2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
9 * Permission to use, copy, modify, and/or distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 * DOC: Wireless regulatory infrastructure
26 * The usual implementation is for a driver to read a device EEPROM to
27 * determine which regulatory domain it should be operating under, then
28 * looking up the allowable channels in a driver-local table and finally
29 * registering those channels in the wiphy structure.
31 * Another set of compliance enforcement is for drivers to use their
32 * own compliance limits which can be stored on the EEPROM. The host
33 * driver or firmware may ensure these are used.
35 * In addition to all this we provide an extra layer of regulatory
36 * conformance. For drivers which do not have any regulatory
37 * information CRDA provides the complete regulatory solution.
38 * For others it provides a community effort on further restrictions
39 * to enhance compliance.
41 * Note: When number of rules --> infinity we will not be able to
42 * index on alpha2 any more, instead we'll probably have to
43 * rely on some SHA1 checksum of the regdomain for example.
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/verification.h>
57 #include <linux/moduleparam.h>
58 #include <linux/firmware.h>
59 #include <net/cfg80211.h>
66 * Grace period we give before making sure all current interfaces reside on
67 * channels allowed by the current regulatory domain.
69 #define REG_ENFORCE_GRACE_MS 60000
72 * enum reg_request_treatment - regulatory request treatment
74 * @REG_REQ_OK: continue processing the regulatory request
75 * @REG_REQ_IGNORE: ignore the regulatory request
76 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
77 * be intersected with the current one.
78 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
79 * regulatory settings, and no further processing is required.
81 enum reg_request_treatment
{
88 static struct regulatory_request core_request_world
= {
89 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
94 .country_ie_env
= ENVIRON_ANY
,
98 * Receipt of information from last regulatory request,
99 * protected by RTNL (and can be accessed with RCU protection)
101 static struct regulatory_request __rcu
*last_request
=
102 (void __force __rcu
*)&core_request_world
;
104 /* To trigger userspace events and load firmware */
105 static struct platform_device
*reg_pdev
;
108 * Central wireless core regulatory domains, we only need two,
109 * the current one and a world regulatory domain in case we have no
110 * information to give us an alpha2.
111 * (protected by RTNL, can be read under RCU)
113 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
116 * Number of devices that registered to the core
117 * that support cellular base station regulatory hints
118 * (protected by RTNL)
120 static int reg_num_devs_support_basehint
;
123 * State variable indicating if the platform on which the devices
124 * are attached is operating in an indoor environment. The state variable
125 * is relevant for all registered devices.
127 static bool reg_is_indoor
;
128 static spinlock_t reg_indoor_lock
;
130 /* Used to track the userspace process controlling the indoor setting */
131 static u32 reg_is_indoor_portid
;
133 static void restore_regulatory_settings(bool reset_user
);
135 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
137 return rtnl_dereference(cfg80211_regdomain
);
140 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
142 return rtnl_dereference(wiphy
->regd
);
145 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
147 switch (dfs_region
) {
148 case NL80211_DFS_UNSET
:
150 case NL80211_DFS_FCC
:
152 case NL80211_DFS_ETSI
:
160 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
162 const struct ieee80211_regdomain
*regd
= NULL
;
163 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
165 regd
= get_cfg80211_regdom();
169 wiphy_regd
= get_wiphy_regdom(wiphy
);
173 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
176 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
177 dev_name(&wiphy
->dev
),
178 reg_dfs_region_str(wiphy_regd
->dfs_region
),
179 reg_dfs_region_str(regd
->dfs_region
));
182 return regd
->dfs_region
;
185 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
189 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
192 static struct regulatory_request
*get_last_request(void)
194 return rcu_dereference_rtnl(last_request
);
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list
);
199 static spinlock_t reg_requests_lock
;
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons
);
203 static spinlock_t reg_pending_beacons_lock
;
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list
);
209 struct list_head list
;
210 struct ieee80211_channel chan
;
213 static void reg_check_chans_work(struct work_struct
*work
);
214 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
216 static void reg_todo(struct work_struct
*work
);
217 static DECLARE_WORK(reg_work
, reg_todo
);
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom
= {
224 /* IEEE 802.11b/g, channels 1..11 */
225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 /* IEEE 802.11b/g, channels 12..13. */
227 REG_RULE(2467-10, 2472+10, 20, 6, 20,
228 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
229 /* IEEE 802.11 channel 14 - Only JP enables
230 * this and for 802.11b only */
231 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_OFDM
),
234 /* IEEE 802.11a, channel 36..48 */
235 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_AUTO_BW
),
239 /* IEEE 802.11a, channel 52..64 - DFS required */
240 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_AUTO_BW
|
245 /* IEEE 802.11a, channel 100..144 - DFS required */
246 REG_RULE(5500-10, 5720+10, 160, 6, 20,
250 /* IEEE 802.11a, channel 149..165 */
251 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 /* IEEE 802.11ad (60GHz), channels 1..3 */
255 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
259 /* protected by RTNL */
260 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
263 static char *ieee80211_regdom
= "00";
264 static char user_alpha2
[2];
266 module_param(ieee80211_regdom
, charp
, 0444);
267 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
269 static void reg_free_request(struct regulatory_request
*request
)
271 if (request
== &core_request_world
)
274 if (request
!= get_last_request())
278 static void reg_free_last_request(void)
280 struct regulatory_request
*lr
= get_last_request();
282 if (lr
!= &core_request_world
&& lr
)
283 kfree_rcu(lr
, rcu_head
);
286 static void reg_update_last_request(struct regulatory_request
*request
)
288 struct regulatory_request
*lr
;
290 lr
= get_last_request();
294 reg_free_last_request();
295 rcu_assign_pointer(last_request
, request
);
298 static void reset_regdomains(bool full_reset
,
299 const struct ieee80211_regdomain
*new_regdom
)
301 const struct ieee80211_regdomain
*r
;
305 r
= get_cfg80211_regdom();
307 /* avoid freeing static information or freeing something twice */
308 if (r
== cfg80211_world_regdom
)
310 if (cfg80211_world_regdom
== &world_regdom
)
311 cfg80211_world_regdom
= NULL
;
312 if (r
== &world_regdom
)
316 rcu_free_regdom(cfg80211_world_regdom
);
318 cfg80211_world_regdom
= &world_regdom
;
319 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
324 reg_update_last_request(&core_request_world
);
328 * Dynamic world regulatory domain requested by the wireless
329 * core upon initialization
331 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
333 struct regulatory_request
*lr
;
335 lr
= get_last_request();
339 reset_regdomains(false, rd
);
341 cfg80211_world_regdom
= rd
;
344 bool is_world_regdom(const char *alpha2
)
348 return alpha2
[0] == '0' && alpha2
[1] == '0';
351 static bool is_alpha2_set(const char *alpha2
)
355 return alpha2
[0] && alpha2
[1];
358 static bool is_unknown_alpha2(const char *alpha2
)
363 * Special case where regulatory domain was built by driver
364 * but a specific alpha2 cannot be determined
366 return alpha2
[0] == '9' && alpha2
[1] == '9';
369 static bool is_intersected_alpha2(const char *alpha2
)
374 * Special case where regulatory domain is the
375 * result of an intersection between two regulatory domain
378 return alpha2
[0] == '9' && alpha2
[1] == '8';
381 static bool is_an_alpha2(const char *alpha2
)
385 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
388 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
390 if (!alpha2_x
|| !alpha2_y
)
392 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
395 static bool regdom_changes(const char *alpha2
)
397 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
401 return !alpha2_equal(r
->alpha2
, alpha2
);
405 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
406 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
407 * has ever been issued.
409 static bool is_user_regdom_saved(void)
411 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
414 /* This would indicate a mistake on the design */
415 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
416 "Unexpected user alpha2: %c%c\n",
417 user_alpha2
[0], user_alpha2
[1]))
423 static const struct ieee80211_regdomain
*
424 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
426 struct ieee80211_regdomain
*regd
;
431 sizeof(struct ieee80211_regdomain
) +
432 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
434 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
436 return ERR_PTR(-ENOMEM
);
438 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
440 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
441 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
442 sizeof(struct ieee80211_reg_rule
));
447 struct reg_regdb_apply_request
{
448 struct list_head list
;
449 const struct ieee80211_regdomain
*regdom
;
452 static LIST_HEAD(reg_regdb_apply_list
);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
455 static void reg_regdb_apply(struct work_struct
*work
)
457 struct reg_regdb_apply_request
*request
;
461 mutex_lock(®_regdb_apply_mutex
);
462 while (!list_empty(®_regdb_apply_list
)) {
463 request
= list_first_entry(®_regdb_apply_list
,
464 struct reg_regdb_apply_request
,
466 list_del(&request
->list
);
468 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
471 mutex_unlock(®_regdb_apply_mutex
);
476 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
478 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
480 struct reg_regdb_apply_request
*request
;
482 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
488 request
->regdom
= regdom
;
490 mutex_lock(®_regdb_apply_mutex
);
491 list_add_tail(&request
->list
, ®_regdb_apply_list
);
492 mutex_unlock(®_regdb_apply_mutex
);
494 schedule_work(®_regdb_work
);
498 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
499 /* Max number of consecutive attempts to communicate with CRDA */
500 #define REG_MAX_CRDA_TIMEOUTS 10
502 static u32 reg_crda_timeouts
;
504 static void crda_timeout_work(struct work_struct
*work
);
505 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
507 static void crda_timeout_work(struct work_struct
*work
)
509 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
512 restore_regulatory_settings(true);
516 static void cancel_crda_timeout(void)
518 cancel_delayed_work(&crda_timeout
);
521 static void cancel_crda_timeout_sync(void)
523 cancel_delayed_work_sync(&crda_timeout
);
526 static void reset_crda_timeouts(void)
528 reg_crda_timeouts
= 0;
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
535 static int call_crda(const char *alpha2
)
538 char *env
[] = { country
, NULL
};
541 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
542 alpha2
[0], alpha2
[1]);
544 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
545 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
549 if (!is_world_regdom((char *) alpha2
))
550 pr_debug("Calling CRDA for country: %c%c\n",
551 alpha2
[0], alpha2
[1]);
553 pr_debug("Calling CRDA to update world regulatory domain\n");
555 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
559 queue_delayed_work(system_power_efficient_wq
,
560 &crda_timeout
, msecs_to_jiffies(3142));
564 static inline void cancel_crda_timeout(void) {}
565 static inline void cancel_crda_timeout_sync(void) {}
566 static inline void reset_crda_timeouts(void) {}
567 static inline int call_crda(const char *alpha2
)
571 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573 /* code to directly load a firmware database through request_firmware */
574 static const struct fwdb_header
*regdb
;
576 struct fwdb_country
{
579 /* this struct cannot be extended */
580 } __packed
__aligned(4);
582 struct fwdb_collection
{
586 /* no optional data yet */
587 /* aligned to 2, then followed by __be16 array of rule pointers */
588 } __packed
__aligned(4);
591 FWDB_FLAG_NO_OFDM
= BIT(0),
592 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
593 FWDB_FLAG_DFS
= BIT(2),
594 FWDB_FLAG_NO_IR
= BIT(3),
595 FWDB_FLAG_AUTO_BW
= BIT(4),
602 __be32 start
, end
, max_bw
;
603 /* start of optional data */
605 } __packed
__aligned(4);
607 #define FWDB_MAGIC 0x52474442
608 #define FWDB_VERSION 20
613 struct fwdb_country country
[];
614 } __packed
__aligned(4);
616 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
618 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
620 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
623 /* mandatory fields */
624 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
630 static bool valid_country(const u8
*data
, unsigned int size
,
631 const struct fwdb_country
*country
)
633 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
634 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
638 /* make sure we can read len/n_rules */
639 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
642 /* make sure base struct and all rules fit */
643 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
644 (coll
->n_rules
* 2) > data
+ size
)
647 /* mandatory fields must exist */
648 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
651 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
653 for (i
= 0; i
< coll
->n_rules
; i
++) {
654 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
656 if (!valid_rule(data
, size
, rule_ptr
))
663 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
664 static struct key
*builtin_regdb_keys
;
666 static void __init
load_keys_from_buffer(const u8
*p
, unsigned int buflen
)
668 const u8
*end
= p
+ buflen
;
673 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
674 * than 256 bytes in size.
681 plen
= (p
[2] << 8) | p
[3];
686 key
= key_create_or_update(make_key_ref(builtin_regdb_keys
, 1),
687 "asymmetric", NULL
, p
, plen
,
688 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
689 KEY_USR_VIEW
| KEY_USR_READ
),
690 KEY_ALLOC_NOT_IN_QUOTA
|
692 KEY_ALLOC_BYPASS_RESTRICTION
);
694 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
697 pr_notice("Loaded X.509 cert '%s'\n",
698 key_ref_to_ptr(key
)->description
);
707 pr_err("Problem parsing in-kernel X.509 certificate list\n");
710 static int __init
load_builtin_regdb_keys(void)
713 keyring_alloc(".builtin_regdb_keys",
714 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
715 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
716 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
717 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
718 if (IS_ERR(builtin_regdb_keys
))
719 return PTR_ERR(builtin_regdb_keys
);
721 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
723 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
724 load_keys_from_buffer(shipped_regdb_certs
, shipped_regdb_certs_len
);
726 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
727 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
728 load_keys_from_buffer(extra_regdb_certs
, extra_regdb_certs_len
);
734 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
736 const struct firmware
*sig
;
739 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
742 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
744 VERIFYING_UNSPECIFIED_SIGNATURE
,
747 release_firmware(sig
);
752 static void free_regdb_keyring(void)
754 key_put(builtin_regdb_keys
);
757 static int load_builtin_regdb_keys(void)
762 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
767 static void free_regdb_keyring(void)
770 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
772 static bool valid_regdb(const u8
*data
, unsigned int size
)
774 const struct fwdb_header
*hdr
= (void *)data
;
775 const struct fwdb_country
*country
;
777 if (size
< sizeof(*hdr
))
780 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
783 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
786 if (!regdb_has_valid_signature(data
, size
))
789 country
= &hdr
->country
[0];
790 while ((u8
*)(country
+ 1) <= data
+ size
) {
791 if (!country
->coll_ptr
)
793 if (!valid_country(data
, size
, country
))
801 static int regdb_query_country(const struct fwdb_header
*db
,
802 const struct fwdb_country
*country
)
804 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
805 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
806 struct ieee80211_regdomain
*regdom
;
807 unsigned int size_of_regd
;
811 sizeof(struct ieee80211_regdomain
) +
812 coll
->n_rules
* sizeof(struct ieee80211_reg_rule
);
814 regdom
= kzalloc(size_of_regd
, GFP_KERNEL
);
818 regdom
->n_reg_rules
= coll
->n_rules
;
819 regdom
->alpha2
[0] = country
->alpha2
[0];
820 regdom
->alpha2
[1] = country
->alpha2
[1];
821 regdom
->dfs_region
= coll
->dfs_region
;
823 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
824 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
825 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
826 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
827 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
829 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
830 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
831 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
833 rrule
->power_rule
.max_antenna_gain
= 0;
834 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
837 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
838 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
839 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
840 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
841 if (rule
->flags
& FWDB_FLAG_DFS
)
842 rrule
->flags
|= NL80211_RRF_DFS
;
843 if (rule
->flags
& FWDB_FLAG_NO_IR
)
844 rrule
->flags
|= NL80211_RRF_NO_IR
;
845 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
846 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
848 rrule
->dfs_cac_ms
= 0;
850 /* handle optional data */
851 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
853 1000 * be16_to_cpu(rule
->cac_timeout
);
856 return reg_schedule_apply(regdom
);
859 static int query_regdb(const char *alpha2
)
861 const struct fwdb_header
*hdr
= regdb
;
862 const struct fwdb_country
*country
;
867 return PTR_ERR(regdb
);
869 country
= &hdr
->country
[0];
870 while (country
->coll_ptr
) {
871 if (alpha2_equal(alpha2
, country
->alpha2
))
872 return regdb_query_country(regdb
, country
);
879 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
886 pr_info("failed to load regulatory.db\n");
887 set_error
= -ENODATA
;
888 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
889 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
894 if (WARN_ON(regdb
&& !IS_ERR(regdb
))) {
895 /* just restore and free new db */
896 } else if (set_error
) {
897 regdb
= ERR_PTR(set_error
);
899 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
902 restore
= context
&& query_regdb(context
);
909 restore_regulatory_settings(true);
915 release_firmware(fw
);
918 static int query_regdb_file(const char *alpha2
)
923 return query_regdb(alpha2
);
925 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
929 return request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
930 ®_pdev
->dev
, GFP_KERNEL
,
931 (void *)alpha2
, regdb_fw_cb
);
934 int reg_reload_regdb(void)
936 const struct firmware
*fw
;
940 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
944 if (!valid_regdb(fw
->data
, fw
->size
)) {
949 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
956 if (!IS_ERR_OR_NULL(regdb
))
962 release_firmware(fw
);
966 static bool reg_query_database(struct regulatory_request
*request
)
968 if (query_regdb_file(request
->alpha2
) == 0)
971 if (call_crda(request
->alpha2
) == 0)
977 bool reg_is_valid_request(const char *alpha2
)
979 struct regulatory_request
*lr
= get_last_request();
981 if (!lr
|| lr
->processed
)
984 return alpha2_equal(lr
->alpha2
, alpha2
);
987 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
989 struct regulatory_request
*lr
= get_last_request();
992 * Follow the driver's regulatory domain, if present, unless a country
993 * IE has been processed or a user wants to help complaince further
995 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
996 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
998 return get_wiphy_regdom(wiphy
);
1000 return get_cfg80211_regdom();
1004 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1005 const struct ieee80211_reg_rule
*rule
)
1007 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1008 const struct ieee80211_freq_range
*freq_range_tmp
;
1009 const struct ieee80211_reg_rule
*tmp
;
1010 u32 start_freq
, end_freq
, idx
, no
;
1012 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1013 if (rule
== &rd
->reg_rules
[idx
])
1016 if (idx
== rd
->n_reg_rules
)
1019 /* get start_freq */
1023 tmp
= &rd
->reg_rules
[--no
];
1024 freq_range_tmp
= &tmp
->freq_range
;
1026 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1029 freq_range
= freq_range_tmp
;
1032 start_freq
= freq_range
->start_freq_khz
;
1035 freq_range
= &rule
->freq_range
;
1038 while (no
< rd
->n_reg_rules
- 1) {
1039 tmp
= &rd
->reg_rules
[++no
];
1040 freq_range_tmp
= &tmp
->freq_range
;
1042 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1045 freq_range
= freq_range_tmp
;
1048 end_freq
= freq_range
->end_freq_khz
;
1050 return end_freq
- start_freq
;
1053 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1054 const struct ieee80211_reg_rule
*rule
)
1056 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1058 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1059 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1060 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1061 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1064 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1067 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1068 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1069 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1074 /* Sanity check on a regulatory rule */
1075 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1077 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1080 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1083 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1086 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1088 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1089 freq_range
->max_bandwidth_khz
> freq_diff
)
1095 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1097 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1100 if (!rd
->n_reg_rules
)
1103 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1106 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1107 reg_rule
= &rd
->reg_rules
[i
];
1108 if (!is_valid_reg_rule(reg_rule
))
1116 * freq_in_rule_band - tells us if a frequency is in a frequency band
1117 * @freq_range: frequency rule we want to query
1118 * @freq_khz: frequency we are inquiring about
1120 * This lets us know if a specific frequency rule is or is not relevant to
1121 * a specific frequency's band. Bands are device specific and artificial
1122 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1123 * however it is safe for now to assume that a frequency rule should not be
1124 * part of a frequency's band if the start freq or end freq are off by more
1125 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1127 * This resolution can be lowered and should be considered as we add
1128 * regulatory rule support for other "bands".
1130 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1133 #define ONE_GHZ_IN_KHZ 1000000
1135 * From 802.11ad: directional multi-gigabit (DMG):
1136 * Pertaining to operation in a frequency band containing a channel
1137 * with the Channel starting frequency above 45 GHz.
1139 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
1140 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
1141 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1143 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1146 #undef ONE_GHZ_IN_KHZ
1150 * Later on we can perhaps use the more restrictive DFS
1151 * region but we don't have information for that yet so
1152 * for now simply disallow conflicts.
1154 static enum nl80211_dfs_regions
1155 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1156 const enum nl80211_dfs_regions dfs_region2
)
1158 if (dfs_region1
!= dfs_region2
)
1159 return NL80211_DFS_UNSET
;
1164 * Helper for regdom_intersect(), this does the real
1165 * mathematical intersection fun
1167 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1168 const struct ieee80211_regdomain
*rd2
,
1169 const struct ieee80211_reg_rule
*rule1
,
1170 const struct ieee80211_reg_rule
*rule2
,
1171 struct ieee80211_reg_rule
*intersected_rule
)
1173 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1174 struct ieee80211_freq_range
*freq_range
;
1175 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1176 struct ieee80211_power_rule
*power_rule
;
1177 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1179 freq_range1
= &rule1
->freq_range
;
1180 freq_range2
= &rule2
->freq_range
;
1181 freq_range
= &intersected_rule
->freq_range
;
1183 power_rule1
= &rule1
->power_rule
;
1184 power_rule2
= &rule2
->power_rule
;
1185 power_rule
= &intersected_rule
->power_rule
;
1187 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1188 freq_range2
->start_freq_khz
);
1189 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1190 freq_range2
->end_freq_khz
);
1192 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1193 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1195 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1196 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1197 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1198 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1200 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1202 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1205 * In case NL80211_RRF_AUTO_BW requested for both rules
1206 * set AUTO_BW in intersected rule also. Next we will
1207 * calculate BW correctly in handle_channel function.
1208 * In other case remove AUTO_BW flag while we calculate
1209 * maximum bandwidth correctly and auto calculation is
1212 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1213 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1214 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1216 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1218 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1219 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1220 freq_range
->max_bandwidth_khz
= freq_diff
;
1222 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1223 power_rule2
->max_eirp
);
1224 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1225 power_rule2
->max_antenna_gain
);
1227 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1230 if (!is_valid_reg_rule(intersected_rule
))
1236 /* check whether old rule contains new rule */
1237 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1238 struct ieee80211_reg_rule
*r2
)
1240 /* for simplicity, currently consider only same flags */
1241 if (r1
->flags
!= r2
->flags
)
1244 /* verify r1 is more restrictive */
1245 if ((r1
->power_rule
.max_antenna_gain
>
1246 r2
->power_rule
.max_antenna_gain
) ||
1247 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1250 /* make sure r2's range is contained within r1 */
1251 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1252 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1255 /* and finally verify that r1.max_bw >= r2.max_bw */
1256 if (r1
->freq_range
.max_bandwidth_khz
<
1257 r2
->freq_range
.max_bandwidth_khz
)
1263 /* add or extend current rules. do nothing if rule is already contained */
1264 static void add_rule(struct ieee80211_reg_rule
*rule
,
1265 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1267 struct ieee80211_reg_rule
*tmp_rule
;
1270 for (i
= 0; i
< *n_rules
; i
++) {
1271 tmp_rule
= ®_rules
[i
];
1272 /* rule is already contained - do nothing */
1273 if (rule_contains(tmp_rule
, rule
))
1276 /* extend rule if possible */
1277 if (rule_contains(rule
, tmp_rule
)) {
1278 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1283 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1288 * regdom_intersect - do the intersection between two regulatory domains
1289 * @rd1: first regulatory domain
1290 * @rd2: second regulatory domain
1292 * Use this function to get the intersection between two regulatory domains.
1293 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1294 * as no one single alpha2 can represent this regulatory domain.
1296 * Returns a pointer to the regulatory domain structure which will hold the
1297 * resulting intersection of rules between rd1 and rd2. We will
1298 * kzalloc() this structure for you.
1300 static struct ieee80211_regdomain
*
1301 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1302 const struct ieee80211_regdomain
*rd2
)
1304 int r
, size_of_regd
;
1306 unsigned int num_rules
= 0;
1307 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1308 struct ieee80211_reg_rule intersected_rule
;
1309 struct ieee80211_regdomain
*rd
;
1315 * First we get a count of the rules we'll need, then we actually
1316 * build them. This is to so we can malloc() and free() a
1317 * regdomain once. The reason we use reg_rules_intersect() here
1318 * is it will return -EINVAL if the rule computed makes no sense.
1319 * All rules that do check out OK are valid.
1322 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1323 rule1
= &rd1
->reg_rules
[x
];
1324 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1325 rule2
= &rd2
->reg_rules
[y
];
1326 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1335 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1336 num_rules
* sizeof(struct ieee80211_reg_rule
);
1338 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1342 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1343 rule1
= &rd1
->reg_rules
[x
];
1344 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1345 rule2
= &rd2
->reg_rules
[y
];
1346 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1349 * No need to memset here the intersected rule here as
1350 * we're not using the stack anymore
1355 add_rule(&intersected_rule
, rd
->reg_rules
,
1360 rd
->alpha2
[0] = '9';
1361 rd
->alpha2
[1] = '8';
1362 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1369 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1370 * want to just have the channel structure use these
1372 static u32
map_regdom_flags(u32 rd_flags
)
1374 u32 channel_flags
= 0;
1375 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1376 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1377 if (rd_flags
& NL80211_RRF_DFS
)
1378 channel_flags
|= IEEE80211_CHAN_RADAR
;
1379 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1380 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1381 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1382 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1383 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1384 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1385 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1386 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1387 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1388 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1389 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1390 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1391 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1392 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1393 return channel_flags
;
1396 static const struct ieee80211_reg_rule
*
1397 freq_reg_info_regd(u32 center_freq
,
1398 const struct ieee80211_regdomain
*regd
, u32 bw
)
1401 bool band_rule_found
= false;
1402 bool bw_fits
= false;
1405 return ERR_PTR(-EINVAL
);
1407 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1408 const struct ieee80211_reg_rule
*rr
;
1409 const struct ieee80211_freq_range
*fr
= NULL
;
1411 rr
= ®d
->reg_rules
[i
];
1412 fr
= &rr
->freq_range
;
1415 * We only need to know if one frequency rule was
1416 * was in center_freq's band, that's enough, so lets
1417 * not overwrite it once found
1419 if (!band_rule_found
)
1420 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1422 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1424 if (band_rule_found
&& bw_fits
)
1428 if (!band_rule_found
)
1429 return ERR_PTR(-ERANGE
);
1431 return ERR_PTR(-EINVAL
);
1434 static const struct ieee80211_reg_rule
*
1435 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1437 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1438 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1441 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1442 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1443 if (!IS_ERR(reg_rule
))
1450 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1453 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1455 EXPORT_SYMBOL(freq_reg_info
);
1457 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1459 switch (initiator
) {
1460 case NL80211_REGDOM_SET_BY_CORE
:
1462 case NL80211_REGDOM_SET_BY_USER
:
1464 case NL80211_REGDOM_SET_BY_DRIVER
:
1466 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1467 return "country IE";
1473 EXPORT_SYMBOL(reg_initiator_name
);
1475 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1476 const struct ieee80211_reg_rule
*reg_rule
,
1477 const struct ieee80211_channel
*chan
)
1479 const struct ieee80211_freq_range
*freq_range
= NULL
;
1480 u32 max_bandwidth_khz
, bw_flags
= 0;
1482 freq_range
= ®_rule
->freq_range
;
1484 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1485 /* Check if auto calculation requested */
1486 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1487 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1489 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1490 if (!cfg80211_does_bw_fit_range(freq_range
,
1491 MHZ_TO_KHZ(chan
->center_freq
),
1493 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1494 if (!cfg80211_does_bw_fit_range(freq_range
,
1495 MHZ_TO_KHZ(chan
->center_freq
),
1497 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1499 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1500 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1501 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1502 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1503 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1504 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1505 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1506 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1507 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1508 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1513 * Note that right now we assume the desired channel bandwidth
1514 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1515 * per channel, the primary and the extension channel).
1517 static void handle_channel(struct wiphy
*wiphy
,
1518 enum nl80211_reg_initiator initiator
,
1519 struct ieee80211_channel
*chan
)
1521 u32 flags
, bw_flags
= 0;
1522 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1523 const struct ieee80211_power_rule
*power_rule
= NULL
;
1524 struct wiphy
*request_wiphy
= NULL
;
1525 struct regulatory_request
*lr
= get_last_request();
1526 const struct ieee80211_regdomain
*regd
;
1528 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1530 flags
= chan
->orig_flags
;
1532 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1533 if (IS_ERR(reg_rule
)) {
1535 * We will disable all channels that do not match our
1536 * received regulatory rule unless the hint is coming
1537 * from a Country IE and the Country IE had no information
1538 * about a band. The IEEE 802.11 spec allows for an AP
1539 * to send only a subset of the regulatory rules allowed,
1540 * so an AP in the US that only supports 2.4 GHz may only send
1541 * a country IE with information for the 2.4 GHz band
1542 * while 5 GHz is still supported.
1544 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1545 PTR_ERR(reg_rule
) == -ERANGE
)
1548 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1549 request_wiphy
&& request_wiphy
== wiphy
&&
1550 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1551 pr_debug("Disabling freq %d MHz for good\n",
1553 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1554 chan
->flags
= chan
->orig_flags
;
1556 pr_debug("Disabling freq %d MHz\n",
1558 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1563 regd
= reg_get_regdomain(wiphy
);
1565 power_rule
= ®_rule
->power_rule
;
1566 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1568 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1569 request_wiphy
&& request_wiphy
== wiphy
&&
1570 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1572 * This guarantees the driver's requested regulatory domain
1573 * will always be used as a base for further regulatory
1576 chan
->flags
= chan
->orig_flags
=
1577 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1578 chan
->max_antenna_gain
= chan
->orig_mag
=
1579 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1580 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1581 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1583 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1584 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1585 if (reg_rule
->dfs_cac_ms
)
1586 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1592 chan
->dfs_state
= NL80211_DFS_USABLE
;
1593 chan
->dfs_state_entered
= jiffies
;
1595 chan
->beacon_found
= false;
1596 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1597 chan
->max_antenna_gain
=
1598 min_t(int, chan
->orig_mag
,
1599 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1600 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1602 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1603 if (reg_rule
->dfs_cac_ms
)
1604 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1606 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1609 if (chan
->orig_mpwr
) {
1611 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1612 * will always follow the passed country IE power settings.
1614 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1615 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1616 chan
->max_power
= chan
->max_reg_power
;
1618 chan
->max_power
= min(chan
->orig_mpwr
,
1619 chan
->max_reg_power
);
1621 chan
->max_power
= chan
->max_reg_power
;
1624 static void handle_band(struct wiphy
*wiphy
,
1625 enum nl80211_reg_initiator initiator
,
1626 struct ieee80211_supported_band
*sband
)
1633 for (i
= 0; i
< sband
->n_channels
; i
++)
1634 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1637 static bool reg_request_cell_base(struct regulatory_request
*request
)
1639 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1641 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1644 bool reg_last_request_cell_base(void)
1646 return reg_request_cell_base(get_last_request());
1649 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1650 /* Core specific check */
1651 static enum reg_request_treatment
1652 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1654 struct regulatory_request
*lr
= get_last_request();
1656 if (!reg_num_devs_support_basehint
)
1657 return REG_REQ_IGNORE
;
1659 if (reg_request_cell_base(lr
) &&
1660 !regdom_changes(pending_request
->alpha2
))
1661 return REG_REQ_ALREADY_SET
;
1666 /* Device specific check */
1667 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1669 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1672 static enum reg_request_treatment
1673 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1675 return REG_REQ_IGNORE
;
1678 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1684 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1686 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1687 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1692 static bool ignore_reg_update(struct wiphy
*wiphy
,
1693 enum nl80211_reg_initiator initiator
)
1695 struct regulatory_request
*lr
= get_last_request();
1697 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1701 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1702 reg_initiator_name(initiator
));
1706 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1707 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1708 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1709 reg_initiator_name(initiator
));
1714 * wiphy->regd will be set once the device has its own
1715 * desired regulatory domain set
1717 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1718 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1719 !is_world_regdom(lr
->alpha2
)) {
1720 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1721 reg_initiator_name(initiator
));
1725 if (reg_request_cell_base(lr
))
1726 return reg_dev_ignore_cell_hint(wiphy
);
1731 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1733 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1734 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1735 struct regulatory_request
*lr
= get_last_request();
1737 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1740 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1741 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1747 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1748 struct reg_beacon
*reg_beacon
)
1750 struct ieee80211_supported_band
*sband
;
1751 struct ieee80211_channel
*chan
;
1752 bool channel_changed
= false;
1753 struct ieee80211_channel chan_before
;
1755 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1756 chan
= &sband
->channels
[chan_idx
];
1758 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1761 if (chan
->beacon_found
)
1764 chan
->beacon_found
= true;
1766 if (!reg_is_world_roaming(wiphy
))
1769 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1772 chan_before
= *chan
;
1774 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1775 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1776 channel_changed
= true;
1779 if (channel_changed
)
1780 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1784 * Called when a scan on a wiphy finds a beacon on
1787 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1788 struct reg_beacon
*reg_beacon
)
1791 struct ieee80211_supported_band
*sband
;
1793 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1796 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1798 for (i
= 0; i
< sband
->n_channels
; i
++)
1799 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1803 * Called upon reg changes or a new wiphy is added
1805 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1808 struct ieee80211_supported_band
*sband
;
1809 struct reg_beacon
*reg_beacon
;
1811 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1812 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1814 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1815 for (i
= 0; i
< sband
->n_channels
; i
++)
1816 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1820 /* Reap the advantages of previously found beacons */
1821 static void reg_process_beacons(struct wiphy
*wiphy
)
1824 * Means we are just firing up cfg80211, so no beacons would
1825 * have been processed yet.
1829 wiphy_update_beacon_reg(wiphy
);
1832 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
1836 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1838 /* This would happen when regulatory rules disallow HT40 completely */
1839 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
1844 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1845 struct ieee80211_channel
*channel
)
1847 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
1848 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1849 const struct ieee80211_regdomain
*regd
;
1853 if (!is_ht40_allowed(channel
)) {
1854 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1859 * We need to ensure the extension channels exist to
1860 * be able to use HT40- or HT40+, this finds them (or not)
1862 for (i
= 0; i
< sband
->n_channels
; i
++) {
1863 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1865 if (c
->center_freq
== (channel
->center_freq
- 20))
1867 if (c
->center_freq
== (channel
->center_freq
+ 20))
1872 regd
= get_wiphy_regdom(wiphy
);
1874 const struct ieee80211_reg_rule
*reg_rule
=
1875 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
1876 regd
, MHZ_TO_KHZ(20));
1878 if (!IS_ERR(reg_rule
))
1879 flags
= reg_rule
->flags
;
1883 * Please note that this assumes target bandwidth is 20 MHz,
1884 * if that ever changes we also need to change the below logic
1885 * to include that as well.
1887 if (!is_ht40_allowed(channel_before
) ||
1888 flags
& NL80211_RRF_NO_HT40MINUS
)
1889 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1891 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1893 if (!is_ht40_allowed(channel_after
) ||
1894 flags
& NL80211_RRF_NO_HT40PLUS
)
1895 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1897 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1900 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1901 struct ieee80211_supported_band
*sband
)
1908 for (i
= 0; i
< sband
->n_channels
; i
++)
1909 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
1912 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1914 enum nl80211_band band
;
1919 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1920 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
1923 static void reg_call_notifier(struct wiphy
*wiphy
,
1924 struct regulatory_request
*request
)
1926 if (wiphy
->reg_notifier
)
1927 wiphy
->reg_notifier(wiphy
, request
);
1930 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
1932 struct cfg80211_chan_def chandef
;
1933 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1934 enum nl80211_iftype iftype
;
1937 iftype
= wdev
->iftype
;
1939 /* make sure the interface is active */
1940 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
1941 goto wdev_inactive_unlock
;
1944 case NL80211_IFTYPE_AP
:
1945 case NL80211_IFTYPE_P2P_GO
:
1946 if (!wdev
->beacon_interval
)
1947 goto wdev_inactive_unlock
;
1948 chandef
= wdev
->chandef
;
1950 case NL80211_IFTYPE_ADHOC
:
1951 if (!wdev
->ssid_len
)
1952 goto wdev_inactive_unlock
;
1953 chandef
= wdev
->chandef
;
1955 case NL80211_IFTYPE_STATION
:
1956 case NL80211_IFTYPE_P2P_CLIENT
:
1957 if (!wdev
->current_bss
||
1958 !wdev
->current_bss
->pub
.channel
)
1959 goto wdev_inactive_unlock
;
1961 if (!rdev
->ops
->get_channel
||
1962 rdev_get_channel(rdev
, wdev
, &chandef
))
1963 cfg80211_chandef_create(&chandef
,
1964 wdev
->current_bss
->pub
.channel
,
1965 NL80211_CHAN_NO_HT
);
1967 case NL80211_IFTYPE_MONITOR
:
1968 case NL80211_IFTYPE_AP_VLAN
:
1969 case NL80211_IFTYPE_P2P_DEVICE
:
1970 /* no enforcement required */
1973 /* others not implemented for now */
1981 case NL80211_IFTYPE_AP
:
1982 case NL80211_IFTYPE_P2P_GO
:
1983 case NL80211_IFTYPE_ADHOC
:
1984 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
1985 case NL80211_IFTYPE_STATION
:
1986 case NL80211_IFTYPE_P2P_CLIENT
:
1987 return cfg80211_chandef_usable(wiphy
, &chandef
,
1988 IEEE80211_CHAN_DISABLED
);
1995 wdev_inactive_unlock
:
2000 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2002 struct wireless_dev
*wdev
;
2003 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2007 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2008 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2009 cfg80211_leave(rdev
, wdev
);
2012 static void reg_check_chans_work(struct work_struct
*work
)
2014 struct cfg80211_registered_device
*rdev
;
2016 pr_debug("Verifying active interfaces after reg change\n");
2019 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2020 if (!(rdev
->wiphy
.regulatory_flags
&
2021 REGULATORY_IGNORE_STALE_KICKOFF
))
2022 reg_leave_invalid_chans(&rdev
->wiphy
);
2027 static void reg_check_channels(void)
2030 * Give usermode a chance to do something nicer (move to another
2031 * channel, orderly disconnection), before forcing a disconnection.
2033 mod_delayed_work(system_power_efficient_wq
,
2035 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2038 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2039 enum nl80211_reg_initiator initiator
)
2041 enum nl80211_band band
;
2042 struct regulatory_request
*lr
= get_last_request();
2044 if (ignore_reg_update(wiphy
, initiator
)) {
2046 * Regulatory updates set by CORE are ignored for custom
2047 * regulatory cards. Let us notify the changes to the driver,
2048 * as some drivers used this to restore its orig_* reg domain.
2050 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2051 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
2052 reg_call_notifier(wiphy
, lr
);
2056 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2058 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2059 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2061 reg_process_beacons(wiphy
);
2062 reg_process_ht_flags(wiphy
);
2063 reg_call_notifier(wiphy
, lr
);
2066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2068 struct cfg80211_registered_device
*rdev
;
2069 struct wiphy
*wiphy
;
2073 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2074 wiphy
= &rdev
->wiphy
;
2075 wiphy_update_regulatory(wiphy
, initiator
);
2078 reg_check_channels();
2081 static void handle_channel_custom(struct wiphy
*wiphy
,
2082 struct ieee80211_channel
*chan
,
2083 const struct ieee80211_regdomain
*regd
)
2086 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2087 const struct ieee80211_power_rule
*power_rule
= NULL
;
2090 for (bw
= MHZ_TO_KHZ(20); bw
>= MHZ_TO_KHZ(5); bw
= bw
/ 2) {
2091 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
2093 if (!IS_ERR(reg_rule
))
2097 if (IS_ERR(reg_rule
)) {
2098 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2100 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2101 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2103 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2104 chan
->flags
= chan
->orig_flags
;
2109 power_rule
= ®_rule
->power_rule
;
2110 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2112 chan
->dfs_state_entered
= jiffies
;
2113 chan
->dfs_state
= NL80211_DFS_USABLE
;
2115 chan
->beacon_found
= false;
2117 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2118 chan
->flags
= chan
->orig_flags
| bw_flags
|
2119 map_regdom_flags(reg_rule
->flags
);
2121 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2123 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2124 chan
->max_reg_power
= chan
->max_power
=
2125 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2127 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2128 if (reg_rule
->dfs_cac_ms
)
2129 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2131 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2134 chan
->max_power
= chan
->max_reg_power
;
2137 static void handle_band_custom(struct wiphy
*wiphy
,
2138 struct ieee80211_supported_band
*sband
,
2139 const struct ieee80211_regdomain
*regd
)
2146 for (i
= 0; i
< sband
->n_channels
; i
++)
2147 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
2150 /* Used by drivers prior to wiphy registration */
2151 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2152 const struct ieee80211_regdomain
*regd
)
2154 enum nl80211_band band
;
2155 unsigned int bands_set
= 0;
2157 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2158 "wiphy should have REGULATORY_CUSTOM_REG\n");
2159 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2161 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2162 if (!wiphy
->bands
[band
])
2164 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2169 * no point in calling this if it won't have any effect
2170 * on your device's supported bands.
2172 WARN_ON(!bands_set
);
2174 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2176 static void reg_set_request_processed(void)
2178 bool need_more_processing
= false;
2179 struct regulatory_request
*lr
= get_last_request();
2181 lr
->processed
= true;
2183 spin_lock(®_requests_lock
);
2184 if (!list_empty(®_requests_list
))
2185 need_more_processing
= true;
2186 spin_unlock(®_requests_lock
);
2188 cancel_crda_timeout();
2190 if (need_more_processing
)
2191 schedule_work(®_work
);
2195 * reg_process_hint_core - process core regulatory requests
2196 * @pending_request: a pending core regulatory request
2198 * The wireless subsystem can use this function to process
2199 * a regulatory request issued by the regulatory core.
2201 static enum reg_request_treatment
2202 reg_process_hint_core(struct regulatory_request
*core_request
)
2204 if (reg_query_database(core_request
)) {
2205 core_request
->intersect
= false;
2206 core_request
->processed
= false;
2207 reg_update_last_request(core_request
);
2211 return REG_REQ_IGNORE
;
2214 static enum reg_request_treatment
2215 __reg_process_hint_user(struct regulatory_request
*user_request
)
2217 struct regulatory_request
*lr
= get_last_request();
2219 if (reg_request_cell_base(user_request
))
2220 return reg_ignore_cell_hint(user_request
);
2222 if (reg_request_cell_base(lr
))
2223 return REG_REQ_IGNORE
;
2225 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2226 return REG_REQ_INTERSECT
;
2228 * If the user knows better the user should set the regdom
2229 * to their country before the IE is picked up
2231 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2233 return REG_REQ_IGNORE
;
2235 * Process user requests only after previous user/driver/core
2236 * requests have been processed
2238 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2239 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2240 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2241 regdom_changes(lr
->alpha2
))
2242 return REG_REQ_IGNORE
;
2244 if (!regdom_changes(user_request
->alpha2
))
2245 return REG_REQ_ALREADY_SET
;
2251 * reg_process_hint_user - process user regulatory requests
2252 * @user_request: a pending user regulatory request
2254 * The wireless subsystem can use this function to process
2255 * a regulatory request initiated by userspace.
2257 static enum reg_request_treatment
2258 reg_process_hint_user(struct regulatory_request
*user_request
)
2260 enum reg_request_treatment treatment
;
2262 treatment
= __reg_process_hint_user(user_request
);
2263 if (treatment
== REG_REQ_IGNORE
||
2264 treatment
== REG_REQ_ALREADY_SET
)
2265 return REG_REQ_IGNORE
;
2267 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2268 user_request
->processed
= false;
2270 if (reg_query_database(user_request
)) {
2271 reg_update_last_request(user_request
);
2272 user_alpha2
[0] = user_request
->alpha2
[0];
2273 user_alpha2
[1] = user_request
->alpha2
[1];
2277 return REG_REQ_IGNORE
;
2280 static enum reg_request_treatment
2281 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2283 struct regulatory_request
*lr
= get_last_request();
2285 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2286 if (regdom_changes(driver_request
->alpha2
))
2288 return REG_REQ_ALREADY_SET
;
2292 * This would happen if you unplug and plug your card
2293 * back in or if you add a new device for which the previously
2294 * loaded card also agrees on the regulatory domain.
2296 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2297 !regdom_changes(driver_request
->alpha2
))
2298 return REG_REQ_ALREADY_SET
;
2300 return REG_REQ_INTERSECT
;
2304 * reg_process_hint_driver - process driver regulatory requests
2305 * @driver_request: a pending driver regulatory request
2307 * The wireless subsystem can use this function to process
2308 * a regulatory request issued by an 802.11 driver.
2310 * Returns one of the different reg request treatment values.
2312 static enum reg_request_treatment
2313 reg_process_hint_driver(struct wiphy
*wiphy
,
2314 struct regulatory_request
*driver_request
)
2316 const struct ieee80211_regdomain
*regd
, *tmp
;
2317 enum reg_request_treatment treatment
;
2319 treatment
= __reg_process_hint_driver(driver_request
);
2321 switch (treatment
) {
2324 case REG_REQ_IGNORE
:
2325 return REG_REQ_IGNORE
;
2326 case REG_REQ_INTERSECT
:
2327 case REG_REQ_ALREADY_SET
:
2328 regd
= reg_copy_regd(get_cfg80211_regdom());
2330 return REG_REQ_IGNORE
;
2332 tmp
= get_wiphy_regdom(wiphy
);
2333 rcu_assign_pointer(wiphy
->regd
, regd
);
2334 rcu_free_regdom(tmp
);
2338 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2339 driver_request
->processed
= false;
2342 * Since CRDA will not be called in this case as we already
2343 * have applied the requested regulatory domain before we just
2344 * inform userspace we have processed the request
2346 if (treatment
== REG_REQ_ALREADY_SET
) {
2347 nl80211_send_reg_change_event(driver_request
);
2348 reg_update_last_request(driver_request
);
2349 reg_set_request_processed();
2350 return REG_REQ_ALREADY_SET
;
2353 if (reg_query_database(driver_request
)) {
2354 reg_update_last_request(driver_request
);
2358 return REG_REQ_IGNORE
;
2361 static enum reg_request_treatment
2362 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2363 struct regulatory_request
*country_ie_request
)
2365 struct wiphy
*last_wiphy
= NULL
;
2366 struct regulatory_request
*lr
= get_last_request();
2368 if (reg_request_cell_base(lr
)) {
2369 /* Trust a Cell base station over the AP's country IE */
2370 if (regdom_changes(country_ie_request
->alpha2
))
2371 return REG_REQ_IGNORE
;
2372 return REG_REQ_ALREADY_SET
;
2374 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2375 return REG_REQ_IGNORE
;
2378 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2381 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2384 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2386 if (last_wiphy
!= wiphy
) {
2388 * Two cards with two APs claiming different
2389 * Country IE alpha2s. We could
2390 * intersect them, but that seems unlikely
2391 * to be correct. Reject second one for now.
2393 if (regdom_changes(country_ie_request
->alpha2
))
2394 return REG_REQ_IGNORE
;
2395 return REG_REQ_ALREADY_SET
;
2398 if (regdom_changes(country_ie_request
->alpha2
))
2400 return REG_REQ_ALREADY_SET
;
2404 * reg_process_hint_country_ie - process regulatory requests from country IEs
2405 * @country_ie_request: a regulatory request from a country IE
2407 * The wireless subsystem can use this function to process
2408 * a regulatory request issued by a country Information Element.
2410 * Returns one of the different reg request treatment values.
2412 static enum reg_request_treatment
2413 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2414 struct regulatory_request
*country_ie_request
)
2416 enum reg_request_treatment treatment
;
2418 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2420 switch (treatment
) {
2423 case REG_REQ_IGNORE
:
2424 return REG_REQ_IGNORE
;
2425 case REG_REQ_ALREADY_SET
:
2426 reg_free_request(country_ie_request
);
2427 return REG_REQ_ALREADY_SET
;
2428 case REG_REQ_INTERSECT
:
2430 * This doesn't happen yet, not sure we
2431 * ever want to support it for this case.
2433 WARN_ONCE(1, "Unexpected intersection for country IEs");
2434 return REG_REQ_IGNORE
;
2437 country_ie_request
->intersect
= false;
2438 country_ie_request
->processed
= false;
2440 if (reg_query_database(country_ie_request
)) {
2441 reg_update_last_request(country_ie_request
);
2445 return REG_REQ_IGNORE
;
2448 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2450 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2451 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2452 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2453 bool dfs_domain_same
;
2457 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2458 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2460 wiphy1_regd
= cfg80211_regd
;
2462 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2464 wiphy2_regd
= cfg80211_regd
;
2466 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2470 return dfs_domain_same
;
2473 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2474 struct ieee80211_channel
*src_chan
)
2476 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2477 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2480 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2481 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2484 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2485 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2486 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2487 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2491 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2492 struct wiphy
*src_wiphy
)
2494 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2495 struct ieee80211_channel
*src_chan
, *dst_chan
;
2498 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2501 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2502 dst_sband
= dst_wiphy
->bands
[band
];
2503 src_sband
= src_wiphy
->bands
[band
];
2504 if (!dst_sband
|| !src_sband
)
2507 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2508 dst_chan
= &dst_sband
->channels
[i
];
2509 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2510 src_chan
= &src_sband
->channels
[j
];
2511 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2517 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2519 struct cfg80211_registered_device
*rdev
;
2523 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2524 if (wiphy
== &rdev
->wiphy
)
2526 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2530 /* This processes *all* regulatory hints */
2531 static void reg_process_hint(struct regulatory_request
*reg_request
)
2533 struct wiphy
*wiphy
= NULL
;
2534 enum reg_request_treatment treatment
;
2536 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2537 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2539 switch (reg_request
->initiator
) {
2540 case NL80211_REGDOM_SET_BY_CORE
:
2541 treatment
= reg_process_hint_core(reg_request
);
2543 case NL80211_REGDOM_SET_BY_USER
:
2544 treatment
= reg_process_hint_user(reg_request
);
2546 case NL80211_REGDOM_SET_BY_DRIVER
:
2549 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2551 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2554 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2557 WARN(1, "invalid initiator %d\n", reg_request
->initiator
);
2561 if (treatment
== REG_REQ_IGNORE
)
2564 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2565 "unexpected treatment value %d\n", treatment
);
2567 /* This is required so that the orig_* parameters are saved.
2568 * NOTE: treatment must be set for any case that reaches here!
2570 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2571 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2572 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
2573 wiphy_all_share_dfs_chan_state(wiphy
);
2574 reg_check_channels();
2580 reg_free_request(reg_request
);
2583 static bool reg_only_self_managed_wiphys(void)
2585 struct cfg80211_registered_device
*rdev
;
2586 struct wiphy
*wiphy
;
2587 bool self_managed_found
= false;
2591 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2592 wiphy
= &rdev
->wiphy
;
2593 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2594 self_managed_found
= true;
2599 /* make sure at least one self-managed wiphy exists */
2600 return self_managed_found
;
2604 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2605 * Regulatory hints come on a first come first serve basis and we
2606 * must process each one atomically.
2608 static void reg_process_pending_hints(void)
2610 struct regulatory_request
*reg_request
, *lr
;
2612 lr
= get_last_request();
2614 /* When last_request->processed becomes true this will be rescheduled */
2615 if (lr
&& !lr
->processed
) {
2616 reg_process_hint(lr
);
2620 spin_lock(®_requests_lock
);
2622 if (list_empty(®_requests_list
)) {
2623 spin_unlock(®_requests_lock
);
2627 reg_request
= list_first_entry(®_requests_list
,
2628 struct regulatory_request
,
2630 list_del_init(®_request
->list
);
2632 spin_unlock(®_requests_lock
);
2634 if (reg_only_self_managed_wiphys()) {
2635 reg_free_request(reg_request
);
2639 reg_process_hint(reg_request
);
2641 lr
= get_last_request();
2643 spin_lock(®_requests_lock
);
2644 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2645 schedule_work(®_work
);
2646 spin_unlock(®_requests_lock
);
2649 /* Processes beacon hints -- this has nothing to do with country IEs */
2650 static void reg_process_pending_beacon_hints(void)
2652 struct cfg80211_registered_device
*rdev
;
2653 struct reg_beacon
*pending_beacon
, *tmp
;
2655 /* This goes through the _pending_ beacon list */
2656 spin_lock_bh(®_pending_beacons_lock
);
2658 list_for_each_entry_safe(pending_beacon
, tmp
,
2659 ®_pending_beacons
, list
) {
2660 list_del_init(&pending_beacon
->list
);
2662 /* Applies the beacon hint to current wiphys */
2663 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2664 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2666 /* Remembers the beacon hint for new wiphys or reg changes */
2667 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2670 spin_unlock_bh(®_pending_beacons_lock
);
2673 static void reg_process_self_managed_hints(void)
2675 struct cfg80211_registered_device
*rdev
;
2676 struct wiphy
*wiphy
;
2677 const struct ieee80211_regdomain
*tmp
;
2678 const struct ieee80211_regdomain
*regd
;
2679 enum nl80211_band band
;
2680 struct regulatory_request request
= {};
2682 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2683 wiphy
= &rdev
->wiphy
;
2685 spin_lock(®_requests_lock
);
2686 regd
= rdev
->requested_regd
;
2687 rdev
->requested_regd
= NULL
;
2688 spin_unlock(®_requests_lock
);
2693 tmp
= get_wiphy_regdom(wiphy
);
2694 rcu_assign_pointer(wiphy
->regd
, regd
);
2695 rcu_free_regdom(tmp
);
2697 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2698 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2700 reg_process_ht_flags(wiphy
);
2702 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2703 request
.alpha2
[0] = regd
->alpha2
[0];
2704 request
.alpha2
[1] = regd
->alpha2
[1];
2705 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2707 nl80211_send_wiphy_reg_change_event(&request
);
2710 reg_check_channels();
2713 static void reg_todo(struct work_struct
*work
)
2716 reg_process_pending_hints();
2717 reg_process_pending_beacon_hints();
2718 reg_process_self_managed_hints();
2722 static void queue_regulatory_request(struct regulatory_request
*request
)
2724 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2725 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2727 spin_lock(®_requests_lock
);
2728 list_add_tail(&request
->list
, ®_requests_list
);
2729 spin_unlock(®_requests_lock
);
2731 schedule_work(®_work
);
2735 * Core regulatory hint -- happens during cfg80211_init()
2736 * and when we restore regulatory settings.
2738 static int regulatory_hint_core(const char *alpha2
)
2740 struct regulatory_request
*request
;
2742 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2746 request
->alpha2
[0] = alpha2
[0];
2747 request
->alpha2
[1] = alpha2
[1];
2748 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2750 queue_regulatory_request(request
);
2756 int regulatory_hint_user(const char *alpha2
,
2757 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2759 struct regulatory_request
*request
;
2761 if (WARN_ON(!alpha2
))
2764 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2768 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2769 request
->alpha2
[0] = alpha2
[0];
2770 request
->alpha2
[1] = alpha2
[1];
2771 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2772 request
->user_reg_hint_type
= user_reg_hint_type
;
2774 /* Allow calling CRDA again */
2775 reset_crda_timeouts();
2777 queue_regulatory_request(request
);
2782 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2784 spin_lock(®_indoor_lock
);
2786 /* It is possible that more than one user space process is trying to
2787 * configure the indoor setting. To handle such cases, clear the indoor
2788 * setting in case that some process does not think that the device
2789 * is operating in an indoor environment. In addition, if a user space
2790 * process indicates that it is controlling the indoor setting, save its
2791 * portid, i.e., make it the owner.
2793 reg_is_indoor
= is_indoor
;
2794 if (reg_is_indoor
) {
2795 if (!reg_is_indoor_portid
)
2796 reg_is_indoor_portid
= portid
;
2798 reg_is_indoor_portid
= 0;
2801 spin_unlock(®_indoor_lock
);
2804 reg_check_channels();
2809 void regulatory_netlink_notify(u32 portid
)
2811 spin_lock(®_indoor_lock
);
2813 if (reg_is_indoor_portid
!= portid
) {
2814 spin_unlock(®_indoor_lock
);
2818 reg_is_indoor
= false;
2819 reg_is_indoor_portid
= 0;
2821 spin_unlock(®_indoor_lock
);
2823 reg_check_channels();
2827 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
2829 struct regulatory_request
*request
;
2831 if (WARN_ON(!alpha2
|| !wiphy
))
2834 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
2836 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2840 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2842 request
->alpha2
[0] = alpha2
[0];
2843 request
->alpha2
[1] = alpha2
[1];
2844 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2846 /* Allow calling CRDA again */
2847 reset_crda_timeouts();
2849 queue_regulatory_request(request
);
2853 EXPORT_SYMBOL(regulatory_hint
);
2855 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
2856 const u8
*country_ie
, u8 country_ie_len
)
2859 enum environment_cap env
= ENVIRON_ANY
;
2860 struct regulatory_request
*request
= NULL
, *lr
;
2862 /* IE len must be evenly divisible by 2 */
2863 if (country_ie_len
& 0x01)
2866 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2869 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
2873 alpha2
[0] = country_ie
[0];
2874 alpha2
[1] = country_ie
[1];
2876 if (country_ie
[2] == 'I')
2877 env
= ENVIRON_INDOOR
;
2878 else if (country_ie
[2] == 'O')
2879 env
= ENVIRON_OUTDOOR
;
2882 lr
= get_last_request();
2888 * We will run this only upon a successful connection on cfg80211.
2889 * We leave conflict resolution to the workqueue, where can hold
2892 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2893 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2896 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2897 request
->alpha2
[0] = alpha2
[0];
2898 request
->alpha2
[1] = alpha2
[1];
2899 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
2900 request
->country_ie_env
= env
;
2902 /* Allow calling CRDA again */
2903 reset_crda_timeouts();
2905 queue_regulatory_request(request
);
2912 static void restore_alpha2(char *alpha2
, bool reset_user
)
2914 /* indicates there is no alpha2 to consider for restoration */
2918 /* The user setting has precedence over the module parameter */
2919 if (is_user_regdom_saved()) {
2920 /* Unless we're asked to ignore it and reset it */
2922 pr_debug("Restoring regulatory settings including user preference\n");
2923 user_alpha2
[0] = '9';
2924 user_alpha2
[1] = '7';
2927 * If we're ignoring user settings, we still need to
2928 * check the module parameter to ensure we put things
2929 * back as they were for a full restore.
2931 if (!is_world_regdom(ieee80211_regdom
)) {
2932 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2933 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2934 alpha2
[0] = ieee80211_regdom
[0];
2935 alpha2
[1] = ieee80211_regdom
[1];
2938 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2939 user_alpha2
[0], user_alpha2
[1]);
2940 alpha2
[0] = user_alpha2
[0];
2941 alpha2
[1] = user_alpha2
[1];
2943 } else if (!is_world_regdom(ieee80211_regdom
)) {
2944 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2945 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2946 alpha2
[0] = ieee80211_regdom
[0];
2947 alpha2
[1] = ieee80211_regdom
[1];
2949 pr_debug("Restoring regulatory settings\n");
2952 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
2954 struct ieee80211_supported_band
*sband
;
2955 enum nl80211_band band
;
2956 struct ieee80211_channel
*chan
;
2959 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2960 sband
= wiphy
->bands
[band
];
2963 for (i
= 0; i
< sband
->n_channels
; i
++) {
2964 chan
= &sband
->channels
[i
];
2965 chan
->flags
= chan
->orig_flags
;
2966 chan
->max_antenna_gain
= chan
->orig_mag
;
2967 chan
->max_power
= chan
->orig_mpwr
;
2968 chan
->beacon_found
= false;
2974 * Restoring regulatory settings involves ingoring any
2975 * possibly stale country IE information and user regulatory
2976 * settings if so desired, this includes any beacon hints
2977 * learned as we could have traveled outside to another country
2978 * after disconnection. To restore regulatory settings we do
2979 * exactly what we did at bootup:
2981 * - send a core regulatory hint
2982 * - send a user regulatory hint if applicable
2984 * Device drivers that send a regulatory hint for a specific country
2985 * keep their own regulatory domain on wiphy->regd so that does does
2986 * not need to be remembered.
2988 static void restore_regulatory_settings(bool reset_user
)
2991 char world_alpha2
[2];
2992 struct reg_beacon
*reg_beacon
, *btmp
;
2993 LIST_HEAD(tmp_reg_req_list
);
2994 struct cfg80211_registered_device
*rdev
;
2999 * Clear the indoor setting in case that it is not controlled by user
3000 * space, as otherwise there is no guarantee that the device is still
3001 * operating in an indoor environment.
3003 spin_lock(®_indoor_lock
);
3004 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3005 reg_is_indoor
= false;
3006 reg_check_channels();
3008 spin_unlock(®_indoor_lock
);
3010 reset_regdomains(true, &world_regdom
);
3011 restore_alpha2(alpha2
, reset_user
);
3014 * If there's any pending requests we simply
3015 * stash them to a temporary pending queue and
3016 * add then after we've restored regulatory
3019 spin_lock(®_requests_lock
);
3020 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3021 spin_unlock(®_requests_lock
);
3023 /* Clear beacon hints */
3024 spin_lock_bh(®_pending_beacons_lock
);
3025 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3026 list_del(®_beacon
->list
);
3029 spin_unlock_bh(®_pending_beacons_lock
);
3031 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3032 list_del(®_beacon
->list
);
3036 /* First restore to the basic regulatory settings */
3037 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3038 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3040 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3041 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3043 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3044 restore_custom_reg_settings(&rdev
->wiphy
);
3047 regulatory_hint_core(world_alpha2
);
3050 * This restores the ieee80211_regdom module parameter
3051 * preference or the last user requested regulatory
3052 * settings, user regulatory settings takes precedence.
3054 if (is_an_alpha2(alpha2
))
3055 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3057 spin_lock(®_requests_lock
);
3058 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3059 spin_unlock(®_requests_lock
);
3061 pr_debug("Kicking the queue\n");
3063 schedule_work(®_work
);
3066 void regulatory_hint_disconnect(void)
3068 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3069 restore_regulatory_settings(false);
3072 static bool freq_is_chan_12_13_14(u16 freq
)
3074 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3075 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3076 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3081 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3083 struct reg_beacon
*pending_beacon
;
3085 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3086 if (beacon_chan
->center_freq
==
3087 pending_beacon
->chan
.center_freq
)
3092 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3093 struct ieee80211_channel
*beacon_chan
,
3096 struct reg_beacon
*reg_beacon
;
3099 if (beacon_chan
->beacon_found
||
3100 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3101 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3102 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3105 spin_lock_bh(®_pending_beacons_lock
);
3106 processing
= pending_reg_beacon(beacon_chan
);
3107 spin_unlock_bh(®_pending_beacons_lock
);
3112 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3116 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3117 beacon_chan
->center_freq
,
3118 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
3121 memcpy(®_beacon
->chan
, beacon_chan
,
3122 sizeof(struct ieee80211_channel
));
3125 * Since we can be called from BH or and non-BH context
3126 * we must use spin_lock_bh()
3128 spin_lock_bh(®_pending_beacons_lock
);
3129 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3130 spin_unlock_bh(®_pending_beacons_lock
);
3132 schedule_work(®_work
);
3137 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3140 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3141 const struct ieee80211_freq_range
*freq_range
= NULL
;
3142 const struct ieee80211_power_rule
*power_rule
= NULL
;
3143 char bw
[32], cac_time
[32];
3145 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3147 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3148 reg_rule
= &rd
->reg_rules
[i
];
3149 freq_range
= ®_rule
->freq_range
;
3150 power_rule
= ®_rule
->power_rule
;
3152 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3153 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
3154 freq_range
->max_bandwidth_khz
,
3155 reg_get_max_bandwidth(rd
, reg_rule
));
3157 snprintf(bw
, sizeof(bw
), "%d KHz",
3158 freq_range
->max_bandwidth_khz
);
3160 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3161 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3162 reg_rule
->dfs_cac_ms
/1000);
3164 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3168 * There may not be documentation for max antenna gain
3169 * in certain regions
3171 if (power_rule
->max_antenna_gain
)
3172 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3173 freq_range
->start_freq_khz
,
3174 freq_range
->end_freq_khz
,
3176 power_rule
->max_antenna_gain
,
3177 power_rule
->max_eirp
,
3180 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3181 freq_range
->start_freq_khz
,
3182 freq_range
->end_freq_khz
,
3184 power_rule
->max_eirp
,
3189 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3191 switch (dfs_region
) {
3192 case NL80211_DFS_UNSET
:
3193 case NL80211_DFS_FCC
:
3194 case NL80211_DFS_ETSI
:
3195 case NL80211_DFS_JP
:
3198 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region
);
3203 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3205 struct regulatory_request
*lr
= get_last_request();
3207 if (is_intersected_alpha2(rd
->alpha2
)) {
3208 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3209 struct cfg80211_registered_device
*rdev
;
3210 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3212 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3213 rdev
->country_ie_alpha2
[0],
3214 rdev
->country_ie_alpha2
[1]);
3216 pr_debug("Current regulatory domain intersected:\n");
3218 pr_debug("Current regulatory domain intersected:\n");
3219 } else if (is_world_regdom(rd
->alpha2
)) {
3220 pr_debug("World regulatory domain updated:\n");
3222 if (is_unknown_alpha2(rd
->alpha2
))
3223 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3225 if (reg_request_cell_base(lr
))
3226 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3227 rd
->alpha2
[0], rd
->alpha2
[1]);
3229 pr_debug("Regulatory domain changed to country: %c%c\n",
3230 rd
->alpha2
[0], rd
->alpha2
[1]);
3234 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3238 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3240 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3244 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3246 if (!is_world_regdom(rd
->alpha2
))
3248 update_world_regdomain(rd
);
3252 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3253 struct regulatory_request
*user_request
)
3255 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3257 if (!regdom_changes(rd
->alpha2
))
3260 if (!is_valid_rd(rd
)) {
3261 pr_err("Invalid regulatory domain detected: %c%c\n",
3262 rd
->alpha2
[0], rd
->alpha2
[1]);
3263 print_regdomain_info(rd
);
3267 if (!user_request
->intersect
) {
3268 reset_regdomains(false, rd
);
3272 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3273 if (!intersected_rd
)
3278 reset_regdomains(false, intersected_rd
);
3283 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3284 struct regulatory_request
*driver_request
)
3286 const struct ieee80211_regdomain
*regd
;
3287 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3288 const struct ieee80211_regdomain
*tmp
;
3289 struct wiphy
*request_wiphy
;
3291 if (is_world_regdom(rd
->alpha2
))
3294 if (!regdom_changes(rd
->alpha2
))
3297 if (!is_valid_rd(rd
)) {
3298 pr_err("Invalid regulatory domain detected: %c%c\n",
3299 rd
->alpha2
[0], rd
->alpha2
[1]);
3300 print_regdomain_info(rd
);
3304 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3308 if (!driver_request
->intersect
) {
3309 if (request_wiphy
->regd
)
3312 regd
= reg_copy_regd(rd
);
3314 return PTR_ERR(regd
);
3316 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3317 reset_regdomains(false, rd
);
3321 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3322 if (!intersected_rd
)
3326 * We can trash what CRDA provided now.
3327 * However if a driver requested this specific regulatory
3328 * domain we keep it for its private use
3330 tmp
= get_wiphy_regdom(request_wiphy
);
3331 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3332 rcu_free_regdom(tmp
);
3336 reset_regdomains(false, intersected_rd
);
3341 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3342 struct regulatory_request
*country_ie_request
)
3344 struct wiphy
*request_wiphy
;
3346 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3347 !is_unknown_alpha2(rd
->alpha2
))
3351 * Lets only bother proceeding on the same alpha2 if the current
3352 * rd is non static (it means CRDA was present and was used last)
3353 * and the pending request came in from a country IE
3356 if (!is_valid_rd(rd
)) {
3357 pr_err("Invalid regulatory domain detected: %c%c\n",
3358 rd
->alpha2
[0], rd
->alpha2
[1]);
3359 print_regdomain_info(rd
);
3363 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3367 if (country_ie_request
->intersect
)
3370 reset_regdomains(false, rd
);
3375 * Use this call to set the current regulatory domain. Conflicts with
3376 * multiple drivers can be ironed out later. Caller must've already
3377 * kmalloc'd the rd structure.
3379 int set_regdom(const struct ieee80211_regdomain
*rd
,
3380 enum ieee80211_regd_source regd_src
)
3382 struct regulatory_request
*lr
;
3383 bool user_reset
= false;
3386 if (!reg_is_valid_request(rd
->alpha2
)) {
3391 if (regd_src
== REGD_SOURCE_CRDA
)
3392 reset_crda_timeouts();
3394 lr
= get_last_request();
3396 /* Note that this doesn't update the wiphys, this is done below */
3397 switch (lr
->initiator
) {
3398 case NL80211_REGDOM_SET_BY_CORE
:
3399 r
= reg_set_rd_core(rd
);
3401 case NL80211_REGDOM_SET_BY_USER
:
3402 r
= reg_set_rd_user(rd
, lr
);
3405 case NL80211_REGDOM_SET_BY_DRIVER
:
3406 r
= reg_set_rd_driver(rd
, lr
);
3408 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3409 r
= reg_set_rd_country_ie(rd
, lr
);
3412 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3420 reg_set_request_processed();
3423 /* Back to world regulatory in case of errors */
3424 restore_regulatory_settings(user_reset
);
3431 /* This would make this whole thing pointless */
3432 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3435 /* update all wiphys now with the new established regulatory domain */
3436 update_all_wiphy_regulatory(lr
->initiator
);
3438 print_regdomain(get_cfg80211_regdom());
3440 nl80211_send_reg_change_event(lr
);
3442 reg_set_request_processed();
3447 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3448 struct ieee80211_regdomain
*rd
)
3450 const struct ieee80211_regdomain
*regd
;
3451 const struct ieee80211_regdomain
*prev_regd
;
3452 struct cfg80211_registered_device
*rdev
;
3454 if (WARN_ON(!wiphy
|| !rd
))
3457 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3458 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3461 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3462 print_regdomain_info(rd
);
3466 regd
= reg_copy_regd(rd
);
3468 return PTR_ERR(regd
);
3470 rdev
= wiphy_to_rdev(wiphy
);
3472 spin_lock(®_requests_lock
);
3473 prev_regd
= rdev
->requested_regd
;
3474 rdev
->requested_regd
= regd
;
3475 spin_unlock(®_requests_lock
);
3481 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3482 struct ieee80211_regdomain
*rd
)
3484 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3489 schedule_work(®_work
);
3492 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3494 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3495 struct ieee80211_regdomain
*rd
)
3501 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3505 /* process the request immediately */
3506 reg_process_self_managed_hints();
3509 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3511 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3513 struct regulatory_request
*lr
;
3515 /* self-managed devices ignore external hints */
3516 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3517 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3518 REGULATORY_COUNTRY_IE_IGNORE
;
3520 if (!reg_dev_ignore_cell_hint(wiphy
))
3521 reg_num_devs_support_basehint
++;
3523 lr
= get_last_request();
3524 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3525 wiphy_all_share_dfs_chan_state(wiphy
);
3528 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3530 struct wiphy
*request_wiphy
= NULL
;
3531 struct regulatory_request
*lr
;
3533 lr
= get_last_request();
3535 if (!reg_dev_ignore_cell_hint(wiphy
))
3536 reg_num_devs_support_basehint
--;
3538 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3539 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3542 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3544 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3547 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3548 lr
->country_ie_env
= ENVIRON_ANY
;
3552 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3553 * UNII band definitions
3555 int cfg80211_get_unii(int freq
)
3558 if (freq
>= 5150 && freq
<= 5250)
3562 if (freq
> 5250 && freq
<= 5350)
3566 if (freq
> 5350 && freq
<= 5470)
3570 if (freq
> 5470 && freq
<= 5725)
3574 if (freq
> 5725 && freq
<= 5825)
3580 bool regulatory_indoor_allowed(void)
3582 return reg_is_indoor
;
3585 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
3587 const struct ieee80211_regdomain
*regd
= NULL
;
3588 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
3589 bool pre_cac_allowed
= false;
3593 regd
= rcu_dereference(cfg80211_regdomain
);
3594 wiphy_regd
= rcu_dereference(wiphy
->regd
);
3596 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
3597 pre_cac_allowed
= true;
3601 return pre_cac_allowed
;
3604 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
3605 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
3606 pre_cac_allowed
= true;
3610 return pre_cac_allowed
;
3613 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
3614 struct cfg80211_chan_def
*chandef
,
3615 enum nl80211_dfs_state dfs_state
,
3616 enum nl80211_radar_event event
)
3618 struct cfg80211_registered_device
*rdev
;
3622 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
3625 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3626 if (wiphy
== &rdev
->wiphy
)
3629 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
3632 if (!ieee80211_get_channel(&rdev
->wiphy
,
3633 chandef
->chan
->center_freq
))
3636 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
3638 if (event
== NL80211_RADAR_DETECTED
||
3639 event
== NL80211_RADAR_CAC_FINISHED
)
3640 cfg80211_sched_dfs_chan_update(rdev
);
3642 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
3646 static int __init
regulatory_init_db(void)
3650 err
= load_builtin_regdb_keys();
3654 /* We always try to get an update for the static regdomain */
3655 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3657 if (err
== -ENOMEM
) {
3658 platform_device_unregister(reg_pdev
);
3662 * N.B. kobject_uevent_env() can fail mainly for when we're out
3663 * memory which is handled and propagated appropriately above
3664 * but it can also fail during a netlink_broadcast() or during
3665 * early boot for call_usermodehelper(). For now treat these
3666 * errors as non-fatal.
3668 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3672 * Finally, if the user set the module parameter treat it
3675 if (!is_world_regdom(ieee80211_regdom
))
3676 regulatory_hint_user(ieee80211_regdom
,
3677 NL80211_USER_REG_HINT_USER
);
3682 late_initcall(regulatory_init_db
);
3685 int __init
regulatory_init(void)
3687 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3688 if (IS_ERR(reg_pdev
))
3689 return PTR_ERR(reg_pdev
);
3691 spin_lock_init(®_requests_lock
);
3692 spin_lock_init(®_pending_beacons_lock
);
3693 spin_lock_init(®_indoor_lock
);
3695 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3697 user_alpha2
[0] = '9';
3698 user_alpha2
[1] = '7';
3701 return regulatory_init_db();
3707 void regulatory_exit(void)
3709 struct regulatory_request
*reg_request
, *tmp
;
3710 struct reg_beacon
*reg_beacon
, *btmp
;
3712 cancel_work_sync(®_work
);
3713 cancel_crda_timeout_sync();
3714 cancel_delayed_work_sync(®_check_chans
);
3716 /* Lock to suppress warnings */
3718 reset_regdomains(true, NULL
);
3721 dev_set_uevent_suppress(®_pdev
->dev
, true);
3723 platform_device_unregister(reg_pdev
);
3725 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3726 list_del(®_beacon
->list
);
3730 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3731 list_del(®_beacon
->list
);
3735 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3736 list_del(®_request
->list
);
3740 if (!IS_ERR_OR_NULL(regdb
))
3743 free_regdb_keyring();