2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
8 * SMP support for BMIPS
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/irq.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
42 static int __maybe_unused max_cpus
= 1;
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled
= 1;
47 cpumask_t bmips_booted_mask
;
48 unsigned long bmips_tp1_irqs
= IE_IRQ1
;
50 #define RESET_FROM_KSEG0 0x80080800
51 #define RESET_FROM_KSEG1 0xa0080800
53 static void bmips_set_reset_vec(int cpu
, u32 val
);
59 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
60 unsigned long bmips_smp_boot_sp
;
61 unsigned long bmips_smp_boot_gp
;
63 static void bmips43xx_send_ipi_single(int cpu
, unsigned int action
);
64 static void bmips5000_send_ipi_single(int cpu
, unsigned int action
);
65 static irqreturn_t
bmips43xx_ipi_interrupt(int irq
, void *dev_id
);
66 static irqreturn_t
bmips5000_ipi_interrupt(int irq
, void *dev_id
);
68 /* SW interrupts 0,1 are used for interprocessor signaling */
69 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
70 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
72 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
73 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
74 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
75 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
77 static void __init
bmips_smp_setup(void)
79 int i
, cpu
= 1, boot_cpu
= 0;
82 switch (current_cpu_type()) {
85 /* arbitration priority */
86 clear_c0_brcm_cmt_ctrl(0x30);
88 /* NBK and weak order flags */
89 set_c0_brcm_config_0(0x30000);
91 /* Find out if we are running on TP0 or TP1 */
92 boot_cpu
= !!(read_c0_brcm_cmt_local() & (1 << 31));
95 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
97 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
98 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
105 change_c0_brcm_cmt_intr(0xf8018000,
106 (cpu_hw_intr
<< 27) | (0x03 << 15));
108 /* single core, 2 threads (2 pipelines) */
113 /* enable raceless SW interrupts */
114 set_c0_brcm_config(0x03 << 22);
116 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
117 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
119 /* N cores, 2 threads per core */
120 max_cpus
= (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
122 /* clear any pending SW interrupts */
123 for (i
= 0; i
< max_cpus
; i
++) {
124 write_c0_brcm_action(ACTION_CLR_IPI(i
, 0));
125 write_c0_brcm_action(ACTION_CLR_IPI(i
, 1));
133 if (!bmips_smp_enabled
)
136 /* this can be overridden by the BSP */
137 if (!board_ebase_setup
)
138 board_ebase_setup
= &bmips_ebase_setup
;
141 __cpu_number_map
[boot_cpu
] = 0;
142 __cpu_logical_map
[0] = boot_cpu
;
144 for (i
= 0; i
< max_cpus
; i
++) {
146 __cpu_number_map
[i
] = cpu
;
147 __cpu_logical_map
[cpu
] = i
;
150 set_cpu_possible(i
, 1);
151 set_cpu_present(i
, 1);
154 __cpu_number_map
[0] = boot_cpu
;
155 __cpu_logical_map
[0] = 0;
156 set_cpu_possible(0, 1);
157 set_cpu_present(0, 1);
162 * IPI IRQ setup - runs on CPU0
164 static void bmips_prepare_cpus(unsigned int max_cpus
)
166 irqreturn_t (*bmips_ipi_interrupt
)(int irq
, void *dev_id
);
168 switch (current_cpu_type()) {
171 bmips_ipi_interrupt
= bmips43xx_ipi_interrupt
;
174 bmips_ipi_interrupt
= bmips5000_ipi_interrupt
;
180 if (request_irq(IPI0_IRQ
, bmips_ipi_interrupt
,
181 IRQF_PERCPU
| IRQF_NO_SUSPEND
, "smp_ipi0", NULL
))
182 panic("Can't request IPI0 interrupt");
183 if (request_irq(IPI1_IRQ
, bmips_ipi_interrupt
,
184 IRQF_PERCPU
| IRQF_NO_SUSPEND
, "smp_ipi1", NULL
))
185 panic("Can't request IPI1 interrupt");
189 * Tell the hardware to boot CPUx - runs on CPU0
191 static int bmips_boot_secondary(int cpu
, struct task_struct
*idle
)
193 bmips_smp_boot_sp
= __KSTK_TOS(idle
);
194 bmips_smp_boot_gp
= (unsigned long)task_thread_info(idle
);
198 * Initial boot sequence for secondary CPU:
199 * bmips_reset_nmi_vec @ a000_0000 ->
201 * plat_wired_tlb_setup (cached function call; optional) ->
202 * start_secondary (cached jump)
204 * Warm restart sequence:
205 * play_dead WAIT loop ->
206 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
207 * eret to play_dead ->
208 * bmips_secondary_reentry ->
212 pr_info("SMP: Booting CPU%d...\n", cpu
);
214 if (cpumask_test_cpu(cpu
, &bmips_booted_mask
)) {
215 /* kseg1 might not exist if this CPU enabled XKS01 */
216 bmips_set_reset_vec(cpu
, RESET_FROM_KSEG0
);
218 switch (current_cpu_type()) {
221 bmips43xx_send_ipi_single(cpu
, 0);
224 bmips5000_send_ipi_single(cpu
, 0);
228 bmips_set_reset_vec(cpu
, RESET_FROM_KSEG1
);
230 switch (current_cpu_type()) {
233 /* Reset slave TP1 if booting from TP0 */
234 if (cpu_logical_map(cpu
) == 1)
235 set_c0_brcm_cmt_ctrl(0x01);
238 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu
));
241 cpumask_set_cpu(cpu
, &bmips_booted_mask
);
248 * Early setup - runs on secondary CPU after cache probe
250 static void bmips_init_secondary(void)
254 switch (current_cpu_type()) {
257 clear_c0_cause(smp_processor_id() ? C_SW1
: C_SW0
);
260 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
261 cpu_set_core(¤t_cpu_data
, (read_c0_brcm_config() >> 25) & 3);
267 * Late setup - runs on secondary CPU before entering the idle loop
269 static void bmips_smp_finish(void)
271 pr_info("SMP: CPU%d is running\n", smp_processor_id());
273 /* make sure there won't be a timer interrupt for a little while */
274 write_c0_compare(read_c0_count() + mips_hpt_frequency
/ HZ
);
277 set_c0_status(IE_SW0
| IE_SW1
| bmips_tp1_irqs
| IE_IRQ5
| ST0_IE
);
282 * BMIPS5000 raceless IPIs
284 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
285 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
286 * IPI1 is used for SMP_CALL_FUNCTION
289 static void bmips5000_send_ipi_single(int cpu
, unsigned int action
)
291 write_c0_brcm_action(ACTION_SET_IPI(cpu
, action
== SMP_CALL_FUNCTION
));
294 static irqreturn_t
bmips5000_ipi_interrupt(int irq
, void *dev_id
)
296 int action
= irq
- IPI0_IRQ
;
298 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action
));
303 generic_smp_call_function_interrupt();
308 static void bmips5000_send_ipi_mask(const struct cpumask
*mask
,
313 for_each_cpu(i
, mask
)
314 bmips5000_send_ipi_single(i
, action
);
318 * BMIPS43xx racey IPIs
320 * We use one inbound SW IRQ for each CPU.
322 * A spinlock must be held in order to keep CPUx from accidentally clearing
323 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
324 * same spinlock is used to protect the action masks.
327 static DEFINE_SPINLOCK(ipi_lock
);
328 static DEFINE_PER_CPU(int, ipi_action_mask
);
330 static void bmips43xx_send_ipi_single(int cpu
, unsigned int action
)
334 spin_lock_irqsave(&ipi_lock
, flags
);
335 set_c0_cause(cpu
? C_SW1
: C_SW0
);
336 per_cpu(ipi_action_mask
, cpu
) |= action
;
338 spin_unlock_irqrestore(&ipi_lock
, flags
);
341 static irqreturn_t
bmips43xx_ipi_interrupt(int irq
, void *dev_id
)
344 int action
, cpu
= irq
- IPI0_IRQ
;
346 spin_lock_irqsave(&ipi_lock
, flags
);
347 action
= __this_cpu_read(ipi_action_mask
);
348 per_cpu(ipi_action_mask
, cpu
) = 0;
349 clear_c0_cause(cpu
? C_SW1
: C_SW0
);
350 spin_unlock_irqrestore(&ipi_lock
, flags
);
352 if (action
& SMP_RESCHEDULE_YOURSELF
)
354 if (action
& SMP_CALL_FUNCTION
)
355 generic_smp_call_function_interrupt();
360 static void bmips43xx_send_ipi_mask(const struct cpumask
*mask
,
365 for_each_cpu(i
, mask
)
366 bmips43xx_send_ipi_single(i
, action
);
369 #ifdef CONFIG_HOTPLUG_CPU
371 static int bmips_cpu_disable(void)
373 unsigned int cpu
= smp_processor_id();
375 pr_info("SMP: CPU%d is offline\n", cpu
);
377 set_cpu_online(cpu
, false);
378 calculate_cpu_foreign_map();
379 irq_migrate_all_off_this_cpu();
380 clear_c0_status(IE_IRQ5
);
382 local_flush_tlb_all();
383 local_flush_icache_range(0, ~0);
388 static void bmips_cpu_die(unsigned int cpu
)
392 void __ref
play_dead(void)
395 cpuhp_ap_report_dead();
397 /* flush data cache */
398 _dma_cache_wback_inv(0, ~0);
401 * Wakeup is on SW0 or SW1; disable everything else
402 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
403 * IRQ handlers; this clears ST0_IE and returns immediately.
405 clear_c0_cause(CAUSEF_IV
| C_SW0
| C_SW1
);
407 IE_IRQ5
| bmips_tp1_irqs
| IE_SW0
| IE_SW1
| ST0_IE
| ST0_BEV
,
408 IE_SW0
| IE_SW1
| ST0_IE
| ST0_BEV
);
409 irq_disable_hazard();
412 * wait for SW interrupt from bmips_boot_secondary(), then jump
413 * back to start_secondary()
415 __asm__
__volatile__(
417 " j bmips_secondary_reentry\n"
423 #endif /* CONFIG_HOTPLUG_CPU */
425 const struct plat_smp_ops bmips43xx_smp_ops
= {
426 .smp_setup
= bmips_smp_setup
,
427 .prepare_cpus
= bmips_prepare_cpus
,
428 .boot_secondary
= bmips_boot_secondary
,
429 .smp_finish
= bmips_smp_finish
,
430 .init_secondary
= bmips_init_secondary
,
431 .send_ipi_single
= bmips43xx_send_ipi_single
,
432 .send_ipi_mask
= bmips43xx_send_ipi_mask
,
433 #ifdef CONFIG_HOTPLUG_CPU
434 .cpu_disable
= bmips_cpu_disable
,
435 .cpu_die
= bmips_cpu_die
,
437 #ifdef CONFIG_KEXEC_CORE
438 .kexec_nonboot_cpu
= kexec_nonboot_cpu_jump
,
442 const struct plat_smp_ops bmips5000_smp_ops
= {
443 .smp_setup
= bmips_smp_setup
,
444 .prepare_cpus
= bmips_prepare_cpus
,
445 .boot_secondary
= bmips_boot_secondary
,
446 .smp_finish
= bmips_smp_finish
,
447 .init_secondary
= bmips_init_secondary
,
448 .send_ipi_single
= bmips5000_send_ipi_single
,
449 .send_ipi_mask
= bmips5000_send_ipi_mask
,
450 #ifdef CONFIG_HOTPLUG_CPU
451 .cpu_disable
= bmips_cpu_disable
,
452 .cpu_die
= bmips_cpu_die
,
454 #ifdef CONFIG_KEXEC_CORE
455 .kexec_nonboot_cpu
= kexec_nonboot_cpu_jump
,
459 #endif /* CONFIG_SMP */
461 /***********************************************************************
462 * BMIPS vector relocation
463 * This is primarily used for SMP boot, but it is applicable to some
464 * UP BMIPS systems as well.
465 ***********************************************************************/
467 static void bmips_wr_vec(unsigned long dst
, char *start
, char *end
)
469 memcpy((void *)dst
, start
, end
- start
);
470 dma_cache_wback(dst
, end
- start
);
471 local_flush_icache_range(dst
, dst
+ (end
- start
));
472 instruction_hazard();
475 static inline void bmips_nmi_handler_setup(void)
477 bmips_wr_vec(BMIPS_NMI_RESET_VEC
, bmips_reset_nmi_vec
,
478 bmips_reset_nmi_vec_end
);
479 bmips_wr_vec(BMIPS_WARM_RESTART_VEC
, bmips_smp_int_vec
,
480 bmips_smp_int_vec_end
);
483 struct reset_vec_info
{
488 static void bmips_set_reset_vec_remote(void *vinfo
)
490 struct reset_vec_info
*info
= vinfo
;
491 int shift
= info
->cpu
& 0x01 ? 16 : 0;
492 u32 mask
= ~(0xffff << shift
), val
= info
->val
>> 16;
495 if (smp_processor_id() > 0) {
496 smp_call_function_single(0, &bmips_set_reset_vec_remote
,
499 if (info
->cpu
& 0x02) {
500 /* BMIPS5200 "should" use mask/shift, but it's buggy */
501 bmips_write_zscm_reg(0xa0, (val
<< 16) | val
);
502 bmips_read_zscm_reg(0xa0);
504 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask
) |
511 static void bmips_set_reset_vec(int cpu
, u32 val
)
513 struct reset_vec_info info
;
515 if (current_cpu_type() == CPU_BMIPS5000
) {
516 /* this needs to run from CPU0 (which is always online) */
519 bmips_set_reset_vec_remote(&info
);
521 void __iomem
*cbr
= bmips_cbr_addr
;
524 __raw_writel(val
, cbr
+ BMIPS_RELO_VECTOR_CONTROL_0
);
526 if (current_cpu_type() != CPU_BMIPS4380
)
528 __raw_writel(val
, cbr
+ BMIPS_RELO_VECTOR_CONTROL_1
);
532 back_to_back_c0_hazard();
535 void bmips_ebase_setup(void)
537 unsigned long new_ebase
= ebase
;
539 BUG_ON(ebase
!= CKSEG0
);
541 switch (current_cpu_type()) {
544 * BMIPS4350 cannot relocate the normal vectors, but it
545 * can relocate the BEV=1 vectors. So CPU1 starts up at
546 * the relocated BEV=1, IV=0 general exception vector @
549 * set_uncached_handler() is used here because:
550 * - CPU1 will run this from uncached space
551 * - None of the cacheflush functions are set up yet
553 set_uncached_handler(BMIPS_WARM_RESTART_VEC
- CKSEG0
,
554 &bmips_smp_int_vec
, 0x80);
560 * 0x8000_0000: reset/NMI (initially in kseg1)
561 * 0x8000_0400: normal vectors
563 new_ebase
= 0x80000400;
564 bmips_set_reset_vec(0, RESET_FROM_KSEG0
);
568 * 0x8000_0000: reset/NMI (initially in kseg1)
569 * 0x8000_1000: normal vectors
571 new_ebase
= 0x80001000;
572 bmips_set_reset_vec(0, RESET_FROM_KSEG0
);
573 write_c0_ebase(new_ebase
);
579 board_nmi_handler_setup
= &bmips_nmi_handler_setup
;
583 asmlinkage
void __weak
plat_wired_tlb_setup(void)
586 * Called when starting/restarting a secondary CPU.
587 * Kernel stacks and other important data might only be accessible
588 * once the wired entries are present.
592 void bmips_cpu_setup(void)
594 void __iomem __maybe_unused
*cbr
= bmips_cbr_addr
;
595 u32 __maybe_unused rac_addr
;
596 u32 __maybe_unused cfg
;
598 switch (current_cpu_type()) {
600 /* Set BIU to async mode */
601 set_c0_brcm_bus_pll(BIT(22));
604 /* put the BIU back in sync mode */
605 clear_c0_brcm_bus_pll(BIT(22));
607 /* clear BHTD to enable branch history table */
608 clear_c0_brcm_reset(BIT(16));
610 /* Flush and enable RAC */
611 cfg
= __raw_readl(cbr
+ BMIPS_RAC_CONFIG
);
612 __raw_writel(cfg
| 0x100, cbr
+ BMIPS_RAC_CONFIG
);
613 __raw_readl(cbr
+ BMIPS_RAC_CONFIG
);
615 cfg
= __raw_readl(cbr
+ BMIPS_RAC_CONFIG
);
616 __raw_writel(cfg
| 0xf, cbr
+ BMIPS_RAC_CONFIG
);
617 __raw_readl(cbr
+ BMIPS_RAC_CONFIG
);
619 cfg
= __raw_readl(cbr
+ BMIPS_RAC_ADDRESS_RANGE
);
620 __raw_writel(cfg
| 0x0fff0000, cbr
+ BMIPS_RAC_ADDRESS_RANGE
);
621 __raw_readl(cbr
+ BMIPS_RAC_ADDRESS_RANGE
);
625 rac_addr
= BMIPS_RAC_CONFIG_1
;
627 if (!(read_c0_brcm_cmt_local() & (1 << 31)))
628 rac_addr
= BMIPS_RAC_CONFIG
;
630 /* Enable data RAC */
631 cfg
= __raw_readl(cbr
+ rac_addr
);
632 __raw_writel(cfg
| 0xf, cbr
+ rac_addr
);
633 __raw_readl(cbr
+ rac_addr
);
635 /* Flush stale data out of the readahead cache */
636 cfg
= __raw_readl(cbr
+ BMIPS_RAC_CONFIG
);
637 __raw_writel(cfg
| 0x100, cbr
+ BMIPS_RAC_CONFIG
);
638 __raw_readl(cbr
+ BMIPS_RAC_CONFIG
);
642 /* CBG workaround for early BMIPS4380 CPUs */
643 switch (read_c0_prid()) {
648 cfg
= __raw_readl(cbr
+ BMIPS_L2_CONFIG
);
649 __raw_writel(cfg
& ~0x07000000, cbr
+ BMIPS_L2_CONFIG
);
650 __raw_readl(cbr
+ BMIPS_L2_CONFIG
);
653 /* clear BHTD to enable branch history table */
654 clear_c0_brcm_config_0(BIT(21));
657 set_c0_brcm_config_0(BIT(23));
658 set_c0_brcm_cmt_ctrl(BIT(15));
662 /* enable RDHWR, BRDHWR */
663 set_c0_brcm_config(BIT(17) | BIT(21));
666 __asm__
__volatile__(
668 " li $8, 0x5a455048\n"
669 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
670 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
671 " li $9, 0x00008000\n"
673 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
676 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
681 set_c0_brcm_config(BIT(27));
683 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
684 __asm__
__volatile__(
685 " li $8, 0x5a455048\n"
686 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
688 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
691 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */