accel/amdxdna: use modern PM helpers
[drm/drm-misc.git] / arch / x86 / crypto / camellia-aesni-avx2-asm_64.S
bloba0eb94e53b1bb12d50bb5ecc5ab5edffb665625f
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * x86_64/AVX2/AES-NI assembler implementation of Camellia
4  *
5  * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
6  */
8 #include <linux/linkage.h>
9 #include <asm/frame.h>
11 #define CAMELLIA_TABLE_BYTE_LEN 272
13 /* struct camellia_ctx: */
14 #define key_table 0
15 #define key_length CAMELLIA_TABLE_BYTE_LEN
17 /* register macros */
18 #define CTX %rdi
19 #define RIO %r8
21 /**********************************************************************
22   helper macros
23  **********************************************************************/
24 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
25         vpand x, mask4bit, tmp0; \
26         vpandn x, mask4bit, x; \
27         vpsrld $4, x, x; \
28         \
29         vpshufb tmp0, lo_t, tmp0; \
30         vpshufb x, hi_t, x; \
31         vpxor tmp0, x, x;
33 #define ymm0_x xmm0
34 #define ymm1_x xmm1
35 #define ymm2_x xmm2
36 #define ymm3_x xmm3
37 #define ymm4_x xmm4
38 #define ymm5_x xmm5
39 #define ymm6_x xmm6
40 #define ymm7_x xmm7
41 #define ymm8_x xmm8
42 #define ymm9_x xmm9
43 #define ymm10_x xmm10
44 #define ymm11_x xmm11
45 #define ymm12_x xmm12
46 #define ymm13_x xmm13
47 #define ymm14_x xmm14
48 #define ymm15_x xmm15
50 /**********************************************************************
51   32-way camellia
52  **********************************************************************/
55  * IN:
56  *   x0..x7: byte-sliced AB state
57  *   mem_cd: register pointer storing CD state
58  *   key: index for key material
59  * OUT:
60  *   x0..x7: new byte-sliced CD state
61  */
62 #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
63                   t7, mem_cd, key) \
64         /* \
65          * S-function with AES subbytes \
66          */ \
67         vbroadcasti128 .Linv_shift_row(%rip), t4; \
68         vpbroadcastd .L0f0f0f0f(%rip), t7; \
69         vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \
70         vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \
71         vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \
72         vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \
73         \
74         /* AES inverse shift rows */ \
75         vpshufb t4, x0, x0; \
76         vpshufb t4, x7, x7; \
77         vpshufb t4, x3, x3; \
78         vpshufb t4, x6, x6; \
79         vpshufb t4, x2, x2; \
80         vpshufb t4, x5, x5; \
81         vpshufb t4, x1, x1; \
82         vpshufb t4, x4, x4; \
83         \
84         /* prefilter sboxes 1, 2 and 3 */ \
85         /* prefilter sbox 4 */ \
86         filter_8bit(x0, t5, t6, t7, t4); \
87         filter_8bit(x7, t5, t6, t7, t4); \
88         vextracti128 $1, x0, t0##_x; \
89         vextracti128 $1, x7, t1##_x; \
90         filter_8bit(x3, t2, t3, t7, t4); \
91         filter_8bit(x6, t2, t3, t7, t4); \
92         vextracti128 $1, x3, t3##_x; \
93         vextracti128 $1, x6, t2##_x; \
94         filter_8bit(x2, t5, t6, t7, t4); \
95         filter_8bit(x5, t5, t6, t7, t4); \
96         filter_8bit(x1, t5, t6, t7, t4); \
97         filter_8bit(x4, t5, t6, t7, t4); \
98         \
99         vpxor t4##_x, t4##_x, t4##_x; \
100         \
101         /* AES subbytes + AES shift rows */ \
102         vextracti128 $1, x2, t6##_x; \
103         vextracti128 $1, x5, t5##_x; \
104         vaesenclast t4##_x, x0##_x, x0##_x; \
105         vaesenclast t4##_x, t0##_x, t0##_x; \
106         vinserti128 $1, t0##_x, x0, x0; \
107         vaesenclast t4##_x, x7##_x, x7##_x; \
108         vaesenclast t4##_x, t1##_x, t1##_x; \
109         vinserti128 $1, t1##_x, x7, x7; \
110         vaesenclast t4##_x, x3##_x, x3##_x; \
111         vaesenclast t4##_x, t3##_x, t3##_x; \
112         vinserti128 $1, t3##_x, x3, x3; \
113         vaesenclast t4##_x, x6##_x, x6##_x; \
114         vaesenclast t4##_x, t2##_x, t2##_x; \
115         vinserti128 $1, t2##_x, x6, x6; \
116         vextracti128 $1, x1, t3##_x; \
117         vextracti128 $1, x4, t2##_x; \
118         vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \
119         vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \
120         vaesenclast t4##_x, x2##_x, x2##_x; \
121         vaesenclast t4##_x, t6##_x, t6##_x; \
122         vinserti128 $1, t6##_x, x2, x2; \
123         vaesenclast t4##_x, x5##_x, x5##_x; \
124         vaesenclast t4##_x, t5##_x, t5##_x; \
125         vinserti128 $1, t5##_x, x5, x5; \
126         vaesenclast t4##_x, x1##_x, x1##_x; \
127         vaesenclast t4##_x, t3##_x, t3##_x; \
128         vinserti128 $1, t3##_x, x1, x1; \
129         vaesenclast t4##_x, x4##_x, x4##_x; \
130         vaesenclast t4##_x, t2##_x, t2##_x; \
131         vinserti128 $1, t2##_x, x4, x4; \
132         \
133         /* postfilter sboxes 1 and 4 */ \
134         vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \
135         vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \
136         filter_8bit(x0, t0, t1, t7, t6); \
137         filter_8bit(x7, t0, t1, t7, t6); \
138         filter_8bit(x3, t0, t1, t7, t6); \
139         filter_8bit(x6, t0, t1, t7, t6); \
140         \
141         /* postfilter sbox 3 */ \
142         vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \
143         vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \
144         filter_8bit(x2, t2, t3, t7, t6); \
145         filter_8bit(x5, t2, t3, t7, t6); \
146         \
147         vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
148         \
149         /* postfilter sbox 2 */ \
150         filter_8bit(x1, t4, t5, t7, t2); \
151         filter_8bit(x4, t4, t5, t7, t2); \
152         vpxor t7, t7, t7; \
153         \
154         vpsrldq $1, t0, t1; \
155         vpsrldq $2, t0, t2; \
156         vpshufb t7, t1, t1; \
157         vpsrldq $3, t0, t3; \
158         \
159         /* P-function */ \
160         vpxor x5, x0, x0; \
161         vpxor x6, x1, x1; \
162         vpxor x7, x2, x2; \
163         vpxor x4, x3, x3; \
164         \
165         vpshufb t7, t2, t2; \
166         vpsrldq $4, t0, t4; \
167         vpshufb t7, t3, t3; \
168         vpsrldq $5, t0, t5; \
169         vpshufb t7, t4, t4; \
170         \
171         vpxor x2, x4, x4; \
172         vpxor x3, x5, x5; \
173         vpxor x0, x6, x6; \
174         vpxor x1, x7, x7; \
175         \
176         vpsrldq $6, t0, t6; \
177         vpshufb t7, t5, t5; \
178         vpshufb t7, t6, t6; \
179         \
180         vpxor x7, x0, x0; \
181         vpxor x4, x1, x1; \
182         vpxor x5, x2, x2; \
183         vpxor x6, x3, x3; \
184         \
185         vpxor x3, x4, x4; \
186         vpxor x0, x5, x5; \
187         vpxor x1, x6, x6; \
188         vpxor x2, x7, x7; /* note: high and low parts swapped */ \
189         \
190         /* Add key material and result to CD (x becomes new CD) */ \
191         \
192         vpxor t6, x1, x1; \
193         vpxor 5 * 32(mem_cd), x1, x1; \
194         \
195         vpsrldq $7, t0, t6; \
196         vpshufb t7, t0, t0; \
197         vpshufb t7, t6, t7; \
198         \
199         vpxor t7, x0, x0; \
200         vpxor 4 * 32(mem_cd), x0, x0; \
201         \
202         vpxor t5, x2, x2; \
203         vpxor 6 * 32(mem_cd), x2, x2; \
204         \
205         vpxor t4, x3, x3; \
206         vpxor 7 * 32(mem_cd), x3, x3; \
207         \
208         vpxor t3, x4, x4; \
209         vpxor 0 * 32(mem_cd), x4, x4; \
210         \
211         vpxor t2, x5, x5; \
212         vpxor 1 * 32(mem_cd), x5, x5; \
213         \
214         vpxor t1, x6, x6; \
215         vpxor 2 * 32(mem_cd), x6, x6; \
216         \
217         vpxor t0, x7, x7; \
218         vpxor 3 * 32(mem_cd), x7, x7;
221  * Size optimization... with inlined roundsm32 binary would be over 5 times
222  * larger and would only marginally faster.
223  */
224 SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
225         roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
226                   %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
227                   %rcx, (%r9));
228         RET;
229 SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
231 SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
232         roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
233                   %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
234                   %rax, (%r9));
235         RET;
236 SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
239  * IN/OUT:
240  *  x0..x7: byte-sliced AB state preloaded
241  *  mem_ab: byte-sliced AB state in memory
242  *  mem_cb: byte-sliced CD state in memory
243  */
244 #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
245                       y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
246         leaq (key_table + (i) * 8)(CTX), %r9; \
247         call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
248         \
249         vmovdqu x0, 4 * 32(mem_cd); \
250         vmovdqu x1, 5 * 32(mem_cd); \
251         vmovdqu x2, 6 * 32(mem_cd); \
252         vmovdqu x3, 7 * 32(mem_cd); \
253         vmovdqu x4, 0 * 32(mem_cd); \
254         vmovdqu x5, 1 * 32(mem_cd); \
255         vmovdqu x6, 2 * 32(mem_cd); \
256         vmovdqu x7, 3 * 32(mem_cd); \
257         \
258         leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
259         call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
260         \
261         store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
263 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
265 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
266         /* Store new AB state */ \
267         vmovdqu x4, 4 * 32(mem_ab); \
268         vmovdqu x5, 5 * 32(mem_ab); \
269         vmovdqu x6, 6 * 32(mem_ab); \
270         vmovdqu x7, 7 * 32(mem_ab); \
271         vmovdqu x0, 0 * 32(mem_ab); \
272         vmovdqu x1, 1 * 32(mem_ab); \
273         vmovdqu x2, 2 * 32(mem_ab); \
274         vmovdqu x3, 3 * 32(mem_ab);
276 #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
277                       y6, y7, mem_ab, mem_cd, i) \
278         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
279                       y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
280         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
281                       y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
282         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
283                       y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
285 #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
286                       y6, y7, mem_ab, mem_cd, i) \
287         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
288                       y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
289         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
290                       y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
291         two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
292                       y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
295  * IN:
296  *  v0..3: byte-sliced 32-bit integers
297  * OUT:
298  *  v0..3: (IN <<< 1)
299  */
300 #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
301         vpcmpgtb v0, zero, t0; \
302         vpaddb v0, v0, v0; \
303         vpabsb t0, t0; \
304         \
305         vpcmpgtb v1, zero, t1; \
306         vpaddb v1, v1, v1; \
307         vpabsb t1, t1; \
308         \
309         vpcmpgtb v2, zero, t2; \
310         vpaddb v2, v2, v2; \
311         vpabsb t2, t2; \
312         \
313         vpor t0, v1, v1; \
314         \
315         vpcmpgtb v3, zero, t0; \
316         vpaddb v3, v3, v3; \
317         vpabsb t0, t0; \
318         \
319         vpor t1, v2, v2; \
320         vpor t2, v3, v3; \
321         vpor t0, v0, v0;
324  * IN:
325  *   r: byte-sliced AB state in memory
326  *   l: byte-sliced CD state in memory
327  * OUT:
328  *   x0..x7: new byte-sliced CD state
329  */
330 #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
331               tt1, tt2, tt3, kll, klr, krl, krr) \
332         /* \
333          * t0 = kll; \
334          * t0 &= ll; \
335          * lr ^= rol32(t0, 1); \
336          */ \
337         vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
338         vpxor tt0, tt0, tt0; \
339         vpshufb tt0, t0, t3; \
340         vpsrldq $1, t0, t0; \
341         vpshufb tt0, t0, t2; \
342         vpsrldq $1, t0, t0; \
343         vpshufb tt0, t0, t1; \
344         vpsrldq $1, t0, t0; \
345         vpshufb tt0, t0, t0; \
346         \
347         vpand l0, t0, t0; \
348         vpand l1, t1, t1; \
349         vpand l2, t2, t2; \
350         vpand l3, t3, t3; \
351         \
352         rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
353         \
354         vpxor l4, t0, l4; \
355         vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
356         vmovdqu l4, 4 * 32(l); \
357         vpxor l5, t1, l5; \
358         vmovdqu l5, 5 * 32(l); \
359         vpxor l6, t2, l6; \
360         vmovdqu l6, 6 * 32(l); \
361         vpxor l7, t3, l7; \
362         vmovdqu l7, 7 * 32(l); \
363         \
364         /* \
365          * t2 = krr; \
366          * t2 |= rr; \
367          * rl ^= t2; \
368          */ \
369         \
370         vpshufb tt0, t0, t3; \
371         vpsrldq $1, t0, t0; \
372         vpshufb tt0, t0, t2; \
373         vpsrldq $1, t0, t0; \
374         vpshufb tt0, t0, t1; \
375         vpsrldq $1, t0, t0; \
376         vpshufb tt0, t0, t0; \
377         \
378         vpor 4 * 32(r), t0, t0; \
379         vpor 5 * 32(r), t1, t1; \
380         vpor 6 * 32(r), t2, t2; \
381         vpor 7 * 32(r), t3, t3; \
382         \
383         vpxor 0 * 32(r), t0, t0; \
384         vpxor 1 * 32(r), t1, t1; \
385         vpxor 2 * 32(r), t2, t2; \
386         vpxor 3 * 32(r), t3, t3; \
387         vmovdqu t0, 0 * 32(r); \
388         vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
389         vmovdqu t1, 1 * 32(r); \
390         vmovdqu t2, 2 * 32(r); \
391         vmovdqu t3, 3 * 32(r); \
392         \
393         /* \
394          * t2 = krl; \
395          * t2 &= rl; \
396          * rr ^= rol32(t2, 1); \
397          */ \
398         vpshufb tt0, t0, t3; \
399         vpsrldq $1, t0, t0; \
400         vpshufb tt0, t0, t2; \
401         vpsrldq $1, t0, t0; \
402         vpshufb tt0, t0, t1; \
403         vpsrldq $1, t0, t0; \
404         vpshufb tt0, t0, t0; \
405         \
406         vpand 0 * 32(r), t0, t0; \
407         vpand 1 * 32(r), t1, t1; \
408         vpand 2 * 32(r), t2, t2; \
409         vpand 3 * 32(r), t3, t3; \
410         \
411         rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
412         \
413         vpxor 4 * 32(r), t0, t0; \
414         vpxor 5 * 32(r), t1, t1; \
415         vpxor 6 * 32(r), t2, t2; \
416         vpxor 7 * 32(r), t3, t3; \
417         vmovdqu t0, 4 * 32(r); \
418         vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
419         vmovdqu t1, 5 * 32(r); \
420         vmovdqu t2, 6 * 32(r); \
421         vmovdqu t3, 7 * 32(r); \
422         \
423         /* \
424          * t0 = klr; \
425          * t0 |= lr; \
426          * ll ^= t0; \
427          */ \
428         \
429         vpshufb tt0, t0, t3; \
430         vpsrldq $1, t0, t0; \
431         vpshufb tt0, t0, t2; \
432         vpsrldq $1, t0, t0; \
433         vpshufb tt0, t0, t1; \
434         vpsrldq $1, t0, t0; \
435         vpshufb tt0, t0, t0; \
436         \
437         vpor l4, t0, t0; \
438         vpor l5, t1, t1; \
439         vpor l6, t2, t2; \
440         vpor l7, t3, t3; \
441         \
442         vpxor l0, t0, l0; \
443         vmovdqu l0, 0 * 32(l); \
444         vpxor l1, t1, l1; \
445         vmovdqu l1, 1 * 32(l); \
446         vpxor l2, t2, l2; \
447         vmovdqu l2, 2 * 32(l); \
448         vpxor l3, t3, l3; \
449         vmovdqu l3, 3 * 32(l);
451 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
452         vpunpckhdq x1, x0, t2; \
453         vpunpckldq x1, x0, x0; \
454         \
455         vpunpckldq x3, x2, t1; \
456         vpunpckhdq x3, x2, x2; \
457         \
458         vpunpckhqdq t1, x0, x1; \
459         vpunpcklqdq t1, x0, x0; \
460         \
461         vpunpckhqdq x2, t2, x3; \
462         vpunpcklqdq x2, t2, x2;
464 #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
465                               a3, b3, c3, d3, st0, st1) \
466         vmovdqu d2, st0; \
467         vmovdqu d3, st1; \
468         transpose_4x4(a0, a1, a2, a3, d2, d3); \
469         transpose_4x4(b0, b1, b2, b3, d2, d3); \
470         vmovdqu st0, d2; \
471         vmovdqu st1, d3; \
472         \
473         vmovdqu a0, st0; \
474         vmovdqu a1, st1; \
475         transpose_4x4(c0, c1, c2, c3, a0, a1); \
476         transpose_4x4(d0, d1, d2, d3, a0, a1); \
477         \
478         vbroadcasti128 .Lshufb_16x16b(%rip), a0; \
479         vmovdqu st1, a1; \
480         vpshufb a0, a2, a2; \
481         vpshufb a0, a3, a3; \
482         vpshufb a0, b0, b0; \
483         vpshufb a0, b1, b1; \
484         vpshufb a0, b2, b2; \
485         vpshufb a0, b3, b3; \
486         vpshufb a0, a1, a1; \
487         vpshufb a0, c0, c0; \
488         vpshufb a0, c1, c1; \
489         vpshufb a0, c2, c2; \
490         vpshufb a0, c3, c3; \
491         vpshufb a0, d0, d0; \
492         vpshufb a0, d1, d1; \
493         vpshufb a0, d2, d2; \
494         vpshufb a0, d3, d3; \
495         vmovdqu d3, st1; \
496         vmovdqu st0, d3; \
497         vpshufb a0, d3, a0; \
498         vmovdqu d2, st0; \
499         \
500         transpose_4x4(a0, b0, c0, d0, d2, d3); \
501         transpose_4x4(a1, b1, c1, d1, d2, d3); \
502         vmovdqu st0, d2; \
503         vmovdqu st1, d3; \
504         \
505         vmovdqu b0, st0; \
506         vmovdqu b1, st1; \
507         transpose_4x4(a2, b2, c2, d2, b0, b1); \
508         transpose_4x4(a3, b3, c3, d3, b0, b1); \
509         vmovdqu st0, b0; \
510         vmovdqu st1, b1; \
511         /* does not adjust output bytes inside vectors */
513 /* load blocks to registers and apply pre-whitening */
514 #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
515                      y6, y7, rio, key) \
516         vpbroadcastq key, x0; \
517         vpshufb .Lpack_bswap(%rip), x0, x0; \
518         \
519         vpxor 0 * 32(rio), x0, y7; \
520         vpxor 1 * 32(rio), x0, y6; \
521         vpxor 2 * 32(rio), x0, y5; \
522         vpxor 3 * 32(rio), x0, y4; \
523         vpxor 4 * 32(rio), x0, y3; \
524         vpxor 5 * 32(rio), x0, y2; \
525         vpxor 6 * 32(rio), x0, y1; \
526         vpxor 7 * 32(rio), x0, y0; \
527         vpxor 8 * 32(rio), x0, x7; \
528         vpxor 9 * 32(rio), x0, x6; \
529         vpxor 10 * 32(rio), x0, x5; \
530         vpxor 11 * 32(rio), x0, x4; \
531         vpxor 12 * 32(rio), x0, x3; \
532         vpxor 13 * 32(rio), x0, x2; \
533         vpxor 14 * 32(rio), x0, x1; \
534         vpxor 15 * 32(rio), x0, x0;
536 /* byteslice pre-whitened blocks and store to temporary memory */
537 #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
538                       y6, y7, mem_ab, mem_cd) \
539         byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
540                               y4, y5, y6, y7, (mem_ab), (mem_cd)); \
541         \
542         vmovdqu x0, 0 * 32(mem_ab); \
543         vmovdqu x1, 1 * 32(mem_ab); \
544         vmovdqu x2, 2 * 32(mem_ab); \
545         vmovdqu x3, 3 * 32(mem_ab); \
546         vmovdqu x4, 4 * 32(mem_ab); \
547         vmovdqu x5, 5 * 32(mem_ab); \
548         vmovdqu x6, 6 * 32(mem_ab); \
549         vmovdqu x7, 7 * 32(mem_ab); \
550         vmovdqu y0, 0 * 32(mem_cd); \
551         vmovdqu y1, 1 * 32(mem_cd); \
552         vmovdqu y2, 2 * 32(mem_cd); \
553         vmovdqu y3, 3 * 32(mem_cd); \
554         vmovdqu y4, 4 * 32(mem_cd); \
555         vmovdqu y5, 5 * 32(mem_cd); \
556         vmovdqu y6, 6 * 32(mem_cd); \
557         vmovdqu y7, 7 * 32(mem_cd);
559 /* de-byteslice, apply post-whitening and store blocks */
560 #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
561                     y5, y6, y7, key, stack_tmp0, stack_tmp1) \
562         byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
563                               y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
564         \
565         vmovdqu x0, stack_tmp0; \
566         \
567         vpbroadcastq key, x0; \
568         vpshufb .Lpack_bswap(%rip), x0, x0; \
569         \
570         vpxor x0, y7, y7; \
571         vpxor x0, y6, y6; \
572         vpxor x0, y5, y5; \
573         vpxor x0, y4, y4; \
574         vpxor x0, y3, y3; \
575         vpxor x0, y2, y2; \
576         vpxor x0, y1, y1; \
577         vpxor x0, y0, y0; \
578         vpxor x0, x7, x7; \
579         vpxor x0, x6, x6; \
580         vpxor x0, x5, x5; \
581         vpxor x0, x4, x4; \
582         vpxor x0, x3, x3; \
583         vpxor x0, x2, x2; \
584         vpxor x0, x1, x1; \
585         vpxor stack_tmp0, x0, x0;
587 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
588                      y6, y7, rio) \
589         vmovdqu x0, 0 * 32(rio); \
590         vmovdqu x1, 1 * 32(rio); \
591         vmovdqu x2, 2 * 32(rio); \
592         vmovdqu x3, 3 * 32(rio); \
593         vmovdqu x4, 4 * 32(rio); \
594         vmovdqu x5, 5 * 32(rio); \
595         vmovdqu x6, 6 * 32(rio); \
596         vmovdqu x7, 7 * 32(rio); \
597         vmovdqu y0, 8 * 32(rio); \
598         vmovdqu y1, 9 * 32(rio); \
599         vmovdqu y2, 10 * 32(rio); \
600         vmovdqu y3, 11 * 32(rio); \
601         vmovdqu y4, 12 * 32(rio); \
602         vmovdqu y5, 13 * 32(rio); \
603         vmovdqu y6, 14 * 32(rio); \
604         vmovdqu y7, 15 * 32(rio);
607 .section        .rodata.cst32.shufb_16x16b, "aM", @progbits, 32
608 .align 32
609 #define SHUFB_BYTES(idx) \
610         0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
611 .Lshufb_16x16b:
612         .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
613         .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
615 .section        .rodata.cst32.pack_bswap, "aM", @progbits, 32
616 .align 32
617 .Lpack_bswap:
618         .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
619         .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
621 /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
622 .section        .rodata.cst16, "aM", @progbits, 16
623 .align 16
626  * pre-SubByte transform
628  * pre-lookup for sbox1, sbox2, sbox3:
629  *   swap_bitendianness(
630  *       isom_map_camellia_to_aes(
631  *           camellia_f(
632  *               swap_bitendianess(in)
633  *           )
634  *       )
635  *   )
637  * (note: '⊕ 0xc5' inside camellia_f())
638  */
639 .Lpre_tf_lo_s1:
640         .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
641         .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
642 .Lpre_tf_hi_s1:
643         .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
644         .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
647  * pre-SubByte transform
649  * pre-lookup for sbox4:
650  *   swap_bitendianness(
651  *       isom_map_camellia_to_aes(
652  *           camellia_f(
653  *               swap_bitendianess(in <<< 1)
654  *           )
655  *       )
656  *   )
658  * (note: '⊕ 0xc5' inside camellia_f())
659  */
660 .Lpre_tf_lo_s4:
661         .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
662         .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
663 .Lpre_tf_hi_s4:
664         .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
665         .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
668  * post-SubByte transform
670  * post-lookup for sbox1, sbox4:
671  *  swap_bitendianness(
672  *      camellia_h(
673  *          isom_map_aes_to_camellia(
674  *              swap_bitendianness(
675  *                  aes_inverse_affine_transform(in)
676  *              )
677  *          )
678  *      )
679  *  )
681  * (note: '⊕ 0x6e' inside camellia_h())
682  */
683 .Lpost_tf_lo_s1:
684         .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
685         .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
686 .Lpost_tf_hi_s1:
687         .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
688         .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
691  * post-SubByte transform
693  * post-lookup for sbox2:
694  *  swap_bitendianness(
695  *      camellia_h(
696  *          isom_map_aes_to_camellia(
697  *              swap_bitendianness(
698  *                  aes_inverse_affine_transform(in)
699  *              )
700  *          )
701  *      )
702  *  ) <<< 1
704  * (note: '⊕ 0x6e' inside camellia_h())
705  */
706 .Lpost_tf_lo_s2:
707         .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
708         .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
709 .Lpost_tf_hi_s2:
710         .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
711         .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
714  * post-SubByte transform
716  * post-lookup for sbox3:
717  *  swap_bitendianness(
718  *      camellia_h(
719  *          isom_map_aes_to_camellia(
720  *              swap_bitendianness(
721  *                  aes_inverse_affine_transform(in)
722  *              )
723  *          )
724  *      )
725  *  ) >>> 1
727  * (note: '⊕ 0x6e' inside camellia_h())
728  */
729 .Lpost_tf_lo_s3:
730         .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
731         .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
732 .Lpost_tf_hi_s3:
733         .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
734         .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
736 /* For isolating SubBytes from AESENCLAST, inverse shift row */
737 .Linv_shift_row:
738         .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
739         .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
741 .section        .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
742 .align 4
743 /* 4-bit mask */
744 .L0f0f0f0f:
745         .long 0x0f0f0f0f
747 .text
749 SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
750         /* input:
751          *      %rdi: ctx, CTX
752          *      %rax: temporary storage, 512 bytes
753          *      %ymm0..%ymm15: 32 plaintext blocks
754          * output:
755          *      %ymm0..%ymm15: 32 encrypted blocks, order swapped:
756          *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
757          */
758         FRAME_BEGIN
760         leaq 8 * 32(%rax), %rcx;
762         inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
763                       %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
764                       %ymm15, %rax, %rcx);
766         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
767                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
768                      %ymm15, %rax, %rcx, 0);
770         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
771               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
772               %ymm15,
773               ((key_table + (8) * 8) + 0)(CTX),
774               ((key_table + (8) * 8) + 4)(CTX),
775               ((key_table + (8) * 8) + 8)(CTX),
776               ((key_table + (8) * 8) + 12)(CTX));
778         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
779                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
780                      %ymm15, %rax, %rcx, 8);
782         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
783               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
784               %ymm15,
785               ((key_table + (16) * 8) + 0)(CTX),
786               ((key_table + (16) * 8) + 4)(CTX),
787               ((key_table + (16) * 8) + 8)(CTX),
788               ((key_table + (16) * 8) + 12)(CTX));
790         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
791                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
792                      %ymm15, %rax, %rcx, 16);
794         movl $24, %r8d;
795         cmpl $16, key_length(CTX);
796         jne .Lenc_max32;
798 .Lenc_done:
799         /* load CD for output */
800         vmovdqu 0 * 32(%rcx), %ymm8;
801         vmovdqu 1 * 32(%rcx), %ymm9;
802         vmovdqu 2 * 32(%rcx), %ymm10;
803         vmovdqu 3 * 32(%rcx), %ymm11;
804         vmovdqu 4 * 32(%rcx), %ymm12;
805         vmovdqu 5 * 32(%rcx), %ymm13;
806         vmovdqu 6 * 32(%rcx), %ymm14;
807         vmovdqu 7 * 32(%rcx), %ymm15;
809         outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
810                     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
811                     %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
813         FRAME_END
814         RET;
816 .align 8
817 .Lenc_max32:
818         movl $32, %r8d;
820         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
821               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
822               %ymm15,
823               ((key_table + (24) * 8) + 0)(CTX),
824               ((key_table + (24) * 8) + 4)(CTX),
825               ((key_table + (24) * 8) + 8)(CTX),
826               ((key_table + (24) * 8) + 12)(CTX));
828         enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
829                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
830                      %ymm15, %rax, %rcx, 24);
832         jmp .Lenc_done;
833 SYM_FUNC_END(__camellia_enc_blk32)
835 SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
836         /* input:
837          *      %rdi: ctx, CTX
838          *      %rax: temporary storage, 512 bytes
839          *      %r8d: 24 for 16 byte key, 32 for larger
840          *      %ymm0..%ymm15: 16 encrypted blocks
841          * output:
842          *      %ymm0..%ymm15: 16 plaintext blocks, order swapped:
843          *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
844          */
845         FRAME_BEGIN
847         leaq 8 * 32(%rax), %rcx;
849         inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
850                       %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
851                       %ymm15, %rax, %rcx);
853         cmpl $32, %r8d;
854         je .Ldec_max32;
856 .Ldec_max24:
857         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
858                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
859                      %ymm15, %rax, %rcx, 16);
861         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
862               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
863               %ymm15,
864               ((key_table + (16) * 8) + 8)(CTX),
865               ((key_table + (16) * 8) + 12)(CTX),
866               ((key_table + (16) * 8) + 0)(CTX),
867               ((key_table + (16) * 8) + 4)(CTX));
869         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
870                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
871                      %ymm15, %rax, %rcx, 8);
873         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
874               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
875               %ymm15,
876               ((key_table + (8) * 8) + 8)(CTX),
877               ((key_table + (8) * 8) + 12)(CTX),
878               ((key_table + (8) * 8) + 0)(CTX),
879               ((key_table + (8) * 8) + 4)(CTX));
881         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
882                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
883                      %ymm15, %rax, %rcx, 0);
885         /* load CD for output */
886         vmovdqu 0 * 32(%rcx), %ymm8;
887         vmovdqu 1 * 32(%rcx), %ymm9;
888         vmovdqu 2 * 32(%rcx), %ymm10;
889         vmovdqu 3 * 32(%rcx), %ymm11;
890         vmovdqu 4 * 32(%rcx), %ymm12;
891         vmovdqu 5 * 32(%rcx), %ymm13;
892         vmovdqu 6 * 32(%rcx), %ymm14;
893         vmovdqu 7 * 32(%rcx), %ymm15;
895         outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
896                     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
897                     %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
899         FRAME_END
900         RET;
902 .align 8
903 .Ldec_max32:
904         dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
905                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
906                      %ymm15, %rax, %rcx, 24);
908         fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
909               %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
910               %ymm15,
911               ((key_table + (24) * 8) + 8)(CTX),
912               ((key_table + (24) * 8) + 12)(CTX),
913               ((key_table + (24) * 8) + 0)(CTX),
914               ((key_table + (24) * 8) + 4)(CTX));
916         jmp .Ldec_max24;
917 SYM_FUNC_END(__camellia_dec_blk32)
919 SYM_FUNC_START(camellia_ecb_enc_32way)
920         /* input:
921          *      %rdi: ctx, CTX
922          *      %rsi: dst (32 blocks)
923          *      %rdx: src (32 blocks)
924          */
925         FRAME_BEGIN
927         vzeroupper;
929         inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
930                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
931                      %ymm15, %rdx, (key_table)(CTX));
933         /* now dst can be used as temporary buffer (even in src == dst case) */
934         movq    %rsi, %rax;
936         call __camellia_enc_blk32;
938         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
939                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
940                      %ymm8, %rsi);
942         vzeroupper;
944         FRAME_END
945         RET;
946 SYM_FUNC_END(camellia_ecb_enc_32way)
948 SYM_FUNC_START(camellia_ecb_dec_32way)
949         /* input:
950          *      %rdi: ctx, CTX
951          *      %rsi: dst (32 blocks)
952          *      %rdx: src (32 blocks)
953          */
954         FRAME_BEGIN
956         vzeroupper;
958         cmpl $16, key_length(CTX);
959         movl $32, %r8d;
960         movl $24, %eax;
961         cmovel %eax, %r8d; /* max */
963         inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
964                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
965                      %ymm15, %rdx, (key_table)(CTX, %r8, 8));
967         /* now dst can be used as temporary buffer (even in src == dst case) */
968         movq    %rsi, %rax;
970         call __camellia_dec_blk32;
972         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
973                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
974                      %ymm8, %rsi);
976         vzeroupper;
978         FRAME_END
979         RET;
980 SYM_FUNC_END(camellia_ecb_dec_32way)
982 SYM_FUNC_START(camellia_cbc_dec_32way)
983         /* input:
984          *      %rdi: ctx, CTX
985          *      %rsi: dst (32 blocks)
986          *      %rdx: src (32 blocks)
987          */
988         FRAME_BEGIN
989         subq $(16 * 32), %rsp;
991         vzeroupper;
993         cmpl $16, key_length(CTX);
994         movl $32, %r8d;
995         movl $24, %eax;
996         cmovel %eax, %r8d; /* max */
998         inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
999                      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1000                      %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1002         cmpq %rsi, %rdx;
1003         je .Lcbc_dec_use_stack;
1005         /* dst can be used as temporary storage, src is not overwritten. */
1006         movq %rsi, %rax;
1007         jmp .Lcbc_dec_continue;
1009 .Lcbc_dec_use_stack:
1010         /*
1011          * dst still in-use (because dst == src), so use stack for temporary
1012          * storage.
1013          */
1014         movq %rsp, %rax;
1016 .Lcbc_dec_continue:
1017         call __camellia_dec_blk32;
1019         vmovdqu %ymm7, (%rax);
1020         vpxor %ymm7, %ymm7, %ymm7;
1021         vinserti128 $1, (%rdx), %ymm7, %ymm7;
1022         vpxor (%rax), %ymm7, %ymm7;
1023         vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1024         vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1025         vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1026         vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1027         vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1028         vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1029         vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1030         vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1031         vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1032         vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1033         vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1034         vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1035         vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1036         vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1037         vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1038         write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1039                      %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1040                      %ymm8, %rsi);
1042         vzeroupper;
1044         addq $(16 * 32), %rsp;
1045         FRAME_END
1046         RET;
1047 SYM_FUNC_END(camellia_cbc_dec_32way)