1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
45 * Hold common code supporting the ARM7 and ARM9 core generations.
47 * While the ARM core implementations evolved substantially during these
48 * two generations, they look quite similar from the JTAG perspective.
49 * Both have similar debug facilities, based on the same two scan chains
50 * providing access to the core and to an EmbeddedICE module. Both can
51 * support similar ETM and ETB modules, for tracing. And both expose
52 * what could be viewed as "ARM Classic", with multiple processor modes,
53 * shadowed registers, and support for the Thumb instruction set.
55 * Processor differences include things like presence or absence of MMU
56 * and cache, pipeline sizes, use of a modified Harvard Architecure
57 * (with separate instruction and data busses from the CPU), support
58 * for cpu clock gating during idle, and more.
61 static int arm7_9_debug_entry(struct target
*target
);
64 * Clear watchpoints for an ARM7/9 target.
66 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67 * @return JTAG error status after executing queue
69 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
72 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
73 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
74 arm7_9
->sw_breakpoint_count
= 0;
75 arm7_9
->sw_breakpoints_added
= 0;
77 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
78 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
80 return jtag_execute_queue();
84 * Assign a watchpoint to one of the two available hardware comparators in an
85 * ARM7 or ARM9 target.
87 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
90 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
92 if (!arm7_9
->wp0_used
)
96 arm7_9
->wp_available
--;
98 else if (!arm7_9
->wp1_used
)
100 arm7_9
->wp1_used
= 1;
102 arm7_9
->wp_available
--;
106 LOG_ERROR("BUG: no hardware comparator available");
108 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
109 breakpoint
->unique_id
,
115 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
117 * @param arm7_9 Pointer to common struct for ARM7/9 targets
118 * @return Error codes if there is a problem finding a watchpoint or the result
119 * of executing the JTAG queue
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
123 if (arm7_9
->sw_breakpoints_added
)
127 if (arm7_9
->wp_available
< 1)
129 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
132 arm7_9
->wp_available
--;
134 /* pick a breakpoint unit */
135 if (!arm7_9
->wp0_used
)
137 arm7_9
->sw_breakpoints_added
= 1;
138 arm7_9
->wp0_used
= 3;
139 } else if (!arm7_9
->wp1_used
)
141 arm7_9
->sw_breakpoints_added
= 2;
142 arm7_9
->wp1_used
= 3;
146 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
150 if (arm7_9
->sw_breakpoints_added
== 1)
152 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
153 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
154 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
155 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
156 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
158 else if (arm7_9
->sw_breakpoints_added
== 2)
160 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
161 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
162 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
163 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
164 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
168 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
171 LOG_DEBUG("SW BP using hw wp: %d",
172 arm7_9
->sw_breakpoints_added
);
174 return jtag_execute_queue();
178 * Setup the common pieces for an ARM7/9 target after reset or on startup.
180 * @param target Pointer to an ARM7/9 target to setup
181 * @return Result of clearing the watchpoints on the target
183 int arm7_9_setup(struct target
*target
)
185 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
187 return arm7_9_clear_watchpoints(arm7_9
);
191 * Set either a hardware or software breakpoint on an ARM7/9 target. The
192 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
193 * might have erased the values in Embedded ICE.
195 * @param target Pointer to the target device to set the breakpoints on
196 * @param breakpoint Pointer to the breakpoint to be set
197 * @return For hardware breakpoints, this is the result of executing the JTAG
198 * queue. For software breakpoints, this will be the status of the
199 * required memory reads and writes
201 int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
203 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
204 int retval
= ERROR_OK
;
206 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d" ,
207 breakpoint
->unique_id
,
211 if (target
->state
!= TARGET_HALTED
)
213 LOG_WARNING("target not halted");
214 return ERROR_TARGET_NOT_HALTED
;
217 if (breakpoint
->type
== BKPT_HARD
)
219 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
222 /* reassign a hw breakpoint */
223 if (breakpoint
->set
== 0)
225 arm7_9_assign_wp(arm7_9
, breakpoint
);
228 if (breakpoint
->set
== 1)
230 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
231 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
232 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
233 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
234 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
236 else if (breakpoint
->set
== 2)
238 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
239 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
240 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
241 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
242 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
246 LOG_ERROR("BUG: no hardware comparator available");
250 retval
= jtag_execute_queue();
252 else if (breakpoint
->type
== BKPT_SOFT
)
254 /* did we already set this breakpoint? */
258 if (breakpoint
->length
== 4)
260 uint32_t verify
= 0xffffffff;
261 /* keep the original instruction in target endianness */
262 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
266 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
272 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
276 if (verify
!= arm7_9
->arm_bkpt
)
278 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
284 uint16_t verify
= 0xffff;
285 /* keep the original instruction in target endianness */
286 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
290 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
296 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
300 if (verify
!= arm7_9
->thumb_bkpt
)
302 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
307 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
310 arm7_9
->sw_breakpoint_count
++;
319 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
320 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321 * will be updated. Otherwise, the software breakpoint will be restored to its
322 * original instruction if it hasn't already been modified.
324 * @param target Pointer to ARM7/9 target to unset the breakpoint from
325 * @param breakpoint Pointer to breakpoint to be unset
326 * @return For hardware breakpoints, this is the result of executing the JTAG
327 * queue. For software breakpoints, this will be the status of the
328 * required memory reads and writes
330 int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
332 int retval
= ERROR_OK
;
333 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
335 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
336 breakpoint
->unique_id
,
337 breakpoint
->address
);
339 if (!breakpoint
->set
)
341 LOG_WARNING("breakpoint not set");
345 if (breakpoint
->type
== BKPT_HARD
)
347 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348 breakpoint
->unique_id
,
350 if (breakpoint
->set
== 1)
352 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
353 arm7_9
->wp0_used
= 0;
354 arm7_9
->wp_available
++;
356 else if (breakpoint
->set
== 2)
358 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
359 arm7_9
->wp1_used
= 0;
360 arm7_9
->wp_available
++;
362 retval
= jtag_execute_queue();
367 /* restore original instruction (kept in target endianness) */
368 if (breakpoint
->length
== 4)
370 uint32_t current_instr
;
371 /* check that user program as not modified breakpoint instruction */
372 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
376 if (current_instr
== arm7_9
->arm_bkpt
)
377 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
384 uint16_t current_instr
;
385 /* check that user program as not modified breakpoint instruction */
386 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
390 if (current_instr
== arm7_9
->thumb_bkpt
)
391 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
397 if (--arm7_9
->sw_breakpoint_count
==0)
399 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400 if (arm7_9
->sw_breakpoints_added
== 1)
402 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0);
404 else if (arm7_9
->sw_breakpoints_added
== 2)
406 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0);
417 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
418 * dangling breakpoints and that the desired breakpoint can be added.
420 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421 * @param breakpoint Pointer to the breakpoint to be added
422 * @return An error status if there is a problem adding the breakpoint or the
423 * result of setting the breakpoint
425 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
427 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
429 if (target
->state
!= TARGET_HALTED
)
431 LOG_WARNING("target not halted");
432 return ERROR_TARGET_NOT_HALTED
;
435 if (arm7_9
->breakpoint_count
== 0)
437 /* make sure we don't have any dangling breakpoints. This is vital upon
438 * GDB connect/disconnect
440 arm7_9_clear_watchpoints(arm7_9
);
443 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
445 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
449 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
451 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
455 if (breakpoint
->type
== BKPT_HARD
)
457 arm7_9_assign_wp(arm7_9
, breakpoint
);
460 arm7_9
->breakpoint_count
++;
462 return arm7_9_set_breakpoint(target
, breakpoint
);
466 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
467 * dangling breakpoints and updates available watchpoints if it is a hardware
470 * @param target Pointer to the target to have a breakpoint removed
471 * @param breakpoint Pointer to the breakpoint to be removed
472 * @return Error status if there was a problem unsetting the breakpoint or the
473 * watchpoints could not be cleared
475 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
477 int retval
= ERROR_OK
;
478 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
480 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
485 if (breakpoint
->type
== BKPT_HARD
)
486 arm7_9
->wp_available
++;
488 arm7_9
->breakpoint_count
--;
489 if (arm7_9
->breakpoint_count
== 0)
491 /* make sure we don't have any dangling breakpoints */
492 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
502 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
503 * considered a bug to call this function when there are no available watchpoint
506 * @param target Pointer to an ARM7/9 target to set a watchpoint on
507 * @param watchpoint Pointer to the watchpoint to be set
508 * @return Error status if watchpoint set fails or the result of executing the
511 int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
513 int retval
= ERROR_OK
;
514 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
518 mask
= watchpoint
->length
- 1;
520 if (target
->state
!= TARGET_HALTED
)
522 LOG_WARNING("target not halted");
523 return ERROR_TARGET_NOT_HALTED
;
526 if (watchpoint
->rw
== WPT_ACCESS
)
531 if (!arm7_9
->wp0_used
)
533 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
534 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
535 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
536 if (watchpoint
->mask
!= 0xffffffffu
)
537 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
538 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
539 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
541 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
546 arm7_9
->wp0_used
= 2;
548 else if (!arm7_9
->wp1_used
)
550 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
551 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
552 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
553 if (watchpoint
->mask
!= 0xffffffffu
)
554 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
555 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
556 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
558 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
563 arm7_9
->wp1_used
= 2;
567 LOG_ERROR("BUG: no hardware comparator available");
575 * Unset an existing watchpoint and clear the used watchpoint unit.
577 * @param target Pointer to the target to have the watchpoint removed
578 * @param watchpoint Pointer to the watchpoint to be removed
579 * @return Error status while trying to unset the watchpoint or the result of
580 * executing the JTAG queue
582 int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
584 int retval
= ERROR_OK
;
585 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
587 if (target
->state
!= TARGET_HALTED
)
589 LOG_WARNING("target not halted");
590 return ERROR_TARGET_NOT_HALTED
;
593 if (!watchpoint
->set
)
595 LOG_WARNING("breakpoint not set");
599 if (watchpoint
->set
== 1)
601 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
602 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
606 arm7_9
->wp0_used
= 0;
608 else if (watchpoint
->set
== 2)
610 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
611 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
615 arm7_9
->wp1_used
= 0;
623 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
624 * available, an error response is returned.
626 * @param target Pointer to the ARM7/9 target to add a watchpoint to
627 * @param watchpoint Pointer to the watchpoint to be added
628 * @return Error status while trying to add the watchpoint
630 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
632 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
634 if (target
->state
!= TARGET_HALTED
)
636 LOG_WARNING("target not halted");
637 return ERROR_TARGET_NOT_HALTED
;
640 if (arm7_9
->wp_available
< 1)
642 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
645 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
647 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
650 arm7_9
->wp_available
--;
656 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
657 * the used watchpoint unit will be reopened.
659 * @param target Pointer to the target to remove a watchpoint from
660 * @param watchpoint Pointer to the watchpoint to be removed
661 * @return Result of trying to unset the watchpoint
663 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
665 int retval
= ERROR_OK
;
666 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
670 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
676 arm7_9
->wp_available
++;
682 * Restarts the target by sending a RESTART instruction and moving the JTAG
683 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
684 * asserted by the processor.
686 * @param target Pointer to target to issue commands to
687 * @return Error status if there is a timeout or a problem while executing the
690 int arm7_9_execute_sys_speed(struct target
*target
)
693 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
694 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
695 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
697 /* set RESTART instruction */
698 jtag_set_end_state(TAP_IDLE
);
699 if (arm7_9
->need_bypass_before_restart
) {
700 arm7_9
->need_bypass_before_restart
= 0;
701 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
703 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
705 long long then
= timeval_ms();
707 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
709 /* read debug status register */
710 embeddedice_read_reg(dbg_stat
);
711 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
713 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
714 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
716 if (debug_level
>= 3)
726 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
727 return ERROR_TARGET_TIMEOUT
;
734 * Restarts the target by sending a RESTART instruction and moving the JTAG
735 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
736 * waiting until they are.
738 * @param target Pointer to the target to issue commands to
739 * @return Always ERROR_OK
741 int arm7_9_execute_fast_sys_speed(struct target
*target
)
744 static uint8_t check_value
[4], check_mask
[4];
746 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
747 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
748 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
750 /* set RESTART instruction */
751 jtag_set_end_state(TAP_IDLE
);
752 if (arm7_9
->need_bypass_before_restart
) {
753 arm7_9
->need_bypass_before_restart
= 0;
754 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
756 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
760 /* check for DBGACK and SYSCOMP set (others don't care) */
762 /* NB! These are constants that must be available until after next jtag_execute() and
763 * we evaluate the values upon first execution in lieu of setting up these constants
764 * during early setup.
766 buf_set_u32(check_value
, 0, 32, 0x9);
767 buf_set_u32(check_mask
, 0, 32, 0x9);
771 /* read debug status register */
772 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
778 * Get some data from the ARM7/9 target.
780 * @param target Pointer to the ARM7/9 target to read data from
781 * @param size The number of 32bit words to be read
782 * @param buffer Pointer to the buffer that will hold the data
783 * @return The result of receiving data from the Embedded ICE unit
785 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
787 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
788 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
790 int retval
= ERROR_OK
;
793 data
= malloc(size
* (sizeof(uint32_t)));
795 retval
= embeddedice_receive(jtag_info
, data
, size
);
797 /* return the 32-bit ints in the 8-bit array */
798 for (i
= 0; i
< size
; i
++)
800 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
809 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
810 * target is running and the DCC control register has the W bit high, this will
811 * execute the request on the target.
813 * @param priv Void pointer expected to be a struct target pointer
814 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815 * from the Embedded ICE unit
817 int arm7_9_handle_target_request(void *priv
)
819 int retval
= ERROR_OK
;
820 struct target
*target
= priv
;
821 if (!target_was_examined(target
))
823 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
824 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
825 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
827 if (!target
->dbg_msg_enabled
)
830 if (target
->state
== TARGET_RUNNING
)
832 /* read DCC control register */
833 embeddedice_read_reg(dcc_control
);
834 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
840 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
844 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
848 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
859 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
860 * is manipulated to the right halted state based on its current state. This is
864 * <tr><th > State</th><th > Action</th></tr>
865 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
866 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
871 * If the target does not end up in the halted state, a warning is produced. If
872 * DBGACK is cleared, then the target is expected to either be running or
875 * @param target Pointer to the ARM7/9 target to poll
876 * @return ERROR_OK or an error status if a command fails
878 int arm7_9_poll(struct target
*target
)
881 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
882 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
884 /* read debug status register */
885 embeddedice_read_reg(dbg_stat
);
886 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
891 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
893 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894 if (target
->state
== TARGET_UNKNOWN
)
896 /* Starting OpenOCD with target in debug-halt */
897 target
->state
= TARGET_RUNNING
;
898 LOG_DEBUG("DBGACK already set during server startup.");
900 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
903 if (target
->state
== TARGET_RESET
)
905 if (target
->reset_halt
)
907 enum reset_types jtag_reset_config
= jtag_get_reset_config();
908 if ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0)
915 target
->state
= TARGET_HALTED
;
917 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
922 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
923 uint32_t t
=*((uint32_t *)reg
->value
);
926 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
930 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
935 if (target
->state
== TARGET_DEBUG_RUNNING
)
937 target
->state
= TARGET_HALTED
;
938 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
941 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
946 if (target
->state
!= TARGET_HALTED
)
948 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
953 if (target
->state
!= TARGET_DEBUG_RUNNING
)
954 target
->state
= TARGET_RUNNING
;
961 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
962 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963 * affected) completely stop the JTAG clock while the core is held in reset
964 * (SRST). It isn't possible to program the halt condition once reset is
965 * asserted, hence a hook that allows the target to set up its reset-halt
966 * condition is setup prior to asserting reset.
968 * @param target Pointer to an ARM7/9 target to assert reset on
969 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
971 int arm7_9_assert_reset(struct target
*target
)
973 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
975 LOG_DEBUG("target->state: %s",
976 target_state_name(target
));
978 enum reset_types jtag_reset_config
= jtag_get_reset_config();
979 if (!(jtag_reset_config
& RESET_HAS_SRST
))
981 LOG_ERROR("Can't assert SRST");
985 /* At this point trst has been asserted/deasserted once. We would
986 * like to program EmbeddedICE while SRST is asserted, instead of
987 * depending on SRST to leave that module alone. However, many CPUs
988 * gate the JTAG clock while SRST is asserted; or JTAG may need
989 * clock stability guarantees (adaptive clocking might help).
991 * So we assume JTAG access during SRST is off the menu unless it's
992 * been specifically enabled.
994 bool srst_asserted
= false;
996 if (((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0)
997 && (jtag_reset_config
& RESET_SRST_NO_GATING
))
999 jtag_add_reset(0, 1);
1000 srst_asserted
= true;
1003 if (target
->reset_halt
)
1006 * Some targets do not support communication while SRST is asserted. We need to
1007 * set up the reset vector catch here.
1009 * If TRST is asserted, then these settings will be reset anyway, so setting them
1012 if (arm7_9
->has_vector_catch
)
1014 /* program vector catch register to catch reset vector */
1015 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
], 0x1);
1017 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018 jtag_add_runtest(1, jtag_get_end_state());
1022 /* program watchpoint unit to match on reset vector address */
1023 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
1024 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
1025 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1026 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1027 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1031 /* here we should issue an SRST only, but we may have to assert TRST as well */
1032 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1034 jtag_add_reset(1, 1);
1035 } else if (!srst_asserted
)
1037 jtag_add_reset(0, 1);
1040 target
->state
= TARGET_RESET
;
1041 jtag_add_sleep(50000);
1043 register_cache_invalidate(arm7_9
->armv4_5_common
.core_cache
);
1045 if ((target
->reset_halt
) && ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0))
1047 /* debug entry was already prepared in arm7_9_assert_reset() */
1048 target
->debug_reason
= DBG_REASON_DBGRQ
;
1055 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1056 * and the target is being reset into a halt, a warning will be triggered
1057 * because it is not possible to reset into a halted mode in this case. The
1058 * target is halted using the target's functions.
1060 * @param target Pointer to the target to have the reset deasserted
1061 * @return ERROR_OK or an error from polling or halting the target
1063 int arm7_9_deassert_reset(struct target
*target
)
1065 int retval
= ERROR_OK
;
1066 LOG_DEBUG("target->state: %s",
1067 target_state_name(target
));
1069 /* deassert reset lines */
1070 jtag_add_reset(0, 0);
1072 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1073 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1075 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076 /* set up embedded ice registers again */
1077 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1080 if ((retval
= target_poll(target
)) != ERROR_OK
)
1085 if ((retval
= target_halt(target
)) != ERROR_OK
)
1095 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1096 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1097 * vector catch was used, it is restored. Otherwise, the control value is
1098 * restored and the watchpoint unit is restored if it was in use.
1100 * @param target Pointer to the ARM7/9 target to have halt cleared
1101 * @return Always ERROR_OK
1103 int arm7_9_clear_halt(struct target
*target
)
1105 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1106 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1108 /* we used DBGRQ only if we didn't come out of reset */
1109 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1111 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1113 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1114 embeddedice_store_reg(dbg_ctrl
);
1118 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1120 /* if we came out of reset, and vector catch is supported, we used
1121 * vector catch to enter debug state
1122 * restore the register in that case
1124 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1128 /* restore registers if watchpoint unit 0 was in use
1130 if (arm7_9
->wp0_used
)
1132 if (arm7_9
->debug_entry_from_reset
)
1134 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1136 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1137 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1138 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1140 /* control value always has to be restored, as it was either disabled,
1141 * or enabled with possibly different bits
1143 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1151 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1152 * and then there is a wait until the processor shows the halt. This wait can
1153 * timeout and results in an error being returned. The software reset involves
1154 * clearing the halt, updating the debug control register, changing to ARM mode,
1155 * reset of the program counter, and reset of all of the registers.
1157 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158 * @return Error status if any of the commands fail, otherwise ERROR_OK
1160 int arm7_9_soft_reset_halt(struct target
*target
)
1162 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1163 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1164 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1165 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1169 /* FIX!!! replace some of this code with tcl commands
1171 * halt # the halt command is synchronous
1172 * armv4_5 core_state arm
1176 if ((retval
= target_halt(target
)) != ERROR_OK
)
1179 long long then
= timeval_ms();
1181 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1183 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1185 embeddedice_read_reg(dbg_stat
);
1186 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1188 if (debug_level
>= 3)
1198 LOG_ERROR("Failed to halt CPU after 1 sec");
1199 return ERROR_TARGET_TIMEOUT
;
1201 target
->state
= TARGET_HALTED
;
1203 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204 * ensure that DBGRQ is cleared
1206 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1207 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1208 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1209 embeddedice_store_reg(dbg_ctrl
);
1211 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1216 /* if the target is in Thumb state, change to ARM state */
1217 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1219 uint32_t r0_thumb
, pc_thumb
;
1220 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221 /* Entered debug from Thumb mode */
1222 armv4_5
->core_state
= ARMV4_5_STATE_THUMB
;
1223 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1226 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1228 /* all register content is now invalid */
1229 register_cache_invalidate(armv4_5
->core_cache
);
1231 /* SVC, ARM state, IRQ and FIQ disabled */
1234 cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 32);
1237 arm_set_cpsr(armv4_5
, cpsr
);
1238 armv4_5
->cpsr
->dirty
= 1;
1240 /* start fetching from 0x0 */
1241 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, 0x0);
1242 armv4_5
->core_cache
->reg_list
[15].dirty
= 1;
1243 armv4_5
->core_cache
->reg_list
[15].valid
= 1;
1245 /* reset registers */
1246 for (i
= 0; i
<= 14; i
++)
1248 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1250 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1255 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1264 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1265 * line or by programming a watchpoint to trigger on any address. It is
1266 * considered a bug to call this function while the target is in the
1267 * TARGET_RESET state.
1269 * @param target Pointer to the ARM7/9 target to be halted
1270 * @return Always ERROR_OK
1272 int arm7_9_halt(struct target
*target
)
1274 if (target
->state
== TARGET_RESET
)
1276 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1280 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1281 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1283 LOG_DEBUG("target->state: %s",
1284 target_state_name(target
));
1286 if (target
->state
== TARGET_HALTED
)
1288 LOG_DEBUG("target was already halted");
1292 if (target
->state
== TARGET_UNKNOWN
)
1294 LOG_WARNING("target was in unknown state when halt was requested");
1297 if (arm7_9
->use_dbgrq
)
1299 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1301 if (arm7_9
->set_special_dbgrq
) {
1302 arm7_9
->set_special_dbgrq(target
);
1304 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1305 embeddedice_store_reg(dbg_ctrl
);
1310 /* program watchpoint unit to match on any address
1312 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1313 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1314 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1315 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1318 target
->debug_reason
= DBG_REASON_DBGRQ
;
1324 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1325 * ARM. The JTAG queue is then executed and the reason for debug entry is
1326 * examined. Once done, the target is verified to be halted and the processor
1327 * is forced into ARM mode. The core registers are saved for the current core
1328 * mode and the program counter (register 15) is updated as needed. The core
1329 * registers and CPSR and SPSR are saved for restoration later.
1331 * @param target Pointer to target that is entering debug mode
1332 * @return Error code if anything fails, otherwise ERROR_OK
1334 static int arm7_9_debug_entry(struct target
*target
)
1337 uint32_t context
[16];
1338 uint32_t* context_p
[16];
1339 uint32_t r0_thumb
, pc_thumb
;
1340 uint32_t cpsr
, cpsr_mask
= 0;
1342 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1343 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1344 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1345 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1347 #ifdef _DEBUG_ARM7_9_
1351 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1352 * ensure that DBGRQ is cleared
1354 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1355 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1356 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1357 embeddedice_store_reg(dbg_ctrl
);
1359 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1364 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1369 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1373 if (target
->state
!= TARGET_HALTED
)
1375 LOG_WARNING("target not halted");
1376 return ERROR_TARGET_NOT_HALTED
;
1379 /* if the target is in Thumb state, change to ARM state */
1380 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1382 LOG_DEBUG("target entered debug from Thumb state");
1383 /* Entered debug from Thumb mode */
1384 armv4_5
->core_state
= ARMV4_5_STATE_THUMB
;
1386 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1387 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1388 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1389 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1390 /* \todo Get some vaguely correct handling of Jazelle, if
1391 * anyone ever uses it and full info becomes available.
1392 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1393 * B.7.3 for the reverse. That'd be the bare minimum...
1395 LOG_DEBUG("target entered debug from Jazelle state");
1396 armv4_5
->core_state
= ARMV4_5_STATE_JAZELLE
;
1397 cpsr_mask
= 1 << 24;
1398 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1400 LOG_DEBUG("target entered debug from ARM state");
1401 /* Entered debug from ARM mode */
1402 armv4_5
->core_state
= ARMV4_5_STATE_ARM
;
1405 for (i
= 0; i
< 16; i
++)
1406 context_p
[i
] = &context
[i
];
1407 /* save core registers (r0 - r15 of current core mode) */
1408 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1410 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1412 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1415 /* Sync our CPSR copy with J or T bits EICE reported, but
1416 * which we then erased by putting the core into ARM mode.
1418 arm_set_cpsr(armv4_5
, cpsr
| cpsr_mask
);
1420 if (!is_arm_mode(armv4_5
->core_mode
))
1422 target
->state
= TARGET_UNKNOWN
;
1423 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1424 return ERROR_TARGET_FAILURE
;
1427 LOG_DEBUG("target entered debug state in %s mode",
1428 arm_mode_name(armv4_5
->core_mode
));
1430 if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1432 LOG_DEBUG("thumb state, applying fixups");
1433 context
[0] = r0_thumb
;
1434 context
[15] = pc_thumb
;
1435 } else if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1437 /* adjust value stored by STM */
1438 context
[15] -= 3 * 4;
1441 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1442 context
[15] -= 3 * ((armv4_5
->core_state
== ARMV4_5_STATE_ARM
) ? 4 : 2);
1444 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((armv4_5
->core_state
== ARMV4_5_STATE_ARM
) ? 4 : 2);
1446 for (i
= 0; i
<= 15; i
++)
1448 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1450 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1452 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1453 /* r0 and r15 (pc) have to be restored later */
1454 r
->dirty
= (i
== 0) || (i
== 15);
1458 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1460 /* exceptions other than USR & SYS have a saved program status register */
1461 if (armv4_5
->spsr
) {
1463 arm7_9
->read_xpsr(target
, &spsr
, 1);
1464 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1468 buf_set_u32(armv4_5
->spsr
->value
, 0, 32, spsr
);
1469 armv4_5
->spsr
->dirty
= 0;
1470 armv4_5
->spsr
->valid
= 1;
1473 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1476 if (arm7_9
->post_debug_entry
)
1477 arm7_9
->post_debug_entry(target
);
1483 * Validate the full context for an ARM7/9 target in all processor modes. If
1484 * there are any invalid registers for the target, they will all be read. This
1487 * @param target Pointer to the ARM7/9 target to capture the full context from
1488 * @return Error if the target is not halted, has an invalid core mode, or if
1489 * the JTAG queue fails to execute
1491 int arm7_9_full_context(struct target
*target
)
1495 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1496 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1500 if (target
->state
!= TARGET_HALTED
)
1502 LOG_WARNING("target not halted");
1503 return ERROR_TARGET_NOT_HALTED
;
1506 if (!is_arm_mode(armv4_5
->core_mode
))
1509 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1510 * SYS shares registers with User, so we don't touch SYS
1512 for (i
= 0; i
< 6; i
++)
1515 uint32_t* reg_p
[16];
1519 /* check if there are invalid registers in the current mode
1521 for (j
= 0; j
<= 16; j
++)
1523 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1531 /* change processor mode (and mask T bit) */
1532 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
1534 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1536 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1538 for (j
= 0; j
< 15; j
++)
1540 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1542 reg_p
[j
] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).value
;
1544 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1545 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1549 /* if only the PSR is invalid, mask is all zeroes */
1551 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1553 /* check if the PSR has to be read */
1554 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1556 arm7_9
->read_xpsr(target
, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).value
, 1);
1557 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1558 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1563 /* restore processor mode (mask T bit) */
1564 arm7_9
->write_xpsr_im8(target
,
1565 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & ~0x20,
1568 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1576 * Restore the processor context on an ARM7/9 target. The full processor
1577 * context is analyzed to see if any of the registers are dirty on this end, but
1578 * have a valid new value. If this is the case, the processor is changed to the
1579 * appropriate mode and the new register values are written out to the
1580 * processor. If there happens to be a dirty register with an invalid value, an
1581 * error will be logged.
1583 * @param target Pointer to the ARM7/9 target to have its context restored
1584 * @return Error status if the target is not halted or the core mode in the
1585 * armv4_5 struct is invalid.
1587 int arm7_9_restore_context(struct target
*target
)
1589 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1590 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1592 struct arm_reg
*reg_arch_info
;
1593 enum armv4_5_mode current_mode
= armv4_5
->core_mode
;
1600 if (target
->state
!= TARGET_HALTED
)
1602 LOG_WARNING("target not halted");
1603 return ERROR_TARGET_NOT_HALTED
;
1606 if (arm7_9
->pre_restore_context
)
1607 arm7_9
->pre_restore_context(target
);
1609 if (!is_arm_mode(armv4_5
->core_mode
))
1612 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1613 * SYS shares registers with User, so we don't touch SYS
1615 for (i
= 0; i
< 6; i
++)
1617 LOG_DEBUG("examining %s mode",
1618 arm_mode_name(armv4_5
->core_mode
));
1621 /* check if there are dirty registers in the current mode
1623 for (j
= 0; j
<= 16; j
++)
1625 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1626 reg_arch_info
= reg
->arch_info
;
1627 if (reg
->dirty
== 1)
1629 if (reg
->valid
== 1)
1632 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1633 if ((reg_arch_info
->mode
!= ARMV4_5_MODE_ANY
)
1634 && (reg_arch_info
->mode
!= current_mode
)
1635 && !((reg_arch_info
->mode
== ARMV4_5_MODE_USR
) && (armv4_5
->core_mode
== ARMV4_5_MODE_SYS
))
1636 && !((reg_arch_info
->mode
== ARMV4_5_MODE_SYS
) && (armv4_5
->core_mode
== ARMV4_5_MODE_USR
)))
1639 LOG_DEBUG("require mode change");
1644 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1651 uint32_t mask
= 0x0;
1659 /* change processor mode (mask T bit) */
1660 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
,
1662 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1664 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1665 current_mode
= armv4_5_number_to_mode(i
);
1668 for (j
= 0; j
<= 14; j
++)
1670 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1671 reg_arch_info
= reg
->arch_info
;
1674 if (reg
->dirty
== 1)
1676 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1681 LOG_DEBUG("writing register %i mode %s "
1682 "with value 0x%8.8" PRIx32
, j
,
1683 arm_mode_name(armv4_5
->core_mode
),
1690 arm7_9
->write_core_regs(target
, mask
, regs
);
1693 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16);
1694 reg_arch_info
= reg
->arch_info
;
1695 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARMV4_5_MODE_ANY
))
1697 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1698 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1703 if (!armv4_5
->cpsr
->dirty
&& (armv4_5
->core_mode
!= current_mode
))
1705 /* restore processor mode (mask T bit) */
1708 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
1709 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1711 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1712 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1714 else if (armv4_5
->cpsr
->dirty
)
1716 /* CPSR has been changed, full restore necessary (mask T bit) */
1717 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1718 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32));
1719 arm7_9
->write_xpsr(target
,
1720 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32)
1722 armv4_5
->cpsr
->dirty
= 0;
1723 armv4_5
->cpsr
->valid
= 1;
1727 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1728 arm7_9
->write_pc(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1729 armv4_5
->core_cache
->reg_list
[15].dirty
= 0;
1731 if (arm7_9
->post_restore_context
)
1732 arm7_9
->post_restore_context(target
);
1738 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1739 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1742 * @param target Pointer to the ARM7/9 target to be restarted
1743 * @return Result of executing the JTAG queue
1745 int arm7_9_restart_core(struct target
*target
)
1747 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1748 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1750 /* set RESTART instruction */
1751 jtag_set_end_state(TAP_IDLE
);
1752 if (arm7_9
->need_bypass_before_restart
) {
1753 arm7_9
->need_bypass_before_restart
= 0;
1754 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
1756 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
1758 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE
));
1759 return jtag_execute_queue();
1763 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1764 * iterated through and are set on the target if they aren't already set.
1766 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1768 void arm7_9_enable_watchpoints(struct target
*target
)
1770 struct watchpoint
*watchpoint
= target
->watchpoints
;
1774 if (watchpoint
->set
== 0)
1775 arm7_9_set_watchpoint(target
, watchpoint
);
1776 watchpoint
= watchpoint
->next
;
1781 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1782 * iterated through and are set on the target.
1784 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1786 void arm7_9_enable_breakpoints(struct target
*target
)
1788 struct breakpoint
*breakpoint
= target
->breakpoints
;
1790 /* set any pending breakpoints */
1793 arm7_9_set_breakpoint(target
, breakpoint
);
1794 breakpoint
= breakpoint
->next
;
1798 int arm7_9_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1800 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1801 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1802 struct breakpoint
*breakpoint
= target
->breakpoints
;
1803 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1804 int err
, retval
= ERROR_OK
;
1808 if (target
->state
!= TARGET_HALTED
)
1810 LOG_WARNING("target not halted");
1811 return ERROR_TARGET_NOT_HALTED
;
1814 if (!debug_execution
)
1816 target_free_all_working_areas(target
);
1819 /* current = 1: continue on current pc, otherwise continue at <address> */
1821 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
1823 uint32_t current_pc
;
1824 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1826 /* the front-end may request us not to handle breakpoints */
1827 if (handle_breakpoints
)
1829 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
1831 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)", breakpoint
->address
, breakpoint
->unique_id
);
1832 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1837 /* calculate PC of next instruction */
1839 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1841 uint32_t current_opcode
;
1842 target_read_u32(target
, current_pc
, ¤t_opcode
);
1843 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1847 LOG_DEBUG("enable single-step");
1848 arm7_9
->enable_single_step(target
, next_pc
);
1850 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1852 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1857 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1858 arm7_9
->branch_resume(target
);
1859 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1861 arm7_9
->branch_resume_thumb(target
);
1865 LOG_ERROR("unhandled core state");
1869 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1870 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1871 err
= arm7_9_execute_sys_speed(target
);
1873 LOG_DEBUG("disable single-step");
1874 arm7_9
->disable_single_step(target
);
1876 if (err
!= ERROR_OK
)
1878 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1882 target
->state
= TARGET_UNKNOWN
;
1886 arm7_9_debug_entry(target
);
1887 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1889 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1890 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1897 /* enable any pending breakpoints and watchpoints */
1898 arm7_9_enable_breakpoints(target
);
1899 arm7_9_enable_watchpoints(target
);
1901 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1906 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1908 arm7_9
->branch_resume(target
);
1910 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1912 arm7_9
->branch_resume_thumb(target
);
1916 LOG_ERROR("unhandled core state");
1920 /* deassert DBGACK and INTDIS */
1921 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1922 /* INTDIS only when we really resume, not during debug execution */
1923 if (!debug_execution
)
1924 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1925 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1927 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1932 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1934 if (!debug_execution
)
1936 /* registers are now invalid */
1937 register_cache_invalidate(armv4_5
->core_cache
);
1938 target
->state
= TARGET_RUNNING
;
1939 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1946 target
->state
= TARGET_DEBUG_RUNNING
;
1947 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1953 LOG_DEBUG("target resumed");
1958 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1960 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1961 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1962 uint32_t current_pc
;
1963 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1965 if (next_pc
!= current_pc
)
1967 /* setup an inverse breakpoint on the current PC
1968 * - comparator 1 matches the current address
1969 * - rangeout from comparator 1 is connected to comparator 0 rangein
1970 * - comparator 0 matches any address, as long as rangein is low */
1971 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1972 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1973 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1974 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1975 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
1976 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1977 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1978 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1979 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1983 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1984 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1985 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1986 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1987 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1988 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1989 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1990 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1991 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1995 void arm7_9_disable_eice_step(struct target
*target
)
1997 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1999 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
2000 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
2001 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
2002 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
2003 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
2004 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
2005 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
2006 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
2007 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
2010 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
2012 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2013 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2014 struct breakpoint
*breakpoint
= NULL
;
2017 if (target
->state
!= TARGET_HALTED
)
2019 LOG_WARNING("target not halted");
2020 return ERROR_TARGET_NOT_HALTED
;
2023 /* current = 1: continue on current pc, otherwise continue at <address> */
2025 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
2027 uint32_t current_pc
;
2028 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
2030 /* the front-end may request us not to handle breakpoints */
2031 if (handle_breakpoints
)
2032 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
2033 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2038 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2040 /* calculate PC of next instruction */
2042 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2044 uint32_t current_opcode
;
2045 target_read_u32(target
, current_pc
, ¤t_opcode
);
2046 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2050 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2055 arm7_9
->enable_single_step(target
, next_pc
);
2057 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
2059 arm7_9
->branch_resume(target
);
2061 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
2063 arm7_9
->branch_resume_thumb(target
);
2067 LOG_ERROR("unhandled core state");
2071 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2076 err
= arm7_9_execute_sys_speed(target
);
2077 arm7_9
->disable_single_step(target
);
2079 /* registers are now invalid */
2080 register_cache_invalidate(armv4_5
->core_cache
);
2082 if (err
!= ERROR_OK
)
2084 target
->state
= TARGET_UNKNOWN
;
2086 arm7_9_debug_entry(target
);
2087 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2091 LOG_DEBUG("target stepped");
2095 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2103 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
2104 int num
, enum armv4_5_mode mode
)
2106 uint32_t* reg_p
[16];
2109 struct arm_reg
*areg
= r
->arch_info
;
2110 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2111 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2113 if (!is_arm_mode(armv4_5
->core_mode
))
2115 if ((num
< 0) || (num
> 16))
2116 return ERROR_INVALID_ARGUMENTS
;
2118 if ((mode
!= ARMV4_5_MODE_ANY
)
2119 && (mode
!= armv4_5
->core_mode
)
2120 && (areg
->mode
!= ARMV4_5_MODE_ANY
))
2124 /* change processor mode (mask T bit) */
2125 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2128 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2131 if ((num
>= 0) && (num
<= 15))
2133 /* read a normal core register */
2134 reg_p
[num
] = &value
;
2136 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2140 /* read a program status register
2141 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2143 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARMV4_5_MODE_ANY
);
2146 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2153 buf_set_u32(r
->value
, 0, 32, value
);
2155 if ((mode
!= ARMV4_5_MODE_ANY
)
2156 && (mode
!= armv4_5
->core_mode
)
2157 && (areg
->mode
!= ARMV4_5_MODE_ANY
)) {
2158 /* restore processor mode (mask T bit) */
2159 arm7_9
->write_xpsr_im8(target
,
2160 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2167 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2168 int num
, enum armv4_5_mode mode
, uint32_t value
)
2171 struct arm_reg
*areg
= r
->arch_info
;
2172 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2173 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2175 if (!is_arm_mode(armv4_5
->core_mode
))
2177 if ((num
< 0) || (num
> 16))
2178 return ERROR_INVALID_ARGUMENTS
;
2180 if ((mode
!= ARMV4_5_MODE_ANY
)
2181 && (mode
!= armv4_5
->core_mode
)
2182 && (areg
->mode
!= ARMV4_5_MODE_ANY
)) {
2185 /* change processor mode (mask T bit) */
2186 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2189 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2192 if ((num
>= 0) && (num
<= 15))
2194 /* write a normal core register */
2197 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2201 /* write a program status register
2202 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2204 int spsr
= (areg
->mode
!= ARMV4_5_MODE_ANY
);
2206 /* if we're writing the CPSR, mask the T bit */
2210 arm7_9
->write_xpsr(target
, value
, spsr
);
2216 if ((mode
!= ARMV4_5_MODE_ANY
)
2217 && (mode
!= armv4_5
->core_mode
)
2218 && (areg
->mode
!= ARMV4_5_MODE_ANY
)) {
2219 /* restore processor mode (mask T bit) */
2220 arm7_9
->write_xpsr_im8(target
,
2221 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2225 return jtag_execute_queue();
2228 int arm7_9_read_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2230 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2231 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2233 uint32_t num_accesses
= 0;
2234 int thisrun_accesses
;
2240 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2242 if (target
->state
!= TARGET_HALTED
)
2244 LOG_WARNING("target not halted");
2245 return ERROR_TARGET_NOT_HALTED
;
2248 /* sanitize arguments */
2249 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2250 return ERROR_INVALID_ARGUMENTS
;
2252 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2253 return ERROR_TARGET_UNALIGNED_ACCESS
;
2255 /* load the base register with the address of the first word */
2257 arm7_9
->write_core_regs(target
, 0x1, reg
);
2264 while (num_accesses
< count
)
2267 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2268 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2270 if (last_reg
<= thisrun_accesses
)
2271 last_reg
= thisrun_accesses
;
2273 arm7_9
->load_word_regs(target
, reg_list
);
2275 /* fast memory reads are only safe when the target is running
2276 * from a sufficiently high clock (32 kHz is usually too slow)
2278 if (arm7_9
->fast_memory_access
)
2279 retval
= arm7_9_execute_fast_sys_speed(target
);
2281 retval
= arm7_9_execute_sys_speed(target
);
2282 if (retval
!= ERROR_OK
)
2285 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2287 /* advance buffer, count number of accesses */
2288 buffer
+= thisrun_accesses
* 4;
2289 num_accesses
+= thisrun_accesses
;
2291 if ((j
++%1024) == 0)
2298 while (num_accesses
< count
)
2301 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2302 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2304 for (i
= 1; i
<= thisrun_accesses
; i
++)
2308 arm7_9
->load_hword_reg(target
, i
);
2309 /* fast memory reads are only safe when the target is running
2310 * from a sufficiently high clock (32 kHz is usually too slow)
2312 if (arm7_9
->fast_memory_access
)
2313 retval
= arm7_9_execute_fast_sys_speed(target
);
2315 retval
= arm7_9_execute_sys_speed(target
);
2316 if (retval
!= ERROR_OK
)
2323 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2325 /* advance buffer, count number of accesses */
2326 buffer
+= thisrun_accesses
* 2;
2327 num_accesses
+= thisrun_accesses
;
2329 if ((j
++%1024) == 0)
2336 while (num_accesses
< count
)
2339 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2340 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2342 for (i
= 1; i
<= thisrun_accesses
; i
++)
2346 arm7_9
->load_byte_reg(target
, i
);
2347 /* fast memory reads are only safe when the target is running
2348 * from a sufficiently high clock (32 kHz is usually too slow)
2350 if (arm7_9
->fast_memory_access
)
2351 retval
= arm7_9_execute_fast_sys_speed(target
);
2353 retval
= arm7_9_execute_sys_speed(target
);
2354 if (retval
!= ERROR_OK
)
2360 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2362 /* advance buffer, count number of accesses */
2363 buffer
+= thisrun_accesses
* 1;
2364 num_accesses
+= thisrun_accesses
;
2366 if ((j
++%1024) == 0)
2373 LOG_ERROR("BUG: we shouldn't get here");
2378 if (!is_arm_mode(armv4_5
->core_mode
))
2381 for (i
= 0; i
<= last_reg
; i
++) {
2382 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2384 r
->dirty
= r
->valid
;
2387 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2388 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2390 LOG_ERROR("JTAG error while reading cpsr");
2391 return ERROR_TARGET_DATA_ABORT
;
2394 if (((cpsr
& 0x1f) == ARMV4_5_MODE_ABT
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_ABT
))
2396 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2398 arm7_9
->write_xpsr_im8(target
,
2399 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2402 return ERROR_TARGET_DATA_ABORT
;
2408 int arm7_9_write_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2410 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2411 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2412 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2415 uint32_t num_accesses
= 0;
2416 int thisrun_accesses
;
2422 #ifdef _DEBUG_ARM7_9_
2423 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2426 if (target
->state
!= TARGET_HALTED
)
2428 LOG_WARNING("target not halted");
2429 return ERROR_TARGET_NOT_HALTED
;
2432 /* sanitize arguments */
2433 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2434 return ERROR_INVALID_ARGUMENTS
;
2436 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2437 return ERROR_TARGET_UNALIGNED_ACCESS
;
2439 /* load the base register with the address of the first word */
2441 arm7_9
->write_core_regs(target
, 0x1, reg
);
2443 /* Clear DBGACK, to make sure memory fetches work as expected */
2444 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2445 embeddedice_store_reg(dbg_ctrl
);
2450 while (num_accesses
< count
)
2453 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2454 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2456 for (i
= 1; i
<= thisrun_accesses
; i
++)
2460 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2464 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2466 arm7_9
->store_word_regs(target
, reg_list
);
2468 /* fast memory writes are only safe when the target is running
2469 * from a sufficiently high clock (32 kHz is usually too slow)
2471 if (arm7_9
->fast_memory_access
)
2472 retval
= arm7_9_execute_fast_sys_speed(target
);
2474 retval
= arm7_9_execute_sys_speed(target
);
2475 if (retval
!= ERROR_OK
)
2480 num_accesses
+= thisrun_accesses
;
2484 while (num_accesses
< count
)
2487 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2488 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2490 for (i
= 1; i
<= thisrun_accesses
; i
++)
2494 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2498 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2500 for (i
= 1; i
<= thisrun_accesses
; i
++)
2502 arm7_9
->store_hword_reg(target
, i
);
2504 /* fast memory writes are only safe when the target is running
2505 * from a sufficiently high clock (32 kHz is usually too slow)
2507 if (arm7_9
->fast_memory_access
)
2508 retval
= arm7_9_execute_fast_sys_speed(target
);
2510 retval
= arm7_9_execute_sys_speed(target
);
2511 if (retval
!= ERROR_OK
)
2517 num_accesses
+= thisrun_accesses
;
2521 while (num_accesses
< count
)
2524 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2525 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2527 for (i
= 1; i
<= thisrun_accesses
; i
++)
2531 reg
[i
] = *buffer
++ & 0xff;
2534 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2536 for (i
= 1; i
<= thisrun_accesses
; i
++)
2538 arm7_9
->store_byte_reg(target
, i
);
2539 /* fast memory writes are only safe when the target is running
2540 * from a sufficiently high clock (32 kHz is usually too slow)
2542 if (arm7_9
->fast_memory_access
)
2543 retval
= arm7_9_execute_fast_sys_speed(target
);
2545 retval
= arm7_9_execute_sys_speed(target
);
2546 if (retval
!= ERROR_OK
)
2553 num_accesses
+= thisrun_accesses
;
2557 LOG_ERROR("BUG: we shouldn't get here");
2563 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2564 embeddedice_store_reg(dbg_ctrl
);
2566 if (!is_arm_mode(armv4_5
->core_mode
))
2569 for (i
= 0; i
<= last_reg
; i
++) {
2570 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2572 r
->dirty
= r
->valid
;
2575 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2576 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2578 LOG_ERROR("JTAG error while reading cpsr");
2579 return ERROR_TARGET_DATA_ABORT
;
2582 if (((cpsr
& 0x1f) == ARMV4_5_MODE_ABT
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_ABT
))
2584 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2586 arm7_9
->write_xpsr_im8(target
,
2587 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2590 return ERROR_TARGET_DATA_ABORT
;
2596 static int dcc_count
;
2597 static uint8_t *dcc_buffer
;
2599 static int arm7_9_dcc_completion(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2601 int retval
= ERROR_OK
;
2602 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2604 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2607 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2608 int count
= dcc_count
;
2609 uint8_t *buffer
= dcc_buffer
;
2612 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2613 * core function repeated. */
2614 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2617 struct embeddedice_reg
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2618 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2619 struct jtag_tap
*tap
;
2620 tap
= ice_reg
->jtag_info
->tap
;
2622 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2623 buffer
+= (count
-2)*4;
2625 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2629 for (i
= 0; i
< count
; i
++)
2631 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2636 if ((retval
= target_halt(target
))!= ERROR_OK
)
2640 return target_wait_state(target
, TARGET_HALTED
, 500);
2643 static const uint32_t dcc_code
[] =
2645 /* r0 == input, points to memory buffer
2649 /* spin until DCC control (c0) reports data arrived */
2650 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2651 0xe3110001, /* tst r1, #1 */
2652 0x0afffffc, /* bne w */
2654 /* read word from DCC (c1), write to memory */
2655 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2656 0xe4801004, /* str r1, [r0], #4 */
2659 0xeafffff9 /* b w */
2662 int armv4_5_run_algorithm_inner(struct target
*target
, int num_mem_params
, struct mem_param
*mem_params
, int num_reg_params
, struct reg_param
*reg_params
, uint32_t entry_point
, uint32_t exit_point
, int timeout_ms
, void *arch_info
, int (*run_it
)(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
));
2664 int arm7_9_bulk_write_memory(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2667 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2670 if (!arm7_9
->dcc_downloads
)
2671 return target_write_memory(target
, address
, 4, count
, buffer
);
2673 /* regrab previously allocated working_area, or allocate a new one */
2674 if (!arm7_9
->dcc_working_area
)
2676 uint8_t dcc_code_buf
[6 * 4];
2678 /* make sure we have a working area */
2679 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2681 LOG_INFO("no working area available, falling back to memory writes");
2682 return target_write_memory(target
, address
, 4, count
, buffer
);
2685 /* copy target instructions to target endianness */
2686 for (i
= 0; i
< 6; i
++)
2688 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2691 /* write DCC code to working area */
2692 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2698 struct armv4_5_algorithm armv4_5_info
;
2699 struct reg_param reg_params
[1];
2701 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2702 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2703 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2705 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2707 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2710 dcc_buffer
= buffer
;
2711 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2712 arm7_9
->dcc_working_area
->address
, arm7_9
->dcc_working_area
->address
+ 6*4, 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2714 if (retval
== ERROR_OK
)
2716 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2717 if (endaddress
!= (address
+ count
*4))
2719 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2720 retval
= ERROR_FAIL
;
2724 destroy_reg_param(®_params
[0]);
2730 * Perform per-target setup that requires JTAG access.
2732 int arm7_9_examine(struct target
*target
)
2734 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2737 if (!target_was_examined(target
)) {
2738 struct reg_cache
*t
, **cache_p
;
2740 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2744 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2746 arm7_9
->eice_cache
= (*cache_p
);
2748 if (arm7_9
->armv4_5_common
.etm
)
2749 (*cache_p
)->next
= etm_build_reg_cache(target
,
2751 arm7_9
->armv4_5_common
.etm
);
2753 target_set_examined(target
);
2756 retval
= embeddedice_setup(target
);
2757 if (retval
== ERROR_OK
)
2758 retval
= arm7_9_setup(target
);
2759 if (retval
== ERROR_OK
&& arm7_9
->armv4_5_common
.etm
)
2760 retval
= etm_setup(target
);
2764 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2766 struct target
*target
= get_current_target(CMD_CTX
);
2767 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2769 if (!is_arm7_9(arm7_9
))
2771 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2772 return ERROR_TARGET_INVALID
;
2776 COMMAND_PARSE_ENABLE(CMD_ARGV
[0],arm7_9
->use_dbgrq
);
2778 command_print(CMD_CTX
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2783 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2785 struct target
*target
= get_current_target(CMD_CTX
);
2786 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2788 if (!is_arm7_9(arm7_9
))
2790 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2791 return ERROR_TARGET_INVALID
;
2795 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2797 command_print(CMD_CTX
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2802 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2804 struct target
*target
= get_current_target(CMD_CTX
);
2805 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2807 if (!is_arm7_9(arm7_9
))
2809 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2810 return ERROR_TARGET_INVALID
;
2814 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2816 command_print(CMD_CTX
, "dcc downloads are %s", (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2821 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2823 int retval
= ERROR_OK
;
2824 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2826 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2828 if ((retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
)) != ERROR_OK
)
2831 /* caller must have allocated via calloc(), so everything's zeroed */
2833 arm7_9
->wp_available_max
= 2;
2835 arm7_9
->fast_memory_access
= false;
2836 arm7_9
->dcc_downloads
= false;
2838 armv4_5
->arch_info
= arm7_9
;
2839 armv4_5
->read_core_reg
= arm7_9_read_core_reg
;
2840 armv4_5
->write_core_reg
= arm7_9_write_core_reg
;
2841 armv4_5
->full_context
= arm7_9_full_context
;
2843 if ((retval
= armv4_5_init_arch_info(target
, armv4_5
)) != ERROR_OK
)
2846 return target_register_timer_callback(arm7_9_handle_target_request
,
2850 int arm7_9_register_commands(struct command_context
*cmd_ctx
)
2852 struct command
*arm7_9_cmd
;
2854 arm7_9_cmd
= register_command(cmd_ctx
, NULL
, "arm7_9",
2855 NULL
, COMMAND_ANY
, "arm7/9 specific commands");
2857 register_command(cmd_ctx
, arm7_9_cmd
, "dbgrq",
2858 handle_arm7_9_dbgrq_command
, COMMAND_ANY
,
2859 "use EmbeddedICE dbgrq instead of breakpoint "
2860 "for target halt requests <enable | disable>");
2861 register_command(cmd_ctx
, arm7_9_cmd
, "fast_memory_access",
2862 handle_arm7_9_fast_memory_access_command
, COMMAND_ANY
,
2863 "use fast memory accesses instead of slower "
2864 "but potentially safer accesses <enable | disable>");
2865 register_command(cmd_ctx
, arm7_9_cmd
, "dcc_downloads",
2866 handle_arm7_9_dcc_downloads_command
, COMMAND_ANY
,
2867 "use DCC downloads for larger memory writes <enable | disable>");
2869 armv4_5_register_commands(cmd_ctx
);
2871 etm_register_commands(cmd_ctx
);