff *skb = rx->skb;
1673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1675 int keyidx;
1676 int hdrlen;
1677 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1678 struct ieee80211_key *sta_ptk = NULL;
1679 int mmie_keyidx = -1;
1680 __le16 fc;
1681 const struct ieee80211_cipher_scheme *cs = NULL;
1684 * Key selection 101
1686 * There are four types of keys:
1687 * - GTK (group keys)
1688 * - IGTK (group keys for management frames)
1689 * - PTK (pairwise keys)
1690 * - STK (station-to-station pairwise keys)
1692 * When selecting a key, we have to distinguish between multicast
1693 * (including broadcast) and unicast frames, the latter can only
1694 * use PTKs and STKs while the former always use GTKs and IGTKs.
1695 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1696 * unicast frames can also use key indices like GTKs. Hence, if we
1697 * don't have a PTK/STK we check the key index for a WEP key.
1699 * Note that in a regular BSS, multicast frames are sent by the
1700 * AP only, associated stations unicast the frame to the AP first
1701 * which then multicasts it on their behalf.
1703 * There is also a slight problem in IBSS mode: GTKs are negotiated
1704 * with each station, that is something we don't currently handle.
1705 * The spec seems to expect that one negotiates the same key with
1706 * every station but there's no such requirement; VLANs could be
1707 * possible.
1710 /* start without a key */
1711 rx->key = NULL;
1712 fc = hdr->frame_control;
1714 if (rx->sta) {
1715 int keyid = rx->sta->ptk_idx;
1717 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1718 cs = rx->sta->cipher_scheme;
1719 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1720 if (unlikely(keyid < 0))
1721 return RX_DROP_UNUSABLE;
1723 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1726 if (!ieee80211_has_protected(fc))
1727 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1729 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1730 rx->key = sta_ptk;
1731 if ((status->flag & RX_FLAG_DECRYPTED) &&
1732 (status->flag & RX_FLAG_IV_STRIPPED))
1733 return RX_CONTINUE;
1734 /* Skip decryption if the frame is not protected. */
1735 if (!ieee80211_has_protected(fc))
1736 return RX_CONTINUE;
1737 } else if (mmie_keyidx >= 0) {
1738 /* Broadcast/multicast robust management frame / BIP */
1739 if ((status->flag & RX_FLAG_DECRYPTED) &&
1740 (status->flag & RX_FLAG_IV_STRIPPED))
1741 return RX_CONTINUE;
1743 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1744 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1745 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1746 if (rx->sta) {
1747 if (ieee80211_is_group_privacy_action(skb) &&
1748 test_sta_flag(rx->sta, WLAN_STA_MFP))
1749 return RX_DROP_MONITOR;
1751 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1753 if (!rx->key)
1754 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1755 } else if (!ieee80211_has_protected(fc)) {
1757 * The frame was not protected, so skip decryption. However, we
1758 * need to set rx->key if there is a key that could have been
1759 * used so that the frame may be dropped if encryption would
1760 * have been expected.
1762 struct ieee80211_key *key = NULL;
1763 struct ieee80211_sub_if_data *sdata = rx->sdata;
1764 int i;
1766 if (ieee80211_is_mgmt(fc) &&
1767 is_multicast_ether_addr(hdr->addr1) &&
1768 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1769 rx->key = key;
1770 else {
1771 if (rx->sta) {
1772 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1773 key = rcu_dereference(rx->sta->gtk[i]);
1774 if (key)
1775 break;
1778 if (!key) {
1779 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1780 key = rcu_dereference(sdata->keys[i]);
1781 if (key)
1782 break;
1785 if (key)
1786 rx->key = key;
1788 return RX_CONTINUE;
1789 } else {
1790 u8 keyid;
1793 * The device doesn't give us the IV so we won't be
1794 * able to look up the key. That's ok though, we
1795 * don't need to decrypt the frame, we just won't
1796 * be able to keep statistics accurate.
1797 * Except for key threshold notifications, should
1798 * we somehow allow the driver to tell us which key
1799 * the hardware used if this flag is set?
1801 if ((status->flag & RX_FLAG_DECRYPTED) &&
1802 (status->flag & RX_FLAG_IV_STRIPPED))
1803 return RX_CONTINUE;
1805 hdrlen = ieee80211_hdrlen(fc);
1807 if (cs) {
1808 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1810 if (unlikely(keyidx < 0))
1811 return RX_DROP_UNUSABLE;
1812 } else {
1813 if (rx->skb->len < 8 + hdrlen)
1814 return RX_DROP_UNUSABLE; /* TODO: count this? */
1816 * no need to call ieee80211_wep_get_keyidx,
1817 * it verifies a bunch of things we've done already
1819 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1820 keyidx = keyid >> 6;
1823 /* check per-station GTK first, if multicast packet */
1824 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1825 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1827 /* if not found, try default key */
1828 if (!rx->key) {
1829 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1832 * RSNA-protected unicast frames should always be
1833 * sent with pairwise or station-to-station keys,
1834 * but for WEP we allow using a key index as well.
1836 if (rx->key &&
1837 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1838 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1839 !is_multicast_ether_addr(hdr->addr1))
1840 rx->key = NULL;
1844 if (rx->key) {
1845 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1846 return RX_DROP_MONITOR;
1848 /* TODO: add threshold stuff again */
1849 } else {
1850 return RX_DROP_MONITOR;
1853 switch (rx->key->conf.cipher) {
1854 case WLAN_CIPHER_SUITE_WEP40:
1855 case WLAN_CIPHER_SUITE_WEP104:
1856 result = ieee80211_crypto_wep_decrypt(rx);
1857 break;
1858 case WLAN_CIPHER_SUITE_TKIP:
1859 result = ieee80211_crypto_tkip_decrypt(rx);
1860 break;
1861 case WLAN_CIPHER_SUITE_CCMP:
1862 result = ieee80211_crypto_ccmp_decrypt(
1863 rx, IEEE80211_CCMP_MIC_LEN);
1864 break;
1865 case WLAN_CIPHER_SUITE_CCMP_256:
1866 result = ieee80211_crypto_ccmp_decrypt(
1867 rx, IEEE80211_CCMP_256_MIC_LEN);
1868 break;
1869 case WLAN_CIPHER_SUITE_AES_CMAC:
1870 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1871 break;
1872 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1873 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1874 break;
1875 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1876 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1877 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1878 break;
1879 case WLAN_CIPHER_SUITE_GCMP:
1880 case WLAN_CIPHER_SUITE_GCMP_256:
1881 result = ieee80211_crypto_gcmp_decrypt(rx);
1882 break;
1883 default:
1884 result = ieee80211_crypto_hw_decrypt(rx);
1887 /* the hdr variable is invalid after the decrypt handlers */
1889 /* either the frame has been decrypted or will be dropped */
1890 status->flag |= RX_FLAG_DECRYPTED;
1892 return result;
1895 static inline struct ieee80211_fragment_entry *
1896 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1897 unsigned int frag, unsigned int seq, int rx_queue,
1898 struct sk_buff **skb)
1900 struct ieee80211_fragment_entry *entry;
1902 entry = &sdata->fragments[sdata->fragment_next++];
1903 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1904 sdata->fragment_next = 0;
1906 if (!skb_queue_empty(&entry->skb_list))
1907 __skb_queue_purge(&entry->skb_list);
1909 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1910 *skb = NULL;
1911 entry->first_frag_time = jiffies;
1912 entry->seq = seq;
1913 entry->rx_queue = rx_queue;
1914 entry->last_frag = frag;
1915 entry->check_sequential_pn = false;
1916 entry->extra_len = 0;
1918 return entry;
1921 static inline struct ieee80211_fragment_entry *
1922 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1923 unsigned int frag, unsigned int seq,
1924 int rx_queue, struct ieee80211_hdr *hdr)
1926 struct ieee80211_fragment_entry *entry;
1927 int i, idx;
1929 idx = sdata->fragment_next;
1930 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1931 struct ieee80211_hdr *f_hdr;
1933 idx--;
1934 if (idx < 0)
1935 idx = IEEE80211_FRAGMENT_MAX - 1;
1937 entry = &sdata->fragments[idx];
1938 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1939 entry->rx_queue != rx_queue ||
1940 entry->last_frag + 1 != frag)
1941 continue;
1943 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1946 * Check ftype and addresses are equal, else check next fragment
1948 if (((hdr->frame_control ^ f_hdr->frame_control) &
1949 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1950 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1951 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1952 continue;
1954 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1955 __skb_queue_purge(&entry->skb_list);
1956 continue;
1958 return entry;
1961 return NULL;
1964 static ieee80211_rx_result debug_noinline
1965 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1967 struct ieee80211_hdr *hdr;
1968 u16 sc;
1969 __le16 fc;
1970 unsigned int frag, seq;
1971 struct ieee80211_fragment_entry *entry;
1972 struct sk_buff *skb;
1974 hdr = (struct ieee80211_hdr *)rx->skb->data;
1975 fc = hdr->frame_control;
1977 if (ieee80211_is_ctl(fc))
1978 return RX_CONTINUE;
1980 sc = le16_to_cpu(hdr->seq_ctrl);
1981 frag = sc & IEEE80211_SCTL_FRAG;
1983 if (is_multicast_ether_addr(hdr->addr1)) {
1984 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1985 goto out_no_led;
1988 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1989 goto out;
1991 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1993 if (skb_linearize(rx->skb))
1994 return RX_DROP_UNUSABLE;
1997 * skb_linearize() might change the skb->data and
1998 * previously cached variables (in this case, hdr) need to
1999 * be refreshed with the new data.
2001 hdr = (struct ieee80211_hdr *)rx->skb->data;
2002 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2004 if (frag == 0) {
2005 /* This is the first fragment of a new frame. */
2006 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2007 rx->seqno_idx, &(rx->skb));
2008 if (rx->key &&
2009 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2010 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2011 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2012 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2013 ieee80211_has_protected(fc)) {
2014 int queue = rx->security_idx;
2016 /* Store CCMP/GCMP PN so that we can verify that the
2017 * next fragment has a sequential PN value.
2019 entry->check_sequential_pn = true;
2020 memcpy(entry->last_pn,
2021 rx->key->u.ccmp.rx_pn[queue],
2022 IEEE80211_CCMP_PN_LEN);
2023 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2024 u.ccmp.rx_pn) !=
2025 offsetof(struct ieee80211_key,
2026 u.gcmp.rx_pn));
2027 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2028 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2029 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2030 IEEE80211_GCMP_PN_LEN);
2032 return RX_QUEUED;
2035 /* This is a fragment for a frame that should already be pending in
2036 * fragment cache. Add this fragment to the end of the pending entry.
2038 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2039 rx->seqno_idx, hdr);
2040 if (!entry) {
2041 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2042 return RX_DROP_MONITOR;
2045 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2046 * MPDU PN values are not incrementing in steps of 1."
2047 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2048 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2050 if (entry->check_sequential_pn) {
2051 int i;
2052 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2053 int queue;
2055 if (!rx->key ||
2056 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2057 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2058 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2059 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2060 return RX_DROP_UNUSABLE;
2061 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2062 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2063 pn[i]++;
2064 if (pn[i])
2065 break;
2067 queue = rx->security_idx;
2068 rpn = rx->key->u.ccmp.rx_pn[queue];
2069 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2070 return RX_DROP_UNUSABLE;
2071 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2074 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2075 __skb_queue_tail(&entry->skb_list, rx->skb);
2076 entry->last_frag = frag;
2077 entry->extra_len += rx->skb->len;
2078 if (ieee80211_has_morefrags(fc)) {
2079 rx->skb = NULL;
2080 return RX_QUEUED;
2083 rx->skb = __skb_dequeue(&entry->skb_list);
2084 if (skb_tailroom(rx->skb) < entry->extra_len) {
2085 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2086 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2087 GFP_ATOMIC))) {
2088 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2089 __skb_queue_purge(&entry->skb_list);
2090 return RX_DROP_UNUSABLE;
2093 while ((skb = __skb_dequeue(&entry->skb_list))) {
2094 skb_put_data(rx->skb, skb->data, skb->len);
2095 dev_kfree_skb(skb);
2098 out:
2099 ieee80211_led_rx(rx->local);
2100 out_no_led:
2101 if (rx->sta)
2102 rx->sta->rx_stats.packets++;
2103 return RX_CONTINUE;
2106 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2108 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2109 return -EACCES;
2111 return 0;
2114 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2116 struct sk_buff *skb = rx->skb;
2117 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2120 * Pass through unencrypted frames if the hardware has
2121 * decrypted them already.
2123 if (status->flag & RX_FLAG_DECRYPTED)
2124 return 0;
2126 /* Drop unencrypted frames if key is set. */
2127 if (unlikely(!ieee80211_has_protected(fc) &&
2128 !ieee80211_is_nullfunc(fc) &&
2129 ieee80211_is_data(fc) && rx->key))
2130 return -EACCES;
2132 return 0;
2135 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2137 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2139 __le16 fc = hdr->frame_control;
2142 * Pass through unencrypted frames if the hardware has
2143 * decrypted them already.
2145 if (status->flag & RX_FLAG_DECRYPTED)
2146 return 0;
2148 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2149 if (unlikely(!ieee80211_has_protected(fc) &&
2150 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2151 rx->key)) {
2152 if (ieee80211_is_deauth(fc) ||
2153 ieee80211_is_disassoc(fc))
2154 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2155 rx->skb->data,
2156 rx->skb->len);
2157 return -EACCES;
2159 /* BIP does not use Protected field, so need to check MMIE */
2160 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2161 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2162 if (ieee80211_is_deauth(fc) ||
2163 ieee80211_is_disassoc(fc))
2164 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2165 rx->skb->data,
2166 rx->skb->len);
2167 return -EACCES;
2170 * When using MFP, Action frames are not allowed prior to
2171 * having configured keys.
2173 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2174 ieee80211_is_robust_mgmt_frame(rx->skb)))
2175 return -EACCES;
2178 return 0;
2181 static int
2182 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2184 struct ieee80211_sub_if_data *sdata = rx->sdata;
2185 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2186 bool check_port_control = false;
2187 struct ethhdr *ehdr;
2188 int ret;
2190 *port_control = false;
2191 if (ieee80211_has_a4(hdr->frame_control) &&
2192 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2193 return -1;
2195 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2196 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2198 if (!sdata->u.mgd.use_4addr)
2199 return -1;
2200 else
2201 check_port_control = true;
2204 if (is_multicast_ether_addr(hdr->addr1) &&
2205 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2206 return -1;
2208 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2209 if (ret < 0)
2210 return ret;
2212 ehdr = (struct ethhdr *) rx->skb->data;
2213 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2214 *port_control = true;
2215 else if (check_port_control)
2216 return -1;
2218 return 0;
2222 * requires that rx->skb is a frame with ethernet header
2224 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2226 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2227 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2228 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2231 * Allow EAPOL frames to us/the PAE group address regardless
2232 * of whether the frame was encrypted or not.
2234 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2235 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2236 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2237 return true;
2239 if (ieee80211_802_1x_port_control(rx) ||
2240 ieee80211_drop_unencrypted(rx, fc))
2241 return false;
2243 return true;
2247 * requires that rx->skb is a frame with ethernet header
2249 static void
2250 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2252 struct ieee80211_sub_if_data *sdata = rx->sdata;
2253 struct net_device *dev = sdata->dev;
2254 struct sk_buff *skb, *xmit_skb;
2255 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2256 struct sta_info *dsta;
2258 skb = rx->skb;
2259 xmit_skb = NULL;
2261 ieee80211_rx_stats(dev, skb->len);
2263 if (rx->sta) {
2264 /* The seqno index has the same property as needed
2265 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2266 * for non-QoS-data frames. Here we know it's a data
2267 * frame, so count MSDUs.
2269 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2270 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2271 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2274 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2275 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2276 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2277 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2278 if (is_multicast_ether_addr(ehdr->h_dest) &&
2279 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2281 * send multicast frames both to higher layers in
2282 * local net stack and back to the wireless medium
2284 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2285 if (!xmit_skb)
2286 net_info_ratelimited("%s: failed to clone multicast frame\n",
2287 dev->name);
2288 } else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2289 dsta = sta_info_get(sdata, skb->data);
2290 if (dsta) {
2292 * The destination station is associated to
2293 * this AP (in this VLAN), so send the frame
2294 * directly to it and do not pass it to local
2295 * net stack.
2297 xmit_skb = skb;
2298 skb = NULL;
2303 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2304 if (skb) {
2305 /* 'align' will only take the values 0 or 2 here since all
2306 * frames are required to be aligned to 2-byte boundaries
2307 * when being passed to mac80211; the code here works just
2308 * as well if that isn't true, but mac80211 assumes it can
2309 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2311 int align;
2313 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2314 if (align) {
2315 if (WARN_ON(skb_headroom(skb) < 3)) {
2316 dev_kfree_skb(skb);
2317 skb = NULL;
2318 } else {
2319 u8 *data = skb->data;
2320 size_t len = skb_headlen(skb);
2321 skb->data -= align;
2322 memmove(skb->data, data, len);
2323 skb_set_tail_pointer(skb, len);
2327 #endif
2329 if (skb) {
2330 /* deliver to local stack */
2331 skb->protocol = eth_type_trans(skb, dev);
2332 memset(skb->cb, 0, sizeof(skb->cb));
2333 if (rx->napi)
2334 napi_gro_receive(rx->napi, skb);
2335 else
2336 netif_receive_skb(skb);
2339 if (xmit_skb) {
2341 * Send to wireless media and increase priority by 256 to
2342 * keep the received priority instead of reclassifying
2343 * the frame (see cfg80211_classify8021d).
2345 xmit_skb->priority += 256;
2346 xmit_skb->protocol = htons(ETH_P_802_3);
2347 skb_reset_network_header(xmit_skb);
2348 skb_reset_mac_header(xmit_skb);
2349 dev_queue_xmit(xmit_skb);
2353 static ieee80211_rx_result debug_noinline
2354 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2356 struct net_device *dev = rx->sdata->dev;
2357 struct sk_buff *skb = rx->skb;
2358 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2359 __le16 fc = hdr->frame_control;
2360 struct sk_buff_head frame_list;
2361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2362 struct ethhdr ethhdr;
2363 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2365 if (unlikely(!ieee80211_is_data(fc)))
2366 return RX_CONTINUE;
2368 if (unlikely(!ieee80211_is_data_present(fc)))
2369 return RX_DROP_MONITOR;
2371 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2372 return RX_CONTINUE;
2374 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2375 switch (rx->sdata->vif.type) {
2376 case NL80211_IFTYPE_AP_VLAN:
2377 if (!rx->sdata->u.vlan.sta)
2378 return RX_DROP_UNUSABLE;
2379 break;
2380 case NL80211_IFTYPE_STATION:
2381 if (!rx->sdata->u.mgd.use_4addr)
2382 return RX_DROP_UNUSABLE;
2383 break;
2384 default:
2385 return RX_DROP_UNUSABLE;
2387 check_da = NULL;
2388 check_sa = NULL;
2389 } else switch (rx->sdata->vif.type) {
2390 case NL80211_IFTYPE_AP:
2391 case NL80211_IFTYPE_AP_VLAN:
2392 check_da = NULL;
2393 break;
2394 case NL80211_IFTYPE_STATION:
2395 if (!rx->sta ||
2396 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2397 check_sa = NULL;
2398 break;
2399 case NL80211_IFTYPE_MESH_POINT:
2400 check_sa = NULL;
2401 break;
2402 default:
2403 break;
2406 if (is_multicast_ether_addr(hdr->addr1))
2407 return RX_DROP_UNUSABLE;
2409 skb->dev = dev;
2410 __skb_queue_head_init(&frame_list);
2412 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2413 rx->sdata->vif.addr,
2414 rx->sdata->vif.type))
2415 return RX_DROP_UNUSABLE;
2417 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2418 rx->sdata->vif.type,
2419 rx->local->hw.extra_tx_headroom,
2420 check_da, check_sa);
2422 while (!skb_queue_empty(&frame_list)) {
2423 rx->skb = __skb_dequeue(&frame_list);
2425 if (!ieee80211_frame_allowed(rx, fc)) {
2426 dev_kfree_skb(rx->skb);
2427 continue;
2430 ieee80211_deliver_skb(rx);
2433 return RX_QUEUED;
2436 #ifdef CONFIG_MAC80211_MESH
2437 static ieee80211_rx_result
2438 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2440 struct ieee80211_hdr *fwd_hdr, *hdr;
2441 struct ieee80211_tx_info *info;
2442 struct ieee80211s_hdr *mesh_hdr;
2443 struct sk_buff *skb = rx->skb, *fwd_skb;
2444 struct ieee80211_local *local = rx->local;
2445 struct ieee80211_sub_if_data *sdata = rx->sdata;
2446 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2447 u16 ac, q, hdrlen;
2449 hdr = (struct ieee80211_hdr *) skb->data;
2450 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2452 /* make sure fixed part of mesh header is there, also checks skb len */
2453 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2454 return RX_DROP_MONITOR;
2456 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2458 /* make sure full mesh header is there, also checks skb len */
2459 if (!pskb_may_pull(rx->skb,
2460 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2461 return RX_DROP_MONITOR;
2463 /* reload pointers */
2464 hdr = (struct ieee80211_hdr *) skb->data;
2465 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2467 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2468 return RX_DROP_MONITOR;
2470 /* frame is in RMC, don't forward */
2471 if (ieee80211_is_data(hdr->frame_control) &&
2472 is_multicast_ether_addr(hdr->addr1) &&
2473 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2474 return RX_DROP_MONITOR;
2476 if (!ieee80211_is_data(hdr->frame_control))
2477 return RX_CONTINUE;
2479 if (!mesh_hdr->ttl)
2480 return RX_DROP_MONITOR;
2482 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2483 struct mesh_path *mppath;
2484 char *proxied_addr;
2485 char *mpp_addr;
2487 if (is_multicast_ether_addr(hdr->addr1)) {
2488 mpp_addr = hdr->addr3;
2489 proxied_addr = mesh_hdr->eaddr1;
2490 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2491 MESH_FLAGS_AE_A5_A6) {
2492 /* has_a4 already checked in ieee80211_rx_mesh_check */
2493 mpp_addr = hdr->addr4;
2494 proxied_addr = mesh_hdr->eaddr2;
2495 } else {
2496 return RX_DROP_MONITOR;
2499 rcu_read_lock();
2500 mppath = mpp_path_lookup(sdata, proxied_addr);
2501 if (!mppath) {
2502 mpp_path_add(sdata, proxied_addr, mpp_addr);
2503 } else {
2504 spin_lock_bh(&mppath->state_lock);
2505 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2506 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2507 mppath->exp_time = jiffies;
2508 spin_unlock_bh(&mppath->state_lock);
2510 rcu_read_unlock();
2513 /* Frame has reached destination. Don't forward */
2514 if (!is_multicast_ether_addr(hdr->addr1) &&
2515 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2516 return RX_CONTINUE;
2518 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2519 q = sdata->vif.hw_queue[ac];
2520 if (ieee80211_queue_stopped(&local->hw, q)) {
2521 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2522 return RX_DROP_MONITOR;
2524 skb_set_queue_mapping(skb, q);
2526 if (!--mesh_hdr->ttl) {
2527 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2528 goto out;
2531 if (!ifmsh->mshcfg.dot11MeshForwarding)
2532 goto out;
2534 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2535 sdata->encrypt_headroom, 0, GFP_ATOMIC);
2536 if (!fwd_skb) {
2537 net_info_ratelimited("%s: failed to clone mesh frame\n",
2538 sdata->name);
2539 goto out;
2542 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2543 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2544 info = IEEE80211_SKB_CB(fwd_skb);
2545 memset(info, 0, sizeof(*info));
2546 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2547 info->control.vif = &rx->sdata->vif;
2548 info->control.jiffies = jiffies;
2549 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2550 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2551 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2552 /* update power mode indication when forwarding */
2553 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2554 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2555 /* mesh power mode flags updated in mesh_nexthop_lookup */
2556 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2557 } else {
2558 /* unable to resolve next hop */
2559 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2560 fwd_hdr->addr3, 0,
2561 WLAN_REASON_MESH_PATH_NOFORWARD,
2562 fwd_hdr->addr2);
2563 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2564 kfree_skb(fwd_skb);
2565 return RX_DROP_MONITOR;
2568 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2569 ieee80211_add_pending_skb(local, fwd_skb);
2570 out:
2571 if (is_multicast_ether_addr(hdr->addr1))
2572 return RX_CONTINUE;
2573 return RX_DROP_MONITOR;
2575 #endif
2577 static ieee80211_rx_result debug_noinline
2578 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2580 struct ieee80211_sub_if_data *sdata = rx->sdata;
2581 struct ieee80211_local *local = rx->local;
2582 struct net_device *dev = sdata->dev;
2583 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2584 __le16 fc = hdr->frame_control;
2585 bool port_control;
2586 int err;
2588 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2589 return RX_CONTINUE;
2591 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2592 return RX_DROP_MONITOR;
2595 * Send unexpected-4addr-frame event to hostapd. For older versions,
2596 * also drop the frame to cooked monitor interfaces.
2598 if (ieee80211_has_a4(hdr->frame_control) &&
2599 sdata->vif.type == NL80211_IFTYPE_AP) {
2600 if (rx->sta &&
2601 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2602 cfg80211_rx_unexpected_4addr_frame(
2603 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2604 return RX_DROP_MONITOR;
2607 err = __ieee80211_data_to_8023(rx, &port_control);
2608 if (unlikely(err))
2609 return RX_DROP_UNUSABLE;
2611 if (!ieee80211_frame_allowed(rx, fc))
2612 return RX_DROP_MONITOR;
2614 /* directly handle TDLS channel switch requests/responses */
2615 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2616 cpu_to_be16(ETH_P_TDLS))) {
2617 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2619 if (pskb_may_pull(rx->skb,
2620 offsetof(struct ieee80211_tdls_data, u)) &&
2621 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2622 tf->category == WLAN_CATEGORY_TDLS &&
2623 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2624 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2625 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2626 schedule_work(&local->tdls_chsw_work);
2627 if (rx->sta)
2628 rx->sta->rx_stats.packets++;
2630 return RX_QUEUED;
2634 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2635 unlikely(port_control) && sdata->bss) {
2636 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2637 u.ap);
2638 dev = sdata->dev;
2639 rx->sdata = sdata;
2642 rx->skb->dev = dev;
2644 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2645 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2646 !is_multicast_ether_addr(
2647 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2648 (!local->scanning &&
2649 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2650 mod_timer(&local->dynamic_ps_timer, jiffies +
2651 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2653 ieee80211_deliver_skb(rx);
2655 return RX_QUEUED;
2658 static ieee80211_rx_result debug_noinline
2659 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2661 struct sk_buff *skb = rx->skb;
2662 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2663 struct tid_ampdu_rx *tid_agg_rx;
2664 u16 start_seq_num;
2665 u16 tid;
2667 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2668 return RX_CONTINUE;
2670 if (ieee80211_is_back_req(bar->frame_control)) {
2671 struct {
2672 __le16 control, start_seq_num;
2673 } __packed bar_data;
2674 struct ieee80211_event event = {
2675 .type = BAR_RX_EVENT,
2678 if (!rx->sta)
2679 return RX_DROP_MONITOR;
2681 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2682 &bar_data, sizeof(bar_data)))
2683 return RX_DROP_MONITOR;
2685 tid = le16_to_cpu(bar_data.control) >> 12;
2687 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2688 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2689 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2690 WLAN_BACK_RECIPIENT,
2691 WLAN_REASON_QSTA_REQUIRE_SETUP);
2693 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2694 if (!tid_agg_rx)
2695 return RX_DROP_MONITOR;
2697 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2698 event.u.ba.tid = tid;
2699 event.u.ba.ssn = start_seq_num;
2700 event.u.ba.sta = &rx->sta->sta;
2702 /* reset session timer */
2703 if (tid_agg_rx->timeout)
2704 mod_timer(&tid_agg_rx->session_timer,
2705 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2707 spin_lock(&tid_agg_rx->reorder_lock);
2708 /* release stored frames up to start of BAR */
2709 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2710 start_seq_num, frames);
2711 spin_unlock(&tid_agg_rx->reorder_lock);
2713 drv_event_callback(rx->local, rx->sdata, &event);
2715 kfree_skb(skb);
2716 return RX_QUEUED;
2720 * After this point, we only want management frames,
2721 * so we can drop all remaining control frames to
2722 * cooked monitor interfaces.
2724 return RX_DROP_MONITOR;
2727 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2728 struct ieee80211_mgmt *mgmt,
2729 size_t len)
2731 struct ieee80211_local *local = sdata->local;
2732 struct sk_buff *skb;
2733 struct ieee80211_mgmt *resp;
2735 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2736 /* Not to own unicast address */
2737 return;
2740 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2741 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2742 /* Not from the current AP or not associated yet. */
2743 return;
2746 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2747 /* Too short SA Query request frame */
2748 return;
2751 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2752 if (skb == NULL)
2753 return;
2755 skb_reserve(skb, local->hw.extra_tx_headroom);
2756 resp = skb_put_zero(skb, 24);
2757 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2758 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2759 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2760 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2761 IEEE80211_STYPE_ACTION);
2762 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2763 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2764 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2765 memcpy(resp->u.action.u.sa_query.trans_id,
2766 mgmt->u.action.u.sa_query.trans_id,
2767 WLAN_SA_QUERY_TR_ID_LEN);
2769 ieee80211_tx_skb(sdata, skb);
2772 static ieee80211_rx_result debug_noinline
2773 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2775 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2776 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2779 * From here on, look only at management frames.
2780 * Data and control frames are already handled,
2781 * and unknown (reserved) frames are useless.
2783 if (rx->skb->len < 24)
2784 return RX_DROP_MONITOR;
2786 if (!ieee80211_is_mgmt(mgmt->frame_control))
2787 return RX_DROP_MONITOR;
2789 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2790 ieee80211_is_beacon(mgmt->frame_control) &&
2791 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2792 int sig = 0;
2794 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2795 sig = status->signal;
2797 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2798 rx->skb->data, rx->skb->len,
2799 status->freq, sig);
2800 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2803 if (ieee80211_drop_unencrypted_mgmt(rx))
2804 return RX_DROP_UNUSABLE;
2806 return RX_CONTINUE;
2809 static ieee80211_rx_result debug_noinline
2810 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2812 struct ieee80211_local *local = rx->local;
2813 struct ieee80211_sub_if_data *sdata = rx->sdata;
2814 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2815 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2816 int len = rx->skb->len;
2818 if (!ieee80211_is_action(mgmt->frame_control))
2819 return RX_CONTINUE;
2821 /* drop too small frames */
2822 if (len < IEEE80211_MIN_ACTION_SIZE)
2823 return RX_DROP_UNUSABLE;
2825 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2826 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2827 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2828 return RX_DROP_UNUSABLE;
2830 switch (mgmt->u.action.category) {
2831 case WLAN_CATEGORY_HT:
2832 /* reject HT action frames from stations not supporting HT */
2833 if (!rx->sta->sta.ht_cap.ht_supported)
2834 goto invalid;
2836 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2837 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2838 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2839 sdata->vif.type != NL80211_IFTYPE_AP &&
2840 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2841 break;
2843 /* verify action & smps_control/chanwidth are present */
2844 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2845 goto invalid;
2847 switch (mgmt->u.action.u.ht_smps.action) {
2848 case WLAN_HT_ACTION_SMPS: {
2849 struct ieee80211_supported_band *sband;
2850 enum ieee80211_smps_mode smps_mode;
2852 /* convert to HT capability */
2853 switch (mgmt->u.action.u.ht_smps.smps_control) {
2854 case WLAN_HT_SMPS_CONTROL_DISABLED:
2855 smps_mode = IEEE80211_SMPS_OFF;
2856 break;
2857 case WLAN_HT_SMPS_CONTROL_STATIC:
2858 smps_mode = IEEE80211_SMPS_STATIC;
2859 break;
2860 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2861 smps_mode = IEEE80211_SMPS_DYNAMIC;
2862 break;
2863 default:
2864 goto invalid;
2867 /* if no change do nothing */
2868 if (rx->sta->sta.smps_mode == smps_mode)
2869 goto handled;
2870 rx->sta->sta.smps_mode = smps_mode;
2872 sband = rx->local->hw.wiphy->bands[status->band];
2874 rate_control_rate_update(local, sband, rx->sta,
2875 IEEE80211_RC_SMPS_CHANGED);
2876 goto handled;
2878 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2879 struct ieee80211_supported_band *sband;
2880 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2881 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2883 /* If it doesn't support 40 MHz it can't change ... */
2884 if (!(rx->sta->sta.ht_cap.cap &
2885 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2886 goto handled;
2888 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2889 max_bw = IEEE80211_STA_RX_BW_20;
2890 else
2891 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2893 /* set cur_max_bandwidth and recalc sta bw */
2894 rx->sta->cur_max_bandwidth = max_bw;
2895 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2897 if (rx->sta->sta.bandwidth == new_bw)
2898 goto handled;
2900 rx->sta->sta.bandwidth = new_bw;
2901 sband = rx->local->hw.wiphy->bands[status->band];
2903 rate_control_rate_update(local, sband, rx->sta,
2904 IEEE80211_RC_BW_CHANGED);
2905 goto handled;
2907 default:
2908 goto invalid;
2911 break;
2912 case WLAN_CATEGORY_PUBLIC:
2913 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2914 goto invalid;
2915 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2916 break;
2917 if (!rx->sta)
2918 break;
2919 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2920 break;
2921 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2922 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2923 break;
2924 if (len < offsetof(struct ieee80211_mgmt,
2925 u.action.u.ext_chan_switch.variable))
2926 goto invalid;
2927 goto queue;
2928 case WLAN_CATEGORY_VHT:
2929 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2930 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2931 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2932 sdata->vif.type != NL80211_IFTYPE_AP &&
2933 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2934 break;
2936 /* verify action code is present */
2937 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2938 goto invalid;
2940 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2941 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2942 /* verify opmode is present */
2943 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2944 goto invalid;
2945 goto queue;
2947 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2948 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2949 goto invalid;
2950 goto queue;
2952 default:
2953 break;
2955 break;
2956 case WLAN_CATEGORY_BACK:
2957 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2958 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2959 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2960 sdata->vif.type != NL80211_IFTYPE_AP &&
2961 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2962 break;
2964 /* verify action_code is present */
2965 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2966 break;
2968 switch (mgmt->u.action.u.addba_req.action_code) {
2969 case WLAN_ACTION_ADDBA_REQ:
2970 if (len < (IEEE80211_MIN_ACTION_SIZE +
2971 sizeof(mgmt->u.action.u.addba_req)))
2972 goto invalid;
2973 break;
2974 case WLAN_ACTION_ADDBA_RESP:
2975 if (len < (IEEE80211_MIN_ACTION_SIZE +
2976 sizeof(mgmt->u.action.u.addba_resp)))
2977 goto invalid;
2978 break;
2979 case WLAN_ACTION_DELBA:
2980 if (len < (IEEE80211_MIN_ACTION_SIZE +
2981 sizeof(mgmt->u.action.u.delba)))
2982 goto invalid;
2983 break;
2984 default:
2985 goto invalid;
2988 goto queue;
2989 case WLAN_CATEGORY_SPECTRUM_MGMT:
2990 /* verify action_code is present */
2991 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2992 break;
2994 switch (mgmt->u.action.u.measurement.action_code) {
2995 case WLAN_ACTION_SPCT_MSR_REQ:
2996 if (status->band != NL80211_BAND_5GHZ)
2997 break;
2999 if (len < (IEEE80211_MIN_ACTION_SIZE +
3000 sizeof(mgmt->u.action.u.measurement)))
3001 break;
3003 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3004 break;
3006 ieee80211_process_measurement_req(sdata, mgmt, len);
3007 goto handled;
3008 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3009 u8 *bssid;
3010 if (len < (IEEE80211_MIN_ACTION_SIZE +
3011 sizeof(mgmt->u.action.u.chan_switch)))
3012 break;
3014 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3015 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3016 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3017 break;
3019 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3020 bssid = sdata->u.mgd.bssid;
3021 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3022 bssid = sdata->u.ibss.bssid;
3023 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3024 bssid = mgmt->sa;
3025 else
3026 break;
3028 if (!ether_addr_equal(mgmt->bssid, bssid))
3029 break;
3031 goto queue;
3034 break;
3035 case WLAN_CATEGORY_SA_QUERY:
3036 if (len < (IEEE80211_MIN_ACTION_SIZE +
3037 sizeof(mgmt->u.action.u.sa_query)))
3038 break;
3040 switch (mgmt->u.action.u.sa_query.action) {
3041 case WLAN_ACTION_SA_QUERY_REQUEST:
3042 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3043 break;
3044 ieee80211_process_sa_query_req(sdata, mgmt, len);
3045 goto handled;
3047 break;
3048 case WLAN_CATEGORY_SELF_PROTECTED:
3049 if (len < (IEEE80211_MIN_ACTION_SIZE +
3050 sizeof(mgmt->u.action.u.self_prot.action_code)))
3051 break;
3053 switch (mgmt->u.action.u.self_prot.action_code) {
3054 case WLAN_SP_MESH_PEERING_OPEN:
3055 case WLAN_SP_MESH_PEERING_CLOSE:
3056 case WLAN_SP_MESH_PEERING_CONFIRM:
3057 if (!ieee80211_vif_is_mesh(&sdata->vif))
3058 goto invalid;
3059 if (sdata->u.mesh.user_mpm)
3060 /* userspace handles this frame */
3061 break;
3062 goto queue;
3063 case WLAN_SP_MGK_INFORM:
3064 case WLAN_SP_MGK_ACK:
3065 if (!ieee80211_vif_is_mesh(&sdata->vif))
3066 goto invalid;
3067 break;
3069 break;
3070 case WLAN_CATEGORY_MESH_ACTION:
3071 if (len < (IEEE80211_MIN_ACTION_SIZE +
3072 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3073 break;
3075 if (!ieee80211_vif_is_mesh(&sdata->vif))
3076 break;
3077 if (mesh_action_is_path_sel(mgmt) &&
3078 !mesh_path_sel_is_hwmp(sdata))
3079 break;
3080 goto queue;
3083 return RX_CONTINUE;
3085 invalid:
3086 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3087 /* will return in the next handlers */
3088 return RX_CONTINUE;
3090 handled:
3091 if (rx->sta)
3092 rx->sta->rx_stats.packets++;
3093 dev_kfree_skb(rx->skb);
3094 return RX_QUEUED;
3096 queue:
3097 skb_queue_tail(&sdata->skb_queue, rx->skb);
3098 ieee80211_queue_work(&local->hw, &sdata->work);
3099 if (rx->sta)
3100 rx->sta->rx_stats.packets++;
3101 return RX_QUEUED;
3104 static ieee80211_rx_result debug_noinline
3105 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3107 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3108 int sig = 0;
3110 /* skip known-bad action frames and return them in the next handler */
3111 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3112 return RX_CONTINUE;
3115 * Getting here means the kernel doesn't know how to handle
3116 * it, but maybe userspace does ... include returned frames
3117 * so userspace can register for those to know whether ones
3118 * it transmitted were processed or returned.
3121 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3122 sig = status->signal;
3124 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3125 rx->skb->data, rx->skb->len, 0)) {
3126 if (rx->sta)
3127 rx->sta->rx_stats.packets++;
3128 dev_kfree_skb(rx->skb);
3129 return RX_QUEUED;
3132 return RX_CONTINUE;
3135 static ieee80211_rx_result debug_noinline
3136 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3138 struct ieee80211_local *local = rx->local;
3139 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3140 struct sk_buff *nskb;
3141 struct ieee80211_sub_if_data *sdata = rx->sdata;
3142 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3144 if (!ieee80211_is_action(mgmt->frame_control))
3145 return RX_CONTINUE;
3148 * For AP mode, hostapd is responsible for handling any action
3149 * frames that we didn't handle, including returning unknown
3150 * ones. For all other modes we will return them to the sender,
3151 * setting the 0x80 bit in the action category, as required by
3152 * 802.11-2012 9.24.4.
3153 * Newer versions of hostapd shall also use the management frame
3154 * registration mechanisms, but older ones still use cooked
3155 * monitor interfaces so push all frames there.
3157 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3158 (sdata->vif.type == NL80211_IFTYPE_AP ||
3159 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3160 return RX_DROP_MONITOR;
3162 if (is_multicast_ether_addr(mgmt->da))
3163 return RX_DROP_MONITOR;
3165 /* do not return rejected action frames */
3166 if (mgmt->u.action.category & 0x80)
3167 return RX_DROP_UNUSABLE;
3169 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3170 GFP_ATOMIC);
3171 if (nskb) {
3172 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3174 nmgmt->u.action.category |= 0x80;
3175 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3176 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3178 memset(nskb->cb, 0, sizeof(nskb->cb));
3180 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3181 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3183 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3184 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3185 IEEE80211_TX_CTL_NO_CCK_RATE;
3186 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3187 info->hw_queue =
3188 local->hw.offchannel_tx_hw_queue;
3191 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3192 status->band);
3194 dev_kfree_skb(rx->skb);
3195 return RX_QUEUED;
3198 static ieee80211_rx_result debug_noinline
3199 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3201 struct ieee80211_sub_if_data *sdata = rx->sdata;
3202 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3203 __le16 stype;
3205 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3207 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3208 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3209 sdata->vif.type != NL80211_IFTYPE_OCB &&
3210 sdata->vif.type != NL80211_IFTYPE_STATION)
3211 return RX_DROP_MONITOR;
3213 switch (stype) {
3214 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3215 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3216 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3217 /* process for all: mesh, mlme, ibss */
3218 break;
3219 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3220 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3221 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3222 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3223 if (is_multicast_ether_addr(mgmt->da) &&
3224 !is_broadcast_ether_addr(mgmt->da))
3225 return RX_DROP_MONITOR;
3227 /* process only for station */
3228 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3229 return RX_DROP_MONITOR;
3230 break;
3231 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3232 /* process only for ibss and mesh */
3233 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3234 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3235 return RX_DROP_MONITOR;
3236 break;
3237 default:
3238 return RX_DROP_MONITOR;
3241 /* queue up frame and kick off work to process it */
3242 skb_queue_tail(&sdata->skb_queue, rx->skb);
3243 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3244 if (rx->sta)
3245 rx->sta->rx_stats.packets++;
3247 return RX_QUEUED;
3250 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3251 struct ieee80211_rate *rate)
3253 struct ieee80211_sub_if_data *sdata;
3254 struct ieee80211_local *local = rx->local;
3255 struct sk_buff *skb = rx->skb, *skb2;
3256 struct net_device *prev_dev = NULL;
3257 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3258 int needed_headroom;
3261 * If cooked monitor has been processed already, then
3262 * don't do it again. If not, set the flag.
3264 if (rx->flags & IEEE80211_RX_CMNTR)
3265 goto out_free_skb;
3266 rx->flags |= IEEE80211_RX_CMNTR;
3268 /* If there are no cooked monitor interfaces, just free the SKB */
3269 if (!local->cooked_mntrs)
3270 goto out_free_skb;
3272 /* vendor data is long removed here */
3273 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3274 /* room for the radiotap header based on driver features */
3275 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3277 if (skb_headroom(skb) < needed_headroom &&
3278 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3279 goto out_free_skb;
3281 /* prepend radiotap information */
3282 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3283 false);
3285 skb_reset_mac_header(skb);
3286 skb->ip_summed = CHECKSUM_UNNECESSARY;
3287 skb->pkt_type = PACKET_OTHERHOST;
3288 skb->protocol = htons(ETH_P_802_2);
3290 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3291 if (!ieee80211_sdata_running(sdata))
3292 continue;
3294 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3295 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3296 continue;
3298 if (prev_dev) {
3299 skb2 = skb_clone(skb, GFP_ATOMIC);
3300 if (skb2) {
3301 skb2->dev = prev_dev;
3302 netif_receive_skb(skb2);
3306 prev_dev = sdata->dev;
3307 ieee80211_rx_stats(sdata->dev, skb->len);
3310 if (prev_dev) {
3311 skb->dev = prev_dev;
3312 netif_receive_skb(skb);
3313 return;
3316 out_free_skb:
3317 dev_kfree_skb(skb);
3320 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3321 ieee80211_rx_result res)
3323 switch (res) {
3324 case RX_DROP_MONITOR:
3325 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3326 if (rx->sta)
3327 rx->sta->rx_stats.dropped++;
3328 /* fall through */
3329 case RX_CONTINUE: {
3330 struct ieee80211_rate *rate = NULL;
3331 struct ieee80211_supported_band *sband;
3332 struct ieee80211_rx_status *status;
3334 status = IEEE80211_SKB_RXCB((rx->skb));
3336 sband = rx->local->hw.wiphy->bands[status->band];
3337 if (!(status->encoding == RX_ENC_HT) &&
3338 !(status->encoding == RX_ENC_VHT))
3339 rate = &sband->bitrates[status->rate_idx];
3341 ieee80211_rx_cooked_monitor(rx, rate);
3342 break;
3344 case RX_DROP_UNUSABLE:
3345 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3346 if (rx->sta)
3347 rx->sta->rx_stats.dropped++;
3348 dev_kfree_skb(rx->skb);
3349 break;
3350 case RX_QUEUED:
3351 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3352 break;
3356 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3357 struct sk_buff_head *frames)
3359 ieee80211_rx_result res = RX_DROP_MONITOR;
3360 struct sk_buff *skb;
3362 #define CALL_RXH(rxh) \
3363 do { \
3364 res = rxh(rx); \
3365 if (res != RX_CONTINUE) \
3366 goto rxh_next; \
3367 } while (0)
3369 /* Lock here to avoid hitting all of the data used in the RX
3370 * path (e.g. key data, station data, ...) concurrently when
3371 * a frame is released from the reorder buffer due to timeout
3372 * from the timer, potentially concurrently with RX from the
3373 * driver.
3375 spin_lock_bh(&rx->local->rx_path_lock);
3377 while ((skb = __skb_dequeue(frames))) {
3379 * all the other fields are valid across frames
3380 * that belong to an aMPDU since they are on the
3381 * same TID from the same station
3383 rx->skb = skb;
3385 CALL_RXH(ieee80211_rx_h_check_more_data);
3386 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3387 CALL_RXH(ieee80211_rx_h_sta_process);
3388 CALL_RXH(ieee80211_rx_h_decrypt);
3389 CALL_RXH(ieee80211_rx_h_defragment);
3390 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3391 /* must be after MMIC verify so header is counted in MPDU mic */
3392 #ifdef CONFIG_MAC80211_MESH
3393 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3394 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3395 #endif
3396 CALL_RXH(ieee80211_rx_h_amsdu);
3397 CALL_RXH(ieee80211_rx_h_data);
3399 /* special treatment -- needs the queue */
3400 res = ieee80211_rx_h_ctrl(rx, frames);
3401 if (res != RX_CONTINUE)
3402 goto rxh_next;
3404 CALL_RXH(ieee80211_rx_h_mgmt_check);
3405 CALL_RXH(ieee80211_rx_h_action);
3406 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3407 CALL_RXH(ieee80211_rx_h_action_return);
3408 CALL_RXH(ieee80211_rx_h_mgmt);
3410 rxh_next:
3411 ieee80211_rx_handlers_result(rx, res);
3413 #undef CALL_RXH
3416 spin_unlock_bh(&rx->local->rx_path_lock);
3419 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3421 struct sk_buff_head reorder_release;
3422 ieee80211_rx_result res = RX_DROP_MONITOR;
3424 __skb_queue_head_init(&reorder_release);
3426 #define CALL_RXH(rxh) \
3427 do { \
3428 res = rxh(rx); \
3429 if (res != RX_CONTINUE) \
3430 goto rxh_next; \
3431 } while (0)
3433 CALL_RXH(ieee80211_rx_h_check_dup);
3434 CALL_RXH(ieee80211_rx_h_check);
3436 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3438 ieee80211_rx_handlers(rx, &reorder_release);
3439 return;
3441 rxh_next:
3442 ieee80211_rx_handlers_result(rx, res);
3444 #undef CALL_RXH
3448 * This function makes calls into the RX path, therefore
3449 * it has to be invoked under RCU read lock.
3451 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3453 struct sk_buff_head frames;
3454 struct ieee80211_rx_data rx = {
3455 .sta = sta,
3456 .sdata = sta->sdata,
3457 .local = sta->local,
3458 /* This is OK -- must be QoS data frame */
3459 .security_idx = tid,
3460 .seqno_idx = tid,
3461 .napi = NULL, /* must be NULL to not have races */
3463 struct tid_ampdu_rx *tid_agg_rx;
3465 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3466 if (!tid_agg_rx)
3467 return;
3469 __skb_queue_head_init(&frames);
3471 spin_lock(&tid_agg_rx->reorder_lock);
3472 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3473 spin_unlock(&tid_agg_rx->reorder_lock);
3475 if (!skb_queue_empty(&frames)) {
3476 struct ieee80211_event event = {
3477 .type = BA_FRAME_TIMEOUT,
3478 .u.ba.tid = tid,
3479 .u.ba.sta = &sta->sta,
3481 drv_event_callback(rx.local, rx.sdata, &event);
3484 ieee80211_rx_handlers(&rx, &frames);
3487 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3488 u16 ssn, u64 filtered,
3489 u16 received_mpdus)
3491 struct sta_info *sta;
3492 struct tid_ampdu_rx *tid_agg_rx;
3493 struct sk_buff_head frames;
3494 struct ieee80211_rx_data rx = {
3495 /* This is OK -- must be QoS data frame */
3496 .security_idx = tid,
3497 .seqno_idx = tid,
3499 int i, diff;
3501 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3502 return;
3504 __skb_queue_head_init(&frames);
3506 sta = container_of(pubsta, struct sta_info, sta);
3508 rx.sta = sta;
3509 rx.sdata = sta->sdata;
3510 rx.local = sta->local;
3512 rcu_read_lock();
3513 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3514 if (!tid_agg_rx)
3515 goto out;
3517 spin_lock_bh(&tid_agg_rx->reorder_lock);
3519 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3520 int release;
3522 /* release all frames in the reorder buffer */
3523 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3524 IEEE80211_SN_MODULO;
3525 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3526 release, &frames);
3527 /* update ssn to match received ssn */
3528 tid_agg_rx->head_seq_num = ssn;
3529 } else {
3530 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3531 &frames);
3534 /* handle the case that received ssn is behind the mac ssn.
3535 * it can be tid_agg_rx->buf_size behind and still be valid */
3536 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3537 if (diff >= tid_agg_rx->buf_size) {
3538 tid_agg_rx->reorder_buf_filtered = 0;
3539 goto release;
3541 filtered = filtered >> diff;
3542 ssn += diff;
3544 /* update bitmap */
3545 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3546 int index = (ssn + i) % tid_agg_rx->buf_size;
3548 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3549 if (filtered & BIT_ULL(i))
3550 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3553 /* now process also frames that the filter marking released */
3554 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3556 release:
3557 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3559 ieee80211_rx_handlers(&rx, &frames);
3561 out:
3562 rcu_read_unlock();
3564 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3566 /* main receive path */
3568 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3570 struct ieee80211_sub_if_data *sdata = rx->sdata;
3571 struct sk_buff *skb = rx->skb;
3572 struct ieee80211_hdr *hdr = (void *)skb->data;
3573 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3574 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3575 bool multicast = is_multicast_ether_addr(hdr->addr1);
3577 switch (sdata->vif.type) {
3578 case NL80211_IFTYPE_STATION:
3579 if (!bssid && !sdata->u.mgd.use_4addr)
3580 return false;
3581 if (multicast)
3582 return true;
3583 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3584 case NL80211_IFTYPE_ADHOC:
3585 if (!bssid)
3586 return false;
3587 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3588 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3589 return false;
3590 if (ieee80211_is_beacon(hdr->frame_control))
3591 return true;
3592 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3593 return false;
3594 if (!multicast &&
3595 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3596 return false;
3597 if (!rx->sta) {
3598 int rate_idx;
3599 if (status->encoding != RX_ENC_LEGACY)
3600 rate_idx = 0; /* TODO: HT/VHT rates */
3601 else
3602 rate_idx = status->rate_idx;
3603 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3604 BIT(rate_idx));
3606 return true;
3607 case NL80211_IFTYPE_OCB:
3608 if (!bssid)
3609 return false;
3610 if (!ieee80211_is_data_present(hdr->frame_control))
3611 return false;
3612 if (!is_broadcast_ether_addr(bssid))
3613 return false;
3614 if (!multicast &&
3615 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3616 return false;
3617 if (!rx->sta) {
3618 int rate_idx;
3619 if (status->encoding != RX_ENC_LEGACY)
3620 rate_idx = 0; /* TODO: HT rates */
3621 else
3622 rate_idx = status->rate_idx;
3623 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3624 BIT(rate_idx));
3626 return true;
3627 case NL80211_IFTYPE_MESH_POINT:
3628 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3629 return false;
3630 if (multicast)
3631 return true;
3632 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3633 case NL80211_IFTYPE_AP_VLAN:
3634 case NL80211_IFTYPE_AP:
3635 if (!bssid)
3636 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3638 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3640 * Accept public action frames even when the
3641 * BSSID doesn't match, this is used for P2P
3642 * and location updates. Note that mac80211
3643 * itself never looks at these frames.
3645 if (!multicast &&
3646 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3647 return false;
3648 if (ieee80211_is_public_action(hdr, skb->len))
3649 return true;
3650 return ieee80211_is_beacon(hdr->frame_control);
3653 if (!ieee80211_has_tods(hdr->frame_control)) {
3654 /* ignore data frames to TDLS-peers */
3655 if (ieee80211_is_data(hdr->frame_control))
3656 return false;
3657 /* ignore action frames to TDLS-peers */
3658 if (ieee80211_is_action(hdr->frame_control) &&
3659 !is_broadcast_ether_addr(bssid) &&
3660 !ether_addr_equal(bssid, hdr->addr1))
3661 return false;
3665 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3666 * the BSSID - we've checked that already but may have accepted
3667 * the wildcard (ff:ff:ff:ff:ff:ff).
3669 * It also says:
3670 * The BSSID of the Data frame is determined as follows:
3671 * a) If the STA is contained within an AP or is associated
3672 * with an AP, the BSSID is the address currently in use
3673 * by the STA contained in the AP.
3675 * So we should not accept data frames with an address that's
3676 * multicast.
3678 * Accepting it also opens a security problem because stations
3679 * could encrypt it with the GTK and inject traffic that way.
3681 if (ieee80211_is_data(hdr->frame_control) && multicast)
3682 return false;
3684 return true;
3685 case NL80211_IFTYPE_WDS:
3686 if (bssid || !ieee80211_is_data(hdr->frame_control))
3687 return false;
3688 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3689 case NL80211_IFTYPE_P2P_DEVICE:
3690 return ieee80211_is_public_action(hdr, skb->len) ||
3691 ieee80211_is_probe_req(hdr->frame_control) ||
3692 ieee80211_is_probe_resp(hdr->frame_control) ||
3693 ieee80211_is_beacon(hdr->frame_control);
3694 case NL80211_IFTYPE_NAN:
3695 /* Currently no frames on NAN interface are allowed */
3696 return false;
3697 default:
3698 break;
3701 WARN_ON_ONCE(1);
3702 return false;
3705 void ieee80211_check_fast_rx(struct sta_info *sta)
3707 struct ieee80211_sub_if_data *sdata = sta->sdata;
3708 struct ieee80211_local *local = sdata->local;
3709 struct ieee80211_key *key;
3710 struct ieee80211_fast_rx fastrx = {
3711 .dev = sdata->dev,
3712 .vif_type = sdata->vif.type,
3713 .control_port_protocol = sdata->control_port_protocol,
3714 }, *old, *new = NULL;
3715 bool assign = false;
3717 /* use sparse to check that we don't return without updating */
3718 __acquire(check_fast_rx);
3720 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3721 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3722 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3723 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3725 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3727 /* fast-rx doesn't do reordering */
3728 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3729 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3730 goto clear;
3732 switch (sdata->vif.type) {
3733 case NL80211_IFTYPE_STATION:
3734 /* 4-addr is harder to deal with, later maybe */
3735 if (sdata->u.mgd.use_4addr)
3736 goto clear;
3737 /* software powersave is a huge mess, avoid all of it */
3738 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3739 goto clear;
3740 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3741 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3742 goto clear;
3743 if (sta->sta.tdls) {
3744 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3745 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3746 fastrx.expected_ds_bits = 0;
3747 } else {
3748 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3749 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3750 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3751 fastrx.expected_ds_bits =
3752 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3754 break;
3755 case NL80211_IFTYPE_AP_VLAN:
3756 case NL80211_IFTYPE_AP:
3757 /* parallel-rx requires this, at least with calls to
3758 * ieee80211_sta_ps_transition()
3760 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3761 goto clear;
3762 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3763 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3764 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3766 fastrx.internal_forward =
3767 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3768 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3769 !sdata->u.vlan.sta);
3770 break;
3771 default:
3772 goto clear;
3775 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3776 goto clear;
3778 rcu_read_lock();
3779 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3780 if (key) {
3781 switch (key->conf.cipher) {
3782 case WLAN_CIPHER_SUITE_TKIP:
3783 /* we don't want to deal with MMIC in fast-rx */
3784 goto clear_rcu;
3785 case WLAN_CIPHER_SUITE_CCMP:
3786 case WLAN_CIPHER_SUITE_CCMP_256:
3787 case WLAN_CIPHER_SUITE_GCMP:
3788 case WLAN_CIPHER_SUITE_GCMP_256:
3789 break;
3790 default:
3791 /* we also don't want to deal with WEP or cipher scheme
3792 * since those require looking up the key idx in the
3793 * frame, rather than assuming the PTK is used
3794 * (we need to revisit this once we implement the real
3795 * PTK index, which is now valid in the spec, but we
3796 * haven't implemented that part yet)
3798 goto clear_rcu;
3801 fastrx.key = true;
3802 fastrx.icv_len = key->conf.icv_len;
3805 assign = true;
3806 clear_rcu:
3807 rcu_read_unlock();
3808 clear:
3809 __release(check_fast_rx);
3811 if (assign)
3812 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3814 spin_lock_bh(&sta->lock);
3815 old = rcu_dereference_protected(sta->fast_rx, true);
3816 rcu_assign_pointer(sta->fast_rx, new);
3817 spin_unlock_bh(&sta->lock);
3819 if (old)
3820 kfree_rcu(old, rcu_head);
3823 void ieee80211_clear_fast_rx(struct sta_info *sta)
3825 struct ieee80211_fast_rx *old;
3827 spin_lock_bh(&sta->lock);
3828 old = rcu_dereference_protected(sta->fast_rx, true);
3829 RCU_INIT_POINTER(sta->fast_rx, NULL);
3830 spin_unlock_bh(&sta->lock);
3832 if (old)
3833 kfree_rcu(old, rcu_head);
3836 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3838 struct ieee80211_local *local = sdata->local;
3839 struct sta_info *sta;
3841 lockdep_assert_held(&local->sta_mtx);
3843 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3844 if (sdata != sta->sdata &&
3845 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3846 continue;
3847 ieee80211_check_fast_rx(sta);
3851 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3853 struct ieee80211_local *local = sdata->local;
3855 mutex_lock(&local->sta_mtx);
3856 __ieee80211_check_fast_rx_iface(sdata);
3857 mutex_unlock(&local->sta_mtx);
3860 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3861 struct ieee80211_fast_rx *fast_rx)
3863 struct sk_buff *skb = rx->skb;
3864 struct ieee80211_hdr *hdr = (void *)skb->data;
3865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3866 struct sta_info *sta = rx->sta;
3867 int orig_len = skb->len;
3868 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3869 struct {
3870 u8 snap[sizeof(rfc1042_header)];
3871 __be16 proto;
3872 } *payload __aligned(2);
3873 struct {
3874 u8 da[ETH_ALEN];
3875 u8 sa[ETH_ALEN];
3876 } addrs __aligned(2);
3877 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3879 if (fast_rx->uses_rss)
3880 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3882 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3883 * to a common data structure; drivers can implement that per queue
3884 * but we don't have that information in mac80211
3886 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3887 return false;
3889 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3891 /* If using encryption, we also need to have:
3892 * - PN_VALIDATED: similar, but the implementation is tricky
3893 * - DECRYPTED: necessary for PN_VALIDATED
3895 if (fast_rx->key &&
3896 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3897 return false;
3899 /* we don't deal with A-MSDU deaggregation here */
3900 if (status->rx_flags & IEEE80211_RX_AMSDU)
3901 return false;
3903 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3904 return false;
3906 if (unlikely(ieee80211_is_frag(hdr)))
3907 return false;
3909 /* Since our interface address cannot be multicast, this
3910 * implicitly also rejects multicast frames without the
3911 * explicit check.
3913 * We shouldn't get any *data* frames not addressed to us
3914 * (AP mode will accept multicast *management* frames), but
3915 * punting here will make it go through the full checks in
3916 * ieee80211_accept_frame().
3918 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3919 return false;
3921 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3922 IEEE80211_FCTL_TODS)) !=
3923 fast_rx->expected_ds_bits)
3924 return false;
3926 /* assign the key to drop unencrypted frames (later)
3927 * and strip the IV/MIC if necessary
3929 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3930 /* GCMP header length is the same */
3931 snap_offs += IEEE80211_CCMP_HDR_LEN;
3934 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3935 goto drop;
3936 payload = (void *)(skb->data + snap_offs);
3938 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3939 return false;
3941 /* Don't handle these here since they require special code.
3942 * Accept AARP and IPX even though they should come with a
3943 * bridge-tunnel header - but if we get them this way then
3944 * there's little point in discarding them.
3946 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3947 payload->proto == fast_rx->control_port_protocol))
3948 return false;
3950 /* after this point, don't punt to the slowpath! */
3952 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3953 pskb_trim(skb, skb->len - fast_rx->icv_len))
3954 goto drop;
3956 if (unlikely(fast_rx->sta_notify)) {
3957 ieee80211_sta_rx_notify(rx->sdata, hdr);
3958 fast_rx->sta_notify = false;
3961 /* statistics part of ieee80211_rx_h_sta_process() */
3962 stats->last_rx = jiffies;
3963 stats->last_rate = sta_stats_encode_rate(status);
3965 stats->fragments++;
3966 stats->packets++;
3968 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3969 stats->last_signal = status->signal;
3970 if (!fast_rx->uses_rss)
3971 ewma_signal_add(&sta->rx_stats_avg.signal,
3972 -status->signal);
3975 if (status->chains) {
3976 int i;
3978 stats->chains = status->chains;
3979 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3980 int signal = status->chain_signal[i];
3982 if (!(status->chains & BIT(i)))
3983 continue;
3985 stats->chain_signal_last[i] = signal;
3986 if (!fast_rx->uses_rss)
3987 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3988 -signal);
3991 /* end of statistics */
3993 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3994 goto drop;
3996 /* do the header conversion - first grab the addresses */
3997 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3998 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3999 /* remove the SNAP but leave the ethertype */
4000 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4001 /* push the addresses in front */
4002 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4004 skb->dev = fast_rx->dev;
4006 ieee80211_rx_stats(fast_rx->dev, skb->len);
4008 /* The seqno index has the same property as needed
4009 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4010 * for non-QoS-data frames. Here we know it's a data
4011 * frame, so count MSDUs.
4013 u64_stats_update_begin(&stats->syncp);
4014 stats->msdu[rx->seqno_idx]++;
4015 stats->bytes += orig_len;
4016 u64_stats_update_end(&stats->syncp);
4018 if (fast_rx->internal_forward) {
4019 struct sk_buff *xmit_skb = NULL;
4020 bool multicast = is_multicast_ether_addr(skb->data);
4022 if (multicast) {
4023 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4024 } else if (sta_info_get(rx->sdata, skb->data)) {
4025 xmit_skb = skb;
4026 skb = NULL;
4029 if (xmit_skb) {
4031 * Send to wireless media and increase priority by 256
4032 * to keep the received priority instead of
4033 * reclassifying the frame (see cfg80211_classify8021d).
4035 xmit_skb->priority += 256;
4036 xmit_skb->protocol = htons(ETH_P_802_3);
4037 skb_reset_network_header(xmit_skb);
4038 skb_reset_mac_header(xmit_skb);
4039 dev_queue_xmit(xmit_skb);
4042 if (!skb)
4043 return true;
4046 /* deliver to local stack */
4047 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4048 memset(skb->cb, 0, sizeof(skb->cb));
4049 if (rx->napi)
4050 napi_gro_receive(rx->napi, skb);
4051 else
4052 netif_receive_skb(skb);
4054 return true;
4055 drop:
4056 dev_kfree_skb(skb);
4057 stats->dropped++;
4058 return true;
4062 * This function returns whether or not the SKB
4063 * was destined for RX processing or not, which,
4064 * if consume is true, is equivalent to whether
4065 * or not the skb was consumed.
4067 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4068 struct sk_buff *skb, bool consume)
4070 struct ieee80211_local *local = rx->local;
4071 struct ieee80211_sub_if_data *sdata = rx->sdata;
4073 rx->skb = skb;
4075 /* See if we can do fast-rx; if we have to copy we already lost,
4076 * so punt in that case. We should never have to deliver a data
4077 * frame to multiple interfaces anyway.
4079 * We skip the ieee80211_accept_frame() call and do the necessary
4080 * checking inside ieee80211_invoke_fast_rx().
4082 if (consume && rx->sta) {
4083 struct ieee80211_fast_rx *fast_rx;
4085 fast_rx = rcu_dereference(rx->sta->fast_rx);
4086 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4087 return true;
4090 if (!ieee80211_accept_frame(rx))
4091 return false;
4093 if (!consume) {
4094 skb = skb_copy(skb, GFP_ATOMIC);
4095 if (!skb) {
4096 if (net_ratelimit())
4097 wiphy_debug(local->hw.wiphy,
4098 "failed to copy skb for %s\n",
4099 sdata->name);
4100 return true;
4103 rx->skb = skb;
4106 ieee80211_invoke_rx_handlers(rx);
4107 return true;
4111 * This is the actual Rx frames handler. as it belongs to Rx path it must
4112 * be called with rcu_read_lock protection.
4114 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4115 struct ieee80211_sta *pubsta,
4116 struct sk_buff *skb,
4117 struct napi_struct *napi)
4119 struct ieee80211_local *local = hw_to_local(hw);
4120 struct ieee80211_sub_if_data *sdata;
4121 struct ieee80211_hdr *hdr;
4122 __le16 fc;
4123 struct ieee80211_rx_data rx;
4124 struct ieee80211_sub_if_data *prev;
4125 struct rhlist_head *tmp;
4126 int err = 0;
4128 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4129 memset(&rx, 0, sizeof(rx));
4130 rx.skb = skb;
4131 rx.local = local;
4132 rx.napi = napi;
4134 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4135 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4137 if (ieee80211_is_mgmt(fc)) {
4138 /* drop frame if too short for header */
4139 if (skb->len < ieee80211_hdrlen(fc))
4140 err = -ENOBUFS;
4141 else
4142 err = skb_linearize(skb);
4143 } else {
4144 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4147 if (err) {
4148 dev_kfree_skb(skb);
4149 return;
4152 hdr = (struct ieee80211_hdr *)skb->data;
4153 ieee80211_parse_qos(&rx);
4154 ieee80211_verify_alignment(&rx);
4156 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4157 ieee80211_is_beacon(hdr->frame_control)))
4158 ieee80211_scan_rx(local, skb);
4160 if (ieee80211_is_data(fc)) {
4161 struct sta_info *sta, *prev_sta;
4163 if (pubsta) {
4164 rx.sta = container_of(pubsta, struct sta_info, sta);
4165 rx.sdata = rx.sta->sdata;
4166 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4167 return;
4168 goto out;
4171 prev_sta = NULL;
4173 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4174 if (!prev_sta) {
4175 prev_sta = sta;
4176 continue;
4179 rx.sta = prev_sta;
4180 rx.sdata = prev_sta->sdata;
4181 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4183 prev_sta = sta;
4186 if (prev_sta) {
4187 rx.sta = prev_sta;
4188 rx.sdata = prev_sta->sdata;
4190 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4191 return;
4192 goto out;
4196 prev = NULL;
4198 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4199 if (!ieee80211_sdata_running(sdata))
4200 continue;
4202 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4203 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4204 continue;
4207 * frame is destined for this interface, but if it's
4208 * not also for the previous one we handle that after
4209 * the loop to avoid copying the SKB once too much
4212 if (!prev) {
4213 prev = sdata;
4214 continue;
4217 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4218 rx.sdata = prev;
4219 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4221 prev = sdata;
4224 if (prev) {
4225 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4226 rx.sdata = prev;
4228 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4229 return;
4232 out:
4233 dev_kfree_skb(skb);
4237 * This is the receive path handler. It is called by a low level driver when an
4238 * 802.11 MPDU is received from the hardware.
4240 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4241 struct sk_buff *skb, struct napi_struct *napi)
4243 struct ieee80211_local *local = hw_to_local(hw);
4244 struct ieee80211_rate *rate = NULL;
4245 struct ieee80211_supported_band *sband;
4246 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4248 WARN_ON_ONCE(softirq_count() == 0);
4250 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4251 goto drop;
4253 sband = local->hw.wiphy->bands[status->band];
4254 if (WARN_ON(!sband))
4255 goto drop;
4258 * If we're suspending, it is possible although not too likely
4259 * that we'd be receiving frames after having already partially
4260 * quiesced the stack. We can't process such frames then since
4261 * that might, for example, cause stations to be added or other
4262 * driver callbacks be invoked.
4264 if (unlikely(local->quiescing || local->suspended))
4265 goto drop;
4267 /* We might be during a HW reconfig, prevent Rx for the same reason */
4268 if (unlikely(local->in_reconfig))
4269 goto drop;
4272 * The same happens when we're not even started,
4273 * but that's worth a warning.
4275 if (WARN_ON(!local->started))
4276 goto drop;
4278 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4280 * Validate the rate, unless a PLCP error means that
4281 * we probably can't have a valid rate here anyway.
4284 switch (status->encoding) {
4285 case RX_ENC_HT:
4287 * rate_idx is MCS index, which can be [0-76]
4288 * as documented on:
4290 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4292 * Anything else would be some sort of driver or
4293 * hardware error. The driver should catch hardware
4294 * errors.
4296 if (WARN(status->rate_idx > 76,
4297 "Rate marked as an HT rate but passed "
4298 "status->rate_idx is not "
4299 "an MCS index [0-76]: %d (0x%02x)\n",
4300 status->rate_idx,
4301 status->rate_idx))
4302 goto drop;
4303 break;
4304 case RX_ENC_VHT:
4305 if (WARN_ONCE(status->rate_idx > 9 ||
4306 !status->nss ||
4307 status->nss > 8,
4308 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4309 status->rate_idx, status->nss))
4310 goto drop;
4311 break;
4312 default:
4313 WARN_ON_ONCE(1);
4314 /* fall through */
4315 case RX_ENC_LEGACY:
4316 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4317 goto drop;
4318 rate = &sband->bitrates[status->rate_idx];
4322 status->rx_flags = 0;
4325 * key references and virtual interfaces are protected using RCU
4326 * and this requires that we are in a read-side RCU section during
4327 * receive processing
4329 rcu_read_lock();
4332 * Frames with failed FCS/PLCP checksum are not returned,
4333 * all other frames are returned without radiotap header
4334 * if it was previously present.
4335 * Also, frames with less than 16 bytes are dropped.
4337 skb = ieee80211_rx_monitor(local, skb, rate);
4338 if (!skb) {
4339 rcu_read_unlock();
4340 return;
4343 ieee80211_tpt_led_trig_rx(local,
4344 ((struct ieee80211_hdr *)skb->data)->frame_control,
4345 skb->len);
4347 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4349 rcu_read_unlock();
4351 return;
4352 drop:
4353 kfree_skb(skb);
4355 EXPORT_SYMBOL(ieee80211_rx_napi);
4357 /* This is a version of the rx handler that can be called from hard irq
4358 * context. Post the skb on the queue and schedule the tasklet */
4359 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4361 struct ieee80211_local *local = hw_to_local(hw);
4363 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4365 skb->pkt_type = IEEE80211_RX_MSG;
4366 skb_queue_tail(&local->skb_queue, skb);
4367 tasklet_schedule(&local->tasklet);
4369 EXPORT_SYMBOL(ieee80211_rx_irqsafe);