Linux 2.6.33-rc6
[cris-mirror.git] / drivers / mtd / ubi / io.c
blob8aa51e7a6a7df515e25c628b767b18a2e3838c50
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 #else
102 #define paranoid_check_not_bad(ubi, pnum) 0
103 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
104 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
105 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
106 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
107 #endif
110 * ubi_io_read - read data from a physical eraseblock.
111 * @ubi: UBI device description object
112 * @buf: buffer where to store the read data
113 * @pnum: physical eraseblock number to read from
114 * @offset: offset within the physical eraseblock from where to read
115 * @len: how many bytes to read
117 * This function reads data from offset @offset of physical eraseblock @pnum
118 * and stores the read data in the @buf buffer. The following return codes are
119 * possible:
121 * o %0 if all the requested data were successfully read;
122 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
123 * correctable bit-flips were detected; this is harmless but may indicate
124 * that this eraseblock may become bad soon (but do not have to);
125 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
126 * example it can be an ECC error in case of NAND; this most probably means
127 * that the data is corrupted;
128 * o %-EIO if some I/O error occurred;
129 * o other negative error codes in case of other errors.
131 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
132 int len)
134 int err, retries = 0;
135 size_t read;
136 loff_t addr;
138 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
141 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
142 ubi_assert(len > 0);
144 err = paranoid_check_not_bad(ubi, pnum);
145 if (err)
146 return err > 0 ? -EINVAL : err;
148 addr = (loff_t)pnum * ubi->peb_size + offset;
149 retry:
150 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
151 if (err) {
152 if (err == -EUCLEAN) {
154 * -EUCLEAN is reported if there was a bit-flip which
155 * was corrected, so this is harmless.
157 * We do not report about it here unless debugging is
158 * enabled. A corresponding message will be printed
159 * later, when it is has been scrubbed.
161 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
162 ubi_assert(len == read);
163 return UBI_IO_BITFLIPS;
166 if (read != len && retries++ < UBI_IO_RETRIES) {
167 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
168 " read only %zd bytes, retry",
169 err, len, pnum, offset, read);
170 yield();
171 goto retry;
174 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
175 "read %zd bytes", err, len, pnum, offset, read);
176 ubi_dbg_dump_stack();
179 * The driver should never return -EBADMSG if it failed to read
180 * all the requested data. But some buggy drivers might do
181 * this, so we change it to -EIO.
183 if (read != len && err == -EBADMSG) {
184 ubi_assert(0);
185 err = -EIO;
187 } else {
188 ubi_assert(len == read);
190 if (ubi_dbg_is_bitflip()) {
191 dbg_gen("bit-flip (emulated)");
192 err = UBI_IO_BITFLIPS;
196 return err;
200 * ubi_io_write - write data to a physical eraseblock.
201 * @ubi: UBI device description object
202 * @buf: buffer with the data to write
203 * @pnum: physical eraseblock number to write to
204 * @offset: offset within the physical eraseblock where to write
205 * @len: how many bytes to write
207 * This function writes @len bytes of data from buffer @buf to offset @offset
208 * of physical eraseblock @pnum. If all the data were successfully written,
209 * zero is returned. If an error occurred, this function returns a negative
210 * error code. If %-EIO is returned, the physical eraseblock most probably went
211 * bad.
213 * Note, in case of an error, it is possible that something was still written
214 * to the flash media, but may be some garbage.
216 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
217 int len)
219 int err;
220 size_t written;
221 loff_t addr;
223 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
225 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
226 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
227 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
228 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
230 if (ubi->ro_mode) {
231 ubi_err("read-only mode");
232 return -EROFS;
235 /* The below has to be compiled out if paranoid checks are disabled */
237 err = paranoid_check_not_bad(ubi, pnum);
238 if (err)
239 return err > 0 ? -EINVAL : err;
241 /* The area we are writing to has to contain all 0xFF bytes */
242 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
243 if (err)
244 return err > 0 ? -EINVAL : err;
246 if (offset >= ubi->leb_start) {
248 * We write to the data area of the physical eraseblock. Make
249 * sure it has valid EC and VID headers.
251 err = paranoid_check_peb_ec_hdr(ubi, pnum);
252 if (err)
253 return err > 0 ? -EINVAL : err;
254 err = paranoid_check_peb_vid_hdr(ubi, pnum);
255 if (err)
256 return err > 0 ? -EINVAL : err;
259 if (ubi_dbg_is_write_failure()) {
260 dbg_err("cannot write %d bytes to PEB %d:%d "
261 "(emulated)", len, pnum, offset);
262 ubi_dbg_dump_stack();
263 return -EIO;
266 addr = (loff_t)pnum * ubi->peb_size + offset;
267 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
268 if (err) {
269 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
270 "%zd bytes", err, len, pnum, offset, written);
271 ubi_dbg_dump_stack();
272 ubi_dbg_dump_flash(ubi, pnum, offset, len);
273 } else
274 ubi_assert(written == len);
276 return err;
280 * erase_callback - MTD erasure call-back.
281 * @ei: MTD erase information object.
283 * Note, even though MTD erase interface is asynchronous, all the current
284 * implementations are synchronous anyway.
286 static void erase_callback(struct erase_info *ei)
288 wake_up_interruptible((wait_queue_head_t *)ei->priv);
292 * do_sync_erase - synchronously erase a physical eraseblock.
293 * @ubi: UBI device description object
294 * @pnum: the physical eraseblock number to erase
296 * This function synchronously erases physical eraseblock @pnum and returns
297 * zero in case of success and a negative error code in case of failure. If
298 * %-EIO is returned, the physical eraseblock most probably went bad.
300 static int do_sync_erase(struct ubi_device *ubi, int pnum)
302 int err, retries = 0;
303 struct erase_info ei;
304 wait_queue_head_t wq;
306 dbg_io("erase PEB %d", pnum);
308 retry:
309 init_waitqueue_head(&wq);
310 memset(&ei, 0, sizeof(struct erase_info));
312 ei.mtd = ubi->mtd;
313 ei.addr = (loff_t)pnum * ubi->peb_size;
314 ei.len = ubi->peb_size;
315 ei.callback = erase_callback;
316 ei.priv = (unsigned long)&wq;
318 err = ubi->mtd->erase(ubi->mtd, &ei);
319 if (err) {
320 if (retries++ < UBI_IO_RETRIES) {
321 dbg_io("error %d while erasing PEB %d, retry",
322 err, pnum);
323 yield();
324 goto retry;
326 ubi_err("cannot erase PEB %d, error %d", pnum, err);
327 ubi_dbg_dump_stack();
328 return err;
331 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
332 ei.state == MTD_ERASE_FAILED);
333 if (err) {
334 ubi_err("interrupted PEB %d erasure", pnum);
335 return -EINTR;
338 if (ei.state == MTD_ERASE_FAILED) {
339 if (retries++ < UBI_IO_RETRIES) {
340 dbg_io("error while erasing PEB %d, retry", pnum);
341 yield();
342 goto retry;
344 ubi_err("cannot erase PEB %d", pnum);
345 ubi_dbg_dump_stack();
346 return -EIO;
349 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
350 if (err)
351 return err > 0 ? -EINVAL : err;
353 if (ubi_dbg_is_erase_failure() && !err) {
354 dbg_err("cannot erase PEB %d (emulated)", pnum);
355 return -EIO;
358 return 0;
362 * check_pattern - check if buffer contains only a certain byte pattern.
363 * @buf: buffer to check
364 * @patt: the pattern to check
365 * @size: buffer size in bytes
367 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
368 * something else was also found.
370 static int check_pattern(const void *buf, uint8_t patt, int size)
372 int i;
374 for (i = 0; i < size; i++)
375 if (((const uint8_t *)buf)[i] != patt)
376 return 0;
377 return 1;
380 /* Patterns to write to a physical eraseblock when torturing it */
381 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
384 * torture_peb - test a supposedly bad physical eraseblock.
385 * @ubi: UBI device description object
386 * @pnum: the physical eraseblock number to test
388 * This function returns %-EIO if the physical eraseblock did not pass the
389 * test, a positive number of erase operations done if the test was
390 * successfully passed, and other negative error codes in case of other errors.
392 static int torture_peb(struct ubi_device *ubi, int pnum)
394 int err, i, patt_count;
396 ubi_msg("run torture test for PEB %d", pnum);
397 patt_count = ARRAY_SIZE(patterns);
398 ubi_assert(patt_count > 0);
400 mutex_lock(&ubi->buf_mutex);
401 for (i = 0; i < patt_count; i++) {
402 err = do_sync_erase(ubi, pnum);
403 if (err)
404 goto out;
406 /* Make sure the PEB contains only 0xFF bytes */
407 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
408 if (err)
409 goto out;
411 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
412 if (err == 0) {
413 ubi_err("erased PEB %d, but a non-0xFF byte found",
414 pnum);
415 err = -EIO;
416 goto out;
419 /* Write a pattern and check it */
420 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
421 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
422 if (err)
423 goto out;
425 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
426 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
427 if (err)
428 goto out;
430 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
431 if (err == 0) {
432 ubi_err("pattern %x checking failed for PEB %d",
433 patterns[i], pnum);
434 err = -EIO;
435 goto out;
439 err = patt_count;
440 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
442 out:
443 mutex_unlock(&ubi->buf_mutex);
444 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
446 * If a bit-flip or data integrity error was detected, the test
447 * has not passed because it happened on a freshly erased
448 * physical eraseblock which means something is wrong with it.
450 ubi_err("read problems on freshly erased PEB %d, must be bad",
451 pnum);
452 err = -EIO;
454 return err;
458 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459 * @ubi: UBI device description object
460 * @pnum: physical eraseblock number to prepare
462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463 * algorithm: the PEB is first filled with zeroes, then it is erased. And
464 * filling with zeroes starts from the end of the PEB. This was observed with
465 * Spansion S29GL512N NOR flash.
467 * This means that in case of a power cut we may end up with intact data at the
468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474 * magic numbers in order to invalidate them and prevent the failures. Returns
475 * zero in case of success and a negative error code in case of failure.
477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
479 int err, err1;
480 size_t written;
481 loff_t addr;
482 uint32_t data = 0;
483 struct ubi_vid_hdr vid_hdr;
485 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
486 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
487 if (!err) {
488 addr -= ubi->vid_hdr_aloffset;
489 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
490 (void *)&data);
491 if (!err)
492 return 0;
496 * We failed to write to the media. This was observed with Spansion
497 * S29GL512N NOR flash. Most probably the eraseblock erasure was
498 * interrupted at a very inappropriate moment, so it became unwritable.
499 * In this case we probably anyway have garbage in this PEB.
501 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
502 if (err1 == UBI_IO_BAD_VID_HDR)
504 * The VID header is corrupted, so we can safely erase this
505 * PEB and not afraid that it will be treated as a valid PEB in
506 * case of an unclean reboot.
508 return 0;
511 * The PEB contains a valid VID header, but we cannot invalidate it.
512 * Supposedly the flash media or the driver is screwed up, so return an
513 * error.
515 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
516 pnum, err, err1);
517 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
518 return -EIO;
522 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
523 * @ubi: UBI device description object
524 * @pnum: physical eraseblock number to erase
525 * @torture: if this physical eraseblock has to be tortured
527 * This function synchronously erases physical eraseblock @pnum. If @torture
528 * flag is not zero, the physical eraseblock is checked by means of writing
529 * different patterns to it and reading them back. If the torturing is enabled,
530 * the physical eraseblock is erased more than once.
532 * This function returns the number of erasures made in case of success, %-EIO
533 * if the erasure failed or the torturing test failed, and other negative error
534 * codes in case of other errors. Note, %-EIO means that the physical
535 * eraseblock is bad.
537 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
539 int err, ret = 0;
541 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
543 err = paranoid_check_not_bad(ubi, pnum);
544 if (err != 0)
545 return err > 0 ? -EINVAL : err;
547 if (ubi->ro_mode) {
548 ubi_err("read-only mode");
549 return -EROFS;
552 if (ubi->nor_flash) {
553 err = nor_erase_prepare(ubi, pnum);
554 if (err)
555 return err;
558 if (torture) {
559 ret = torture_peb(ubi, pnum);
560 if (ret < 0)
561 return ret;
564 err = do_sync_erase(ubi, pnum);
565 if (err)
566 return err;
568 return ret + 1;
572 * ubi_io_is_bad - check if a physical eraseblock is bad.
573 * @ubi: UBI device description object
574 * @pnum: the physical eraseblock number to check
576 * This function returns a positive number if the physical eraseblock is bad,
577 * zero if not, and a negative error code if an error occurred.
579 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
581 struct mtd_info *mtd = ubi->mtd;
583 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
585 if (ubi->bad_allowed) {
586 int ret;
588 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
589 if (ret < 0)
590 ubi_err("error %d while checking if PEB %d is bad",
591 ret, pnum);
592 else if (ret)
593 dbg_io("PEB %d is bad", pnum);
594 return ret;
597 return 0;
601 * ubi_io_mark_bad - mark a physical eraseblock as bad.
602 * @ubi: UBI device description object
603 * @pnum: the physical eraseblock number to mark
605 * This function returns zero in case of success and a negative error code in
606 * case of failure.
608 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
610 int err;
611 struct mtd_info *mtd = ubi->mtd;
613 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
615 if (ubi->ro_mode) {
616 ubi_err("read-only mode");
617 return -EROFS;
620 if (!ubi->bad_allowed)
621 return 0;
623 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
624 if (err)
625 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
626 return err;
630 * validate_ec_hdr - validate an erase counter header.
631 * @ubi: UBI device description object
632 * @ec_hdr: the erase counter header to check
634 * This function returns zero if the erase counter header is OK, and %1 if
635 * not.
637 static int validate_ec_hdr(const struct ubi_device *ubi,
638 const struct ubi_ec_hdr *ec_hdr)
640 long long ec;
641 int vid_hdr_offset, leb_start;
643 ec = be64_to_cpu(ec_hdr->ec);
644 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
645 leb_start = be32_to_cpu(ec_hdr->data_offset);
647 if (ec_hdr->version != UBI_VERSION) {
648 ubi_err("node with incompatible UBI version found: "
649 "this UBI version is %d, image version is %d",
650 UBI_VERSION, (int)ec_hdr->version);
651 goto bad;
654 if (vid_hdr_offset != ubi->vid_hdr_offset) {
655 ubi_err("bad VID header offset %d, expected %d",
656 vid_hdr_offset, ubi->vid_hdr_offset);
657 goto bad;
660 if (leb_start != ubi->leb_start) {
661 ubi_err("bad data offset %d, expected %d",
662 leb_start, ubi->leb_start);
663 goto bad;
666 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
667 ubi_err("bad erase counter %lld", ec);
668 goto bad;
671 return 0;
673 bad:
674 ubi_err("bad EC header");
675 ubi_dbg_dump_ec_hdr(ec_hdr);
676 ubi_dbg_dump_stack();
677 return 1;
681 * ubi_io_read_ec_hdr - read and check an erase counter header.
682 * @ubi: UBI device description object
683 * @pnum: physical eraseblock to read from
684 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
685 * header
686 * @verbose: be verbose if the header is corrupted or was not found
688 * This function reads erase counter header from physical eraseblock @pnum and
689 * stores it in @ec_hdr. This function also checks CRC checksum of the read
690 * erase counter header. The following codes may be returned:
692 * o %0 if the CRC checksum is correct and the header was successfully read;
693 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
694 * and corrected by the flash driver; this is harmless but may indicate that
695 * this eraseblock may become bad soon (but may be not);
696 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
697 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
698 * o a negative error code in case of failure.
700 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
701 struct ubi_ec_hdr *ec_hdr, int verbose)
703 int err, read_err = 0;
704 uint32_t crc, magic, hdr_crc;
706 dbg_io("read EC header from PEB %d", pnum);
707 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
709 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
710 if (err) {
711 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
712 return err;
715 * We read all the data, but either a correctable bit-flip
716 * occurred, or MTD reported about some data integrity error,
717 * like an ECC error in case of NAND. The former is harmless,
718 * the later may mean that the read data is corrupted. But we
719 * have a CRC check-sum and we will detect this. If the EC
720 * header is still OK, we just report this as there was a
721 * bit-flip.
723 read_err = err;
726 magic = be32_to_cpu(ec_hdr->magic);
727 if (magic != UBI_EC_HDR_MAGIC) {
729 * The magic field is wrong. Let's check if we have read all
730 * 0xFF. If yes, this physical eraseblock is assumed to be
731 * empty.
733 * But if there was a read error, we do not test it for all
734 * 0xFFs. Even if it does contain all 0xFFs, this error
735 * indicates that something is still wrong with this physical
736 * eraseblock and we anyway cannot treat it as empty.
738 if (read_err != -EBADMSG &&
739 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
740 /* The physical eraseblock is supposedly empty */
741 if (verbose)
742 ubi_warn("no EC header found at PEB %d, "
743 "only 0xFF bytes", pnum);
744 else if (UBI_IO_DEBUG)
745 dbg_msg("no EC header found at PEB %d, "
746 "only 0xFF bytes", pnum);
747 return UBI_IO_PEB_EMPTY;
751 * This is not a valid erase counter header, and these are not
752 * 0xFF bytes. Report that the header is corrupted.
754 if (verbose) {
755 ubi_warn("bad magic number at PEB %d: %08x instead of "
756 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
757 ubi_dbg_dump_ec_hdr(ec_hdr);
758 } else if (UBI_IO_DEBUG)
759 dbg_msg("bad magic number at PEB %d: %08x instead of "
760 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
761 return UBI_IO_BAD_EC_HDR;
764 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
765 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
767 if (hdr_crc != crc) {
768 if (verbose) {
769 ubi_warn("bad EC header CRC at PEB %d, calculated "
770 "%#08x, read %#08x", pnum, crc, hdr_crc);
771 ubi_dbg_dump_ec_hdr(ec_hdr);
772 } else if (UBI_IO_DEBUG)
773 dbg_msg("bad EC header CRC at PEB %d, calculated "
774 "%#08x, read %#08x", pnum, crc, hdr_crc);
775 return UBI_IO_BAD_EC_HDR;
778 /* And of course validate what has just been read from the media */
779 err = validate_ec_hdr(ubi, ec_hdr);
780 if (err) {
781 ubi_err("validation failed for PEB %d", pnum);
782 return -EINVAL;
785 return read_err ? UBI_IO_BITFLIPS : 0;
789 * ubi_io_write_ec_hdr - write an erase counter header.
790 * @ubi: UBI device description object
791 * @pnum: physical eraseblock to write to
792 * @ec_hdr: the erase counter header to write
794 * This function writes erase counter header described by @ec_hdr to physical
795 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
796 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
797 * field.
799 * This function returns zero in case of success and a negative error code in
800 * case of failure. If %-EIO is returned, the physical eraseblock most probably
801 * went bad.
803 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
804 struct ubi_ec_hdr *ec_hdr)
806 int err;
807 uint32_t crc;
809 dbg_io("write EC header to PEB %d", pnum);
810 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
812 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
813 ec_hdr->version = UBI_VERSION;
814 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
815 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
816 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
817 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
818 ec_hdr->hdr_crc = cpu_to_be32(crc);
820 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
821 if (err)
822 return -EINVAL;
824 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
825 return err;
829 * validate_vid_hdr - validate a volume identifier header.
830 * @ubi: UBI device description object
831 * @vid_hdr: the volume identifier header to check
833 * This function checks that data stored in the volume identifier header
834 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
836 static int validate_vid_hdr(const struct ubi_device *ubi,
837 const struct ubi_vid_hdr *vid_hdr)
839 int vol_type = vid_hdr->vol_type;
840 int copy_flag = vid_hdr->copy_flag;
841 int vol_id = be32_to_cpu(vid_hdr->vol_id);
842 int lnum = be32_to_cpu(vid_hdr->lnum);
843 int compat = vid_hdr->compat;
844 int data_size = be32_to_cpu(vid_hdr->data_size);
845 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
846 int data_pad = be32_to_cpu(vid_hdr->data_pad);
847 int data_crc = be32_to_cpu(vid_hdr->data_crc);
848 int usable_leb_size = ubi->leb_size - data_pad;
850 if (copy_flag != 0 && copy_flag != 1) {
851 dbg_err("bad copy_flag");
852 goto bad;
855 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
856 data_pad < 0) {
857 dbg_err("negative values");
858 goto bad;
861 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
862 dbg_err("bad vol_id");
863 goto bad;
866 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
867 dbg_err("bad compat");
868 goto bad;
871 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
872 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
873 compat != UBI_COMPAT_REJECT) {
874 dbg_err("bad compat");
875 goto bad;
878 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
879 dbg_err("bad vol_type");
880 goto bad;
883 if (data_pad >= ubi->leb_size / 2) {
884 dbg_err("bad data_pad");
885 goto bad;
888 if (vol_type == UBI_VID_STATIC) {
890 * Although from high-level point of view static volumes may
891 * contain zero bytes of data, but no VID headers can contain
892 * zero at these fields, because they empty volumes do not have
893 * mapped logical eraseblocks.
895 if (used_ebs == 0) {
896 dbg_err("zero used_ebs");
897 goto bad;
899 if (data_size == 0) {
900 dbg_err("zero data_size");
901 goto bad;
903 if (lnum < used_ebs - 1) {
904 if (data_size != usable_leb_size) {
905 dbg_err("bad data_size");
906 goto bad;
908 } else if (lnum == used_ebs - 1) {
909 if (data_size == 0) {
910 dbg_err("bad data_size at last LEB");
911 goto bad;
913 } else {
914 dbg_err("too high lnum");
915 goto bad;
917 } else {
918 if (copy_flag == 0) {
919 if (data_crc != 0) {
920 dbg_err("non-zero data CRC");
921 goto bad;
923 if (data_size != 0) {
924 dbg_err("non-zero data_size");
925 goto bad;
927 } else {
928 if (data_size == 0) {
929 dbg_err("zero data_size of copy");
930 goto bad;
933 if (used_ebs != 0) {
934 dbg_err("bad used_ebs");
935 goto bad;
939 return 0;
941 bad:
942 ubi_err("bad VID header");
943 ubi_dbg_dump_vid_hdr(vid_hdr);
944 ubi_dbg_dump_stack();
945 return 1;
949 * ubi_io_read_vid_hdr - read and check a volume identifier header.
950 * @ubi: UBI device description object
951 * @pnum: physical eraseblock number to read from
952 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
953 * identifier header
954 * @verbose: be verbose if the header is corrupted or wasn't found
956 * This function reads the volume identifier header from physical eraseblock
957 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
958 * volume identifier header. The following codes may be returned:
960 * o %0 if the CRC checksum is correct and the header was successfully read;
961 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
962 * and corrected by the flash driver; this is harmless but may indicate that
963 * this eraseblock may become bad soon;
964 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
965 * error detected);
966 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
967 * header there);
968 * o a negative error code in case of failure.
970 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
971 struct ubi_vid_hdr *vid_hdr, int verbose)
973 int err, read_err = 0;
974 uint32_t crc, magic, hdr_crc;
975 void *p;
977 dbg_io("read VID header from PEB %d", pnum);
978 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
980 p = (char *)vid_hdr - ubi->vid_hdr_shift;
981 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
982 ubi->vid_hdr_alsize);
983 if (err) {
984 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
985 return err;
988 * We read all the data, but either a correctable bit-flip
989 * occurred, or MTD reported about some data integrity error,
990 * like an ECC error in case of NAND. The former is harmless,
991 * the later may mean the read data is corrupted. But we have a
992 * CRC check-sum and we will identify this. If the VID header is
993 * still OK, we just report this as there was a bit-flip.
995 read_err = err;
998 magic = be32_to_cpu(vid_hdr->magic);
999 if (magic != UBI_VID_HDR_MAGIC) {
1001 * If we have read all 0xFF bytes, the VID header probably does
1002 * not exist and the physical eraseblock is assumed to be free.
1004 * But if there was a read error, we do not test the data for
1005 * 0xFFs. Even if it does contain all 0xFFs, this error
1006 * indicates that something is still wrong with this physical
1007 * eraseblock and it cannot be regarded as free.
1009 if (read_err != -EBADMSG &&
1010 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1011 /* The physical eraseblock is supposedly free */
1012 if (verbose)
1013 ubi_warn("no VID header found at PEB %d, "
1014 "only 0xFF bytes", pnum);
1015 else if (UBI_IO_DEBUG)
1016 dbg_msg("no VID header found at PEB %d, "
1017 "only 0xFF bytes", pnum);
1018 return UBI_IO_PEB_FREE;
1022 * This is not a valid VID header, and these are not 0xFF
1023 * bytes. Report that the header is corrupted.
1025 if (verbose) {
1026 ubi_warn("bad magic number at PEB %d: %08x instead of "
1027 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1028 ubi_dbg_dump_vid_hdr(vid_hdr);
1029 } else if (UBI_IO_DEBUG)
1030 dbg_msg("bad magic number at PEB %d: %08x instead of "
1031 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1032 return UBI_IO_BAD_VID_HDR;
1035 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1036 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1038 if (hdr_crc != crc) {
1039 if (verbose) {
1040 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1041 "read %#08x", pnum, crc, hdr_crc);
1042 ubi_dbg_dump_vid_hdr(vid_hdr);
1043 } else if (UBI_IO_DEBUG)
1044 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1045 "read %#08x", pnum, crc, hdr_crc);
1046 return UBI_IO_BAD_VID_HDR;
1049 /* Validate the VID header that we have just read */
1050 err = validate_vid_hdr(ubi, vid_hdr);
1051 if (err) {
1052 ubi_err("validation failed for PEB %d", pnum);
1053 return -EINVAL;
1056 return read_err ? UBI_IO_BITFLIPS : 0;
1060 * ubi_io_write_vid_hdr - write a volume identifier header.
1061 * @ubi: UBI device description object
1062 * @pnum: the physical eraseblock number to write to
1063 * @vid_hdr: the volume identifier header to write
1065 * This function writes the volume identifier header described by @vid_hdr to
1066 * physical eraseblock @pnum. This function automatically fills the
1067 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1068 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1070 * This function returns zero in case of success and a negative error code in
1071 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1072 * bad.
1074 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1075 struct ubi_vid_hdr *vid_hdr)
1077 int err;
1078 uint32_t crc;
1079 void *p;
1081 dbg_io("write VID header to PEB %d", pnum);
1082 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1084 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1085 if (err)
1086 return err > 0 ? -EINVAL : err;
1088 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1089 vid_hdr->version = UBI_VERSION;
1090 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1091 vid_hdr->hdr_crc = cpu_to_be32(crc);
1093 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1094 if (err)
1095 return -EINVAL;
1097 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1098 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1099 ubi->vid_hdr_alsize);
1100 return err;
1103 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1106 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1107 * @ubi: UBI device description object
1108 * @pnum: physical eraseblock number to check
1110 * This function returns zero if the physical eraseblock is good, a positive
1111 * number if it is bad and a negative error code if an error occurred.
1113 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1115 int err;
1117 err = ubi_io_is_bad(ubi, pnum);
1118 if (!err)
1119 return err;
1121 ubi_err("paranoid check failed for PEB %d", pnum);
1122 ubi_dbg_dump_stack();
1123 return err;
1127 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1128 * @ubi: UBI device description object
1129 * @pnum: physical eraseblock number the erase counter header belongs to
1130 * @ec_hdr: the erase counter header to check
1132 * This function returns zero if the erase counter header contains valid
1133 * values, and %1 if not.
1135 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1136 const struct ubi_ec_hdr *ec_hdr)
1138 int err;
1139 uint32_t magic;
1141 magic = be32_to_cpu(ec_hdr->magic);
1142 if (magic != UBI_EC_HDR_MAGIC) {
1143 ubi_err("bad magic %#08x, must be %#08x",
1144 magic, UBI_EC_HDR_MAGIC);
1145 goto fail;
1148 err = validate_ec_hdr(ubi, ec_hdr);
1149 if (err) {
1150 ubi_err("paranoid check failed for PEB %d", pnum);
1151 goto fail;
1154 return 0;
1156 fail:
1157 ubi_dbg_dump_ec_hdr(ec_hdr);
1158 ubi_dbg_dump_stack();
1159 return 1;
1163 * paranoid_check_peb_ec_hdr - check erase counter header.
1164 * @ubi: UBI device description object
1165 * @pnum: the physical eraseblock number to check
1167 * This function returns zero if the erase counter header is all right, %1 if
1168 * not, and a negative error code if an error occurred.
1170 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1172 int err;
1173 uint32_t crc, hdr_crc;
1174 struct ubi_ec_hdr *ec_hdr;
1176 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1177 if (!ec_hdr)
1178 return -ENOMEM;
1180 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1181 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1182 goto exit;
1184 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1185 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1186 if (hdr_crc != crc) {
1187 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1188 ubi_err("paranoid check failed for PEB %d", pnum);
1189 ubi_dbg_dump_ec_hdr(ec_hdr);
1190 ubi_dbg_dump_stack();
1191 err = 1;
1192 goto exit;
1195 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1197 exit:
1198 kfree(ec_hdr);
1199 return err;
1203 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1204 * @ubi: UBI device description object
1205 * @pnum: physical eraseblock number the volume identifier header belongs to
1206 * @vid_hdr: the volume identifier header to check
1208 * This function returns zero if the volume identifier header is all right, and
1209 * %1 if not.
1211 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1212 const struct ubi_vid_hdr *vid_hdr)
1214 int err;
1215 uint32_t magic;
1217 magic = be32_to_cpu(vid_hdr->magic);
1218 if (magic != UBI_VID_HDR_MAGIC) {
1219 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1220 magic, pnum, UBI_VID_HDR_MAGIC);
1221 goto fail;
1224 err = validate_vid_hdr(ubi, vid_hdr);
1225 if (err) {
1226 ubi_err("paranoid check failed for PEB %d", pnum);
1227 goto fail;
1230 return err;
1232 fail:
1233 ubi_err("paranoid check failed for PEB %d", pnum);
1234 ubi_dbg_dump_vid_hdr(vid_hdr);
1235 ubi_dbg_dump_stack();
1236 return 1;
1241 * paranoid_check_peb_vid_hdr - check volume identifier header.
1242 * @ubi: UBI device description object
1243 * @pnum: the physical eraseblock number to check
1245 * This function returns zero if the volume identifier header is all right,
1246 * %1 if not, and a negative error code if an error occurred.
1248 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1250 int err;
1251 uint32_t crc, hdr_crc;
1252 struct ubi_vid_hdr *vid_hdr;
1253 void *p;
1255 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1256 if (!vid_hdr)
1257 return -ENOMEM;
1259 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1260 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1261 ubi->vid_hdr_alsize);
1262 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1263 goto exit;
1265 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1266 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1267 if (hdr_crc != crc) {
1268 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1269 "read %#08x", pnum, crc, hdr_crc);
1270 ubi_err("paranoid check failed for PEB %d", pnum);
1271 ubi_dbg_dump_vid_hdr(vid_hdr);
1272 ubi_dbg_dump_stack();
1273 err = 1;
1274 goto exit;
1277 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1279 exit:
1280 ubi_free_vid_hdr(ubi, vid_hdr);
1281 return err;
1285 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1286 * @ubi: UBI device description object
1287 * @pnum: the physical eraseblock number to check
1288 * @offset: the starting offset within the physical eraseblock to check
1289 * @len: the length of the region to check
1291 * This function returns zero if only 0xFF bytes are present at offset
1292 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1293 * code if an error occurred.
1295 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1297 size_t read;
1298 int err;
1299 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1301 mutex_lock(&ubi->dbg_buf_mutex);
1302 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1303 if (err && err != -EUCLEAN) {
1304 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1305 "read %zd bytes", err, len, pnum, offset, read);
1306 goto error;
1309 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1310 if (err == 0) {
1311 ubi_err("flash region at PEB %d:%d, length %d does not "
1312 "contain all 0xFF bytes", pnum, offset, len);
1313 goto fail;
1315 mutex_unlock(&ubi->dbg_buf_mutex);
1317 return 0;
1319 fail:
1320 ubi_err("paranoid check failed for PEB %d", pnum);
1321 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1322 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1323 ubi->dbg_peb_buf, len, 1);
1324 err = 1;
1325 error:
1326 ubi_dbg_dump_stack();
1327 mutex_unlock(&ubi->dbg_buf_mutex);
1328 return err;
1331 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */