Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / net / openvswitch / flow_netlink.c
blob7322aa1e382e4ba476243ef47801a50df2efb7f1
1 /*
2 * Copyright (c) 2007-2017 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 #include <net/tun_proto.h>
52 #include <net/erspan.h>
54 #include "flow_netlink.h"
56 struct ovs_len_tbl {
57 int len;
58 const struct ovs_len_tbl *next;
61 #define OVS_ATTR_NESTED -1
62 #define OVS_ATTR_VARIABLE -2
64 static bool actions_may_change_flow(const struct nlattr *actions)
66 struct nlattr *nla;
67 int rem;
69 nla_for_each_nested(nla, actions, rem) {
70 u16 action = nla_type(nla);
72 switch (action) {
73 case OVS_ACTION_ATTR_OUTPUT:
74 case OVS_ACTION_ATTR_RECIRC:
75 case OVS_ACTION_ATTR_TRUNC:
76 case OVS_ACTION_ATTR_USERSPACE:
77 break;
79 case OVS_ACTION_ATTR_CT:
80 case OVS_ACTION_ATTR_CT_CLEAR:
81 case OVS_ACTION_ATTR_HASH:
82 case OVS_ACTION_ATTR_POP_ETH:
83 case OVS_ACTION_ATTR_POP_MPLS:
84 case OVS_ACTION_ATTR_POP_NSH:
85 case OVS_ACTION_ATTR_POP_VLAN:
86 case OVS_ACTION_ATTR_PUSH_ETH:
87 case OVS_ACTION_ATTR_PUSH_MPLS:
88 case OVS_ACTION_ATTR_PUSH_NSH:
89 case OVS_ACTION_ATTR_PUSH_VLAN:
90 case OVS_ACTION_ATTR_SAMPLE:
91 case OVS_ACTION_ATTR_SET:
92 case OVS_ACTION_ATTR_SET_MASKED:
93 case OVS_ACTION_ATTR_METER:
94 default:
95 return true;
98 return false;
101 static void update_range(struct sw_flow_match *match,
102 size_t offset, size_t size, bool is_mask)
104 struct sw_flow_key_range *range;
105 size_t start = rounddown(offset, sizeof(long));
106 size_t end = roundup(offset + size, sizeof(long));
108 if (!is_mask)
109 range = &match->range;
110 else
111 range = &match->mask->range;
113 if (range->start == range->end) {
114 range->start = start;
115 range->end = end;
116 return;
119 if (range->start > start)
120 range->start = start;
122 if (range->end < end)
123 range->end = end;
126 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
127 do { \
128 update_range(match, offsetof(struct sw_flow_key, field), \
129 sizeof((match)->key->field), is_mask); \
130 if (is_mask) \
131 (match)->mask->key.field = value; \
132 else \
133 (match)->key->field = value; \
134 } while (0)
136 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
137 do { \
138 update_range(match, offset, len, is_mask); \
139 if (is_mask) \
140 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
141 len); \
142 else \
143 memcpy((u8 *)(match)->key + offset, value_p, len); \
144 } while (0)
146 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
147 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
148 value_p, len, is_mask)
150 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
151 do { \
152 update_range(match, offsetof(struct sw_flow_key, field), \
153 sizeof((match)->key->field), is_mask); \
154 if (is_mask) \
155 memset((u8 *)&(match)->mask->key.field, value, \
156 sizeof((match)->mask->key.field)); \
157 else \
158 memset((u8 *)&(match)->key->field, value, \
159 sizeof((match)->key->field)); \
160 } while (0)
162 static bool match_validate(const struct sw_flow_match *match,
163 u64 key_attrs, u64 mask_attrs, bool log)
165 u64 key_expected = 0;
166 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
168 /* The following mask attributes allowed only if they
169 * pass the validation tests. */
170 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
171 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
172 | (1 << OVS_KEY_ATTR_IPV6)
173 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
174 | (1 << OVS_KEY_ATTR_TCP)
175 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
176 | (1 << OVS_KEY_ATTR_UDP)
177 | (1 << OVS_KEY_ATTR_SCTP)
178 | (1 << OVS_KEY_ATTR_ICMP)
179 | (1 << OVS_KEY_ATTR_ICMPV6)
180 | (1 << OVS_KEY_ATTR_ARP)
181 | (1 << OVS_KEY_ATTR_ND)
182 | (1 << OVS_KEY_ATTR_MPLS)
183 | (1 << OVS_KEY_ATTR_NSH));
185 /* Always allowed mask fields. */
186 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
187 | (1 << OVS_KEY_ATTR_IN_PORT)
188 | (1 << OVS_KEY_ATTR_ETHERTYPE));
190 /* Check key attributes. */
191 if (match->key->eth.type == htons(ETH_P_ARP)
192 || match->key->eth.type == htons(ETH_P_RARP)) {
193 key_expected |= 1 << OVS_KEY_ATTR_ARP;
194 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
195 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
198 if (eth_p_mpls(match->key->eth.type)) {
199 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
200 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
201 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
204 if (match->key->eth.type == htons(ETH_P_IP)) {
205 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
206 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
207 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
208 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
211 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
212 if (match->key->ip.proto == IPPROTO_UDP) {
213 key_expected |= 1 << OVS_KEY_ATTR_UDP;
214 if (match->mask && (match->mask->key.ip.proto == 0xff))
215 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
218 if (match->key->ip.proto == IPPROTO_SCTP) {
219 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
220 if (match->mask && (match->mask->key.ip.proto == 0xff))
221 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
224 if (match->key->ip.proto == IPPROTO_TCP) {
225 key_expected |= 1 << OVS_KEY_ATTR_TCP;
226 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
227 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
228 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
229 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
233 if (match->key->ip.proto == IPPROTO_ICMP) {
234 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
235 if (match->mask && (match->mask->key.ip.proto == 0xff))
236 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
241 if (match->key->eth.type == htons(ETH_P_IPV6)) {
242 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
243 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
244 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
245 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
248 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
249 if (match->key->ip.proto == IPPROTO_UDP) {
250 key_expected |= 1 << OVS_KEY_ATTR_UDP;
251 if (match->mask && (match->mask->key.ip.proto == 0xff))
252 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
255 if (match->key->ip.proto == IPPROTO_SCTP) {
256 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
257 if (match->mask && (match->mask->key.ip.proto == 0xff))
258 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
261 if (match->key->ip.proto == IPPROTO_TCP) {
262 key_expected |= 1 << OVS_KEY_ATTR_TCP;
263 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
264 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
265 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
266 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
270 if (match->key->ip.proto == IPPROTO_ICMPV6) {
271 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
272 if (match->mask && (match->mask->key.ip.proto == 0xff))
273 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
275 if (match->key->tp.src ==
276 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
277 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
278 key_expected |= 1 << OVS_KEY_ATTR_ND;
279 /* Original direction conntrack tuple
280 * uses the same space as the ND fields
281 * in the key, so both are not allowed
282 * at the same time.
284 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
285 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
286 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
292 if (match->key->eth.type == htons(ETH_P_NSH)) {
293 key_expected |= 1 << OVS_KEY_ATTR_NSH;
294 if (match->mask &&
295 match->mask->key.eth.type == htons(0xffff)) {
296 mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
300 if ((key_attrs & key_expected) != key_expected) {
301 /* Key attributes check failed. */
302 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
303 (unsigned long long)key_attrs,
304 (unsigned long long)key_expected);
305 return false;
308 if ((mask_attrs & mask_allowed) != mask_attrs) {
309 /* Mask attributes check failed. */
310 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
311 (unsigned long long)mask_attrs,
312 (unsigned long long)mask_allowed);
313 return false;
316 return true;
319 size_t ovs_tun_key_attr_size(void)
321 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
322 * updating this function.
324 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
325 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
326 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
327 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
328 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
329 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
330 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
331 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
332 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
333 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
334 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
335 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
337 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
338 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
341 static size_t ovs_nsh_key_attr_size(void)
343 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
344 * updating this function.
346 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
347 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
348 * mutually exclusive, so the bigger one can cover
349 * the small one.
351 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
354 size_t ovs_key_attr_size(void)
356 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
357 * updating this function.
359 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
361 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
362 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
363 + ovs_tun_key_attr_size()
364 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
365 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
366 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
367 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
368 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
369 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
370 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
371 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
372 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
373 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */
374 + ovs_nsh_key_attr_size()
375 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
376 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
377 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
378 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
379 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
380 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
381 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
382 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
385 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
386 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
389 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
390 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
391 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
392 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
393 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
394 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
395 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
396 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
397 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
398 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
399 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
400 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
401 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
402 .next = ovs_vxlan_ext_key_lens },
403 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
404 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
405 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
408 static const struct ovs_len_tbl
409 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
410 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
411 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
412 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
415 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
416 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
417 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
418 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
419 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
420 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
421 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
422 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
423 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
424 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
425 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
426 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
427 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
428 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
429 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
430 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
431 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
432 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
433 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
434 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
435 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
436 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
437 .next = ovs_tunnel_key_lens, },
438 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
439 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
440 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
441 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
442 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
443 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
444 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
445 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
446 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
447 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
448 .next = ovs_nsh_key_attr_lens, },
451 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
453 return expected_len == attr_len ||
454 expected_len == OVS_ATTR_NESTED ||
455 expected_len == OVS_ATTR_VARIABLE;
458 static bool is_all_zero(const u8 *fp, size_t size)
460 int i;
462 if (!fp)
463 return false;
465 for (i = 0; i < size; i++)
466 if (fp[i])
467 return false;
469 return true;
472 static int __parse_flow_nlattrs(const struct nlattr *attr,
473 const struct nlattr *a[],
474 u64 *attrsp, bool log, bool nz)
476 const struct nlattr *nla;
477 u64 attrs;
478 int rem;
480 attrs = *attrsp;
481 nla_for_each_nested(nla, attr, rem) {
482 u16 type = nla_type(nla);
483 int expected_len;
485 if (type > OVS_KEY_ATTR_MAX) {
486 OVS_NLERR(log, "Key type %d is out of range max %d",
487 type, OVS_KEY_ATTR_MAX);
488 return -EINVAL;
491 if (attrs & (1 << type)) {
492 OVS_NLERR(log, "Duplicate key (type %d).", type);
493 return -EINVAL;
496 expected_len = ovs_key_lens[type].len;
497 if (!check_attr_len(nla_len(nla), expected_len)) {
498 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
499 type, nla_len(nla), expected_len);
500 return -EINVAL;
503 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
504 attrs |= 1 << type;
505 a[type] = nla;
508 if (rem) {
509 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
510 return -EINVAL;
513 *attrsp = attrs;
514 return 0;
517 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
518 const struct nlattr *a[], u64 *attrsp,
519 bool log)
521 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
524 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
525 u64 *attrsp, bool log)
527 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
530 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
531 struct sw_flow_match *match, bool is_mask,
532 bool log)
534 unsigned long opt_key_offset;
536 if (nla_len(a) > sizeof(match->key->tun_opts)) {
537 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
538 nla_len(a), sizeof(match->key->tun_opts));
539 return -EINVAL;
542 if (nla_len(a) % 4 != 0) {
543 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
544 nla_len(a));
545 return -EINVAL;
548 /* We need to record the length of the options passed
549 * down, otherwise packets with the same format but
550 * additional options will be silently matched.
552 if (!is_mask) {
553 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
554 false);
555 } else {
556 /* This is somewhat unusual because it looks at
557 * both the key and mask while parsing the
558 * attributes (and by extension assumes the key
559 * is parsed first). Normally, we would verify
560 * that each is the correct length and that the
561 * attributes line up in the validate function.
562 * However, that is difficult because this is
563 * variable length and we won't have the
564 * information later.
566 if (match->key->tun_opts_len != nla_len(a)) {
567 OVS_NLERR(log, "Geneve option len %d != mask len %d",
568 match->key->tun_opts_len, nla_len(a));
569 return -EINVAL;
572 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
575 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
576 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
577 nla_len(a), is_mask);
578 return 0;
581 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
582 struct sw_flow_match *match, bool is_mask,
583 bool log)
585 struct nlattr *a;
586 int rem;
587 unsigned long opt_key_offset;
588 struct vxlan_metadata opts;
590 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
592 memset(&opts, 0, sizeof(opts));
593 nla_for_each_nested(a, attr, rem) {
594 int type = nla_type(a);
596 if (type > OVS_VXLAN_EXT_MAX) {
597 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
598 type, OVS_VXLAN_EXT_MAX);
599 return -EINVAL;
602 if (!check_attr_len(nla_len(a),
603 ovs_vxlan_ext_key_lens[type].len)) {
604 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
605 type, nla_len(a),
606 ovs_vxlan_ext_key_lens[type].len);
607 return -EINVAL;
610 switch (type) {
611 case OVS_VXLAN_EXT_GBP:
612 opts.gbp = nla_get_u32(a);
613 break;
614 default:
615 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
616 type);
617 return -EINVAL;
620 if (rem) {
621 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
622 rem);
623 return -EINVAL;
626 if (!is_mask)
627 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
628 else
629 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
631 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
632 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
633 is_mask);
634 return 0;
637 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
638 struct sw_flow_match *match, bool is_mask,
639 bool log)
641 unsigned long opt_key_offset;
643 BUILD_BUG_ON(sizeof(struct erspan_metadata) >
644 sizeof(match->key->tun_opts));
646 if (nla_len(a) > sizeof(match->key->tun_opts)) {
647 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
648 nla_len(a), sizeof(match->key->tun_opts));
649 return -EINVAL;
652 if (!is_mask)
653 SW_FLOW_KEY_PUT(match, tun_opts_len,
654 sizeof(struct erspan_metadata), false);
655 else
656 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
658 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
659 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
660 nla_len(a), is_mask);
661 return 0;
664 static int ip_tun_from_nlattr(const struct nlattr *attr,
665 struct sw_flow_match *match, bool is_mask,
666 bool log)
668 bool ttl = false, ipv4 = false, ipv6 = false;
669 __be16 tun_flags = 0;
670 int opts_type = 0;
671 struct nlattr *a;
672 int rem;
674 nla_for_each_nested(a, attr, rem) {
675 int type = nla_type(a);
676 int err;
678 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
679 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
680 type, OVS_TUNNEL_KEY_ATTR_MAX);
681 return -EINVAL;
684 if (!check_attr_len(nla_len(a),
685 ovs_tunnel_key_lens[type].len)) {
686 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
687 type, nla_len(a), ovs_tunnel_key_lens[type].len);
688 return -EINVAL;
691 switch (type) {
692 case OVS_TUNNEL_KEY_ATTR_ID:
693 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
694 nla_get_be64(a), is_mask);
695 tun_flags |= TUNNEL_KEY;
696 break;
697 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
698 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
699 nla_get_in_addr(a), is_mask);
700 ipv4 = true;
701 break;
702 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
703 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
704 nla_get_in_addr(a), is_mask);
705 ipv4 = true;
706 break;
707 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
708 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
709 nla_get_in6_addr(a), is_mask);
710 ipv6 = true;
711 break;
712 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
713 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
714 nla_get_in6_addr(a), is_mask);
715 ipv6 = true;
716 break;
717 case OVS_TUNNEL_KEY_ATTR_TOS:
718 SW_FLOW_KEY_PUT(match, tun_key.tos,
719 nla_get_u8(a), is_mask);
720 break;
721 case OVS_TUNNEL_KEY_ATTR_TTL:
722 SW_FLOW_KEY_PUT(match, tun_key.ttl,
723 nla_get_u8(a), is_mask);
724 ttl = true;
725 break;
726 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
727 tun_flags |= TUNNEL_DONT_FRAGMENT;
728 break;
729 case OVS_TUNNEL_KEY_ATTR_CSUM:
730 tun_flags |= TUNNEL_CSUM;
731 break;
732 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
733 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
734 nla_get_be16(a), is_mask);
735 break;
736 case OVS_TUNNEL_KEY_ATTR_TP_DST:
737 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
738 nla_get_be16(a), is_mask);
739 break;
740 case OVS_TUNNEL_KEY_ATTR_OAM:
741 tun_flags |= TUNNEL_OAM;
742 break;
743 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
744 if (opts_type) {
745 OVS_NLERR(log, "Multiple metadata blocks provided");
746 return -EINVAL;
749 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
750 if (err)
751 return err;
753 tun_flags |= TUNNEL_GENEVE_OPT;
754 opts_type = type;
755 break;
756 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
757 if (opts_type) {
758 OVS_NLERR(log, "Multiple metadata blocks provided");
759 return -EINVAL;
762 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
763 if (err)
764 return err;
766 tun_flags |= TUNNEL_VXLAN_OPT;
767 opts_type = type;
768 break;
769 case OVS_TUNNEL_KEY_ATTR_PAD:
770 break;
771 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
772 if (opts_type) {
773 OVS_NLERR(log, "Multiple metadata blocks provided");
774 return -EINVAL;
777 err = erspan_tun_opt_from_nlattr(a, match, is_mask,
778 log);
779 if (err)
780 return err;
782 tun_flags |= TUNNEL_ERSPAN_OPT;
783 opts_type = type;
784 break;
785 default:
786 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
787 type);
788 return -EINVAL;
792 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
793 if (is_mask)
794 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
795 else
796 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
797 false);
799 if (rem > 0) {
800 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
801 rem);
802 return -EINVAL;
805 if (ipv4 && ipv6) {
806 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
807 return -EINVAL;
810 if (!is_mask) {
811 if (!ipv4 && !ipv6) {
812 OVS_NLERR(log, "IP tunnel dst address not specified");
813 return -EINVAL;
815 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
816 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
817 return -EINVAL;
819 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
820 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
821 return -EINVAL;
824 if (!ttl) {
825 OVS_NLERR(log, "IP tunnel TTL not specified.");
826 return -EINVAL;
830 return opts_type;
833 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
834 const void *tun_opts, int swkey_tun_opts_len)
836 const struct vxlan_metadata *opts = tun_opts;
837 struct nlattr *nla;
839 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
840 if (!nla)
841 return -EMSGSIZE;
843 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
844 return -EMSGSIZE;
846 nla_nest_end(skb, nla);
847 return 0;
850 static int __ip_tun_to_nlattr(struct sk_buff *skb,
851 const struct ip_tunnel_key *output,
852 const void *tun_opts, int swkey_tun_opts_len,
853 unsigned short tun_proto)
855 if (output->tun_flags & TUNNEL_KEY &&
856 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
857 OVS_TUNNEL_KEY_ATTR_PAD))
858 return -EMSGSIZE;
859 switch (tun_proto) {
860 case AF_INET:
861 if (output->u.ipv4.src &&
862 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
863 output->u.ipv4.src))
864 return -EMSGSIZE;
865 if (output->u.ipv4.dst &&
866 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
867 output->u.ipv4.dst))
868 return -EMSGSIZE;
869 break;
870 case AF_INET6:
871 if (!ipv6_addr_any(&output->u.ipv6.src) &&
872 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
873 &output->u.ipv6.src))
874 return -EMSGSIZE;
875 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
876 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
877 &output->u.ipv6.dst))
878 return -EMSGSIZE;
879 break;
881 if (output->tos &&
882 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
883 return -EMSGSIZE;
884 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
885 return -EMSGSIZE;
886 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
887 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
888 return -EMSGSIZE;
889 if ((output->tun_flags & TUNNEL_CSUM) &&
890 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
891 return -EMSGSIZE;
892 if (output->tp_src &&
893 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
894 return -EMSGSIZE;
895 if (output->tp_dst &&
896 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
897 return -EMSGSIZE;
898 if ((output->tun_flags & TUNNEL_OAM) &&
899 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
900 return -EMSGSIZE;
901 if (swkey_tun_opts_len) {
902 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
903 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
904 swkey_tun_opts_len, tun_opts))
905 return -EMSGSIZE;
906 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
907 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
908 return -EMSGSIZE;
909 else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
910 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
911 swkey_tun_opts_len, tun_opts))
912 return -EMSGSIZE;
915 return 0;
918 static int ip_tun_to_nlattr(struct sk_buff *skb,
919 const struct ip_tunnel_key *output,
920 const void *tun_opts, int swkey_tun_opts_len,
921 unsigned short tun_proto)
923 struct nlattr *nla;
924 int err;
926 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
927 if (!nla)
928 return -EMSGSIZE;
930 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
931 tun_proto);
932 if (err)
933 return err;
935 nla_nest_end(skb, nla);
936 return 0;
939 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
940 struct ip_tunnel_info *tun_info)
942 return __ip_tun_to_nlattr(skb, &tun_info->key,
943 ip_tunnel_info_opts(tun_info),
944 tun_info->options_len,
945 ip_tunnel_info_af(tun_info));
948 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
949 const struct nlattr *a[],
950 bool is_mask, bool inner)
952 __be16 tci = 0;
953 __be16 tpid = 0;
955 if (a[OVS_KEY_ATTR_VLAN])
956 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
958 if (a[OVS_KEY_ATTR_ETHERTYPE])
959 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
961 if (likely(!inner)) {
962 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
963 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
964 } else {
965 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
966 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
968 return 0;
971 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
972 u64 key_attrs, bool inner,
973 const struct nlattr **a, bool log)
975 __be16 tci = 0;
977 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
978 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
979 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
980 /* Not a VLAN. */
981 return 0;
984 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
985 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
986 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
987 return -EINVAL;
990 if (a[OVS_KEY_ATTR_VLAN])
991 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
993 if (!(tci & htons(VLAN_TAG_PRESENT))) {
994 if (tci) {
995 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
996 (inner) ? "C-VLAN" : "VLAN");
997 return -EINVAL;
998 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
999 /* Corner case for truncated VLAN header. */
1000 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1001 (inner) ? "C-VLAN" : "VLAN");
1002 return -EINVAL;
1006 return 1;
1009 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1010 u64 key_attrs, bool inner,
1011 const struct nlattr **a, bool log)
1013 __be16 tci = 0;
1014 __be16 tpid = 0;
1015 bool encap_valid = !!(match->key->eth.vlan.tci &
1016 htons(VLAN_TAG_PRESENT));
1017 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1018 htons(VLAN_TAG_PRESENT));
1020 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1021 /* Not a VLAN. */
1022 return 0;
1025 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1026 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1027 (inner) ? "C-VLAN" : "VLAN");
1028 return -EINVAL;
1031 if (a[OVS_KEY_ATTR_VLAN])
1032 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1034 if (a[OVS_KEY_ATTR_ETHERTYPE])
1035 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1037 if (tpid != htons(0xffff)) {
1038 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1039 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1040 return -EINVAL;
1042 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1043 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
1044 (inner) ? "C-VLAN" : "VLAN");
1045 return -EINVAL;
1048 return 1;
1051 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1052 u64 *key_attrs, bool inner,
1053 const struct nlattr **a, bool is_mask,
1054 bool log)
1056 int err;
1057 const struct nlattr *encap;
1059 if (!is_mask)
1060 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1061 a, log);
1062 else
1063 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1064 a, log);
1065 if (err <= 0)
1066 return err;
1068 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1069 if (err)
1070 return err;
1072 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1073 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1074 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1076 encap = a[OVS_KEY_ATTR_ENCAP];
1078 if (!is_mask)
1079 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1080 else
1081 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1083 return err;
1086 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1087 u64 *key_attrs, const struct nlattr **a,
1088 bool is_mask, bool log)
1090 int err;
1091 bool encap_valid = false;
1093 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1094 is_mask, log);
1095 if (err)
1096 return err;
1098 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
1099 if (encap_valid) {
1100 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1101 is_mask, log);
1102 if (err)
1103 return err;
1106 return 0;
1109 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1110 u64 *attrs, const struct nlattr **a,
1111 bool is_mask, bool log)
1113 __be16 eth_type;
1115 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1116 if (is_mask) {
1117 /* Always exact match EtherType. */
1118 eth_type = htons(0xffff);
1119 } else if (!eth_proto_is_802_3(eth_type)) {
1120 OVS_NLERR(log, "EtherType %x is less than min %x",
1121 ntohs(eth_type), ETH_P_802_3_MIN);
1122 return -EINVAL;
1125 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1126 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1127 return 0;
1130 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1131 u64 *attrs, const struct nlattr **a,
1132 bool is_mask, bool log)
1134 u8 mac_proto = MAC_PROTO_ETHERNET;
1136 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1137 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1139 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1140 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1143 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1144 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1146 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1147 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1150 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1151 SW_FLOW_KEY_PUT(match, phy.priority,
1152 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1153 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1156 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1157 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1159 if (is_mask) {
1160 in_port = 0xffffffff; /* Always exact match in_port. */
1161 } else if (in_port >= DP_MAX_PORTS) {
1162 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1163 in_port, DP_MAX_PORTS);
1164 return -EINVAL;
1167 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1168 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1169 } else if (!is_mask) {
1170 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1173 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1174 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1176 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1177 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1179 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1180 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1181 is_mask, log) < 0)
1182 return -EINVAL;
1183 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1186 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1187 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1188 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1190 if (ct_state & ~CT_SUPPORTED_MASK) {
1191 OVS_NLERR(log, "ct_state flags %08x unsupported",
1192 ct_state);
1193 return -EINVAL;
1196 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1197 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1199 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1200 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1201 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1203 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1204 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1206 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1207 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1208 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1210 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1211 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1213 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1214 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1215 const struct ovs_key_ct_labels *cl;
1217 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1218 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1219 sizeof(*cl), is_mask);
1220 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1222 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1223 const struct ovs_key_ct_tuple_ipv4 *ct;
1225 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1227 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1228 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1229 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1230 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1231 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1232 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1234 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1235 const struct ovs_key_ct_tuple_ipv6 *ct;
1237 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1239 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1240 sizeof(match->key->ipv6.ct_orig.src),
1241 is_mask);
1242 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1243 sizeof(match->key->ipv6.ct_orig.dst),
1244 is_mask);
1245 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1246 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1247 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1248 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1251 /* For layer 3 packets the Ethernet type is provided
1252 * and treated as metadata but no MAC addresses are provided.
1254 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1255 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1256 mac_proto = MAC_PROTO_NONE;
1258 /* Always exact match mac_proto */
1259 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1261 if (mac_proto == MAC_PROTO_NONE)
1262 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1263 log);
1265 return 0;
1268 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1269 struct nshhdr *nh, size_t size)
1271 struct nlattr *a;
1272 int rem;
1273 u8 flags = 0;
1274 u8 ttl = 0;
1275 int mdlen = 0;
1277 /* validate_nsh has check this, so we needn't do duplicate check here
1279 if (size < NSH_BASE_HDR_LEN)
1280 return -ENOBUFS;
1282 nla_for_each_nested(a, attr, rem) {
1283 int type = nla_type(a);
1285 switch (type) {
1286 case OVS_NSH_KEY_ATTR_BASE: {
1287 const struct ovs_nsh_key_base *base = nla_data(a);
1289 flags = base->flags;
1290 ttl = base->ttl;
1291 nh->np = base->np;
1292 nh->mdtype = base->mdtype;
1293 nh->path_hdr = base->path_hdr;
1294 break;
1296 case OVS_NSH_KEY_ATTR_MD1:
1297 mdlen = nla_len(a);
1298 if (mdlen > size - NSH_BASE_HDR_LEN)
1299 return -ENOBUFS;
1300 memcpy(&nh->md1, nla_data(a), mdlen);
1301 break;
1303 case OVS_NSH_KEY_ATTR_MD2:
1304 mdlen = nla_len(a);
1305 if (mdlen > size - NSH_BASE_HDR_LEN)
1306 return -ENOBUFS;
1307 memcpy(&nh->md2, nla_data(a), mdlen);
1308 break;
1310 default:
1311 return -EINVAL;
1315 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */
1316 nh->ver_flags_ttl_len = 0;
1317 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1319 return 0;
1322 int nsh_key_from_nlattr(const struct nlattr *attr,
1323 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1325 struct nlattr *a;
1326 int rem;
1328 /* validate_nsh has check this, so we needn't do duplicate check here
1330 nla_for_each_nested(a, attr, rem) {
1331 int type = nla_type(a);
1333 switch (type) {
1334 case OVS_NSH_KEY_ATTR_BASE: {
1335 const struct ovs_nsh_key_base *base = nla_data(a);
1336 const struct ovs_nsh_key_base *base_mask = base + 1;
1338 nsh->base = *base;
1339 nsh_mask->base = *base_mask;
1340 break;
1342 case OVS_NSH_KEY_ATTR_MD1: {
1343 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1344 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1346 memcpy(nsh->context, md1->context, sizeof(*md1));
1347 memcpy(nsh_mask->context, md1_mask->context,
1348 sizeof(*md1_mask));
1349 break;
1351 case OVS_NSH_KEY_ATTR_MD2:
1352 /* Not supported yet */
1353 return -ENOTSUPP;
1354 default:
1355 return -EINVAL;
1359 return 0;
1362 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1363 struct sw_flow_match *match, bool is_mask,
1364 bool is_push_nsh, bool log)
1366 struct nlattr *a;
1367 int rem;
1368 bool has_base = false;
1369 bool has_md1 = false;
1370 bool has_md2 = false;
1371 u8 mdtype = 0;
1372 int mdlen = 0;
1374 if (WARN_ON(is_push_nsh && is_mask))
1375 return -EINVAL;
1377 nla_for_each_nested(a, attr, rem) {
1378 int type = nla_type(a);
1379 int i;
1381 if (type > OVS_NSH_KEY_ATTR_MAX) {
1382 OVS_NLERR(log, "nsh attr %d is out of range max %d",
1383 type, OVS_NSH_KEY_ATTR_MAX);
1384 return -EINVAL;
1387 if (!check_attr_len(nla_len(a),
1388 ovs_nsh_key_attr_lens[type].len)) {
1389 OVS_NLERR(
1390 log,
1391 "nsh attr %d has unexpected len %d expected %d",
1392 type,
1393 nla_len(a),
1394 ovs_nsh_key_attr_lens[type].len
1396 return -EINVAL;
1399 switch (type) {
1400 case OVS_NSH_KEY_ATTR_BASE: {
1401 const struct ovs_nsh_key_base *base = nla_data(a);
1403 has_base = true;
1404 mdtype = base->mdtype;
1405 SW_FLOW_KEY_PUT(match, nsh.base.flags,
1406 base->flags, is_mask);
1407 SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1408 base->ttl, is_mask);
1409 SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1410 base->mdtype, is_mask);
1411 SW_FLOW_KEY_PUT(match, nsh.base.np,
1412 base->np, is_mask);
1413 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1414 base->path_hdr, is_mask);
1415 break;
1417 case OVS_NSH_KEY_ATTR_MD1: {
1418 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1420 has_md1 = true;
1421 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1422 SW_FLOW_KEY_PUT(match, nsh.context[i],
1423 md1->context[i], is_mask);
1424 break;
1426 case OVS_NSH_KEY_ATTR_MD2:
1427 if (!is_push_nsh) /* Not supported MD type 2 yet */
1428 return -ENOTSUPP;
1430 has_md2 = true;
1431 mdlen = nla_len(a);
1432 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1433 OVS_NLERR(
1434 log,
1435 "Invalid MD length %d for MD type %d",
1436 mdlen,
1437 mdtype
1439 return -EINVAL;
1441 break;
1442 default:
1443 OVS_NLERR(log, "Unknown nsh attribute %d",
1444 type);
1445 return -EINVAL;
1449 if (rem > 0) {
1450 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1451 return -EINVAL;
1454 if (has_md1 && has_md2) {
1455 OVS_NLERR(
1457 "invalid nsh attribute: md1 and md2 are exclusive."
1459 return -EINVAL;
1462 if (!is_mask) {
1463 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1464 (has_md2 && mdtype != NSH_M_TYPE2)) {
1465 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1466 mdtype);
1467 return -EINVAL;
1470 if (is_push_nsh &&
1471 (!has_base || (!has_md1 && !has_md2))) {
1472 OVS_NLERR(
1474 "push_nsh: missing base or metadata attributes"
1476 return -EINVAL;
1480 return 0;
1483 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1484 u64 attrs, const struct nlattr **a,
1485 bool is_mask, bool log)
1487 int err;
1489 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1490 if (err)
1491 return err;
1493 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1494 const struct ovs_key_ethernet *eth_key;
1496 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1497 SW_FLOW_KEY_MEMCPY(match, eth.src,
1498 eth_key->eth_src, ETH_ALEN, is_mask);
1499 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1500 eth_key->eth_dst, ETH_ALEN, is_mask);
1501 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1503 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1504 /* VLAN attribute is always parsed before getting here since it
1505 * may occur multiple times.
1507 OVS_NLERR(log, "VLAN attribute unexpected.");
1508 return -EINVAL;
1511 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1512 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1513 log);
1514 if (err)
1515 return err;
1516 } else if (!is_mask) {
1517 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1519 } else if (!match->key->eth.type) {
1520 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1521 return -EINVAL;
1524 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1525 const struct ovs_key_ipv4 *ipv4_key;
1527 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1528 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1529 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1530 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1531 return -EINVAL;
1533 SW_FLOW_KEY_PUT(match, ip.proto,
1534 ipv4_key->ipv4_proto, is_mask);
1535 SW_FLOW_KEY_PUT(match, ip.tos,
1536 ipv4_key->ipv4_tos, is_mask);
1537 SW_FLOW_KEY_PUT(match, ip.ttl,
1538 ipv4_key->ipv4_ttl, is_mask);
1539 SW_FLOW_KEY_PUT(match, ip.frag,
1540 ipv4_key->ipv4_frag, is_mask);
1541 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1542 ipv4_key->ipv4_src, is_mask);
1543 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1544 ipv4_key->ipv4_dst, is_mask);
1545 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1548 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1549 const struct ovs_key_ipv6 *ipv6_key;
1551 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1552 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1553 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1554 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1555 return -EINVAL;
1558 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1559 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1560 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1561 return -EINVAL;
1564 SW_FLOW_KEY_PUT(match, ipv6.label,
1565 ipv6_key->ipv6_label, is_mask);
1566 SW_FLOW_KEY_PUT(match, ip.proto,
1567 ipv6_key->ipv6_proto, is_mask);
1568 SW_FLOW_KEY_PUT(match, ip.tos,
1569 ipv6_key->ipv6_tclass, is_mask);
1570 SW_FLOW_KEY_PUT(match, ip.ttl,
1571 ipv6_key->ipv6_hlimit, is_mask);
1572 SW_FLOW_KEY_PUT(match, ip.frag,
1573 ipv6_key->ipv6_frag, is_mask);
1574 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1575 ipv6_key->ipv6_src,
1576 sizeof(match->key->ipv6.addr.src),
1577 is_mask);
1578 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1579 ipv6_key->ipv6_dst,
1580 sizeof(match->key->ipv6.addr.dst),
1581 is_mask);
1583 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1586 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1587 const struct ovs_key_arp *arp_key;
1589 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1590 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1591 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1592 arp_key->arp_op);
1593 return -EINVAL;
1596 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1597 arp_key->arp_sip, is_mask);
1598 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1599 arp_key->arp_tip, is_mask);
1600 SW_FLOW_KEY_PUT(match, ip.proto,
1601 ntohs(arp_key->arp_op), is_mask);
1602 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1603 arp_key->arp_sha, ETH_ALEN, is_mask);
1604 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1605 arp_key->arp_tha, ETH_ALEN, is_mask);
1607 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1610 if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1611 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1612 is_mask, false, log) < 0)
1613 return -EINVAL;
1614 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1617 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1618 const struct ovs_key_mpls *mpls_key;
1620 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1621 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1622 mpls_key->mpls_lse, is_mask);
1624 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1627 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1628 const struct ovs_key_tcp *tcp_key;
1630 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1631 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1632 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1633 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1636 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1637 SW_FLOW_KEY_PUT(match, tp.flags,
1638 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1639 is_mask);
1640 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1643 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1644 const struct ovs_key_udp *udp_key;
1646 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1647 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1648 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1649 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1652 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1653 const struct ovs_key_sctp *sctp_key;
1655 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1656 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1657 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1658 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1661 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1662 const struct ovs_key_icmp *icmp_key;
1664 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1665 SW_FLOW_KEY_PUT(match, tp.src,
1666 htons(icmp_key->icmp_type), is_mask);
1667 SW_FLOW_KEY_PUT(match, tp.dst,
1668 htons(icmp_key->icmp_code), is_mask);
1669 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1672 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1673 const struct ovs_key_icmpv6 *icmpv6_key;
1675 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1676 SW_FLOW_KEY_PUT(match, tp.src,
1677 htons(icmpv6_key->icmpv6_type), is_mask);
1678 SW_FLOW_KEY_PUT(match, tp.dst,
1679 htons(icmpv6_key->icmpv6_code), is_mask);
1680 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1683 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1684 const struct ovs_key_nd *nd_key;
1686 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1687 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1688 nd_key->nd_target,
1689 sizeof(match->key->ipv6.nd.target),
1690 is_mask);
1691 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1692 nd_key->nd_sll, ETH_ALEN, is_mask);
1693 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1694 nd_key->nd_tll, ETH_ALEN, is_mask);
1695 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1698 if (attrs != 0) {
1699 OVS_NLERR(log, "Unknown key attributes %llx",
1700 (unsigned long long)attrs);
1701 return -EINVAL;
1704 return 0;
1707 static void nlattr_set(struct nlattr *attr, u8 val,
1708 const struct ovs_len_tbl *tbl)
1710 struct nlattr *nla;
1711 int rem;
1713 /* The nlattr stream should already have been validated */
1714 nla_for_each_nested(nla, attr, rem) {
1715 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1716 if (tbl[nla_type(nla)].next)
1717 tbl = tbl[nla_type(nla)].next;
1718 nlattr_set(nla, val, tbl);
1719 } else {
1720 memset(nla_data(nla), val, nla_len(nla));
1723 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1724 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1728 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1730 nlattr_set(attr, val, ovs_key_lens);
1734 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1735 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1736 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1737 * does not include any don't care bit.
1738 * @net: Used to determine per-namespace field support.
1739 * @match: receives the extracted flow match information.
1740 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1741 * sequence. The fields should of the packet that triggered the creation
1742 * of this flow.
1743 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1744 * attribute specifies the mask field of the wildcarded flow.
1745 * @log: Boolean to allow kernel error logging. Normally true, but when
1746 * probing for feature compatibility this should be passed in as false to
1747 * suppress unnecessary error logging.
1749 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1750 const struct nlattr *nla_key,
1751 const struct nlattr *nla_mask,
1752 bool log)
1754 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1755 struct nlattr *newmask = NULL;
1756 u64 key_attrs = 0;
1757 u64 mask_attrs = 0;
1758 int err;
1760 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1761 if (err)
1762 return err;
1764 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1765 if (err)
1766 return err;
1768 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1769 if (err)
1770 return err;
1772 if (match->mask) {
1773 if (!nla_mask) {
1774 /* Create an exact match mask. We need to set to 0xff
1775 * all the 'match->mask' fields that have been touched
1776 * in 'match->key'. We cannot simply memset
1777 * 'match->mask', because padding bytes and fields not
1778 * specified in 'match->key' should be left to 0.
1779 * Instead, we use a stream of netlink attributes,
1780 * copied from 'key' and set to 0xff.
1781 * ovs_key_from_nlattrs() will take care of filling
1782 * 'match->mask' appropriately.
1784 newmask = kmemdup(nla_key,
1785 nla_total_size(nla_len(nla_key)),
1786 GFP_KERNEL);
1787 if (!newmask)
1788 return -ENOMEM;
1790 mask_set_nlattr(newmask, 0xff);
1792 /* The userspace does not send tunnel attributes that
1793 * are 0, but we should not wildcard them nonetheless.
1795 if (match->key->tun_proto)
1796 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1797 0xff, true);
1799 nla_mask = newmask;
1802 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1803 if (err)
1804 goto free_newmask;
1806 /* Always match on tci. */
1807 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1808 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1810 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1811 if (err)
1812 goto free_newmask;
1814 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1815 log);
1816 if (err)
1817 goto free_newmask;
1820 if (!match_validate(match, key_attrs, mask_attrs, log))
1821 err = -EINVAL;
1823 free_newmask:
1824 kfree(newmask);
1825 return err;
1828 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1830 size_t len;
1832 if (!attr)
1833 return 0;
1835 len = nla_len(attr);
1836 if (len < 1 || len > MAX_UFID_LENGTH) {
1837 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1838 nla_len(attr), MAX_UFID_LENGTH);
1839 return 0;
1842 return len;
1845 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1846 * or false otherwise.
1848 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1849 bool log)
1851 sfid->ufid_len = get_ufid_len(attr, log);
1852 if (sfid->ufid_len)
1853 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1855 return sfid->ufid_len;
1858 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1859 const struct sw_flow_key *key, bool log)
1861 struct sw_flow_key *new_key;
1863 if (ovs_nla_get_ufid(sfid, ufid, log))
1864 return 0;
1866 /* If UFID was not provided, use unmasked key. */
1867 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1868 if (!new_key)
1869 return -ENOMEM;
1870 memcpy(new_key, key, sizeof(*key));
1871 sfid->unmasked_key = new_key;
1873 return 0;
1876 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1878 return attr ? nla_get_u32(attr) : 0;
1882 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1883 * @net: Network namespace.
1884 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1885 * metadata.
1886 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1887 * attributes.
1888 * @attrs: Bit mask for the netlink attributes included in @a.
1889 * @log: Boolean to allow kernel error logging. Normally true, but when
1890 * probing for feature compatibility this should be passed in as false to
1891 * suppress unnecessary error logging.
1893 * This parses a series of Netlink attributes that form a flow key, which must
1894 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1895 * get the metadata, that is, the parts of the flow key that cannot be
1896 * extracted from the packet itself.
1898 * This must be called before the packet key fields are filled in 'key'.
1901 int ovs_nla_get_flow_metadata(struct net *net,
1902 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1903 u64 attrs, struct sw_flow_key *key, bool log)
1905 struct sw_flow_match match;
1907 memset(&match, 0, sizeof(match));
1908 match.key = key;
1910 key->ct_state = 0;
1911 key->ct_zone = 0;
1912 key->ct_orig_proto = 0;
1913 memset(&key->ct, 0, sizeof(key->ct));
1914 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1915 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1917 key->phy.in_port = DP_MAX_PORTS;
1919 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1922 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1923 bool is_mask)
1925 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1927 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1928 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1929 return -EMSGSIZE;
1930 return 0;
1933 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1934 struct sk_buff *skb)
1936 struct nlattr *start;
1938 start = nla_nest_start(skb, OVS_KEY_ATTR_NSH);
1939 if (!start)
1940 return -EMSGSIZE;
1942 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1943 goto nla_put_failure;
1945 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1946 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1947 sizeof(nsh->context), nsh->context))
1948 goto nla_put_failure;
1951 /* Don't support MD type 2 yet */
1953 nla_nest_end(skb, start);
1955 return 0;
1957 nla_put_failure:
1958 return -EMSGSIZE;
1961 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1962 const struct sw_flow_key *output, bool is_mask,
1963 struct sk_buff *skb)
1965 struct ovs_key_ethernet *eth_key;
1966 struct nlattr *nla;
1967 struct nlattr *encap = NULL;
1968 struct nlattr *in_encap = NULL;
1970 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1971 goto nla_put_failure;
1973 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1974 goto nla_put_failure;
1976 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1977 goto nla_put_failure;
1979 if ((swkey->tun_proto || is_mask)) {
1980 const void *opts = NULL;
1982 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1983 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1985 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1986 swkey->tun_opts_len, swkey->tun_proto))
1987 goto nla_put_failure;
1990 if (swkey->phy.in_port == DP_MAX_PORTS) {
1991 if (is_mask && (output->phy.in_port == 0xffff))
1992 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1993 goto nla_put_failure;
1994 } else {
1995 u16 upper_u16;
1996 upper_u16 = !is_mask ? 0 : 0xffff;
1998 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1999 (upper_u16 << 16) | output->phy.in_port))
2000 goto nla_put_failure;
2003 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2004 goto nla_put_failure;
2006 if (ovs_ct_put_key(swkey, output, skb))
2007 goto nla_put_failure;
2009 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2010 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2011 if (!nla)
2012 goto nla_put_failure;
2014 eth_key = nla_data(nla);
2015 ether_addr_copy(eth_key->eth_src, output->eth.src);
2016 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2018 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2019 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2020 goto nla_put_failure;
2021 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
2022 if (!swkey->eth.vlan.tci)
2023 goto unencap;
2025 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2026 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2027 goto nla_put_failure;
2028 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
2029 if (!swkey->eth.cvlan.tci)
2030 goto unencap;
2034 if (swkey->eth.type == htons(ETH_P_802_2)) {
2036 * Ethertype 802.2 is represented in the netlink with omitted
2037 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2038 * 0xffff in the mask attribute. Ethertype can also
2039 * be wildcarded.
2041 if (is_mask && output->eth.type)
2042 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2043 output->eth.type))
2044 goto nla_put_failure;
2045 goto unencap;
2049 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2050 goto nla_put_failure;
2052 if (eth_type_vlan(swkey->eth.type)) {
2053 /* There are 3 VLAN tags, we don't know anything about the rest
2054 * of the packet, so truncate here.
2056 WARN_ON_ONCE(!(encap && in_encap));
2057 goto unencap;
2060 if (swkey->eth.type == htons(ETH_P_IP)) {
2061 struct ovs_key_ipv4 *ipv4_key;
2063 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2064 if (!nla)
2065 goto nla_put_failure;
2066 ipv4_key = nla_data(nla);
2067 ipv4_key->ipv4_src = output->ipv4.addr.src;
2068 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2069 ipv4_key->ipv4_proto = output->ip.proto;
2070 ipv4_key->ipv4_tos = output->ip.tos;
2071 ipv4_key->ipv4_ttl = output->ip.ttl;
2072 ipv4_key->ipv4_frag = output->ip.frag;
2073 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2074 struct ovs_key_ipv6 *ipv6_key;
2076 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2077 if (!nla)
2078 goto nla_put_failure;
2079 ipv6_key = nla_data(nla);
2080 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2081 sizeof(ipv6_key->ipv6_src));
2082 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2083 sizeof(ipv6_key->ipv6_dst));
2084 ipv6_key->ipv6_label = output->ipv6.label;
2085 ipv6_key->ipv6_proto = output->ip.proto;
2086 ipv6_key->ipv6_tclass = output->ip.tos;
2087 ipv6_key->ipv6_hlimit = output->ip.ttl;
2088 ipv6_key->ipv6_frag = output->ip.frag;
2089 } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2090 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2091 goto nla_put_failure;
2092 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2093 swkey->eth.type == htons(ETH_P_RARP)) {
2094 struct ovs_key_arp *arp_key;
2096 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2097 if (!nla)
2098 goto nla_put_failure;
2099 arp_key = nla_data(nla);
2100 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2101 arp_key->arp_sip = output->ipv4.addr.src;
2102 arp_key->arp_tip = output->ipv4.addr.dst;
2103 arp_key->arp_op = htons(output->ip.proto);
2104 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2105 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2106 } else if (eth_p_mpls(swkey->eth.type)) {
2107 struct ovs_key_mpls *mpls_key;
2109 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2110 if (!nla)
2111 goto nla_put_failure;
2112 mpls_key = nla_data(nla);
2113 mpls_key->mpls_lse = output->mpls.top_lse;
2116 if ((swkey->eth.type == htons(ETH_P_IP) ||
2117 swkey->eth.type == htons(ETH_P_IPV6)) &&
2118 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2120 if (swkey->ip.proto == IPPROTO_TCP) {
2121 struct ovs_key_tcp *tcp_key;
2123 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2124 if (!nla)
2125 goto nla_put_failure;
2126 tcp_key = nla_data(nla);
2127 tcp_key->tcp_src = output->tp.src;
2128 tcp_key->tcp_dst = output->tp.dst;
2129 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2130 output->tp.flags))
2131 goto nla_put_failure;
2132 } else if (swkey->ip.proto == IPPROTO_UDP) {
2133 struct ovs_key_udp *udp_key;
2135 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2136 if (!nla)
2137 goto nla_put_failure;
2138 udp_key = nla_data(nla);
2139 udp_key->udp_src = output->tp.src;
2140 udp_key->udp_dst = output->tp.dst;
2141 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2142 struct ovs_key_sctp *sctp_key;
2144 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2145 if (!nla)
2146 goto nla_put_failure;
2147 sctp_key = nla_data(nla);
2148 sctp_key->sctp_src = output->tp.src;
2149 sctp_key->sctp_dst = output->tp.dst;
2150 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2151 swkey->ip.proto == IPPROTO_ICMP) {
2152 struct ovs_key_icmp *icmp_key;
2154 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2155 if (!nla)
2156 goto nla_put_failure;
2157 icmp_key = nla_data(nla);
2158 icmp_key->icmp_type = ntohs(output->tp.src);
2159 icmp_key->icmp_code = ntohs(output->tp.dst);
2160 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2161 swkey->ip.proto == IPPROTO_ICMPV6) {
2162 struct ovs_key_icmpv6 *icmpv6_key;
2164 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2165 sizeof(*icmpv6_key));
2166 if (!nla)
2167 goto nla_put_failure;
2168 icmpv6_key = nla_data(nla);
2169 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2170 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2172 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2173 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2174 struct ovs_key_nd *nd_key;
2176 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2177 if (!nla)
2178 goto nla_put_failure;
2179 nd_key = nla_data(nla);
2180 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2181 sizeof(nd_key->nd_target));
2182 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2183 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2188 unencap:
2189 if (in_encap)
2190 nla_nest_end(skb, in_encap);
2191 if (encap)
2192 nla_nest_end(skb, encap);
2194 return 0;
2196 nla_put_failure:
2197 return -EMSGSIZE;
2200 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2201 const struct sw_flow_key *output, int attr, bool is_mask,
2202 struct sk_buff *skb)
2204 int err;
2205 struct nlattr *nla;
2207 nla = nla_nest_start(skb, attr);
2208 if (!nla)
2209 return -EMSGSIZE;
2210 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2211 if (err)
2212 return err;
2213 nla_nest_end(skb, nla);
2215 return 0;
2218 /* Called with ovs_mutex or RCU read lock. */
2219 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2221 if (ovs_identifier_is_ufid(&flow->id))
2222 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2223 flow->id.ufid);
2225 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2226 OVS_FLOW_ATTR_KEY, false, skb);
2229 /* Called with ovs_mutex or RCU read lock. */
2230 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2232 return ovs_nla_put_key(&flow->key, &flow->key,
2233 OVS_FLOW_ATTR_KEY, false, skb);
2236 /* Called with ovs_mutex or RCU read lock. */
2237 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2239 return ovs_nla_put_key(&flow->key, &flow->mask->key,
2240 OVS_FLOW_ATTR_MASK, true, skb);
2243 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
2245 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2247 struct sw_flow_actions *sfa;
2249 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2251 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2252 if (!sfa)
2253 return ERR_PTR(-ENOMEM);
2255 sfa->actions_len = 0;
2256 return sfa;
2259 static void ovs_nla_free_set_action(const struct nlattr *a)
2261 const struct nlattr *ovs_key = nla_data(a);
2262 struct ovs_tunnel_info *ovs_tun;
2264 switch (nla_type(ovs_key)) {
2265 case OVS_KEY_ATTR_TUNNEL_INFO:
2266 ovs_tun = nla_data(ovs_key);
2267 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2268 break;
2272 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2274 const struct nlattr *a;
2275 int rem;
2277 if (!sf_acts)
2278 return;
2280 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2281 switch (nla_type(a)) {
2282 case OVS_ACTION_ATTR_SET:
2283 ovs_nla_free_set_action(a);
2284 break;
2285 case OVS_ACTION_ATTR_CT:
2286 ovs_ct_free_action(a);
2287 break;
2291 kfree(sf_acts);
2294 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2296 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2299 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2300 * The caller must hold rcu_read_lock for this to be sensible. */
2301 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2303 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2306 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2307 int attr_len, bool log)
2310 struct sw_flow_actions *acts;
2311 int new_acts_size;
2312 int req_size = NLA_ALIGN(attr_len);
2313 int next_offset = offsetof(struct sw_flow_actions, actions) +
2314 (*sfa)->actions_len;
2316 if (req_size <= (ksize(*sfa) - next_offset))
2317 goto out;
2319 new_acts_size = ksize(*sfa) * 2;
2321 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2322 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2323 OVS_NLERR(log, "Flow action size exceeds max %u",
2324 MAX_ACTIONS_BUFSIZE);
2325 return ERR_PTR(-EMSGSIZE);
2327 new_acts_size = MAX_ACTIONS_BUFSIZE;
2330 acts = nla_alloc_flow_actions(new_acts_size);
2331 if (IS_ERR(acts))
2332 return (void *)acts;
2334 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2335 acts->actions_len = (*sfa)->actions_len;
2336 acts->orig_len = (*sfa)->orig_len;
2337 kfree(*sfa);
2338 *sfa = acts;
2340 out:
2341 (*sfa)->actions_len += req_size;
2342 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2345 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2346 int attrtype, void *data, int len, bool log)
2348 struct nlattr *a;
2350 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2351 if (IS_ERR(a))
2352 return a;
2354 a->nla_type = attrtype;
2355 a->nla_len = nla_attr_size(len);
2357 if (data)
2358 memcpy(nla_data(a), data, len);
2359 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2361 return a;
2364 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2365 int len, bool log)
2367 struct nlattr *a;
2369 a = __add_action(sfa, attrtype, data, len, log);
2371 return PTR_ERR_OR_ZERO(a);
2374 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2375 int attrtype, bool log)
2377 int used = (*sfa)->actions_len;
2378 int err;
2380 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2381 if (err)
2382 return err;
2384 return used;
2387 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2388 int st_offset)
2390 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2391 st_offset);
2393 a->nla_len = sfa->actions_len - st_offset;
2396 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2397 const struct sw_flow_key *key,
2398 struct sw_flow_actions **sfa,
2399 __be16 eth_type, __be16 vlan_tci, bool log);
2401 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2402 const struct sw_flow_key *key,
2403 struct sw_flow_actions **sfa,
2404 __be16 eth_type, __be16 vlan_tci,
2405 bool log, bool last)
2407 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2408 const struct nlattr *probability, *actions;
2409 const struct nlattr *a;
2410 int rem, start, err;
2411 struct sample_arg arg;
2413 memset(attrs, 0, sizeof(attrs));
2414 nla_for_each_nested(a, attr, rem) {
2415 int type = nla_type(a);
2416 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2417 return -EINVAL;
2418 attrs[type] = a;
2420 if (rem)
2421 return -EINVAL;
2423 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2424 if (!probability || nla_len(probability) != sizeof(u32))
2425 return -EINVAL;
2427 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2428 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2429 return -EINVAL;
2431 /* validation done, copy sample action. */
2432 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2433 if (start < 0)
2434 return start;
2436 /* When both skb and flow may be changed, put the sample
2437 * into a deferred fifo. On the other hand, if only skb
2438 * may be modified, the actions can be executed in place.
2440 * Do this analysis at the flow installation time.
2441 * Set 'clone_action->exec' to true if the actions can be
2442 * executed without being deferred.
2444 * If the sample is the last action, it can always be excuted
2445 * rather than deferred.
2447 arg.exec = last || !actions_may_change_flow(actions);
2448 arg.probability = nla_get_u32(probability);
2450 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2451 log);
2452 if (err)
2453 return err;
2455 err = __ovs_nla_copy_actions(net, actions, key, sfa,
2456 eth_type, vlan_tci, log);
2458 if (err)
2459 return err;
2461 add_nested_action_end(*sfa, start);
2463 return 0;
2466 void ovs_match_init(struct sw_flow_match *match,
2467 struct sw_flow_key *key,
2468 bool reset_key,
2469 struct sw_flow_mask *mask)
2471 memset(match, 0, sizeof(*match));
2472 match->key = key;
2473 match->mask = mask;
2475 if (reset_key)
2476 memset(key, 0, sizeof(*key));
2478 if (mask) {
2479 memset(&mask->key, 0, sizeof(mask->key));
2480 mask->range.start = mask->range.end = 0;
2484 static int validate_geneve_opts(struct sw_flow_key *key)
2486 struct geneve_opt *option;
2487 int opts_len = key->tun_opts_len;
2488 bool crit_opt = false;
2490 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2491 while (opts_len > 0) {
2492 int len;
2494 if (opts_len < sizeof(*option))
2495 return -EINVAL;
2497 len = sizeof(*option) + option->length * 4;
2498 if (len > opts_len)
2499 return -EINVAL;
2501 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2503 option = (struct geneve_opt *)((u8 *)option + len);
2504 opts_len -= len;
2507 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2509 return 0;
2512 static int validate_and_copy_set_tun(const struct nlattr *attr,
2513 struct sw_flow_actions **sfa, bool log)
2515 struct sw_flow_match match;
2516 struct sw_flow_key key;
2517 struct metadata_dst *tun_dst;
2518 struct ip_tunnel_info *tun_info;
2519 struct ovs_tunnel_info *ovs_tun;
2520 struct nlattr *a;
2521 int err = 0, start, opts_type;
2523 ovs_match_init(&match, &key, true, NULL);
2524 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2525 if (opts_type < 0)
2526 return opts_type;
2528 if (key.tun_opts_len) {
2529 switch (opts_type) {
2530 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2531 err = validate_geneve_opts(&key);
2532 if (err < 0)
2533 return err;
2534 break;
2535 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2536 break;
2537 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2538 break;
2542 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2543 if (start < 0)
2544 return start;
2546 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2547 GFP_KERNEL);
2549 if (!tun_dst)
2550 return -ENOMEM;
2552 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2553 if (err) {
2554 dst_release((struct dst_entry *)tun_dst);
2555 return err;
2558 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2559 sizeof(*ovs_tun), log);
2560 if (IS_ERR(a)) {
2561 dst_release((struct dst_entry *)tun_dst);
2562 return PTR_ERR(a);
2565 ovs_tun = nla_data(a);
2566 ovs_tun->tun_dst = tun_dst;
2568 tun_info = &tun_dst->u.tun_info;
2569 tun_info->mode = IP_TUNNEL_INFO_TX;
2570 if (key.tun_proto == AF_INET6)
2571 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2572 tun_info->key = key.tun_key;
2574 /* We need to store the options in the action itself since
2575 * everything else will go away after flow setup. We can append
2576 * it to tun_info and then point there.
2578 ip_tunnel_info_opts_set(tun_info,
2579 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2580 key.tun_opts_len);
2581 add_nested_action_end(*sfa, start);
2583 return err;
2586 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2587 bool is_push_nsh, bool log)
2589 struct sw_flow_match match;
2590 struct sw_flow_key key;
2591 int ret = 0;
2593 ovs_match_init(&match, &key, true, NULL);
2594 ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2595 is_push_nsh, log);
2596 return !ret;
2599 /* Return false if there are any non-masked bits set.
2600 * Mask follows data immediately, before any netlink padding.
2602 static bool validate_masked(u8 *data, int len)
2604 u8 *mask = data + len;
2606 while (len--)
2607 if (*data++ & ~*mask++)
2608 return false;
2610 return true;
2613 static int validate_set(const struct nlattr *a,
2614 const struct sw_flow_key *flow_key,
2615 struct sw_flow_actions **sfa, bool *skip_copy,
2616 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2618 const struct nlattr *ovs_key = nla_data(a);
2619 int key_type = nla_type(ovs_key);
2620 size_t key_len;
2622 /* There can be only one key in a action */
2623 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2624 return -EINVAL;
2626 key_len = nla_len(ovs_key);
2627 if (masked)
2628 key_len /= 2;
2630 if (key_type > OVS_KEY_ATTR_MAX ||
2631 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2632 return -EINVAL;
2634 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2635 return -EINVAL;
2637 switch (key_type) {
2638 const struct ovs_key_ipv4 *ipv4_key;
2639 const struct ovs_key_ipv6 *ipv6_key;
2640 int err;
2642 case OVS_KEY_ATTR_PRIORITY:
2643 case OVS_KEY_ATTR_SKB_MARK:
2644 case OVS_KEY_ATTR_CT_MARK:
2645 case OVS_KEY_ATTR_CT_LABELS:
2646 break;
2648 case OVS_KEY_ATTR_ETHERNET:
2649 if (mac_proto != MAC_PROTO_ETHERNET)
2650 return -EINVAL;
2651 break;
2653 case OVS_KEY_ATTR_TUNNEL:
2654 if (masked)
2655 return -EINVAL; /* Masked tunnel set not supported. */
2657 *skip_copy = true;
2658 err = validate_and_copy_set_tun(a, sfa, log);
2659 if (err)
2660 return err;
2661 break;
2663 case OVS_KEY_ATTR_IPV4:
2664 if (eth_type != htons(ETH_P_IP))
2665 return -EINVAL;
2667 ipv4_key = nla_data(ovs_key);
2669 if (masked) {
2670 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2672 /* Non-writeable fields. */
2673 if (mask->ipv4_proto || mask->ipv4_frag)
2674 return -EINVAL;
2675 } else {
2676 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2677 return -EINVAL;
2679 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2680 return -EINVAL;
2682 break;
2684 case OVS_KEY_ATTR_IPV6:
2685 if (eth_type != htons(ETH_P_IPV6))
2686 return -EINVAL;
2688 ipv6_key = nla_data(ovs_key);
2690 if (masked) {
2691 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2693 /* Non-writeable fields. */
2694 if (mask->ipv6_proto || mask->ipv6_frag)
2695 return -EINVAL;
2697 /* Invalid bits in the flow label mask? */
2698 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2699 return -EINVAL;
2700 } else {
2701 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2702 return -EINVAL;
2704 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2705 return -EINVAL;
2707 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2708 return -EINVAL;
2710 break;
2712 case OVS_KEY_ATTR_TCP:
2713 if ((eth_type != htons(ETH_P_IP) &&
2714 eth_type != htons(ETH_P_IPV6)) ||
2715 flow_key->ip.proto != IPPROTO_TCP)
2716 return -EINVAL;
2718 break;
2720 case OVS_KEY_ATTR_UDP:
2721 if ((eth_type != htons(ETH_P_IP) &&
2722 eth_type != htons(ETH_P_IPV6)) ||
2723 flow_key->ip.proto != IPPROTO_UDP)
2724 return -EINVAL;
2726 break;
2728 case OVS_KEY_ATTR_MPLS:
2729 if (!eth_p_mpls(eth_type))
2730 return -EINVAL;
2731 break;
2733 case OVS_KEY_ATTR_SCTP:
2734 if ((eth_type != htons(ETH_P_IP) &&
2735 eth_type != htons(ETH_P_IPV6)) ||
2736 flow_key->ip.proto != IPPROTO_SCTP)
2737 return -EINVAL;
2739 break;
2741 case OVS_KEY_ATTR_NSH:
2742 if (eth_type != htons(ETH_P_NSH))
2743 return -EINVAL;
2744 if (!validate_nsh(nla_data(a), masked, false, log))
2745 return -EINVAL;
2746 break;
2748 default:
2749 return -EINVAL;
2752 /* Convert non-masked non-tunnel set actions to masked set actions. */
2753 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2754 int start, len = key_len * 2;
2755 struct nlattr *at;
2757 *skip_copy = true;
2759 start = add_nested_action_start(sfa,
2760 OVS_ACTION_ATTR_SET_TO_MASKED,
2761 log);
2762 if (start < 0)
2763 return start;
2765 at = __add_action(sfa, key_type, NULL, len, log);
2766 if (IS_ERR(at))
2767 return PTR_ERR(at);
2769 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2770 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2771 /* Clear non-writeable bits from otherwise writeable fields. */
2772 if (key_type == OVS_KEY_ATTR_IPV6) {
2773 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2775 mask->ipv6_label &= htonl(0x000FFFFF);
2777 add_nested_action_end(*sfa, start);
2780 return 0;
2783 static int validate_userspace(const struct nlattr *attr)
2785 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2786 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2787 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2788 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2790 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2791 int error;
2793 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
2794 userspace_policy, NULL);
2795 if (error)
2796 return error;
2798 if (!a[OVS_USERSPACE_ATTR_PID] ||
2799 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2800 return -EINVAL;
2802 return 0;
2805 static int copy_action(const struct nlattr *from,
2806 struct sw_flow_actions **sfa, bool log)
2808 int totlen = NLA_ALIGN(from->nla_len);
2809 struct nlattr *to;
2811 to = reserve_sfa_size(sfa, from->nla_len, log);
2812 if (IS_ERR(to))
2813 return PTR_ERR(to);
2815 memcpy(to, from, totlen);
2816 return 0;
2819 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2820 const struct sw_flow_key *key,
2821 struct sw_flow_actions **sfa,
2822 __be16 eth_type, __be16 vlan_tci, bool log)
2824 u8 mac_proto = ovs_key_mac_proto(key);
2825 const struct nlattr *a;
2826 int rem, err;
2828 nla_for_each_nested(a, attr, rem) {
2829 /* Expected argument lengths, (u32)-1 for variable length. */
2830 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2831 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2832 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2833 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2834 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2835 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2836 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2837 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2838 [OVS_ACTION_ATTR_SET] = (u32)-1,
2839 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2840 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2841 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2842 [OVS_ACTION_ATTR_CT] = (u32)-1,
2843 [OVS_ACTION_ATTR_CT_CLEAR] = 0,
2844 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2845 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2846 [OVS_ACTION_ATTR_POP_ETH] = 0,
2847 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2848 [OVS_ACTION_ATTR_POP_NSH] = 0,
2849 [OVS_ACTION_ATTR_METER] = sizeof(u32),
2851 const struct ovs_action_push_vlan *vlan;
2852 int type = nla_type(a);
2853 bool skip_copy;
2855 if (type > OVS_ACTION_ATTR_MAX ||
2856 (action_lens[type] != nla_len(a) &&
2857 action_lens[type] != (u32)-1))
2858 return -EINVAL;
2860 skip_copy = false;
2861 switch (type) {
2862 case OVS_ACTION_ATTR_UNSPEC:
2863 return -EINVAL;
2865 case OVS_ACTION_ATTR_USERSPACE:
2866 err = validate_userspace(a);
2867 if (err)
2868 return err;
2869 break;
2871 case OVS_ACTION_ATTR_OUTPUT:
2872 if (nla_get_u32(a) >= DP_MAX_PORTS)
2873 return -EINVAL;
2874 break;
2876 case OVS_ACTION_ATTR_TRUNC: {
2877 const struct ovs_action_trunc *trunc = nla_data(a);
2879 if (trunc->max_len < ETH_HLEN)
2880 return -EINVAL;
2881 break;
2884 case OVS_ACTION_ATTR_HASH: {
2885 const struct ovs_action_hash *act_hash = nla_data(a);
2887 switch (act_hash->hash_alg) {
2888 case OVS_HASH_ALG_L4:
2889 break;
2890 default:
2891 return -EINVAL;
2894 break;
2897 case OVS_ACTION_ATTR_POP_VLAN:
2898 if (mac_proto != MAC_PROTO_ETHERNET)
2899 return -EINVAL;
2900 vlan_tci = htons(0);
2901 break;
2903 case OVS_ACTION_ATTR_PUSH_VLAN:
2904 if (mac_proto != MAC_PROTO_ETHERNET)
2905 return -EINVAL;
2906 vlan = nla_data(a);
2907 if (!eth_type_vlan(vlan->vlan_tpid))
2908 return -EINVAL;
2909 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2910 return -EINVAL;
2911 vlan_tci = vlan->vlan_tci;
2912 break;
2914 case OVS_ACTION_ATTR_RECIRC:
2915 break;
2917 case OVS_ACTION_ATTR_PUSH_MPLS: {
2918 const struct ovs_action_push_mpls *mpls = nla_data(a);
2920 if (!eth_p_mpls(mpls->mpls_ethertype))
2921 return -EINVAL;
2922 /* Prohibit push MPLS other than to a white list
2923 * for packets that have a known tag order.
2925 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2926 (eth_type != htons(ETH_P_IP) &&
2927 eth_type != htons(ETH_P_IPV6) &&
2928 eth_type != htons(ETH_P_ARP) &&
2929 eth_type != htons(ETH_P_RARP) &&
2930 !eth_p_mpls(eth_type)))
2931 return -EINVAL;
2932 eth_type = mpls->mpls_ethertype;
2933 break;
2936 case OVS_ACTION_ATTR_POP_MPLS:
2937 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2938 !eth_p_mpls(eth_type))
2939 return -EINVAL;
2941 /* Disallow subsequent L2.5+ set and mpls_pop actions
2942 * as there is no check here to ensure that the new
2943 * eth_type is valid and thus set actions could
2944 * write off the end of the packet or otherwise
2945 * corrupt it.
2947 * Support for these actions is planned using packet
2948 * recirculation.
2950 eth_type = htons(0);
2951 break;
2953 case OVS_ACTION_ATTR_SET:
2954 err = validate_set(a, key, sfa,
2955 &skip_copy, mac_proto, eth_type,
2956 false, log);
2957 if (err)
2958 return err;
2959 break;
2961 case OVS_ACTION_ATTR_SET_MASKED:
2962 err = validate_set(a, key, sfa,
2963 &skip_copy, mac_proto, eth_type,
2964 true, log);
2965 if (err)
2966 return err;
2967 break;
2969 case OVS_ACTION_ATTR_SAMPLE: {
2970 bool last = nla_is_last(a, rem);
2972 err = validate_and_copy_sample(net, a, key, sfa,
2973 eth_type, vlan_tci,
2974 log, last);
2975 if (err)
2976 return err;
2977 skip_copy = true;
2978 break;
2981 case OVS_ACTION_ATTR_CT:
2982 err = ovs_ct_copy_action(net, a, key, sfa, log);
2983 if (err)
2984 return err;
2985 skip_copy = true;
2986 break;
2988 case OVS_ACTION_ATTR_CT_CLEAR:
2989 break;
2991 case OVS_ACTION_ATTR_PUSH_ETH:
2992 /* Disallow pushing an Ethernet header if one
2993 * is already present */
2994 if (mac_proto != MAC_PROTO_NONE)
2995 return -EINVAL;
2996 mac_proto = MAC_PROTO_NONE;
2997 break;
2999 case OVS_ACTION_ATTR_POP_ETH:
3000 if (mac_proto != MAC_PROTO_ETHERNET)
3001 return -EINVAL;
3002 if (vlan_tci & htons(VLAN_TAG_PRESENT))
3003 return -EINVAL;
3004 mac_proto = MAC_PROTO_ETHERNET;
3005 break;
3007 case OVS_ACTION_ATTR_PUSH_NSH:
3008 if (mac_proto != MAC_PROTO_ETHERNET) {
3009 u8 next_proto;
3011 next_proto = tun_p_from_eth_p(eth_type);
3012 if (!next_proto)
3013 return -EINVAL;
3015 mac_proto = MAC_PROTO_NONE;
3016 if (!validate_nsh(nla_data(a), false, true, true))
3017 return -EINVAL;
3018 break;
3020 case OVS_ACTION_ATTR_POP_NSH: {
3021 __be16 inner_proto;
3023 if (eth_type != htons(ETH_P_NSH))
3024 return -EINVAL;
3025 inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3026 if (!inner_proto)
3027 return -EINVAL;
3028 if (key->nsh.base.np == TUN_P_ETHERNET)
3029 mac_proto = MAC_PROTO_ETHERNET;
3030 else
3031 mac_proto = MAC_PROTO_NONE;
3032 break;
3035 case OVS_ACTION_ATTR_METER:
3036 /* Non-existent meters are simply ignored. */
3037 break;
3039 default:
3040 OVS_NLERR(log, "Unknown Action type %d", type);
3041 return -EINVAL;
3043 if (!skip_copy) {
3044 err = copy_action(a, sfa, log);
3045 if (err)
3046 return err;
3050 if (rem > 0)
3051 return -EINVAL;
3053 return 0;
3056 /* 'key' must be the masked key. */
3057 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3058 const struct sw_flow_key *key,
3059 struct sw_flow_actions **sfa, bool log)
3061 int err;
3063 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3064 if (IS_ERR(*sfa))
3065 return PTR_ERR(*sfa);
3067 (*sfa)->orig_len = nla_len(attr);
3068 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3069 key->eth.vlan.tci, log);
3070 if (err)
3071 ovs_nla_free_flow_actions(*sfa);
3073 return err;
3076 static int sample_action_to_attr(const struct nlattr *attr,
3077 struct sk_buff *skb)
3079 struct nlattr *start, *ac_start = NULL, *sample_arg;
3080 int err = 0, rem = nla_len(attr);
3081 const struct sample_arg *arg;
3082 struct nlattr *actions;
3084 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
3085 if (!start)
3086 return -EMSGSIZE;
3088 sample_arg = nla_data(attr);
3089 arg = nla_data(sample_arg);
3090 actions = nla_next(sample_arg, &rem);
3092 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3093 err = -EMSGSIZE;
3094 goto out;
3097 ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
3098 if (!ac_start) {
3099 err = -EMSGSIZE;
3100 goto out;
3103 err = ovs_nla_put_actions(actions, rem, skb);
3105 out:
3106 if (err) {
3107 nla_nest_cancel(skb, ac_start);
3108 nla_nest_cancel(skb, start);
3109 } else {
3110 nla_nest_end(skb, ac_start);
3111 nla_nest_end(skb, start);
3114 return err;
3117 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3119 const struct nlattr *ovs_key = nla_data(a);
3120 int key_type = nla_type(ovs_key);
3121 struct nlattr *start;
3122 int err;
3124 switch (key_type) {
3125 case OVS_KEY_ATTR_TUNNEL_INFO: {
3126 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3127 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3129 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
3130 if (!start)
3131 return -EMSGSIZE;
3133 err = ip_tun_to_nlattr(skb, &tun_info->key,
3134 ip_tunnel_info_opts(tun_info),
3135 tun_info->options_len,
3136 ip_tunnel_info_af(tun_info));
3137 if (err)
3138 return err;
3139 nla_nest_end(skb, start);
3140 break;
3142 default:
3143 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3144 return -EMSGSIZE;
3145 break;
3148 return 0;
3151 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3152 struct sk_buff *skb)
3154 const struct nlattr *ovs_key = nla_data(a);
3155 struct nlattr *nla;
3156 size_t key_len = nla_len(ovs_key) / 2;
3158 /* Revert the conversion we did from a non-masked set action to
3159 * masked set action.
3161 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
3162 if (!nla)
3163 return -EMSGSIZE;
3165 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3166 return -EMSGSIZE;
3168 nla_nest_end(skb, nla);
3169 return 0;
3172 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3174 const struct nlattr *a;
3175 int rem, err;
3177 nla_for_each_attr(a, attr, len, rem) {
3178 int type = nla_type(a);
3180 switch (type) {
3181 case OVS_ACTION_ATTR_SET:
3182 err = set_action_to_attr(a, skb);
3183 if (err)
3184 return err;
3185 break;
3187 case OVS_ACTION_ATTR_SET_TO_MASKED:
3188 err = masked_set_action_to_set_action_attr(a, skb);
3189 if (err)
3190 return err;
3191 break;
3193 case OVS_ACTION_ATTR_SAMPLE:
3194 err = sample_action_to_attr(a, skb);
3195 if (err)
3196 return err;
3197 break;
3199 case OVS_ACTION_ATTR_CT:
3200 err = ovs_ct_action_to_attr(nla_data(a), skb);
3201 if (err)
3202 return err;
3203 break;
3205 default:
3206 if (nla_put(skb, type, nla_len(a), nla_data(a)))
3207 return -EMSGSIZE;
3208 break;
3212 return 0;