2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
60 #include <asm/ptrace.h>
61 #include <asm/regdef.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
74 #include <asm/mach-loongson64/cpucfg-emul.h>
76 #include "access-helper.h"
78 extern void check_wait(void);
79 extern asmlinkage
void rollback_handle_int(void);
80 extern asmlinkage
void handle_int(void);
81 extern asmlinkage
void handle_adel(void);
82 extern asmlinkage
void handle_ades(void);
83 extern asmlinkage
void handle_ibe(void);
84 extern asmlinkage
void handle_dbe(void);
85 extern asmlinkage
void handle_sys(void);
86 extern asmlinkage
void handle_bp(void);
87 extern asmlinkage
void handle_ri(void);
88 extern asmlinkage
void handle_ri_rdhwr_tlbp(void);
89 extern asmlinkage
void handle_ri_rdhwr(void);
90 extern asmlinkage
void handle_cpu(void);
91 extern asmlinkage
void handle_ov(void);
92 extern asmlinkage
void handle_tr(void);
93 extern asmlinkage
void handle_msa_fpe(void);
94 extern asmlinkage
void handle_fpe(void);
95 extern asmlinkage
void handle_ftlb(void);
96 extern asmlinkage
void handle_gsexc(void);
97 extern asmlinkage
void handle_msa(void);
98 extern asmlinkage
void handle_mdmx(void);
99 extern asmlinkage
void handle_watch(void);
100 extern asmlinkage
void handle_mt(void);
101 extern asmlinkage
void handle_dsp(void);
102 extern asmlinkage
void handle_mcheck(void);
103 extern asmlinkage
void handle_reserved(void);
104 extern void tlb_do_page_fault_0(void);
106 void (*board_be_init
)(void);
107 static int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
108 void (*board_nmi_handler_setup
)(void);
109 void (*board_ejtag_handler_setup
)(void);
110 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
111 void (*board_ebase_setup
)(void);
112 void(*board_cache_error_setup
)(void);
114 void mips_set_be_handler(int (*handler
)(struct pt_regs
*regs
, int is_fixup
))
116 board_be_handler
= handler
;
118 EXPORT_SYMBOL_GPL(mips_set_be_handler
);
120 static void show_raw_backtrace(unsigned long reg29
, const char *loglvl
,
123 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
126 printk("%sCall Trace:", loglvl
);
127 #ifdef CONFIG_KALLSYMS
128 printk("%s\n", loglvl
);
130 while (!kstack_end(sp
)) {
131 if (__get_addr(&addr
, sp
++, user
)) {
132 printk("%s (Bad stack address)", loglvl
);
135 if (__kernel_text_address(addr
))
136 print_ip_sym(loglvl
, addr
);
138 printk("%s\n", loglvl
);
141 #ifdef CONFIG_KALLSYMS
143 static int __init
set_raw_show_trace(char *str
)
148 __setup("raw_show_trace", set_raw_show_trace
);
151 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
,
152 const char *loglvl
, bool user
)
154 unsigned long sp
= regs
->regs
[29];
155 unsigned long ra
= regs
->regs
[31];
156 unsigned long pc
= regs
->cp0_epc
;
161 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
162 show_raw_backtrace(sp
, loglvl
, user
);
165 printk("%sCall Trace:\n", loglvl
);
167 print_ip_sym(loglvl
, pc
);
168 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
174 * This routine abuses get_user()/put_user() to reference pointers
175 * with at least a bit of error checking ...
177 static void show_stacktrace(struct task_struct
*task
,
178 const struct pt_regs
*regs
, const char *loglvl
, bool user
)
180 const int field
= 2 * sizeof(unsigned long);
181 unsigned long stackdata
;
183 unsigned long *sp
= (unsigned long *)regs
->regs
[29];
185 printk("%sStack :", loglvl
);
187 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
188 if (i
&& ((i
% (64 / field
)) == 0)) {
190 printk("%s ", loglvl
);
197 if (__get_addr(&stackdata
, sp
++, user
)) {
198 pr_cont(" (Bad stack address)");
202 pr_cont(" %0*lx", field
, stackdata
);
206 show_backtrace(task
, regs
, loglvl
, user
);
209 void show_stack(struct task_struct
*task
, unsigned long *sp
, const char *loglvl
)
213 regs
.cp0_status
= KSU_KERNEL
;
215 regs
.regs
[29] = (unsigned long)sp
;
219 if (task
&& task
!= current
) {
220 regs
.regs
[29] = task
->thread
.reg29
;
222 regs
.cp0_epc
= task
->thread
.reg31
;
224 prepare_frametrace(®s
);
227 show_stacktrace(task
, ®s
, loglvl
, false);
230 static void show_code(void *pc
, bool user
)
233 unsigned short *pc16
= NULL
;
237 if ((unsigned long)pc
& 1)
238 pc16
= (u16
*)((unsigned long)pc
& ~1);
240 for(i
= -3 ; i
< 6 ; i
++) {
244 if (__get_inst16(&insn16
, pc16
+ i
, user
))
247 pr_cont("%c%04x%c", (i
?' ':'<'), insn16
, (i
?' ':'>'));
251 if (__get_inst32(&insn32
, (u32
*)pc
+ i
, user
))
254 pr_cont("%c%08x%c", (i
?' ':'<'), insn32
, (i
?' ':'>'));
261 pr_cont(" (Bad address in epc)\n\n");
264 static void __show_regs(const struct pt_regs
*regs
)
266 const int field
= 2 * sizeof(unsigned long);
267 unsigned int cause
= regs
->cp0_cause
;
268 unsigned int exccode
;
271 show_regs_print_info(KERN_DEFAULT
);
274 * Saved main processor registers
276 for (i
= 0; i
< 32; ) {
280 pr_cont(" %0*lx", field
, 0UL);
281 else if (i
== 26 || i
== 27)
282 pr_cont(" %*s", field
, "");
284 pr_cont(" %0*lx", field
, regs
->regs
[i
]);
291 #ifdef CONFIG_CPU_HAS_SMARTMIPS
292 printk("Acx : %0*lx\n", field
, regs
->acx
);
294 if (MIPS_ISA_REV
< 6) {
295 printk("Hi : %0*lx\n", field
, regs
->hi
);
296 printk("Lo : %0*lx\n", field
, regs
->lo
);
300 * Saved cp0 registers
302 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
303 (void *) regs
->cp0_epc
);
304 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
305 (void *) regs
->regs
[31]);
307 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
310 if (regs
->cp0_status
& ST0_KUO
)
312 if (regs
->cp0_status
& ST0_IEO
)
314 if (regs
->cp0_status
& ST0_KUP
)
316 if (regs
->cp0_status
& ST0_IEP
)
318 if (regs
->cp0_status
& ST0_KUC
)
320 if (regs
->cp0_status
& ST0_IEC
)
322 } else if (cpu_has_4kex
) {
323 if (regs
->cp0_status
& ST0_KX
)
325 if (regs
->cp0_status
& ST0_SX
)
327 if (regs
->cp0_status
& ST0_UX
)
329 switch (regs
->cp0_status
& ST0_KSU
) {
334 pr_cont("SUPERVISOR ");
340 pr_cont("BAD_MODE ");
343 if (regs
->cp0_status
& ST0_ERL
)
345 if (regs
->cp0_status
& ST0_EXL
)
347 if (regs
->cp0_status
& ST0_IE
)
352 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
353 printk("Cause : %08x (ExcCode %02x)\n", cause
, exccode
);
355 if (1 <= exccode
&& exccode
<= 5)
356 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
358 printk("PrId : %08x (%s)\n", read_c0_prid(),
363 * FIXME: really the generic show_regs should take a const pointer argument.
365 void show_regs(struct pt_regs
*regs
)
371 void show_registers(struct pt_regs
*regs
)
373 const int field
= 2 * sizeof(unsigned long);
377 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
378 current
->comm
, current
->pid
, current_thread_info(), current
,
379 field
, current_thread_info()->tp_value
);
380 if (cpu_has_userlocal
) {
383 tls
= read_c0_userlocal();
384 if (tls
!= current_thread_info()->tp_value
)
385 printk("*HwTLS: %0*lx\n", field
, tls
);
388 show_stacktrace(current
, regs
, KERN_DEFAULT
, user_mode(regs
));
389 show_code((void *)regs
->cp0_epc
, user_mode(regs
));
393 static DEFINE_RAW_SPINLOCK(die_lock
);
395 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
397 static int die_counter
;
402 if (notify_die(DIE_OOPS
, str
, regs
, 0, current
->thread
.trap_nr
,
403 SIGSEGV
) == NOTIFY_STOP
)
407 raw_spin_lock_irq(&die_lock
);
410 printk("%s[#%d]:\n", str
, ++die_counter
);
411 show_registers(regs
);
412 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
413 raw_spin_unlock_irq(&die_lock
);
418 panic("Fatal exception in interrupt");
421 panic("Fatal exception");
423 if (regs
&& kexec_should_crash(current
))
429 extern struct exception_table_entry __start___dbe_table
[];
430 extern struct exception_table_entry __stop___dbe_table
[];
433 " .section __dbe_table, \"a\"\n"
436 /* Given an address, look for it in the exception tables. */
437 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
439 const struct exception_table_entry
*e
;
441 e
= search_extable(__start___dbe_table
,
442 __stop___dbe_table
- __start___dbe_table
, addr
);
444 e
= search_module_dbetables(addr
);
448 asmlinkage
void do_be(struct pt_regs
*regs
)
450 const int field
= 2 * sizeof(unsigned long);
451 const struct exception_table_entry
*fixup
= NULL
;
452 int data
= regs
->cp0_cause
& 4;
453 int action
= MIPS_BE_FATAL
;
454 enum ctx_state prev_state
;
456 prev_state
= exception_enter();
457 /* XXX For now. Fixme, this searches the wrong table ... */
458 if (data
&& !user_mode(regs
))
459 fixup
= search_dbe_tables(exception_epc(regs
));
462 action
= MIPS_BE_FIXUP
;
464 if (board_be_handler
)
465 action
= board_be_handler(regs
, fixup
!= NULL
);
467 mips_cm_error_report();
470 case MIPS_BE_DISCARD
:
474 regs
->cp0_epc
= fixup
->nextinsn
;
483 * Assume it would be too dangerous to continue ...
485 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
486 data
? "Data" : "Instruction",
487 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
488 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, current
->thread
.trap_nr
,
489 SIGBUS
) == NOTIFY_STOP
)
492 die_if_kernel("Oops", regs
);
496 exception_exit(prev_state
);
500 * ll/sc, rdhwr, sync emulation
503 #define OPCODE 0xfc000000
504 #define BASE 0x03e00000
505 #define RT 0x001f0000
506 #define OFFSET 0x0000ffff
507 #define LL 0xc0000000
508 #define SC 0xe0000000
509 #define SPEC0 0x00000000
510 #define SPEC3 0x7c000000
511 #define RD 0x0000f800
512 #define FUNC 0x0000003f
513 #define SYNC 0x0000000f
514 #define RDHWR 0x0000003b
516 /* microMIPS definitions */
517 #define MM_POOL32A_FUNC 0xfc00ffff
518 #define MM_RDHWR 0x00006b3c
519 #define MM_RS 0x001f0000
520 #define MM_RT 0x03e00000
523 * The ll_bit is cleared by r*_switch.S
527 struct task_struct
*ll_task
;
529 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
531 unsigned long value
, __user
*vaddr
;
535 * analyse the ll instruction that just caused a ri exception
536 * and put the referenced address to addr.
539 /* sign extend offset */
540 offset
= opcode
& OFFSET
;
544 vaddr
= (unsigned long __user
*)
545 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
547 if ((unsigned long)vaddr
& 3)
549 if (get_user(value
, vaddr
))
554 if (ll_task
== NULL
|| ll_task
== current
) {
563 regs
->regs
[(opcode
& RT
) >> 16] = value
;
568 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
570 unsigned long __user
*vaddr
;
575 * analyse the sc instruction that just caused a ri exception
576 * and put the referenced address to addr.
579 /* sign extend offset */
580 offset
= opcode
& OFFSET
;
584 vaddr
= (unsigned long __user
*)
585 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
586 reg
= (opcode
& RT
) >> 16;
588 if ((unsigned long)vaddr
& 3)
593 if (ll_bit
== 0 || ll_task
!= current
) {
601 if (put_user(regs
->regs
[reg
], vaddr
))
610 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
611 * opcodes are supposed to result in coprocessor unusable exceptions if
612 * executed on ll/sc-less processors. That's the theory. In practice a
613 * few processors such as NEC's VR4100 throw reserved instruction exceptions
614 * instead, so we're doing the emulation thing in both exception handlers.
616 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
618 if ((opcode
& OPCODE
) == LL
) {
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
621 return simulate_ll(regs
, opcode
);
623 if ((opcode
& OPCODE
) == SC
) {
624 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
626 return simulate_sc(regs
, opcode
);
629 return -1; /* Must be something else ... */
633 * Simulate trapping 'rdhwr' instructions to provide user accessible
634 * registers not implemented in hardware.
636 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
638 struct thread_info
*ti
= task_thread_info(current
);
640 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
643 case MIPS_HWR_CPUNUM
: /* CPU number */
644 regs
->regs
[rt
] = smp_processor_id();
646 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
647 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
648 current_cpu_data
.icache
.linesz
);
650 case MIPS_HWR_CC
: /* Read count register */
651 regs
->regs
[rt
] = read_c0_count();
653 case MIPS_HWR_CCRES
: /* Count register resolution */
654 switch (current_cpu_type()) {
663 case MIPS_HWR_ULR
: /* Read UserLocal register */
664 regs
->regs
[rt
] = ti
->tp_value
;
671 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
673 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
674 int rd
= (opcode
& RD
) >> 11;
675 int rt
= (opcode
& RT
) >> 16;
677 simulate_rdhwr(regs
, rd
, rt
);
685 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned int opcode
)
687 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
688 int rd
= (opcode
& MM_RS
) >> 16;
689 int rt
= (opcode
& MM_RT
) >> 21;
690 simulate_rdhwr(regs
, rd
, rt
);
698 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
700 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
701 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
706 return -1; /* Must be something else ... */
710 * Loongson-3 CSR instructions emulation
713 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
715 #define LWC2 0xc8000000
717 #define CSR_OPCODE2 0x00000118
718 #define CSR_OPCODE2_MASK 0x000007ff
719 #define CSR_FUNC_MASK RT
720 #define CSR_FUNC_CPUCFG 0x8
722 static int simulate_loongson3_cpucfg(struct pt_regs
*regs
,
725 int op
= opcode
& OPCODE
;
726 int op2
= opcode
& CSR_OPCODE2_MASK
;
727 int csr_func
= (opcode
& CSR_FUNC_MASK
) >> 16;
729 if (op
== LWC2
&& op2
== CSR_OPCODE2
&& csr_func
== CSR_FUNC_CPUCFG
) {
730 int rd
= (opcode
& RD
) >> 11;
731 int rs
= (opcode
& RS
) >> 21;
732 __u64 sel
= regs
->regs
[rs
];
734 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, regs
, 0);
736 /* Do not emulate on unsupported core models. */
738 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data
)) {
742 regs
->regs
[rd
] = loongson3_cpucfg_read_synthesized(
743 ¤t_cpu_data
, sel
);
751 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
753 asmlinkage
void do_ov(struct pt_regs
*regs
)
755 enum ctx_state prev_state
;
757 prev_state
= exception_enter();
758 die_if_kernel("Integer overflow", regs
);
760 force_sig_fault(SIGFPE
, FPE_INTOVF
, (void __user
*)regs
->cp0_epc
);
761 exception_exit(prev_state
);
764 #ifdef CONFIG_MIPS_FP_SUPPORT
767 * Send SIGFPE according to FCSR Cause bits, which must have already
768 * been masked against Enable bits. This is impotant as Inexact can
769 * happen together with Overflow or Underflow, and `ptrace' can set
772 void force_fcr31_sig(unsigned long fcr31
, void __user
*fault_addr
,
773 struct task_struct
*tsk
)
775 int si_code
= FPE_FLTUNK
;
777 if (fcr31
& FPU_CSR_INV_X
)
778 si_code
= FPE_FLTINV
;
779 else if (fcr31
& FPU_CSR_DIV_X
)
780 si_code
= FPE_FLTDIV
;
781 else if (fcr31
& FPU_CSR_OVF_X
)
782 si_code
= FPE_FLTOVF
;
783 else if (fcr31
& FPU_CSR_UDF_X
)
784 si_code
= FPE_FLTUND
;
785 else if (fcr31
& FPU_CSR_INE_X
)
786 si_code
= FPE_FLTRES
;
788 force_sig_fault_to_task(SIGFPE
, si_code
, fault_addr
, tsk
);
791 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
800 force_fcr31_sig(fcr31
, fault_addr
, current
);
804 force_sig_fault(SIGBUS
, BUS_ADRERR
, fault_addr
);
808 mmap_read_lock(current
->mm
);
809 if (vma_lookup(current
->mm
, (unsigned long)fault_addr
))
810 si_code
= SEGV_ACCERR
;
812 si_code
= SEGV_MAPERR
;
813 mmap_read_unlock(current
->mm
);
814 force_sig_fault(SIGSEGV
, si_code
, fault_addr
);
823 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
824 unsigned long old_epc
, unsigned long old_ra
)
826 union mips_instruction inst
= { .word
= opcode
};
827 void __user
*fault_addr
;
831 /* If it's obviously not an FP instruction, skip it */
832 switch (inst
.i_format
.opcode
) {
846 * do_ri skipped over the instruction via compute_return_epc, undo
847 * that for the FPU emulator.
849 regs
->cp0_epc
= old_epc
;
850 regs
->regs
[31] = old_ra
;
852 /* Run the emulator */
853 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
857 * We can't allow the emulated instruction to leave any
858 * enabled Cause bits set in $fcr31.
860 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
861 current
->thread
.fpu
.fcr31
&= ~fcr31
;
863 /* Restore the hardware register state */
866 /* Send a signal if required. */
867 process_fpemu_return(sig
, fault_addr
, fcr31
);
873 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
875 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
877 enum ctx_state prev_state
;
878 void __user
*fault_addr
;
881 prev_state
= exception_enter();
882 if (notify_die(DIE_FP
, "FP exception", regs
, 0, current
->thread
.trap_nr
,
883 SIGFPE
) == NOTIFY_STOP
)
886 /* Clear FCSR.Cause before enabling interrupts */
887 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~mask_fcr31_x(fcr31
));
890 die_if_kernel("FP exception in kernel code", regs
);
892 if (fcr31
& FPU_CSR_UNI_X
) {
894 * Unimplemented operation exception. If we've got the full
895 * software emulator on-board, let's use it...
897 * Force FPU to dump state into task/thread context. We're
898 * moving a lot of data here for what is probably a single
899 * instruction, but the alternative is to pre-decode the FP
900 * register operands before invoking the emulator, which seems
901 * a bit extreme for what should be an infrequent event.
904 /* Run the emulator */
905 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
909 * We can't allow the emulated instruction to leave any
910 * enabled Cause bits set in $fcr31.
912 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
913 current
->thread
.fpu
.fcr31
&= ~fcr31
;
915 /* Restore the hardware register state */
916 own_fpu(1); /* Using the FPU again. */
919 fault_addr
= (void __user
*) regs
->cp0_epc
;
922 /* Send a signal if required. */
923 process_fpemu_return(sig
, fault_addr
, fcr31
);
926 exception_exit(prev_state
);
930 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
931 * emulated more than some threshold number of instructions, force migration to
932 * a "CPU" that has FP support.
934 static void mt_ase_fp_affinity(void)
936 #ifdef CONFIG_MIPS_MT_FPAFF
937 if (mt_fpemul_threshold
> 0 &&
938 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
940 * If there's no FPU present, or if the application has already
941 * restricted the allowed set to exclude any CPUs with FPUs,
942 * we'll skip the procedure.
944 if (cpumask_intersects(¤t
->cpus_mask
, &mt_fpu_cpumask
)) {
947 current
->thread
.user_cpus_allowed
948 = current
->cpus_mask
;
949 cpumask_and(&tmask
, ¤t
->cpus_mask
,
951 set_cpus_allowed_ptr(current
, &tmask
);
952 set_thread_flag(TIF_FPUBOUND
);
955 #endif /* CONFIG_MIPS_MT_FPAFF */
958 #else /* !CONFIG_MIPS_FP_SUPPORT */
960 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
961 unsigned long old_epc
, unsigned long old_ra
)
966 #endif /* !CONFIG_MIPS_FP_SUPPORT */
968 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
, int si_code
,
973 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
974 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
975 SIGTRAP
) == NOTIFY_STOP
)
977 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
979 if (notify_die(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
980 SIGTRAP
) == NOTIFY_STOP
)
984 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
985 * insns, even for trap and break codes that indicate arithmetic
986 * failures. Weird ...
987 * But should we continue the brokenness??? --macro
992 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
993 die_if_kernel(b
, regs
);
994 force_sig_fault(SIGFPE
,
995 code
== BRK_DIVZERO
? FPE_INTDIV
: FPE_INTOVF
,
996 (void __user
*) regs
->cp0_epc
);
999 die_if_kernel("Kernel bug detected", regs
);
1004 * This breakpoint code is used by the FPU emulator to retake
1005 * control of the CPU after executing the instruction from the
1006 * delay slot of an emulated branch.
1008 * Terminate if exception was recognized as a delay slot return
1009 * otherwise handle as normal.
1011 if (do_dsemulret(regs
))
1014 die_if_kernel("Math emu break/trap", regs
);
1018 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
1019 die_if_kernel(b
, regs
);
1021 force_sig_fault(SIGTRAP
, si_code
, NULL
);
1028 asmlinkage
void do_bp(struct pt_regs
*regs
)
1030 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1031 unsigned int opcode
, bcode
;
1032 enum ctx_state prev_state
;
1033 bool user
= user_mode(regs
);
1035 prev_state
= exception_enter();
1036 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1037 if (get_isa16_mode(regs
->cp0_epc
)) {
1040 if (__get_inst16(&instr
[0], (u16
*)epc
, user
))
1043 if (!cpu_has_mmips
) {
1045 bcode
= (instr
[0] >> 5) & 0x3f;
1046 } else if (mm_insn_16bit(instr
[0])) {
1047 /* 16-bit microMIPS BREAK */
1048 bcode
= instr
[0] & 0xf;
1050 /* 32-bit microMIPS BREAK */
1051 if (__get_inst16(&instr
[1], (u16
*)(epc
+ 2), user
))
1053 opcode
= (instr
[0] << 16) | instr
[1];
1054 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1057 if (__get_inst32(&opcode
, (u32
*)epc
, user
))
1059 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1063 * There is the ancient bug in the MIPS assemblers that the break
1064 * code starts left to bit 16 instead to bit 6 in the opcode.
1065 * Gas is bug-compatible, but not always, grrr...
1066 * We handle both cases with a simple heuristics. --macro
1068 if (bcode
>= (1 << 10))
1069 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
1072 * notify the kprobe handlers, if instruction is likely to
1077 if (notify_die(DIE_UPROBE
, "uprobe", regs
, bcode
,
1078 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1082 case BRK_UPROBE_XOL
:
1083 if (notify_die(DIE_UPROBE_XOL
, "uprobe_xol", regs
, bcode
,
1084 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1089 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
1090 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1094 case BRK_KPROBE_SSTEPBP
:
1095 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
1096 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1104 do_trap_or_bp(regs
, bcode
, TRAP_BRKPT
, "Break");
1107 exception_exit(prev_state
);
1115 asmlinkage
void do_tr(struct pt_regs
*regs
)
1117 u32 opcode
, tcode
= 0;
1118 enum ctx_state prev_state
;
1120 bool user
= user_mode(regs
);
1121 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1123 prev_state
= exception_enter();
1124 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1125 if (get_isa16_mode(regs
->cp0_epc
)) {
1126 if (__get_inst16(&instr
[0], (u16
*)(epc
+ 0), user
) ||
1127 __get_inst16(&instr
[1], (u16
*)(epc
+ 2), user
))
1129 opcode
= (instr
[0] << 16) | instr
[1];
1130 /* Immediate versions don't provide a code. */
1131 if (!(opcode
& OPCODE
))
1132 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1134 if (__get_inst32(&opcode
, (u32
*)epc
, user
))
1136 /* Immediate versions don't provide a code. */
1137 if (!(opcode
& OPCODE
))
1138 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1141 do_trap_or_bp(regs
, tcode
, 0, "Trap");
1144 exception_exit(prev_state
);
1152 asmlinkage
void do_ri(struct pt_regs
*regs
)
1154 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1155 unsigned long old_epc
= regs
->cp0_epc
;
1156 unsigned long old31
= regs
->regs
[31];
1157 enum ctx_state prev_state
;
1158 unsigned int opcode
= 0;
1162 * Avoid any kernel code. Just emulate the R2 instruction
1163 * as quickly as possible.
1165 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1166 likely(user_mode(regs
)) &&
1167 likely(get_user(opcode
, epc
) >= 0)) {
1168 unsigned long fcr31
= 0;
1170 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1178 process_fpemu_return(status
,
1179 ¤t
->thread
.cp0_baduaddr
,
1187 prev_state
= exception_enter();
1188 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1190 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, current
->thread
.trap_nr
,
1191 SIGILL
) == NOTIFY_STOP
)
1194 die_if_kernel("Reserved instruction in kernel code", regs
);
1196 if (unlikely(compute_return_epc(regs
) < 0))
1199 if (!get_isa16_mode(regs
->cp0_epc
)) {
1200 if (unlikely(get_user(opcode
, epc
) < 0))
1203 if (!cpu_has_llsc
&& status
< 0)
1204 status
= simulate_llsc(regs
, opcode
);
1207 status
= simulate_rdhwr_normal(regs
, opcode
);
1210 status
= simulate_sync(regs
, opcode
);
1213 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1215 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1217 status
= simulate_loongson3_cpucfg(regs
, opcode
);
1219 } else if (cpu_has_mmips
) {
1220 unsigned short mmop
[2] = { 0 };
1222 if (unlikely(get_user(mmop
[0], (u16 __user
*)epc
+ 0) < 0))
1224 if (unlikely(get_user(mmop
[1], (u16 __user
*)epc
+ 1) < 0))
1227 opcode
= (opcode
<< 16) | mmop
[1];
1230 status
= simulate_rdhwr_mm(regs
, opcode
);
1236 if (unlikely(status
> 0)) {
1237 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1238 regs
->regs
[31] = old31
;
1243 exception_exit(prev_state
);
1247 * No lock; only written during early bootup by CPU 0.
1249 static RAW_NOTIFIER_HEAD(cu2_chain
);
1251 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1253 return raw_notifier_chain_register(&cu2_chain
, nb
);
1256 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1258 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1261 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1264 struct pt_regs
*regs
= data
;
1266 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1267 "instruction", regs
);
1273 #ifdef CONFIG_MIPS_FP_SUPPORT
1275 static int enable_restore_fp_context(int msa
)
1277 int err
, was_fpu_owner
, prior_msa
;
1280 /* Initialize context if it hasn't been used already */
1281 first_fp
= init_fp_ctx(current
);
1285 err
= own_fpu_inatomic(1);
1289 * with MSA enabled, userspace can see MSACSR
1290 * and MSA regs, but the values in them are from
1291 * other task before current task, restore them
1292 * from saved fp/msa context
1294 write_msa_csr(current
->thread
.fpu
.msacsr
);
1296 * own_fpu_inatomic(1) just restore low 64bit,
1297 * fix the high 64bit
1300 set_thread_flag(TIF_USEDMSA
);
1301 set_thread_flag(TIF_MSA_CTX_LIVE
);
1308 * This task has formerly used the FP context.
1310 * If this thread has no live MSA vector context then we can simply
1311 * restore the scalar FP context. If it has live MSA vector context
1312 * (that is, it has or may have used MSA since last performing a
1313 * function call) then we'll need to restore the vector context. This
1314 * applies even if we're currently only executing a scalar FP
1315 * instruction. This is because if we were to later execute an MSA
1316 * instruction then we'd either have to:
1318 * - Restore the vector context & clobber any registers modified by
1319 * scalar FP instructions between now & then.
1323 * - Not restore the vector context & lose the most significant bits
1324 * of all vector registers.
1326 * Neither of those options is acceptable. We cannot restore the least
1327 * significant bits of the registers now & only restore the most
1328 * significant bits later because the most significant bits of any
1329 * vector registers whose aliased FP register is modified now will have
1330 * been zeroed. We'd have no way to know that when restoring the vector
1331 * context & thus may load an outdated value for the most significant
1332 * bits of a vector register.
1334 if (!msa
&& !thread_msa_context_live())
1338 * This task is using or has previously used MSA. Thus we require
1339 * that Status.FR == 1.
1342 was_fpu_owner
= is_fpu_owner();
1343 err
= own_fpu_inatomic(0);
1348 write_msa_csr(current
->thread
.fpu
.msacsr
);
1349 set_thread_flag(TIF_USEDMSA
);
1352 * If this is the first time that the task is using MSA and it has
1353 * previously used scalar FP in this time slice then we already nave
1354 * FP context which we shouldn't clobber. We do however need to clear
1355 * the upper 64b of each vector register so that this task has no
1356 * opportunity to see data left behind by another.
1358 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1359 if (!prior_msa
&& was_fpu_owner
) {
1367 * Restore the least significant 64b of each vector register
1368 * from the existing scalar FP context.
1370 _restore_fp(current
);
1373 * The task has not formerly used MSA, so clear the upper 64b
1374 * of each vector register such that it cannot see data left
1375 * behind by another task.
1379 /* We need to restore the vector context. */
1380 restore_msa(current
);
1382 /* Restore the scalar FP control & status register */
1384 write_32bit_cp1_register(CP1_STATUS
,
1385 current
->thread
.fpu
.fcr31
);
1394 #else /* !CONFIG_MIPS_FP_SUPPORT */
1396 static int enable_restore_fp_context(int msa
)
1401 #endif /* CONFIG_MIPS_FP_SUPPORT */
1403 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1405 enum ctx_state prev_state
;
1406 unsigned int __user
*epc
;
1407 unsigned long old_epc
, old31
;
1408 unsigned int opcode
;
1412 prev_state
= exception_enter();
1413 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1416 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1420 epc
= (unsigned int __user
*)exception_epc(regs
);
1421 old_epc
= regs
->cp0_epc
;
1422 old31
= regs
->regs
[31];
1426 if (unlikely(compute_return_epc(regs
) < 0))
1429 if (!get_isa16_mode(regs
->cp0_epc
)) {
1430 if (unlikely(get_user(opcode
, epc
) < 0))
1433 if (!cpu_has_llsc
&& status
< 0)
1434 status
= simulate_llsc(regs
, opcode
);
1440 if (unlikely(status
> 0)) {
1441 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1442 regs
->regs
[31] = old31
;
1448 #ifdef CONFIG_MIPS_FP_SUPPORT
1451 * The COP3 opcode space and consequently the CP0.Status.CU3
1452 * bit and the CP0.Cause.CE=3 encoding have been removed as
1453 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1454 * up the space has been reused for COP1X instructions, that
1455 * are enabled by the CP0.Status.CU1 bit and consequently
1456 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1457 * exceptions. Some FPU-less processors that implement one
1458 * of these ISAs however use this code erroneously for COP1X
1459 * instructions. Therefore we redirect this trap to the FP
1462 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1468 void __user
*fault_addr
;
1469 unsigned long fcr31
;
1472 err
= enable_restore_fp_context(0);
1474 if (raw_cpu_has_fpu
&& !err
)
1477 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1481 * We can't allow the emulated instruction to leave
1482 * any enabled Cause bits set in $fcr31.
1484 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
1485 current
->thread
.fpu
.fcr31
&= ~fcr31
;
1487 /* Send a signal if required. */
1488 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1489 mt_ase_fp_affinity();
1493 #else /* CONFIG_MIPS_FP_SUPPORT */
1498 #endif /* CONFIG_MIPS_FP_SUPPORT */
1501 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1505 exception_exit(prev_state
);
1508 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1510 enum ctx_state prev_state
;
1512 prev_state
= exception_enter();
1513 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1514 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1515 current
->thread
.trap_nr
, SIGFPE
) == NOTIFY_STOP
)
1518 /* Clear MSACSR.Cause before enabling interrupts */
1519 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1522 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1525 exception_exit(prev_state
);
1528 asmlinkage
void do_msa(struct pt_regs
*regs
)
1530 enum ctx_state prev_state
;
1533 prev_state
= exception_enter();
1535 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1540 die_if_kernel("do_msa invoked from kernel context!", regs
);
1542 err
= enable_restore_fp_context(1);
1546 exception_exit(prev_state
);
1549 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1551 enum ctx_state prev_state
;
1553 prev_state
= exception_enter();
1555 exception_exit(prev_state
);
1559 * Called with interrupts disabled.
1561 asmlinkage
void do_watch(struct pt_regs
*regs
)
1563 enum ctx_state prev_state
;
1565 prev_state
= exception_enter();
1567 * Clear WP (bit 22) bit of cause register so we don't loop
1570 clear_c0_cause(CAUSEF_WP
);
1573 * If the current thread has the watch registers loaded, save
1574 * their values and send SIGTRAP. Otherwise another thread
1575 * left the registers set, clear them and continue.
1577 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1578 mips_read_watch_registers();
1580 force_sig_fault(SIGTRAP
, TRAP_HWBKPT
, NULL
);
1582 mips_clear_watch_registers();
1585 exception_exit(prev_state
);
1588 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1590 int multi_match
= regs
->cp0_status
& ST0_TS
;
1591 enum ctx_state prev_state
;
1593 prev_state
= exception_enter();
1602 show_code((void *)regs
->cp0_epc
, user_mode(regs
));
1605 * Some chips may have other causes of machine check (e.g. SB1
1608 panic("Caught Machine Check exception - %scaused by multiple "
1609 "matching entries in the TLB.",
1610 (multi_match
) ? "" : "not ");
1613 asmlinkage
void do_mt(struct pt_regs
*regs
)
1617 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1618 >> VPECONTROL_EXCPT_SHIFT
;
1621 printk(KERN_DEBUG
"Thread Underflow\n");
1624 printk(KERN_DEBUG
"Thread Overflow\n");
1627 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1630 printk(KERN_DEBUG
"Gating Storage Exception\n");
1633 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1636 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1639 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1643 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1649 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1652 panic("Unexpected DSP exception");
1657 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1660 * Game over - no way to handle this if it ever occurs. Most probably
1661 * caused by a new unknown cpu type or after another deadly
1662 * hard/software error.
1665 panic("Caught reserved exception %ld - should not happen.",
1666 (regs
->cp0_cause
& 0x7f) >> 2);
1669 static int __initdata l1parity
= 1;
1670 static int __init
nol1parity(char *s
)
1675 __setup("nol1par", nol1parity
);
1676 static int __initdata l2parity
= 1;
1677 static int __init
nol2parity(char *s
)
1682 __setup("nol2par", nol2parity
);
1685 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1686 * it different ways.
1688 static inline __init
void parity_protection_init(void)
1690 #define ERRCTL_PE 0x80000000
1691 #define ERRCTL_L2P 0x00800000
1693 if (mips_cm_revision() >= CM_REV_CM3
) {
1694 ulong gcr_ectl
, cp0_ectl
;
1697 * With CM3 systems we need to ensure that the L1 & L2
1698 * parity enables are set to the same value, since this
1699 * is presumed by the hardware engineers.
1701 * If the user disabled either of L1 or L2 ECC checking,
1704 l1parity
&= l2parity
;
1705 l2parity
&= l1parity
;
1707 /* Probe L1 ECC support */
1708 cp0_ectl
= read_c0_ecc();
1709 write_c0_ecc(cp0_ectl
| ERRCTL_PE
);
1710 back_to_back_c0_hazard();
1711 cp0_ectl
= read_c0_ecc();
1713 /* Probe L2 ECC support */
1714 gcr_ectl
= read_gcr_err_control();
1716 if (!(gcr_ectl
& CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT
) ||
1717 !(cp0_ectl
& ERRCTL_PE
)) {
1719 * One of L1 or L2 ECC checking isn't supported,
1720 * so we cannot enable either.
1722 l1parity
= l2parity
= 0;
1725 /* Configure L1 ECC checking */
1727 cp0_ectl
|= ERRCTL_PE
;
1729 cp0_ectl
&= ~ERRCTL_PE
;
1730 write_c0_ecc(cp0_ectl
);
1731 back_to_back_c0_hazard();
1732 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE
) != l1parity
);
1734 /* Configure L2 ECC checking */
1736 gcr_ectl
|= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1738 gcr_ectl
&= ~CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1739 write_gcr_err_control(gcr_ectl
);
1740 gcr_ectl
= read_gcr_err_control();
1741 gcr_ectl
&= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1742 WARN_ON(!!gcr_ectl
!= l2parity
);
1744 pr_info("Cache parity protection %sabled\n",
1745 l1parity
? "en" : "dis");
1749 switch (current_cpu_type()) {
1755 case CPU_INTERAPTIV
:
1758 case CPU_QEMU_GENERIC
:
1761 unsigned long errctl
;
1762 unsigned int l1parity_present
, l2parity_present
;
1764 errctl
= read_c0_ecc();
1765 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1767 /* probe L1 parity support */
1768 write_c0_ecc(errctl
| ERRCTL_PE
);
1769 back_to_back_c0_hazard();
1770 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1772 /* probe L2 parity support */
1773 write_c0_ecc(errctl
|ERRCTL_L2P
);
1774 back_to_back_c0_hazard();
1775 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1777 if (l1parity_present
&& l2parity_present
) {
1779 errctl
|= ERRCTL_PE
;
1780 if (l1parity
^ l2parity
)
1781 errctl
|= ERRCTL_L2P
;
1782 } else if (l1parity_present
) {
1784 errctl
|= ERRCTL_PE
;
1785 } else if (l2parity_present
) {
1787 errctl
|= ERRCTL_L2P
;
1789 /* No parity available */
1792 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1794 write_c0_ecc(errctl
);
1795 back_to_back_c0_hazard();
1796 errctl
= read_c0_ecc();
1797 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1799 if (l1parity_present
)
1800 printk(KERN_INFO
"Cache parity protection %sabled\n",
1801 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1803 if (l2parity_present
) {
1804 if (l1parity_present
&& l1parity
)
1805 errctl
^= ERRCTL_L2P
;
1806 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1807 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1814 case CPU_LOONGSON32
:
1815 write_c0_ecc(0x80000000);
1816 back_to_back_c0_hazard();
1817 /* Set the PE bit (bit 31) in the c0_errctl register. */
1818 printk(KERN_INFO
"Cache parity protection %sabled\n",
1819 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1823 /* Clear the DE bit (bit 16) in the c0_status register. */
1824 printk(KERN_INFO
"Enable cache parity protection for "
1825 "MIPS 20KC/25KF CPUs.\n");
1826 clear_c0_status(ST0_DE
);
1833 asmlinkage
void cache_parity_error(void)
1835 const int field
= 2 * sizeof(unsigned long);
1836 unsigned int reg_val
;
1838 /* For the moment, report the problem and hang. */
1839 printk("Cache error exception:\n");
1840 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1841 reg_val
= read_c0_cacheerr();
1842 printk("c0_cacheerr == %08x\n", reg_val
);
1844 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845 reg_val
& (1<<30) ? "secondary" : "primary",
1846 reg_val
& (1<<31) ? "data" : "insn");
1847 if ((cpu_has_mips_r2_r6
) &&
1848 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1849 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1850 reg_val
& (1<<29) ? "ED " : "",
1851 reg_val
& (1<<28) ? "ET " : "",
1852 reg_val
& (1<<27) ? "ES " : "",
1853 reg_val
& (1<<26) ? "EE " : "",
1854 reg_val
& (1<<25) ? "EB " : "",
1855 reg_val
& (1<<24) ? "EI " : "",
1856 reg_val
& (1<<23) ? "E1 " : "",
1857 reg_val
& (1<<22) ? "E0 " : "");
1859 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1860 reg_val
& (1<<29) ? "ED " : "",
1861 reg_val
& (1<<28) ? "ET " : "",
1862 reg_val
& (1<<26) ? "EE " : "",
1863 reg_val
& (1<<25) ? "EB " : "",
1864 reg_val
& (1<<24) ? "EI " : "",
1865 reg_val
& (1<<23) ? "E1 " : "",
1866 reg_val
& (1<<22) ? "E0 " : "");
1868 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1870 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1871 if (reg_val
& (1<<22))
1872 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1874 if (reg_val
& (1<<23))
1875 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1878 panic("Can't handle the cache error!");
1881 asmlinkage
void do_ftlb(void)
1883 const int field
= 2 * sizeof(unsigned long);
1884 unsigned int reg_val
;
1886 /* For the moment, report the problem and hang. */
1887 if ((cpu_has_mips_r2_r6
) &&
1888 (((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
) ||
1889 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_LOONGSON
))) {
1890 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1892 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1893 reg_val
= read_c0_cacheerr();
1894 pr_err("c0_cacheerr == %08x\n", reg_val
);
1896 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1897 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1899 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1900 reg_val
& (1<<30) ? "secondary" : "primary",
1901 reg_val
& (1<<31) ? "data" : "insn");
1904 pr_err("FTLB error exception\n");
1906 /* Just print the cacheerr bits for now */
1907 cache_parity_error();
1910 asmlinkage
void do_gsexc(struct pt_regs
*regs
, u32 diag1
)
1912 u32 exccode
= (diag1
& LOONGSON_DIAG1_EXCCODE
) >>
1913 LOONGSON_DIAG1_EXCCODE_SHIFT
;
1914 enum ctx_state prev_state
;
1916 prev_state
= exception_enter();
1920 /* Undocumented exception, will trigger on certain
1921 * also-undocumented instructions accessible from userspace.
1922 * Processor state is not otherwise corrupted, but currently
1923 * we don't know how to proceed. Maybe there is some
1924 * undocumented control flag to enable the instructions?
1930 /* None of the other exceptions, documented or not, have
1931 * further details given; none are encountered in the wild
1932 * either. Panic in case some of them turn out to be fatal.
1935 panic("Unhandled Loongson exception - GSCause = %08x", diag1
);
1938 exception_exit(prev_state
);
1942 * SDBBP EJTAG debug exception handler.
1943 * We skip the instruction and return to the next instruction.
1945 void ejtag_exception_handler(struct pt_regs
*regs
)
1947 const int field
= 2 * sizeof(unsigned long);
1948 unsigned long depc
, old_epc
, old_ra
;
1951 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1952 depc
= read_c0_depc();
1953 debug
= read_c0_debug();
1954 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1955 if (debug
& 0x80000000) {
1957 * In branch delay slot.
1958 * We cheat a little bit here and use EPC to calculate the
1959 * debug return address (DEPC). EPC is restored after the
1962 old_epc
= regs
->cp0_epc
;
1963 old_ra
= regs
->regs
[31];
1964 regs
->cp0_epc
= depc
;
1965 compute_return_epc(regs
);
1966 depc
= regs
->cp0_epc
;
1967 regs
->cp0_epc
= old_epc
;
1968 regs
->regs
[31] = old_ra
;
1971 write_c0_depc(depc
);
1974 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1975 write_c0_debug(debug
| 0x100);
1980 * NMI exception handler.
1981 * No lock; only written during early bootup by CPU 0.
1983 static RAW_NOTIFIER_HEAD(nmi_chain
);
1985 int register_nmi_notifier(struct notifier_block
*nb
)
1987 return raw_notifier_chain_register(&nmi_chain
, nb
);
1990 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1995 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1997 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1998 smp_processor_id(), regs
->cp0_epc
);
1999 regs
->cp0_epc
= read_c0_errorepc();
2004 unsigned long ebase
;
2005 EXPORT_SYMBOL_GPL(ebase
);
2006 unsigned long exception_handlers
[32];
2007 unsigned long vi_handlers
[64];
2009 void reserve_exception_space(phys_addr_t addr
, unsigned long size
)
2012 * reserve exception space on CPUs other than CPU0
2013 * is too late, since memblock is unavailable when APs
2016 if (smp_processor_id() == 0)
2017 memblock_reserve(addr
, size
);
2020 void __init
*set_except_vector(int n
, void *addr
)
2022 unsigned long handler
= (unsigned long) addr
;
2023 unsigned long old_handler
;
2025 #ifdef CONFIG_CPU_MICROMIPS
2027 * Only the TLB handlers are cache aligned with an even
2028 * address. All other handlers are on an odd address and
2029 * require no modification. Otherwise, MIPS32 mode will
2030 * be entered when handling any TLB exceptions. That
2031 * would be bad...since we must stay in microMIPS mode.
2033 if (!(handler
& 0x1))
2036 old_handler
= xchg(&exception_handlers
[n
], handler
);
2038 if (n
== 0 && cpu_has_divec
) {
2039 #ifdef CONFIG_CPU_MICROMIPS
2040 unsigned long jump_mask
= ~((1 << 27) - 1);
2042 unsigned long jump_mask
= ~((1 << 28) - 1);
2044 u32
*buf
= (u32
*)(ebase
+ 0x200);
2045 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
2046 uasm_i_j(&buf
, handler
& ~jump_mask
);
2049 UASM_i_LA(&buf
, GPR_K0
, handler
);
2050 uasm_i_jr(&buf
, GPR_K0
);
2053 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
2055 return (void *)old_handler
;
2058 static void do_default_vi(void)
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2064 void *set_vi_handler(int n
, vi_handler_t addr
)
2066 extern const u8 except_vec_vi
[];
2067 extern const u8 except_vec_vi_ori
[], except_vec_vi_end
[];
2068 extern const u8 rollback_except_vec_vi
[];
2069 unsigned long handler
;
2070 unsigned long old_handler
= vi_handlers
[n
];
2071 int srssets
= current_cpu_data
.srsets
;
2074 const u8
*vec_start
;
2078 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
2081 handler
= (unsigned long) do_default_vi
;
2083 handler
= (unsigned long) addr
;
2084 vi_handlers
[n
] = handler
;
2086 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
2089 if (board_bind_eic_interrupt
)
2090 board_bind_eic_interrupt(n
, 0);
2091 } else if (cpu_has_vint
) {
2092 /* SRSMap is only defined if shadow sets are implemented */
2094 change_c0_srsmap(0xf << n
*4, 0 << n
*4);
2097 vec_start
= using_rollback_handler() ? rollback_except_vec_vi
:
2099 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100 ori_offset
= except_vec_vi_ori
- vec_start
+ 2;
2102 ori_offset
= except_vec_vi_ori
- vec_start
;
2104 handler_len
= except_vec_vi_end
- vec_start
;
2106 if (handler_len
> VECTORSPACING
) {
2108 * Sigh... panicing won't help as the console
2109 * is probably not configured :(
2111 panic("VECTORSPACING too small");
2114 set_handler(((unsigned long)b
- ebase
), vec_start
,
2115 #ifdef CONFIG_CPU_MICROMIPS
2120 /* insert offset into vi_handlers[] */
2121 h
= (u16
*)(b
+ ori_offset
);
2122 *h
= n
* sizeof(handler
);
2123 local_flush_icache_range((unsigned long)b
,
2124 (unsigned long)(b
+handler_len
));
2126 return (void *)old_handler
;
2132 int cp0_compare_irq
;
2133 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2134 int cp0_compare_irq_shift
;
2137 * Performance counter IRQ or -1 if shared with timer
2139 int cp0_perfcount_irq
;
2140 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2143 * Fast debug channel IRQ or -1 if not present
2146 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2150 static int __init
ulri_disable(char *s
)
2152 pr_info("Disabling ulri\n");
2157 __setup("noulri", ulri_disable
);
2159 /* configure STATUS register */
2160 static void configure_status(void)
2163 * Disable coprocessors and select 32-bit or 64-bit addressing
2164 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2165 * flag that some firmware may have left set and the TS bit (for
2166 * IP27). Set XX for ISA IV code to work.
2168 unsigned int status_set
= ST0_KERNEL_CUMASK
;
2170 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2172 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2173 status_set
|= ST0_XX
;
2175 status_set
|= ST0_MX
;
2177 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2179 back_to_back_c0_hazard();
2182 unsigned int hwrena
;
2183 EXPORT_SYMBOL_GPL(hwrena
);
2185 /* configure HWRENA register */
2186 static void configure_hwrena(void)
2188 hwrena
= cpu_hwrena_impl_bits
;
2190 if (cpu_has_mips_r2_r6
)
2191 hwrena
|= MIPS_HWRENA_CPUNUM
|
2192 MIPS_HWRENA_SYNCISTEP
|
2196 if (!noulri
&& cpu_has_userlocal
)
2197 hwrena
|= MIPS_HWRENA_ULR
;
2200 write_c0_hwrena(hwrena
);
2203 static void configure_exception_vector(void)
2205 if (cpu_has_mips_r2_r6
) {
2206 unsigned long sr
= set_c0_status(ST0_BEV
);
2207 /* If available, use WG to set top bits of EBASE */
2208 if (cpu_has_ebase_wg
) {
2210 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2212 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2215 write_c0_ebase(ebase
);
2216 write_c0_status(sr
);
2218 if (cpu_has_veic
|| cpu_has_vint
) {
2219 /* Setting vector spacing enables EI/VI mode */
2220 change_c0_intctl(0x3e0, VECTORSPACING
);
2222 if (cpu_has_divec
) {
2223 if (cpu_has_mipsmt
) {
2224 unsigned int vpflags
= dvpe();
2225 set_c0_cause(CAUSEF_IV
);
2228 set_c0_cause(CAUSEF_IV
);
2232 void per_cpu_trap_init(bool is_boot_cpu
)
2234 unsigned int cpu
= smp_processor_id();
2239 configure_exception_vector();
2242 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2244 * o read IntCtl.IPTI to determine the timer interrupt
2245 * o read IntCtl.IPPCI to determine the performance counter interrupt
2246 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2248 if (cpu_has_mips_r2_r6
) {
2249 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2250 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2251 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2252 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2257 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2258 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2259 cp0_perfcount_irq
= -1;
2264 cpu_data
[cpu
].asid_cache
= 0;
2265 else if (!cpu_data
[cpu
].asid_cache
)
2266 cpu_data
[cpu
].asid_cache
= asid_first_version(cpu
);
2269 current
->active_mm
= &init_mm
;
2270 BUG_ON(current
->mm
);
2271 enter_lazy_tlb(&init_mm
, current
);
2273 /* Boot CPU's cache setup in setup_arch(). */
2277 TLBMISS_HANDLER_SETUP();
2280 /* Install CPU exception handler */
2281 void set_handler(unsigned long offset
, const void *addr
, unsigned long size
)
2283 #ifdef CONFIG_CPU_MICROMIPS
2284 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2286 memcpy((void *)(ebase
+ offset
), addr
, size
);
2288 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2291 static const char panic_null_cerr
[] =
2292 "Trying to set NULL cache error exception handler\n";
2295 * Install uncached CPU exception handler.
2296 * This is suitable only for the cache error exception which is the only
2297 * exception handler that is being run uncached.
2299 void set_uncached_handler(unsigned long offset
, void *addr
,
2302 unsigned long uncached_ebase
= CKSEG1ADDR_OR_64BIT(__pa(ebase
));
2305 panic(panic_null_cerr
);
2307 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2310 static int __initdata rdhwr_noopt
;
2311 static int __init
set_rdhwr_noopt(char *str
)
2317 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2319 void __init
trap_init(void)
2321 extern char except_vec3_generic
;
2322 extern char except_vec4
;
2323 extern char except_vec3_r4000
;
2324 unsigned long i
, vec_size
;
2325 phys_addr_t ebase_pa
;
2329 if (!cpu_has_mips_r2_r6
) {
2333 if (cpu_has_veic
|| cpu_has_vint
)
2334 vec_size
= 0x200 + VECTORSPACING
*64;
2336 vec_size
= PAGE_SIZE
;
2338 ebase_pa
= memblock_phys_alloc(vec_size
, 1 << fls(vec_size
));
2340 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2341 __func__
, vec_size
, 1 << fls(vec_size
));
2344 * Try to ensure ebase resides in KSeg0 if possible.
2346 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2347 * hitting a poorly defined exception base for Cache Errors.
2348 * The allocation is likely to be in the low 512MB of physical,
2349 * in which case we should be able to convert to KSeg0.
2351 * EVA is special though as it allows segments to be rearranged
2352 * and to become uncached during cache error handling.
2354 if (!IS_ENABLED(CONFIG_EVA
) && ebase_pa
< 0x20000000)
2355 ebase
= CKSEG0ADDR(ebase_pa
);
2357 ebase
= (unsigned long)phys_to_virt(ebase_pa
);
2358 if (ebase_pa
>= 0x20000000)
2359 pr_warn("ebase(%pa) should better be in KSeg0",
2363 if (cpu_has_mmips
) {
2364 unsigned int config3
= read_c0_config3();
2366 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2367 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2369 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2372 if (board_ebase_setup
)
2373 board_ebase_setup();
2374 per_cpu_trap_init(true);
2375 memblock_set_bottom_up(false);
2378 * Copy the generic exception handlers to their final destination.
2379 * This will be overridden later as suitable for a particular
2382 set_handler(0x180, &except_vec3_generic
, 0x80);
2385 * Setup default vectors
2387 for (i
= 0; i
<= 31; i
++)
2388 set_except_vector(i
, handle_reserved
);
2391 * Copy the EJTAG debug exception vector handler code to its final
2394 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2395 board_ejtag_handler_setup();
2398 * Only some CPUs have the watch exceptions.
2401 set_except_vector(EXCCODE_WATCH
, handle_watch
);
2404 * Initialise interrupt handlers
2406 if (cpu_has_veic
|| cpu_has_vint
) {
2407 int nvec
= cpu_has_veic
? 64 : 8;
2408 for (i
= 0; i
< nvec
; i
++)
2409 set_vi_handler(i
, NULL
);
2411 else if (cpu_has_divec
)
2412 set_handler(0x200, &except_vec4
, 0x8);
2415 * Some CPUs can enable/disable for cache parity detection, but does
2416 * it different ways.
2418 parity_protection_init();
2421 * The Data Bus Errors / Instruction Bus Errors are signaled
2422 * by external hardware. Therefore these two exceptions
2423 * may have board specific handlers.
2428 set_except_vector(EXCCODE_INT
, using_rollback_handler() ?
2429 rollback_handle_int
: handle_int
);
2430 set_except_vector(EXCCODE_MOD
, handle_tlbm
);
2431 set_except_vector(EXCCODE_TLBL
, handle_tlbl
);
2432 set_except_vector(EXCCODE_TLBS
, handle_tlbs
);
2434 set_except_vector(EXCCODE_ADEL
, handle_adel
);
2435 set_except_vector(EXCCODE_ADES
, handle_ades
);
2437 set_except_vector(EXCCODE_IBE
, handle_ibe
);
2438 set_except_vector(EXCCODE_DBE
, handle_dbe
);
2440 set_except_vector(EXCCODE_SYS
, handle_sys
);
2441 set_except_vector(EXCCODE_BP
, handle_bp
);
2444 set_except_vector(EXCCODE_RI
, handle_ri
);
2446 if (cpu_has_vtag_icache
)
2447 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2448 else if (current_cpu_type() == CPU_LOONGSON64
)
2449 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2451 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr
);
2454 set_except_vector(EXCCODE_CPU
, handle_cpu
);
2455 set_except_vector(EXCCODE_OV
, handle_ov
);
2456 set_except_vector(EXCCODE_TR
, handle_tr
);
2457 set_except_vector(EXCCODE_MSAFPE
, handle_msa_fpe
);
2459 if (board_nmi_handler_setup
)
2460 board_nmi_handler_setup();
2462 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2463 set_except_vector(EXCCODE_FPE
, handle_fpe
);
2465 if (cpu_has_ftlbparex
)
2466 set_except_vector(MIPS_EXCCODE_TLBPAR
, handle_ftlb
);
2468 if (cpu_has_gsexcex
)
2469 set_except_vector(LOONGSON_EXCCODE_GSEXC
, handle_gsexc
);
2471 if (cpu_has_rixiex
) {
2472 set_except_vector(EXCCODE_TLBRI
, tlb_do_page_fault_0
);
2473 set_except_vector(EXCCODE_TLBXI
, tlb_do_page_fault_0
);
2476 set_except_vector(EXCCODE_MSADIS
, handle_msa
);
2477 set_except_vector(EXCCODE_MDMX
, handle_mdmx
);
2480 set_except_vector(EXCCODE_MCHECK
, handle_mcheck
);
2483 set_except_vector(EXCCODE_THREAD
, handle_mt
);
2485 set_except_vector(EXCCODE_DSPDIS
, handle_dsp
);
2487 if (board_cache_error_setup
)
2488 board_cache_error_setup();
2491 /* Special exception: R4[04]00 uses also the divec space. */
2492 set_handler(0x180, &except_vec3_r4000
, 0x100);
2493 else if (cpu_has_4kex
)
2494 set_handler(0x180, &except_vec3_generic
, 0x80);
2496 set_handler(0x080, &except_vec3_generic
, 0x80);
2498 local_flush_icache_range(ebase
, ebase
+ vec_size
);
2500 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2502 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2505 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2509 case CPU_PM_ENTER_FAILED
:
2513 configure_exception_vector();
2515 /* Restore register with CPU number for TLB handlers */
2516 TLBMISS_HANDLER_RESTORE();
2524 static struct notifier_block trap_pm_notifier_block
= {
2525 .notifier_call
= trap_pm_notifier
,
2528 static int __init
trap_pm_init(void)
2530 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2532 arch_initcall(trap_pm_init
);