1 // SPDX-License-Identifier: GPL-2.0-only
3 * Linux performance counter support for MIPS.
5 * Copyright (C) 2010 MIPS Technologies, Inc.
6 * Copyright (C) 2011 Cavium Networks, Inc.
7 * Author: Deng-Cheng Zhu
9 * This code is based on the implementation for ARM, which is in turn
10 * based on the sparc64 perf event code and the x86 code. Performance
11 * counter access is based on the MIPS Oprofile code. And the callchain
12 * support references the code of MIPS stacktrace.c.
15 #include <linux/cpumask.h>
16 #include <linux/interrupt.h>
17 #include <linux/smp.h>
18 #include <linux/kernel.h>
19 #include <linux/perf_event.h>
20 #include <linux/uaccess.h>
23 #include <asm/irq_regs.h>
24 #include <asm/stacktrace.h>
25 #include <asm/time.h> /* For perf_irq */
27 #define MIPS_MAX_HWEVENTS 4
28 #define MIPS_TCS_PER_COUNTER 2
29 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
31 struct cpu_hw_events
{
32 /* Array of events on this cpu. */
33 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
36 * Set the bit (indexed by the counter number) when the counter
37 * is used for an event.
39 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
42 * Software copy of the control register for each performance counter.
43 * MIPS CPUs vary in performance counters. They use this differently,
44 * and even may not use it.
46 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
48 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
52 /* The description of MIPS performance events. */
53 struct mips_perf_event
{
54 unsigned int event_id
;
56 * MIPS performance counters are indexed starting from 0.
57 * CNTR_EVEN indicates the indexes of the counters to be used are
60 unsigned int cntr_mask
;
61 #define CNTR_EVEN 0x55555555
62 #define CNTR_ODD 0xaaaaaaaa
63 #define CNTR_ALL 0xffffffff
71 static struct mips_perf_event raw_event
;
72 static DEFINE_MUTEX(raw_event_mutex
);
74 #define C(x) PERF_COUNT_HW_CACHE_##x
82 u64 (*read_counter
)(unsigned int idx
);
83 void (*write_counter
)(unsigned int idx
, u64 val
);
84 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
85 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
86 const struct mips_perf_event (*cache_event_map
)
87 [PERF_COUNT_HW_CACHE_MAX
]
88 [PERF_COUNT_HW_CACHE_OP_MAX
]
89 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
90 unsigned int num_counters
;
93 static int counter_bits
;
94 static struct mips_pmu mipspmu
;
96 #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
98 #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
100 #ifdef CONFIG_CPU_BMIPS5000
101 #define M_PERFCTL_MT_EN(filter) 0
102 #else /* !CONFIG_CPU_BMIPS5000 */
103 #define M_PERFCTL_MT_EN(filter) (filter)
104 #endif /* CONFIG_CPU_BMIPS5000 */
106 #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
107 #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
108 #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
110 #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
116 #ifdef CONFIG_MIPS_MT_SMP
117 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
119 #define M_PERFCTL_CONFIG_MASK 0x1f
122 #define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
124 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
125 static DEFINE_RWLOCK(pmuint_rwlock
);
127 #if defined(CONFIG_CPU_BMIPS5000)
128 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
129 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
131 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
132 0 : cpu_vpe_id(¤t_cpu_data))
135 /* Copied from op_model_mipsxx.c */
136 static unsigned int vpe_shift(void)
138 if (num_possible_cpus() > 1)
144 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
146 return counters
>> vpe_shift();
149 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
152 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
154 static void resume_local_counters(void);
155 static void pause_local_counters(void);
156 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
157 static int mipsxx_pmu_handle_shared_irq(void);
160 * 1: Loongson-3A1000/3B1000/3B1500
161 * 2: Loongson-3A2000/3A3000
162 * 3: Loongson-3A4000+
165 #define LOONGSON_PMU_TYPE0 0
166 #define LOONGSON_PMU_TYPE1 1
167 #define LOONGSON_PMU_TYPE2 2
168 #define LOONGSON_PMU_TYPE3 3
170 static inline int get_loongson3_pmu_type(void)
172 if (boot_cpu_type() != CPU_LOONGSON64
)
173 return LOONGSON_PMU_TYPE0
;
174 if ((boot_cpu_data
.processor_id
& PRID_COMP_MASK
) == PRID_COMP_LEGACY
)
175 return LOONGSON_PMU_TYPE1
;
176 if ((boot_cpu_data
.processor_id
& PRID_IMP_MASK
) == PRID_IMP_LOONGSON_64C
)
177 return LOONGSON_PMU_TYPE2
;
178 if ((boot_cpu_data
.processor_id
& PRID_IMP_MASK
) == PRID_IMP_LOONGSON_64G
)
179 return LOONGSON_PMU_TYPE3
;
181 return LOONGSON_PMU_TYPE0
;
184 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
191 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
193 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
198 * The counters are unsigned, we must cast to truncate
201 return (u32
)read_c0_perfcntr0();
203 return (u32
)read_c0_perfcntr1();
205 return (u32
)read_c0_perfcntr2();
207 return (u32
)read_c0_perfcntr3();
209 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
214 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
216 u64 mask
= CNTR_BIT_MASK(counter_bits
);
217 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
221 return read_c0_perfcntr0_64() & mask
;
223 return read_c0_perfcntr1_64() & mask
;
225 return read_c0_perfcntr2_64() & mask
;
227 return read_c0_perfcntr3_64() & mask
;
229 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
234 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
236 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
240 write_c0_perfcntr0(val
);
243 write_c0_perfcntr1(val
);
246 write_c0_perfcntr2(val
);
249 write_c0_perfcntr3(val
);
254 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
256 val
&= CNTR_BIT_MASK(counter_bits
);
257 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
261 write_c0_perfcntr0_64(val
);
264 write_c0_perfcntr1_64(val
);
267 write_c0_perfcntr2_64(val
);
270 write_c0_perfcntr3_64(val
);
275 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
277 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
281 return read_c0_perfctrl0();
283 return read_c0_perfctrl1();
285 return read_c0_perfctrl2();
287 return read_c0_perfctrl3();
289 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
294 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
296 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
300 write_c0_perfctrl0(val
);
303 write_c0_perfctrl1(val
);
306 write_c0_perfctrl2(val
);
309 write_c0_perfctrl3(val
);
314 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
315 struct hw_perf_event
*hwc
)
318 unsigned long cntr_mask
;
321 * We only need to care the counter mask. The range has been
322 * checked definitely.
324 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2
)
325 cntr_mask
= (hwc
->event_base
>> 10) & 0xffff;
327 cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
329 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
331 * Note that some MIPS perf events can be counted by both
332 * even and odd counters, whereas many other are only by
333 * even _or_ odd counters. This introduces an issue that
334 * when the former kind of event takes the counter the
335 * latter kind of event wants to use, then the "counter
336 * allocation" for the latter event will fail. In fact if
337 * they can be dynamically swapped, they both feel happy.
338 * But here we leave this issue alone for now.
340 if (test_bit(i
, &cntr_mask
) &&
341 !test_and_set_bit(i
, cpuc
->used_mask
))
348 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
350 struct perf_event
*event
= container_of(evt
, struct perf_event
, hw
);
351 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
352 unsigned int range
= evt
->event_base
>> 24;
354 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
356 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2
)
357 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0x3ff) |
358 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
359 /* Make sure interrupt enabled. */
362 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
363 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
364 /* Make sure interrupt enabled. */
367 if (IS_ENABLED(CONFIG_CPU_BMIPS5000
)) {
368 /* enable the counter for the calling thread */
369 cpuc
->saved_ctrl
[idx
] |=
370 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC
;
371 } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP
) && range
> V
) {
372 /* The counter is processor wide. Set it up to count all TCs. */
373 pr_debug("Enabling perf counter for all TCs\n");
374 cpuc
->saved_ctrl
[idx
] |= M_TC_EN_ALL
;
376 unsigned int cpu
, ctrl
;
379 * Set up the counter for a particular CPU when event->cpu is
380 * a valid CPU number. Otherwise set up the counter for the CPU
381 * scheduling this thread.
383 cpu
= (event
->cpu
>= 0) ? event
->cpu
: smp_processor_id();
385 ctrl
= M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data
[cpu
]));
387 cpuc
->saved_ctrl
[idx
] |= ctrl
;
388 pr_debug("Enabling perf counter for CPU%d\n", cpu
);
391 * We do not actually let the counter run. Leave it until start().
395 static void mipsxx_pmu_disable_event(int idx
)
397 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
400 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
402 local_irq_save(flags
);
403 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
404 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
405 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
406 local_irq_restore(flags
);
409 static int mipspmu_event_set_period(struct perf_event
*event
,
410 struct hw_perf_event
*hwc
,
413 u64 left
= local64_read(&hwc
->period_left
);
414 u64 period
= hwc
->sample_period
;
417 if (unlikely((left
+ period
) & (1ULL << 63))) {
418 /* left underflowed by more than period. */
420 local64_set(&hwc
->period_left
, left
);
421 hwc
->last_period
= period
;
423 } else if (unlikely((left
+ period
) <= period
)) {
424 /* left underflowed by less than period. */
426 local64_set(&hwc
->period_left
, left
);
427 hwc
->last_period
= period
;
431 if (left
> mipspmu
.max_period
) {
432 left
= mipspmu
.max_period
;
433 local64_set(&hwc
->period_left
, left
);
436 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
438 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2
)
439 mipsxx_pmu_write_control(idx
,
440 M_PERFCTL_EVENT(hwc
->event_base
& 0x3ff));
442 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
444 perf_event_update_userpage(event
);
449 static void mipspmu_event_update(struct perf_event
*event
,
450 struct hw_perf_event
*hwc
,
453 u64 prev_raw_count
, new_raw_count
;
457 prev_raw_count
= local64_read(&hwc
->prev_count
);
458 new_raw_count
= mipspmu
.read_counter(idx
);
460 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
461 new_raw_count
) != prev_raw_count
)
464 delta
= new_raw_count
- prev_raw_count
;
466 local64_add(delta
, &event
->count
);
467 local64_sub(delta
, &hwc
->period_left
);
470 static void mipspmu_start(struct perf_event
*event
, int flags
)
472 struct hw_perf_event
*hwc
= &event
->hw
;
474 if (flags
& PERF_EF_RELOAD
)
475 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
479 /* Set the period for the event. */
480 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
482 /* Enable the event. */
483 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
486 static void mipspmu_stop(struct perf_event
*event
, int flags
)
488 struct hw_perf_event
*hwc
= &event
->hw
;
490 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
491 /* We are working on a local event. */
492 mipsxx_pmu_disable_event(hwc
->idx
);
494 mipspmu_event_update(event
, hwc
, hwc
->idx
);
495 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
499 static int mipspmu_add(struct perf_event
*event
, int flags
)
501 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
502 struct hw_perf_event
*hwc
= &event
->hw
;
506 perf_pmu_disable(event
->pmu
);
508 /* To look for a free counter for this event. */
509 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
516 * If there is an event in the counter we are going to use then
517 * make sure it is disabled.
520 mipsxx_pmu_disable_event(idx
);
521 cpuc
->events
[idx
] = event
;
523 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
524 if (flags
& PERF_EF_START
)
525 mipspmu_start(event
, PERF_EF_RELOAD
);
527 /* Propagate our changes to the userspace mapping. */
528 perf_event_update_userpage(event
);
531 perf_pmu_enable(event
->pmu
);
535 static void mipspmu_del(struct perf_event
*event
, int flags
)
537 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
538 struct hw_perf_event
*hwc
= &event
->hw
;
541 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
543 mipspmu_stop(event
, PERF_EF_UPDATE
);
544 cpuc
->events
[idx
] = NULL
;
545 clear_bit(idx
, cpuc
->used_mask
);
547 perf_event_update_userpage(event
);
550 static void mipspmu_read(struct perf_event
*event
)
552 struct hw_perf_event
*hwc
= &event
->hw
;
554 /* Don't read disabled counters! */
558 mipspmu_event_update(event
, hwc
, hwc
->idx
);
561 static void mipspmu_enable(struct pmu
*pmu
)
563 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
564 write_unlock(&pmuint_rwlock
);
566 resume_local_counters();
570 * MIPS performance counters can be per-TC. The control registers can
571 * not be directly accessed across CPUs. Hence if we want to do global
572 * control, we need cross CPU calls. on_each_cpu() can help us, but we
573 * can not make sure this function is called with interrupts enabled. So
574 * here we pause local counters and then grab a rwlock and leave the
575 * counters on other CPUs alone. If any counter interrupt raises while
576 * we own the write lock, simply pause local counters on that CPU and
577 * spin in the handler. Also we know we won't be switched to another
578 * CPU after pausing local counters and before grabbing the lock.
580 static void mipspmu_disable(struct pmu
*pmu
)
582 pause_local_counters();
583 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
584 write_lock(&pmuint_rwlock
);
588 static atomic_t active_events
= ATOMIC_INIT(0);
589 static DEFINE_MUTEX(pmu_reserve_mutex
);
590 static int (*save_perf_irq
)(void);
592 static int mipspmu_get_irq(void)
596 if (mipspmu
.irq
>= 0) {
597 /* Request my own irq handler. */
598 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
599 IRQF_PERCPU
| IRQF_NOBALANCING
|
600 IRQF_NO_THREAD
| IRQF_NO_SUSPEND
|
602 "mips_perf_pmu", &mipspmu
);
604 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
607 } else if (cp0_perfcount_irq
< 0) {
609 * We are sharing the irq number with the timer interrupt.
611 save_perf_irq
= perf_irq
;
612 perf_irq
= mipsxx_pmu_handle_shared_irq
;
615 pr_warn("The platform hasn't properly defined its interrupt controller\n");
622 static void mipspmu_free_irq(void)
624 if (mipspmu
.irq
>= 0)
625 free_irq(mipspmu
.irq
, &mipspmu
);
626 else if (cp0_perfcount_irq
< 0)
627 perf_irq
= save_perf_irq
;
631 * mipsxx/rm9000/loongson2 have different performance counters, they have
632 * specific low-level init routines.
634 static void reset_counters(void *arg
);
635 static int __hw_perf_event_init(struct perf_event
*event
);
637 static void hw_perf_event_destroy(struct perf_event
*event
)
639 if (atomic_dec_and_mutex_lock(&active_events
,
640 &pmu_reserve_mutex
)) {
642 * We must not call the destroy function with interrupts
645 on_each_cpu(reset_counters
,
646 (void *)(long)mipspmu
.num_counters
, 1);
648 mutex_unlock(&pmu_reserve_mutex
);
652 static int mipspmu_event_init(struct perf_event
*event
)
656 /* does not support taken branch sampling */
657 if (has_branch_stack(event
))
660 switch (event
->attr
.type
) {
662 case PERF_TYPE_HARDWARE
:
663 case PERF_TYPE_HW_CACHE
:
670 if (event
->cpu
>= 0 && !cpu_online(event
->cpu
))
673 if (!atomic_inc_not_zero(&active_events
)) {
674 mutex_lock(&pmu_reserve_mutex
);
675 if (atomic_read(&active_events
) == 0)
676 err
= mipspmu_get_irq();
679 atomic_inc(&active_events
);
680 mutex_unlock(&pmu_reserve_mutex
);
686 return __hw_perf_event_init(event
);
689 static struct pmu pmu
= {
690 .pmu_enable
= mipspmu_enable
,
691 .pmu_disable
= mipspmu_disable
,
692 .event_init
= mipspmu_event_init
,
695 .start
= mipspmu_start
,
696 .stop
= mipspmu_stop
,
697 .read
= mipspmu_read
,
700 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
706 #ifdef CONFIG_MIPS_MT_SMP
707 if (num_possible_cpus() > 1)
708 return ((unsigned int)pev
->range
<< 24) |
709 (pev
->cntr_mask
& 0xffff00) |
710 (pev
->event_id
& 0xff);
712 #endif /* CONFIG_MIPS_MT_SMP */
714 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2
)
715 return (pev
->cntr_mask
& 0xfffc00) |
716 (pev
->event_id
& 0x3ff);
718 return (pev
->cntr_mask
& 0xffff00) |
719 (pev
->event_id
& 0xff);
723 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
726 if ((*mipspmu
.general_event_map
)[idx
].cntr_mask
== 0)
727 return ERR_PTR(-EOPNOTSUPP
);
728 return &(*mipspmu
.general_event_map
)[idx
];
731 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
733 unsigned int cache_type
, cache_op
, cache_result
;
734 const struct mips_perf_event
*pev
;
736 cache_type
= (config
>> 0) & 0xff;
737 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
738 return ERR_PTR(-EINVAL
);
740 cache_op
= (config
>> 8) & 0xff;
741 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
742 return ERR_PTR(-EINVAL
);
744 cache_result
= (config
>> 16) & 0xff;
745 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
746 return ERR_PTR(-EINVAL
);
748 pev
= &((*mipspmu
.cache_event_map
)
753 if (pev
->cntr_mask
== 0)
754 return ERR_PTR(-EOPNOTSUPP
);
760 static int validate_group(struct perf_event
*event
)
762 struct perf_event
*sibling
, *leader
= event
->group_leader
;
763 struct cpu_hw_events fake_cpuc
;
765 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
767 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
770 for_each_sibling_event(sibling
, leader
) {
771 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
775 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
781 /* This is needed by specific irq handlers in perf_event_*.c */
782 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
783 int idx
, struct perf_sample_data
*data
,
784 struct pt_regs
*regs
)
786 struct perf_event
*event
= cpuc
->events
[idx
];
787 struct hw_perf_event
*hwc
= &event
->hw
;
789 mipspmu_event_update(event
, hwc
, idx
);
790 data
->period
= event
->hw
.last_period
;
791 if (!mipspmu_event_set_period(event
, hwc
, idx
))
794 if (perf_event_overflow(event
, data
, regs
))
795 mipsxx_pmu_disable_event(idx
);
799 static int __n_counters(void)
803 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M
))
805 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M
))
807 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M
))
813 static int n_counters(void)
817 switch (current_cpu_type()) {
829 counters
= __n_counters();
835 static void loongson3_reset_counters(void *arg
)
837 int counters
= (int)(long)arg
;
841 mipsxx_pmu_write_control(3, 0);
842 mipspmu
.write_counter(3, 0);
843 mipsxx_pmu_write_control(3, 127<<5);
844 mipspmu
.write_counter(3, 0);
845 mipsxx_pmu_write_control(3, 191<<5);
846 mipspmu
.write_counter(3, 0);
847 mipsxx_pmu_write_control(3, 255<<5);
848 mipspmu
.write_counter(3, 0);
849 mipsxx_pmu_write_control(3, 319<<5);
850 mipspmu
.write_counter(3, 0);
851 mipsxx_pmu_write_control(3, 383<<5);
852 mipspmu
.write_counter(3, 0);
853 mipsxx_pmu_write_control(3, 575<<5);
854 mipspmu
.write_counter(3, 0);
857 mipsxx_pmu_write_control(2, 0);
858 mipspmu
.write_counter(2, 0);
859 mipsxx_pmu_write_control(2, 127<<5);
860 mipspmu
.write_counter(2, 0);
861 mipsxx_pmu_write_control(2, 191<<5);
862 mipspmu
.write_counter(2, 0);
863 mipsxx_pmu_write_control(2, 255<<5);
864 mipspmu
.write_counter(2, 0);
865 mipsxx_pmu_write_control(2, 319<<5);
866 mipspmu
.write_counter(2, 0);
867 mipsxx_pmu_write_control(2, 383<<5);
868 mipspmu
.write_counter(2, 0);
869 mipsxx_pmu_write_control(2, 575<<5);
870 mipspmu
.write_counter(2, 0);
873 mipsxx_pmu_write_control(1, 0);
874 mipspmu
.write_counter(1, 0);
875 mipsxx_pmu_write_control(1, 127<<5);
876 mipspmu
.write_counter(1, 0);
877 mipsxx_pmu_write_control(1, 191<<5);
878 mipspmu
.write_counter(1, 0);
879 mipsxx_pmu_write_control(1, 255<<5);
880 mipspmu
.write_counter(1, 0);
881 mipsxx_pmu_write_control(1, 319<<5);
882 mipspmu
.write_counter(1, 0);
883 mipsxx_pmu_write_control(1, 383<<5);
884 mipspmu
.write_counter(1, 0);
885 mipsxx_pmu_write_control(1, 575<<5);
886 mipspmu
.write_counter(1, 0);
889 mipsxx_pmu_write_control(0, 0);
890 mipspmu
.write_counter(0, 0);
891 mipsxx_pmu_write_control(0, 127<<5);
892 mipspmu
.write_counter(0, 0);
893 mipsxx_pmu_write_control(0, 191<<5);
894 mipspmu
.write_counter(0, 0);
895 mipsxx_pmu_write_control(0, 255<<5);
896 mipspmu
.write_counter(0, 0);
897 mipsxx_pmu_write_control(0, 319<<5);
898 mipspmu
.write_counter(0, 0);
899 mipsxx_pmu_write_control(0, 383<<5);
900 mipspmu
.write_counter(0, 0);
901 mipsxx_pmu_write_control(0, 575<<5);
902 mipspmu
.write_counter(0, 0);
907 static void reset_counters(void *arg
)
909 int counters
= (int)(long)arg
;
911 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2
) {
912 loongson3_reset_counters(arg
);
918 mipsxx_pmu_write_control(3, 0);
919 mipspmu
.write_counter(3, 0);
922 mipsxx_pmu_write_control(2, 0);
923 mipspmu
.write_counter(2, 0);
926 mipsxx_pmu_write_control(1, 0);
927 mipspmu
.write_counter(1, 0);
930 mipsxx_pmu_write_control(0, 0);
931 mipspmu
.write_counter(0, 0);
936 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
937 static const struct mips_perf_event mipsxxcore_event_map
938 [PERF_COUNT_HW_MAX
] = {
939 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
940 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
941 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
942 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
945 /* 74K/proAptiv core has different branch event code. */
946 static const struct mips_perf_event mipsxxcore_event_map2
947 [PERF_COUNT_HW_MAX
] = {
948 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
949 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
950 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
951 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
954 static const struct mips_perf_event i6x00_event_map
[PERF_COUNT_HW_MAX
] = {
955 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
},
956 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
},
957 /* These only count dcache, not icache */
958 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x45, CNTR_EVEN
| CNTR_ODD
},
959 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x48, CNTR_EVEN
| CNTR_ODD
},
960 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
961 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
964 static const struct mips_perf_event loongson3_event_map1
[PERF_COUNT_HW_MAX
] = {
965 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
},
966 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, CNTR_ODD
},
967 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
},
968 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x01, CNTR_ODD
},
971 static const struct mips_perf_event loongson3_event_map2
[PERF_COUNT_HW_MAX
] = {
972 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x80, CNTR_ALL
},
973 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x81, CNTR_ALL
},
974 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x18, CNTR_ALL
},
975 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x94, CNTR_ALL
},
976 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x9c, CNTR_ALL
},
979 static const struct mips_perf_event loongson3_event_map3
[PERF_COUNT_HW_MAX
] = {
980 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_ALL
},
981 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_ALL
},
982 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x1c, CNTR_ALL
},
983 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x1d, CNTR_ALL
},
984 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_ALL
},
985 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x08, CNTR_ALL
},
988 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
989 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
990 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
991 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
992 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
993 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
994 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
995 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
998 static const struct mips_perf_event bmips5000_event_map
999 [PERF_COUNT_HW_MAX
] = {
1000 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, T
},
1001 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
1002 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
1005 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1006 static const struct mips_perf_event mipsxxcore_cache_map
1007 [PERF_COUNT_HW_CACHE_MAX
]
1008 [PERF_COUNT_HW_CACHE_OP_MAX
]
1009 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1012 * Like some other architectures (e.g. ARM), the performance
1013 * counters don't differentiate between read and write
1014 * accesses/misses, so this isn't strictly correct, but it's the
1015 * best we can do. Writes and reads get combined.
1018 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
1019 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
1022 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
1023 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
1028 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
1029 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
1032 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
1033 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
1035 [C(OP_PREFETCH
)] = {
1036 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
1038 * Note that MIPS has only "hit" events countable for
1039 * the prefetch operation.
1045 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
1046 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
1049 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
1050 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
1055 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
1056 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
1059 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
1060 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
1065 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
1066 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
1069 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
1070 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
1074 /* Using the same code for *HW_BRANCH* */
1076 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
1077 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1080 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
1081 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1086 /* 74K/proAptiv core has completely different cache event map. */
1087 static const struct mips_perf_event mipsxxcore_cache_map2
1088 [PERF_COUNT_HW_CACHE_MAX
]
1089 [PERF_COUNT_HW_CACHE_OP_MAX
]
1090 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1093 * Like some other architectures (e.g. ARM), the performance
1094 * counters don't differentiate between read and write
1095 * accesses/misses, so this isn't strictly correct, but it's the
1096 * best we can do. Writes and reads get combined.
1099 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
1100 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
1103 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
1104 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
1109 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
1110 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
1113 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
1114 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
1116 [C(OP_PREFETCH
)] = {
1117 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
1119 * Note that MIPS has only "hit" events countable for
1120 * the prefetch operation.
1126 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
1127 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
1130 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
1131 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
1135 * 74K core does not have specific DTLB events. proAptiv core has
1136 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1137 * not included here. One can use raw events if really needed.
1141 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1142 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1145 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1146 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1150 /* Using the same code for *HW_BRANCH* */
1152 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1153 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1156 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1157 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1162 static const struct mips_perf_event i6x00_cache_map
1163 [PERF_COUNT_HW_CACHE_MAX
]
1164 [PERF_COUNT_HW_CACHE_OP_MAX
]
1165 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1168 [C(RESULT_ACCESS
)] = { 0x46, CNTR_EVEN
| CNTR_ODD
},
1169 [C(RESULT_MISS
)] = { 0x49, CNTR_EVEN
| CNTR_ODD
},
1172 [C(RESULT_ACCESS
)] = { 0x47, CNTR_EVEN
| CNTR_ODD
},
1173 [C(RESULT_MISS
)] = { 0x4a, CNTR_EVEN
| CNTR_ODD
},
1178 [C(RESULT_ACCESS
)] = { 0x84, CNTR_EVEN
| CNTR_ODD
},
1179 [C(RESULT_MISS
)] = { 0x85, CNTR_EVEN
| CNTR_ODD
},
1183 /* Can't distinguish read & write */
1185 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1186 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1189 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1190 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1194 /* Conditional branches / mispredicted */
1196 [C(RESULT_ACCESS
)] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
1197 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
1202 static const struct mips_perf_event loongson3_cache_map1
1203 [PERF_COUNT_HW_CACHE_MAX
]
1204 [PERF_COUNT_HW_CACHE_OP_MAX
]
1205 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1208 * Like some other architectures (e.g. ARM), the performance
1209 * counters don't differentiate between read and write
1210 * accesses/misses, so this isn't strictly correct, but it's the
1211 * best we can do. Writes and reads get combined.
1214 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1217 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1222 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1225 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1230 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1233 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1238 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1241 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1245 /* Using the same code for *HW_BRANCH* */
1247 [C(RESULT_ACCESS
)] = { 0x01, CNTR_EVEN
},
1248 [C(RESULT_MISS
)] = { 0x01, CNTR_ODD
},
1251 [C(RESULT_ACCESS
)] = { 0x01, CNTR_EVEN
},
1252 [C(RESULT_MISS
)] = { 0x01, CNTR_ODD
},
1257 static const struct mips_perf_event loongson3_cache_map2
1258 [PERF_COUNT_HW_CACHE_MAX
]
1259 [PERF_COUNT_HW_CACHE_OP_MAX
]
1260 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1263 * Like some other architectures (e.g. ARM), the performance
1264 * counters don't differentiate between read and write
1265 * accesses/misses, so this isn't strictly correct, but it's the
1266 * best we can do. Writes and reads get combined.
1269 [C(RESULT_ACCESS
)] = { 0x156, CNTR_ALL
},
1272 [C(RESULT_ACCESS
)] = { 0x155, CNTR_ALL
},
1273 [C(RESULT_MISS
)] = { 0x153, CNTR_ALL
},
1278 [C(RESULT_MISS
)] = { 0x18, CNTR_ALL
},
1281 [C(RESULT_MISS
)] = { 0x18, CNTR_ALL
},
1286 [C(RESULT_ACCESS
)] = { 0x1b6, CNTR_ALL
},
1289 [C(RESULT_ACCESS
)] = { 0x1b7, CNTR_ALL
},
1291 [C(OP_PREFETCH
)] = {
1292 [C(RESULT_ACCESS
)] = { 0x1bf, CNTR_ALL
},
1297 [C(RESULT_MISS
)] = { 0x92, CNTR_ALL
},
1300 [C(RESULT_MISS
)] = { 0x92, CNTR_ALL
},
1305 [C(RESULT_MISS
)] = { 0x1a, CNTR_ALL
},
1308 [C(RESULT_MISS
)] = { 0x1a, CNTR_ALL
},
1312 /* Using the same code for *HW_BRANCH* */
1314 [C(RESULT_ACCESS
)] = { 0x94, CNTR_ALL
},
1315 [C(RESULT_MISS
)] = { 0x9c, CNTR_ALL
},
1320 static const struct mips_perf_event loongson3_cache_map3
1321 [PERF_COUNT_HW_CACHE_MAX
]
1322 [PERF_COUNT_HW_CACHE_OP_MAX
]
1323 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1326 * Like some other architectures (e.g. ARM), the performance
1327 * counters don't differentiate between read and write
1328 * accesses/misses, so this isn't strictly correct, but it's the
1329 * best we can do. Writes and reads get combined.
1332 [C(RESULT_ACCESS
)] = { 0x1e, CNTR_ALL
},
1333 [C(RESULT_MISS
)] = { 0x1f, CNTR_ALL
},
1335 [C(OP_PREFETCH
)] = {
1336 [C(RESULT_ACCESS
)] = { 0xaa, CNTR_ALL
},
1337 [C(RESULT_MISS
)] = { 0xa9, CNTR_ALL
},
1342 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ALL
},
1343 [C(RESULT_MISS
)] = { 0x1d, CNTR_ALL
},
1348 [C(RESULT_ACCESS
)] = { 0x2e, CNTR_ALL
},
1349 [C(RESULT_MISS
)] = { 0x2f, CNTR_ALL
},
1354 [C(RESULT_ACCESS
)] = { 0x14, CNTR_ALL
},
1355 [C(RESULT_MISS
)] = { 0x1b, CNTR_ALL
},
1360 [C(RESULT_MISS
)] = { 0x1a, CNTR_ALL
},
1364 /* Using the same code for *HW_BRANCH* */
1366 [C(RESULT_ACCESS
)] = { 0x02, CNTR_ALL
},
1367 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
},
1373 static const struct mips_perf_event bmips5000_cache_map
1374 [PERF_COUNT_HW_CACHE_MAX
]
1375 [PERF_COUNT_HW_CACHE_OP_MAX
]
1376 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1379 * Like some other architectures (e.g. ARM), the performance
1380 * counters don't differentiate between read and write
1381 * accesses/misses, so this isn't strictly correct, but it's the
1382 * best we can do. Writes and reads get combined.
1385 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1386 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1389 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1390 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1395 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1396 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1399 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1400 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1402 [C(OP_PREFETCH
)] = {
1403 [C(RESULT_ACCESS
)] = { 23, CNTR_EVEN
, T
},
1405 * Note that MIPS has only "hit" events countable for
1406 * the prefetch operation.
1412 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1413 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1416 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1417 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1421 /* Using the same code for *HW_BRANCH* */
1423 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1426 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1431 static const struct mips_perf_event octeon_cache_map
1432 [PERF_COUNT_HW_CACHE_MAX
]
1433 [PERF_COUNT_HW_CACHE_OP_MAX
]
1434 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1437 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1438 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1441 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1446 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1448 [C(OP_PREFETCH
)] = {
1449 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1454 * Only general DTLB misses are counted use the same event for
1458 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1461 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1466 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1471 static int __hw_perf_event_init(struct perf_event
*event
)
1473 struct perf_event_attr
*attr
= &event
->attr
;
1474 struct hw_perf_event
*hwc
= &event
->hw
;
1475 const struct mips_perf_event
*pev
;
1478 /* Returning MIPS event descriptor for generic perf event. */
1479 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1480 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1482 pev
= mipspmu_map_general_event(event
->attr
.config
);
1483 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1484 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1485 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1486 /* We are working on the global raw event. */
1487 mutex_lock(&raw_event_mutex
);
1488 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1490 /* The event type is not (yet) supported. */
1495 if (PERF_TYPE_RAW
== event
->attr
.type
)
1496 mutex_unlock(&raw_event_mutex
);
1497 return PTR_ERR(pev
);
1501 * We allow max flexibility on how each individual counter shared
1502 * by the single CPU operates (the mode exclusion and the range).
1504 hwc
->config_base
= MIPS_PERFCTRL_IE
;
1506 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1507 if (PERF_TYPE_RAW
== event
->attr
.type
)
1508 mutex_unlock(&raw_event_mutex
);
1510 if (!attr
->exclude_user
)
1511 hwc
->config_base
|= MIPS_PERFCTRL_U
;
1512 if (!attr
->exclude_kernel
) {
1513 hwc
->config_base
|= MIPS_PERFCTRL_K
;
1514 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1515 hwc
->config_base
|= MIPS_PERFCTRL_EXL
;
1517 if (!attr
->exclude_hv
)
1518 hwc
->config_base
|= MIPS_PERFCTRL_S
;
1520 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1522 * The event can belong to another cpu. We do not assign a local
1523 * counter for it for now.
1528 if (!hwc
->sample_period
) {
1529 hwc
->sample_period
= mipspmu
.max_period
;
1530 hwc
->last_period
= hwc
->sample_period
;
1531 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1535 if (event
->group_leader
!= event
)
1536 err
= validate_group(event
);
1538 event
->destroy
= hw_perf_event_destroy
;
1541 event
->destroy(event
);
1546 static void pause_local_counters(void)
1548 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1549 int ctr
= mipspmu
.num_counters
;
1550 unsigned long flags
;
1552 local_irq_save(flags
);
1555 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1556 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1557 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1559 local_irq_restore(flags
);
1562 static void resume_local_counters(void)
1564 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1565 int ctr
= mipspmu
.num_counters
;
1569 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1573 static int mipsxx_pmu_handle_shared_irq(void)
1575 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1576 struct perf_sample_data data
;
1577 unsigned int counters
= mipspmu
.num_counters
;
1579 int n
, handled
= IRQ_NONE
;
1580 struct pt_regs
*regs
;
1582 if (cpu_has_perf_cntr_intr_bit
&& !(read_c0_cause() & CAUSEF_PCI
))
1585 * First we pause the local counters, so that when we are locked
1586 * here, the counters are all paused. When it gets locked due to
1587 * perf_disable(), the timer interrupt handler will be delayed.
1589 * See also mipsxx_pmu_start().
1591 pause_local_counters();
1592 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1593 read_lock(&pmuint_rwlock
);
1596 regs
= get_irq_regs();
1598 perf_sample_data_init(&data
, 0, 0);
1600 for (n
= counters
- 1; n
>= 0; n
--) {
1601 if (!test_bit(n
, cpuc
->used_mask
))
1604 counter
= mipspmu
.read_counter(n
);
1605 if (!(counter
& mipspmu
.overflow
))
1608 handle_associated_event(cpuc
, n
, &data
, regs
);
1609 handled
= IRQ_HANDLED
;
1612 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1613 read_unlock(&pmuint_rwlock
);
1615 resume_local_counters();
1618 * Do all the work for the pending perf events. We can do this
1619 * in here because the performance counter interrupt is a regular
1620 * interrupt, not NMI.
1622 if (handled
== IRQ_HANDLED
)
1628 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1630 return mipsxx_pmu_handle_shared_irq();
1634 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1635 ((b) == 0 || (b) == 1 || (b) == 11)
1638 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1639 ((b) == 0 || (b) == 1 || (b) == 11)
1640 #ifdef CONFIG_MIPS_MT_SMP
1641 #define IS_RANGE_P_34K_EVENT(r, b) \
1642 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1643 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1644 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1645 ((b) >= 64 && (b) <= 67))
1646 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1650 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1651 ((b) == 0 || (b) == 1)
1654 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1655 ((b) == 0 || (b) == 1)
1657 #define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1658 ((b) == 0 || (b) == 1)
1661 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1662 ((b) == 0 || (b) == 1 || (b) == 11)
1663 #ifdef CONFIG_MIPS_MT_SMP
1664 #define IS_RANGE_P_1004K_EVENT(r, b) \
1665 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1666 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1667 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1668 (r) == 188 || (b) == 61 || (b) == 62 || \
1669 ((b) >= 64 && (b) <= 67))
1670 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1674 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1675 ((b) == 0 || (b) == 1 || (b) == 11)
1676 #ifdef CONFIG_MIPS_MT_SMP
1677 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1678 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1679 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1680 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1681 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1682 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1683 ((b) >= 64 && (b) <= 67))
1684 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1688 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1689 ((b) == 0 || (b) == 1)
1693 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1694 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1695 * indicate the even/odd bank selector. So, for example, when user wants to take
1696 * the Event Num of 15 for odd counters (by referring to the user manual), then
1697 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1700 * Some newer cores have even more events, in which case the user can use raw
1701 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1702 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1704 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1706 /* currently most cores have 7-bit event numbers */
1708 unsigned int raw_id
= config
& 0xff;
1709 unsigned int base_id
= raw_id
& 0x7f;
1711 switch (current_cpu_type()) {
1713 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1714 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1716 raw_event
.cntr_mask
=
1717 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1718 #ifdef CONFIG_MIPS_MT_SMP
1720 * This is actually doing nothing. Non-multithreading
1721 * CPUs will not check and calculate the range.
1723 raw_event
.range
= P
;
1727 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1728 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1730 raw_event
.cntr_mask
=
1731 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1732 #ifdef CONFIG_MIPS_MT_SMP
1733 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1734 raw_event
.range
= P
;
1735 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1736 raw_event
.range
= V
;
1738 raw_event
.range
= T
;
1743 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1744 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1746 raw_event
.cntr_mask
=
1747 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1748 #ifdef CONFIG_MIPS_MT_SMP
1749 raw_event
.range
= P
;
1753 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id
))
1754 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1756 raw_event
.cntr_mask
=
1757 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1758 #ifdef CONFIG_MIPS_MT_SMP
1759 raw_event
.range
= P
;
1764 /* 8-bit event numbers */
1765 raw_id
= config
& 0x1ff;
1766 base_id
= raw_id
& 0xff;
1767 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id
))
1768 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1770 raw_event
.cntr_mask
=
1771 raw_id
> 255 ? CNTR_ODD
: CNTR_EVEN
;
1772 #ifdef CONFIG_MIPS_MT_SMP
1773 raw_event
.range
= P
;
1778 /* 8-bit event numbers */
1779 base_id
= config
& 0xff;
1780 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1783 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1784 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1786 raw_event
.cntr_mask
=
1787 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1788 #ifdef CONFIG_MIPS_MT_SMP
1789 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1790 raw_event
.range
= P
;
1791 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1792 raw_event
.range
= V
;
1794 raw_event
.range
= T
;
1797 case CPU_INTERAPTIV
:
1798 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id
))
1799 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1801 raw_event
.cntr_mask
=
1802 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1803 #ifdef CONFIG_MIPS_MT_SMP
1804 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id
, base_id
))
1805 raw_event
.range
= P
;
1806 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id
)))
1807 raw_event
.range
= V
;
1809 raw_event
.range
= T
;
1813 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id
))
1814 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1816 raw_event
.cntr_mask
=
1817 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1819 case CPU_LOONGSON64
:
1820 pmu_type
= get_loongson3_pmu_type();
1823 case LOONGSON_PMU_TYPE1
:
1824 raw_event
.cntr_mask
=
1825 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1827 case LOONGSON_PMU_TYPE2
:
1828 base_id
= config
& 0x3ff;
1829 raw_event
.cntr_mask
= CNTR_ALL
;
1831 if ((base_id
>= 1 && base_id
< 28) ||
1832 (base_id
>= 64 && base_id
< 90) ||
1833 (base_id
>= 128 && base_id
< 164) ||
1834 (base_id
>= 192 && base_id
< 200) ||
1835 (base_id
>= 256 && base_id
< 275) ||
1836 (base_id
>= 320 && base_id
< 361) ||
1837 (base_id
>= 384 && base_id
< 574))
1840 return ERR_PTR(-EOPNOTSUPP
);
1841 case LOONGSON_PMU_TYPE3
:
1843 raw_event
.cntr_mask
= CNTR_ALL
;
1849 raw_event
.event_id
= base_id
;
1854 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1856 unsigned int base_id
= config
& 0x7f;
1857 unsigned int event_max
;
1860 raw_event
.cntr_mask
= CNTR_ALL
;
1861 raw_event
.event_id
= base_id
;
1863 if (current_cpu_type() == CPU_CAVIUM_OCTEON3
)
1865 else if (current_cpu_type() == CPU_CAVIUM_OCTEON2
)
1870 if (base_id
> event_max
) {
1871 return ERR_PTR(-EOPNOTSUPP
);
1882 return ERR_PTR(-EOPNOTSUPP
);
1891 init_hw_perf_events(void)
1893 int counters
, irq
, pmu_type
;
1895 pr_info("Performance counters: ");
1897 counters
= n_counters();
1898 if (counters
== 0) {
1899 pr_cont("No available PMU.\n");
1903 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1904 if (!cpu_has_mipsmt_pertccounters
)
1905 counters
= counters_total_to_per_cpu(counters
);
1908 if (get_c0_perfcount_int
)
1909 irq
= get_c0_perfcount_int();
1910 else if (cp0_perfcount_irq
>= 0)
1911 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1915 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1917 switch (current_cpu_type()) {
1919 mipspmu
.name
= "mips/24K";
1920 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1921 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1924 mipspmu
.name
= "mips/34K";
1925 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1926 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1929 mipspmu
.name
= "mips/74K";
1930 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1931 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1934 mipspmu
.name
= "mips/proAptiv";
1935 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1936 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1939 mipspmu
.name
= "mips/P5600";
1940 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1941 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1944 mipspmu
.name
= "mips/P6600";
1945 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1946 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1949 mipspmu
.name
= "mips/I6400";
1950 mipspmu
.general_event_map
= &i6x00_event_map
;
1951 mipspmu
.cache_event_map
= &i6x00_cache_map
;
1954 mipspmu
.name
= "mips/I6500";
1955 mipspmu
.general_event_map
= &i6x00_event_map
;
1956 mipspmu
.cache_event_map
= &i6x00_cache_map
;
1959 mipspmu
.name
= "mips/1004K";
1960 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1961 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1964 mipspmu
.name
= "mips/1074K";
1965 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1966 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1968 case CPU_INTERAPTIV
:
1969 mipspmu
.name
= "mips/interAptiv";
1970 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1971 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1973 case CPU_LOONGSON32
:
1974 mipspmu
.name
= "mips/loongson1";
1975 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1976 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1978 case CPU_LOONGSON64
:
1979 mipspmu
.name
= "mips/loongson3";
1980 pmu_type
= get_loongson3_pmu_type();
1983 case LOONGSON_PMU_TYPE1
:
1985 mipspmu
.general_event_map
= &loongson3_event_map1
;
1986 mipspmu
.cache_event_map
= &loongson3_cache_map1
;
1988 case LOONGSON_PMU_TYPE2
:
1990 mipspmu
.general_event_map
= &loongson3_event_map2
;
1991 mipspmu
.cache_event_map
= &loongson3_cache_map2
;
1993 case LOONGSON_PMU_TYPE3
:
1995 mipspmu
.general_event_map
= &loongson3_event_map3
;
1996 mipspmu
.cache_event_map
= &loongson3_cache_map3
;
2000 case CPU_CAVIUM_OCTEON
:
2001 case CPU_CAVIUM_OCTEON_PLUS
:
2002 case CPU_CAVIUM_OCTEON2
:
2003 case CPU_CAVIUM_OCTEON3
:
2004 mipspmu
.name
= "octeon";
2005 mipspmu
.general_event_map
= &octeon_event_map
;
2006 mipspmu
.cache_event_map
= &octeon_cache_map
;
2007 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
2010 mipspmu
.name
= "BMIPS5000";
2011 mipspmu
.general_event_map
= &bmips5000_event_map
;
2012 mipspmu
.cache_event_map
= &bmips5000_cache_map
;
2015 pr_cont("Either hardware does not support performance "
2016 "counters, or not yet implemented.\n");
2020 mipspmu
.num_counters
= counters
;
2023 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W
) {
2024 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2
) {
2026 mipspmu
.max_period
= (1ULL << 47) - 1;
2027 mipspmu
.valid_count
= (1ULL << 47) - 1;
2028 mipspmu
.overflow
= 1ULL << 47;
2031 mipspmu
.max_period
= (1ULL << 63) - 1;
2032 mipspmu
.valid_count
= (1ULL << 63) - 1;
2033 mipspmu
.overflow
= 1ULL << 63;
2035 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
2036 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
2039 mipspmu
.max_period
= (1ULL << 31) - 1;
2040 mipspmu
.valid_count
= (1ULL << 31) - 1;
2041 mipspmu
.overflow
= 1ULL << 31;
2042 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
2043 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
2046 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
2048 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2049 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
2050 irq
< 0 ? " (share with timer interrupt)" : "");
2052 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
2056 early_initcall(init_hw_perf_events
);